
Multi-level Cooperative Search: A New

Paradigm for Combinatorial Optimization and
an Application to Graph Partitioning

Michel Toulouse1, Krishnaiyan Thulasiraman2, and Fred Glover3

1 Department of Computer Science
University of Manitoba

2 School of Computer Science
University of Oklahoma

3 Graduate School of Business
University of Colorado

Abstract. Cooperative search is a parallelization strategy for search
algorithms where parallelism is obtained by concurrently executing sev-
eral search programs. The solution space is implicitly decomposed ac-
cording to the search strategy of each program. The programs cooperate
by exchanging information on previously explored regions of the solu-
tion space. In this paper we propose a new design for cooperative search
algorithms which is also a new parallel problem solving paradigm for
combinatorial optimization problems. Our new design is based on an
innovative approach to decompose the solution space which is inspired
from the modeling of cooperative algorithms based on dynamical systems
theory. Our design also gives a new purpose to the sharing of informa-
tion among cooperating tasks based on principles borrowed from scatter
search evolutionary algorithms. We have applied this paradigm to the
graph partitioning problem. We describe the parallel implementation of
this algorithm on a cluster of workstations and compare our results with
other well known graph partitioning methods.

1 Introduction

Given that a finite amount of computational time is allocated to find a near op-
timal solution, local search methods often stand to benefit from parallelization
to find better solutions. It is common to base the parallelization on restarts of
the local search from different initial points in the solution space and/or to use
different search criteria to improve the quality of the solutions returned by the
search method. Restarting a search method yields an implicit decomposition of
the solution space, and if these restarts do not require knowledge of the out-
come of other restarts, we can exploit them by creating independent tasks for a
concurrent exploration of the solution space using parallel computers. Following
the principle underscored in tabu search that the history of the solution process
is important for determining decisions made at various stages, it has been ob-
served that the search methods can benefit from information gathered by the

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 533–542, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

534 Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover

other concurrent search threads in a parallel search. This has given rise to a
parallelization paradigm called cooperative search (Toulouse, Crainic and Sansó
1997).

In this paper we propose an innovative design for cooperative search algo-
rithms which is also a new parallel problem solving paradigm for combinato-
rial optimization problems. Current design of cooperative search algorithms are
mostly based on search programs working with the same data set and explor-
ing the solution space according to an implicit partition obtained from different
search strategies. In our proposed design, each search program works with a
different data set, each object of each data set is a partial solution of the opti-
mization problem and each partial solution of a data set is obtained from objects
of the previous data set in the hierarchy and also serves as a building block of
objects in the next data sets in the hierarchy. The second aspect in which our
design departs from current cooperative algorithms is relative to the sharing of
information. In our new design, shared information is used to reorganize the
partial solutions in the data sets. Given a particular instance of a hierarchy of
data sets, the exploration of the problem solution space is limited to regions
that can be reached by the neighborhood functions defined by the set of partial
solutions at each level. By reorganizing the partial solutions in the data sets, i.e.
destroying some partial solutions and creating others, new data sets (and con-
sequently new neighborhood functions) are created at each level where such a
reorganization occurs, which provides for new regions of the solution space to be
explored. This strategy uses principles borrowed from scatter search evolution-
ary algorithms (Glover 1977) and vocabulary building procedures (Glover 1992,
Glover and Laguna 1993, Glover and Laguna 1997) to guide the “combination”
of shared information originating from different sources.

We have applied this problem solving method and cooperative search design
to the k-way graph partitioning problem (GPP). In terms of the quality of the
solutions, our approach turns out to be by far the most powerful heuristic for
this optimization problem. The performance of this approach is also consistent,
always outperforming the other algorithms for all the problem instances tested.
This outcome demonstrates that the present design is highly successful in adapt-
ing the dynamical behavior of the system to the optimization objective of the
problem.

The rest of paper is organized as follows. In Section 2 we introduce a for-
malization of the GPP and classify the existing graph partitioning methods. In
Section 3 we introduce our multi-level cooperative search framework. In Section
4 we describe an application of our multi-level cooperative search to the GPP.
In Section 5 we give the resulting edge cuts from a parallel implementation of
the algorithm to several graphs. Concluding remarks are provided in Section 6.

2 The Multi-level Cooperative Search Framework

Cooperative algorithms are relatively new, and most of the attention thus far
has focused on finding useful mechanisms for sharing information to improve

Multi-level Cooperative Search 535

the search behavior of cooperating programs. However, cooperation issues are
more subtle than simply considering the impact of reused information on the
performance of cooperating programs. Shared information among the search
programs creates an inextricable network of dependencies which are most likely
to be at the source of the divergent behavior of cooperating algorithms when
compared to the individual search strategies that compose them. Our concern is
to organize the dependencies among cooperating programs in a more manageable
control structure in terms of how it affects the search of cooperative algorithms.

Similar issues have been addressed previously by scatter search evolution-
ary methods and their derivatives, notably the vocabulary building procedures.
Scatter search approaches are population based search heuristics that seek to
exploit information contained in “elite solutions” by combining them to derive
new solutions. The role of the elite solutions in scatter search as a means to
control the exploration of the solution space is based on strategies whose roots
can be traced in part to OR and AI proposals at the end of the 50s and early
60s. (For a review see Glover 1997 and Glover and Laguna 1997.) Vocabulary
building constitutes a variation of scatter search which focuses on components
of elite solution vectors (partial solutions) rather than complete solutions. Pro-
cedures using this design have been implemented in a sequential programming
setting by Rochat and Taillard (1995), Kelly and Xu (1995), Taillard et al. (1995)
and Lopez, Carter and Gendreau (1996). Elite solutions are identified using local
search methods. Partial solutions are extracted from the elite solutions to form a
pool of solution fragments, which in turn are combined to form larger fragments
until complete solutions are generated.

By adapting the data sets of the search programs to embody a hierarchi-
cal structure of the form proposed above, we have been able to convert current
cooperative algorithms into multi-level structures. Our design is based on assum-
ing that solutions of the combinatorial optimization problem can be represented
as sequences or partitions. Decision variables that define the objective function
serve as the logical choice to constitute the lowest level components of the multi-
level structure, and we progressively combine these variables to provide larger
aggregates of variables. Thus the original decision variables are building blocks
for the second level of the structure, whose elements are larger sequences or par-
titions of solutions. These larger aggregates again function as building blocks, to
be combined into higher order assemblies, forming a set of hierarchically struc-
tured complexes.

A large number of multi-level structures can be obtained by combining the
decision variables in different ways − a choice that is available at each level
of aggregation. Each combination strategy defines an instance of a multi-level
structure that organizes the original data set of the problem. Each set of ag-
gregates of a given instance of this structure, which provides decision criteria
for all levels, is used as an input (a “data set”) for one of the search programs
composing a cooperative algorithm.

If we use only one multi-level structure instance (as in an effort to design
multi-level graph partitioning algorithms), higher level controls may not be able

536 Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover

to give very favorable guidelines to lower control levels, and thus may yield a
poor exploration of the solution space. A better approach is to explore the solu-
tion space according to different instances of the multi-level structure. Instances
can be generated statically (using different combination strategies) with or with-
out the knowledge of the results of the exploration of previous instances, or they
can be generated dynamically. We have favored the latter option in our design.
We generated instances dynamically by using interactions occurring among the
levels being explored by the search programs. In our current design we have de-
fined three different kinds of local interactions which are implemented in terms
of inter-task operators: an interpolation operator, a destroy operator and a cre-
ate operator. As in other cooperative algorithms, these local interactions have
a cumulative impact and give rise to diffusion processes among the programs
of the multi-level structure. However, unlike previous designs, the local interac-
tions are part of a hierarchical control structure which evolves according to the
optimization logic of the search methods. This helps to create dynamics in the
system favoring a better exploration of the solution space of the optimization
problem.

3 Application to the Graph Partitioning Problem

The graph partitioning problem is a combinatorial optimization problem of prac-
tical interest in many engineering fields. Given a graph G = {V, E} where |V | = n
and |E| = m, the graph partitioning problem seeks to partition the set of vertices
V into k subsets V1, V2, . . . , Vk in order to minimize

i=m∑

i=1

w(ei) | ei connects vertices belonging to different subsets

subject to Vi

⋂
Vj = ∅ (i 6= j); |Vi| − |Vj | ≤ 1, ∀ i, j ∈ {1, . . . , k}; and⋃i=k

i=1 Vi = V. In this section we introduce a parallel implementation of a co-
operative algorithm for the graph partitioning problem which incorporates the
design principles described in the previous section. First we describe the initial-
ization phase of the procedure.

3.1 Initialization

The initial set of components is based on the decision variables of the optimiza-
tion problem. For the graph partitioning problem, this initial set corresponds to
the vertices of the graph. To obtain the components (aggregates) at the second
level of the multi-level data set to exploit the building block effect, we aggregate
the initial set of components into partial solutions. For the graph partitioning
problem, this consists of creating aggregates of vertices which become the com-
ponents to be manipulated at the second level of the structure.

In our current implementation of the multi-level cooperative algorithm for
the GPP, we have a single hierarchy of data sets. These data sets are obtained

Multi-level Cooperative Search 537

using a maximal matching algorithm (Hendrickson and Leland 1993 and Karypis
and Kumar 1998) which consists of finding a maximal set of edges in the graph
such that no two edges are incident to the same vertex. (The term “maximal”,
in contrast to “maximum”, refers to a matching that is locally optimal in a
constructive sense, i.e., it is contained in no larger matching.) The two vertices i
and j of an edge (i, j) in the matching are merged into a single vertex. The new
vertex weight equals the sum of the weights of its constituent vertices and the
vertex also retains the edges adjacent to its constituent vertices. Edge weights
are left unchanged, except where vertices i and j both are joined by edges to a
common vertex k before being merged. Then the two edges (i, k) and (j, k) are
replaced by a single edge whose weight equals the sum of the weights of (i, k)
and (j, k).

Denote graph G = {V, E} by G0 = {V0, E0}. The aggregates built from the
initial set of vertices V0 using the maximal matching algorithm defines a new
graph G1 = {V1, E1} where |V1| ≈ |V0|/2. The maximal matching is then applied
to graph G1, and iteratively to the graph obtained from G1 until the coarsened
graphs are small enough to be easy to explore. Assuming that p graphs have
been generated by iteratively applying the maximal matching algorithm to the
last generated graph, we then have after p− 1 aggregation operations, p graphs
G0, G1, . . . , Gp−1.

3.2 The Control Structure

The control structure represents the problem solving method. In this multi-level
algorithm there are two types of control structure (two types of neighborhood
functions). The first one consists of the graph partitioning algorithms applied to
the data set at each level (the traditional neighborhood function defined by the
search move used, swap, 2-opt, 3-opt, etc.). Essentially we use constructive or
local improvement partitioning algorithms to search the graphs at each level of
the structure, therefore performing the search of all the levels in parallel.

The interactions among the data sets at different levels constitute the second
type of control structure. While the search space of the levels i > 0 is increas-
ingly smaller and easier to search, the search processes at these levels can only
explore partially the solution space of the problem and may not yield very good
solutions. We need to create new multi-level structure instances. This is achieved
through interactions among consecutive levels of the structure, changing the sets
of aggregates. At this point we elaborate the three operators which are used to
implement the interactions among the cooperating programs of the multi-level
structure.
Destroy operator: It determines whether the vertices of an aggregate in Gi lie in
the same set of the best partition in graph Gi−1. If not, destroy the aggregate in
graph Gi so that each of the vertices of the aggregate constitute a separate set.

Each process Pi has a data structure which records which vertices of the
graph Gi have been merged together in a single vertex (aggregate) of graph
Gi+1. To implement the destroy operator, processes Pi, i = 0, . . . , p− 2 compare
a good partition of graph Gi with the set of aggregates in the graph Gi+1. If an

538 Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover

aggregate in graph Gi+1 has components (vertices) from graph Gi which are not
in the same set in the good partition, this aggregate is marked to be destroyed.
This step is followed by a communication phase where process Pi sends the
set of marked aggregates to process Pi+1. Once a process Pi, i = 1, . . . p − 1
has received the information about which aggregates have to be destroyed, it
proceeds to remove these aggregates from the graph Gi and to create a new
set of vertices in graph Gi from the components of the destroyed aggregates.
The outcome of executing the destroy procedure is a new multi-level structure
instance consisting of modified data sets potentially at each level of the structure.
These data sets yield new graphs in the sequence of graphs (except for graph
G0). The new graphs are based on different sets of partial solutions, therefore
providing a new set of neighborhood functions to search the graph G0. Processes
need then to resume the exploration of the solution space of G0.
Create operator: Given vertices which are often in the same set relative to a
collection of good partitions in graph Gi, create an aggregate with these vertices
and make it a new aggregate (vertex) of graph Gi+1.

The sequence of operations of the procedure to implement the “create” op-
erator is similar to the sequence for the “destroy” operator. New aggregates for
graph Gi are identified based on elite solutions found when process Pi explores
graph Gi. A variety of strategies and guidelines have been proposed in the lit-
erature on scatter search methods (and their path relinking generalizations) to
combine such elite solutions. In our current implementation, when a good solu-
tion is visited, we record in which set of the partition each vertex is found. Then
we use a simple frequency memory to identify “consistent variables” following a
scatter search theme that is shared with tabu search. Specifically, before applying
the create operator, those vertices which have often been together in the same
set are considered candidates to be merged in a single vertex of graph Gi+1, i.e.
to become the building blocks or components of new aggregates in graph Gi+1.
Following this initial phase of the “create” procedure, the sequence of operations
of the “create” operator is identical to the sequence for the “destroy” operator.
Interpolation operator: The current best partition in Gi+1 is transformed by
this operator to become an initial solution for the exploration of graph Gi. In
particular, the operator places nodes of Gi in the same sets of the partition as
their aggregate in the best partition in Gi+1.

The procedure that implements the “interpolation” operator for process Pi,
receives a good partition of graph Gi+1 from process Pi+1. Assume aggregate a
of graph Gi+1 is in the set Ai+1 of the good partition received from process Pi+1.
The aggregate a is then uncoarsened and all components of the aggregate a are
placed in the set Ai of the partition for graph Gi. This yields an initial solution
for process Pi from which a local search is launched to explore the solution space
of graph Gi.

3.3 The Parallel Implementation

In our current implementation, these three operators are in sequence in the main
loop of the program. The main loop iterates in a synchronized manner, applying

Multi-level Cooperative Search 539

first the destroy operator at all levels in parallel, followed by the interpolation
and create operators again at all levels, before entering in the next iteration.
The implementation and experiments described in this paper have been run on a
cluster of Sparc workstations. The multi-level structure is a sequence of graphs. If
the multi-level structure has p levels, we reserve a set of p processors and define an
interconnection topology among them corresponding to an array. Let processors
Pi−1 and Pi+1 be the neighbors of processor Pi in the array topology. This means
that our communication software need to send messages only to processors Pi−1

and Pi+1 from processor Pi. In this array topology, Pi−1 is not defined for P0 and
Pi+1 is not defined for Pp−1. Our mapping strategy is to associate the process
which searches graph Gi to processor Pi in the array such that levels Gi−1, Gi

and Gi+1 are neighbor tasks in the logical array configuration of processors.
All data exchanges among the processes use our own communication software,
which is stream based using the TLI protocol interface. (We have also realized an
implementation of this multi-level cooperative search under PVM, and a second
one that runs on the Origin 2000 shared memory parallel computer.)

This parallel algorithm is an implementation of the framework described in
section 2. We believe that similar implementations can be realized for several
optimization problems where solutions can be expressed as a combination of
partial solutions.

4 Experiments

The experimental results show that with only a summary implementation, our
new method is actually quite effective. The tests have been performed using the
set of graphs in Table 1 as benchmark set (which represents the complete set of
graphs that we have tested).

Graphs # of vertices # of edges Graphs # of vertices # of edges

3elt 4720 13722 tooth 78136 452591
whitaker3 9800 28989 rotor 99617 662431

4elt2 11143 32818 ocean 143437 409593
4elt 15606 45878 auto(ef 589) 110971 741934

sphere 16386 49152 m144 144649 1074393
bcsstk31 35588 572914 m14 214765 1679018
brack2 62631 366559

Table 1. Characteristics of the graphs in the benchmark set

These graphs have been widely used as benchmarks for graph partitioning
algorithms. Most of these graphs are triangular and quadrangular unstructured
meshes related to fluid dynamics, structural mechanics, or combinatorial opti-
mization problems, obtained from the web site:

ftp : //ftp.u− bordeaux.fr/pub/Local/Info/Software/Scotch/Graphs

540 Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover

Graphs Methods Number of sets in the partitions / Edge cut
2 4 8 16 32 64 128 256 512

C2.0 91 225 386 629 1102 1736
3elt M3.0 90 221 386 631 1098 1723

MO 90 205 347 578 818 1649
C2.0 132 392 700 1218 1879 2814

whit M3.0 131 427 716 1219 1886 2811-1
MO 128 382 667 1131 1754-1 2661-1
C2.0 130 351 656 1154 1809 2814

4elt2 M3.0 130 359 658 1122 1784 2830-2
MO 130 351 617 1048 1710-1 2632-1
C2.0 147 384 647 1111 1880 2994

4elt M3.0 142 380 645 1043 1738 2938
MO 139 337 557 1038 1665 2726
C2.0 430 824 1273 2016 2893 4144

sphere M3.0 424 864 1333 2059 2943 4183
MO 386 776 1202 1847 2695-1 3924-2
C2.0 3396 9423 17262 28656 45291 67134

btk31 M3.0 2815 7879 14426 26366 43665 67533-1
MO 2795 7736 14356 25175 40264-1 61563-1
C2.0 734 3365 7851 13126 19975 29725 42472 60215 83498

brack2 M3.0 742 3426 7753 13289 19940 29409 42560-30 59036-14 81001-8
MO 731 3143 7669 12109 18412-1 27790 41061-1 57472-1 79429-1
C2.0 4307 7940 13332 20061 29282 40417 54186 72593 96930

tooth M3.0 4618 7854 13329 21249 29061-1 40260-1 53224-38 71256-19 94355-11
MO 3877 7241 12580 19238 27243 37427 50583-1 67929-1 91472-1
C2.0 468 2089 5126 9496 15207 23138 32110 43904 59122

ocean M3.0 509 2054 5114 9079 15614 23745-1 34630-33 46848-34 61096-28
MO 472 1928 4468 9057 14439 22212-1 31185 42715-1 58169-1
C2.0 2157 8300 15108 24171 37546 54101 75373 104949 142131

rotor M3.0 2647 8354 15359 24841-1 36860-1 52626 74283-50 100063-24 134213-14
MO 2113 7762 13686-1 21720 33585-1 49243-1 70084-1 96960-1 131490-1
C2.0 2486 8855 17925 30885 45261 64576 89532 120717 159149

auto M3.0 2444 8631 18028 29268 45716 64094 86200-52 115127-27 151134-14
MO 2421 8309 16988-1 28137 42480 61102 83031 112113-1 147322-1
C2.0 7494 18278 30012 45085 63532 88457 121865 163048 217250

m144 M3.0 6919 17647 29791 43658 63856 89576-1 117613-66 157126-35 205550-16
MO 6761 16494 27261 40931 60368 84484-1 113908-1 150929-1 201402-1
C2.0 3966 13838 28231 52499 77621 111343 157092 215337 290045

m14 M3.0 4109 14322 28128 50410 74169 110465-1 152160-1 207093-52 277622-25
MO 3893 13600 27027 45579 71586 106225 147802 203111 272514-1

Table 2. Experimental results

For comparison purposes, we report tests with version 2.0 of Chaco (C2.0) Hen-
drickson and Leland (1995) and version 3.0 of Metis (M3.0) Karypis and Kumar
(1997), which are both well known graph partitioning software packages. Tests
performed with Chaco use the multi-level algorithm implemented in its software.
Tests performed with Metis use the program “pmetis” when the number of sets
in the partition is smaller than 65 and the program “kmetis” when the number
of sets is larger than 64. We have performed tests with several other partitioners,
but their results were generally dominated by these two partitioning packages,
therefore for lack of space we don’t report the results obtained with the other
partitioners.

In Table 2, the first column refers to the graphs tested (“whit” stands for
whitaker3 and “btk31” stands for bcsstk31) and the second column refers to the
graph partitioning methods used. The other columns refer to the values of the

Multi-level Cooperative Search 541

edge cuts according to the number of sets in the partition. A dash followed by
a number indicates an imbalance in the sets of the best partition. For example,
“-1” indicates an imbalance of one node between the set(s) having the larger
number of nodes and the one(s) having the smaller number of nodes. Chaco
always reports balanced partition while Metis and our algorithm sometime re-
port a best solution corresponding to an imbalance partition. In a single case
(Ocean, 2-way), our results are not better or as good as the two other parti-
tioners. On small graphs and small number of sets, we obtain same solutions or
small improvements. For larger graphs or when the number of sets in the parti-
tions increase, we distance ourself from the two other approaches with sometime
substantial improvements both in relative and absolute values.

Our algorithm requests a substantial amount of computational time. For the
results in Table 2, Chaco and Metis ended their computation 5 to 20 times faster
than our algorithm. Generally, our algorithm need about twice more time than
Chaco or Metis to get a solution which is better than these partitioners, the
rest of the time is spent to improve the quality of the solution. On the other
hand, running any other partitioner for as much time as our algorithm (using
several different coarsening factors or any other adjustable parameters) didn’t
get solutions competitive with those shown in Table 2 for our algorithm.

5 Conclusion

The main goal in the design of our current approach was to enhance the control
structure of the cooperative procedure (the set of search programs as a whole,
their global behavior). Our strategy to achieve this goal has been to simplify the
cooperation scheme in terms of the neighborhood structure allowed among coop-
erating programs (a linear array), to have a more explicit definition of the search
space that a process is allowed to explore (the neighborhood functions), and to
decrease the probability that shared information will mislead the search pro-
grams, by establishing better control over the cost function for selecting reused
information (the three inter-task operators). But most importantly, this new
design redefines the purpose of the search programs Pi > 0 in the multi-level
structure. Reused information helps to modify the data sets defining the search
space available to the search methods rather than directly influencing the search
parameters of the cooperating programs. The main purpose of the search pro-
grams is then to find information useful to neighbor levels in the control struc-
ture, rather than to directly generate solutions for the optimization problem.
The search programs Pi > 0 become part of a complex multi-level control struc-
ture which spans several computers. Their goal is to assist the search performed
by program P0, which is the only program that can find explicit solutions to the
optimization problem. In this regard, the current design is an example of how
we can transform the complex interactions among cooperating programs into a
useful explicit control structure of cooperative procedures.

542 Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover

References

[1] F. Glover. Heuristics for Integer Programming Using Surrogate Constraints. De-
cision Sciences, 8(1):156–166, 1977.

[2] F. Glover. Ejection Chains, Reference Structures and Alternating Path Methods
for the Traveling Salesman Problem. Report, University of Colorado, Boulder,
1992.

[3] F. Glover. A Template for Scatter Search and Path Relinking. In J.K. Hao,
E. Lutton, E. Ronald, M. Schoenauer and D. Snyers, editors, Lecture Notes in
computer Science, 1997.

[4] F. Glover and M. Laguna. Tabu Search. In C. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, pages 70–141. Blackwell Scientific Pub-
lishing, 1993.

[5] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
[6] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.

Report SAND93-1301, Sandia National Laboratories, 1993.
[7] B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0. Report

SAND95-2344, Sandia National Laboratories, 1995.
[8] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-

titioning Irregular Graphs. SIAM Journal on Scientific Computing, to appear.
[9] G. Karypis and V. Kumar. A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices: Version 3.0. Report, University of Minnesota, 1997.

[10] J.P. Kelly and J. Xu. Tabu Search and Vocabulary Building for Routing Prob-
lems. Technical report, Graduate School of Business Administration, University
of Colorado at Boulder, 1995.

[11] L. Lopez, M.W. Carter, and M. Gendreau. The Hot Strip Mill Production Schedul-
ing Problem: A Tabu Search Approach. Report, Center for Research on Trans-
portation, Université de Montréal, 1996.

[12] Y. Rochat and E. Taillard. Probabilistic Diversification and Intensification in
Local Search for Vehicle Routing. Journal of Heuristics, 1(1):147–167, 1995.

[13] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A New
Neighborhood Structure for Vehicule Routing with Time Window. Report CRT-
95-66, Center for Research on Transportation, Université de Montréal, 1995.

[14] M. Toulouse, T.G. Crainic, and B. Sansó. An Experimental Study of Systemic
Behavior of Cooperative Search Algorithms. In I.H. Osman S. Voss, S. Martello
and C. Roucairol, editors, Meta-Heuristics: Theory and Applications, pages 373–
392. Kluwer Academic Publishers, 1997.

	Introduction
	The Multi-level Cooperative Search Framework
	Application to the Graph Partitioning Problem
	Initialization
	The Control Structure
	The Parallel Implementation

	Experiments
	Conclusion

