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1. Context 

It is well known that a stream cipher system can be described 
in terms of a Vernam scheme using a Pseudo-Random Number 
Generator as key generator. Each character ml of the plaintext 
(viewed as an integer) is enciphered by adding the 
corresponding pseudo-random key character st. Deciphering is 
obtained by subtracting the same value stream from the 
ciphertext [see Fig.1). 

Seed __$ Key Generator 
+ Ciphertext 

Message 

Fig.1 

E(mt ) = mt + St (1) 
D(E(mt )I = E(mt 1 - st = ml 

A Lehmer Linear Congruential PRNG or a Linear Feedback Shift 
Register (LFSR] cannot be used in cryptographic systems because 
they can be cracked. In order to obtain Cryptographically 
Strong Number Generators, we can use Non-Linear Feedback Shift 
Registers. But a general model of such a NLFSR is difficult to 
implement and to study. 

In another way, non-linearity is simulated in models involving 
more than one LFSR: product of sequences, cascade scheme, flip- 
flop I multiplexed LFSR, clock variation, a.s.o. But in most of 
these systems, every component can be isolated and/or the 
pseudo-random sequence is not always produced at a constant 
rate. 

In this paper, we describe a new model based on ESR producing 
non-linear sequences, but which is easy to implement and can be 
used at a constant rate. 
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2 .  Classical theory 

2.1. FSR 

A k-satge FSR is a machine involving k memory cells 4 ; o 1  X I ,  . . .  
X k - 1  (see Fig.2). A t  each c l o c k  pulse, every value is shifted 
one position left, the leftmost value is output and the 
rightmost cells is filled with a value depending on the k 
previous ones. 

1 . . .  _4_1 1 . . .  F 

Fig. 2 

A solution ( s t )  is an infinite sequence satifying 

S t t k  = ! ? ( S t  9 S t + l ,  . . .  S t r k - 1 )  ( 2 )  

for some feedback function F. Such a solution is univokely 
determined by its initial state [ S O  9 1 ,  . . . ,  s k - I  1 .  

Classically, st belongs to a finite field CF(q) (CF(2) in most 
cases) and F is a rational function on GF(q). Such a register 
is noted FSRk(q1. 

2 . 2 .  Period and singularity 

Each solution of a FSR is ultimately periodic. I t s  period and 
its singularity are the smallest integers x and u satisfying 

A FSR is said to be 'non-singular it' every solution 1s  non- 
singular. This is achieved iff 

F(a, X i t  . . .  X k - I )  = F(0, X I ,  . . .  X k - i )  = = )  U = fi ( 4 )  

In cryptographic applications, registers have t o  be non-  
singular and with maximal period. 

2.3. Linear PSR 

A k-stage Linear Feedback Shift Register LFSRK(q) is defined b y  

( 5  J 
k - 2  

s t t  k = , go ci 8 1  t i  t 2 0 ,  C I  E G F ( q l  

Such a register is non-singular iff 

co # 0 ( 7 )  
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The rnonic polynomial 

f(x) = - , b 0  CI x '  

is called the characteristic polynomial associated with the 
LFSRk (q) . 
Its maximal period is ( q k - 1 )  which is reached iff f(x) is a 90- 
called primitive polynomial on GF(q). 

The minimal polynomial of a periodic sequence is the 
characteristic polynomial of the smallest LFSR that can 
produced thia sequence. Its degree is called the linear 
complexity of the sequence. 

2 . 4 .  Transition matrix 

The companion matrix C of - f ( x )  is 

c = T o  i I 1 

Its characteristic polynomial is ( - 1 ] k Y ( x ) ,  and its d e t e r m i n a n t  
ie ( - 1 I k - 1 ~ 0 .  C is called the transition matrix of the 
LFSRk ( q )  . 
If we define the (ti-ansposed) state vector 

gtr = [ S r r  S i t 1 1  . . . t  S ~ t k - 1 1  

the N ' ) )  indicating transposition, we have 

- 
S t r 1  = C § t  

( 1 0 )  

( 1 1 )  

The so-called generating functions f o r  C t  and st are resp. 

G ( z )  = c zr  C' = ( I  - 2 C ) - 1  ( 1 2 )  

where deg(H) < k. 
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3 .  Generalized LPSR 

3.1. Non-degenerated e-olution 

Generalizing Eq.11, we define a GLFSRU(q1 by 

F\+i = M Ft 

for any matrix M and Ft = Lrt, 0 ,  . . . r t ,  k - 1  I .  

( 1 4 )  

A GLFSRk(q) is non-singular iff 

det(M) % 0 ( 1 5 )  
- Let Ro = [Fo ,  fl , . . . r k - 1  ] be the matrix whose columns are the 

first k states of a solution ( F t ) ,  this solution is called non- 
degenarated i f  det(R0 ) # 0. 
We have the following property: if ( F t )  is non-degenerated, it 
has the same minimal polynomial a8 M. Moreover, it is the 
characteristic polynomial of M. 

3.2. Similar LPSR 

Let C be the companion matrix of the monic characteristic 
polynomial of M .  C is the transition matrix of a LFSRk(q) 
similar to the CLFSRk(q) defined by M. If (f;) is a non- 
degenerated solution of M, let ( s t )  be the solution of C 
corresponding to T O '  = 10, . . .  0 ,  1 1  (the impulse), and let 
S O  = [Ha,  . . . s k - 1  J ,  we have - 

Thus, each non-degenerated GLFSRk(q) is similar to the LFSRk ( q )  
corresponding to the same characteristic polynomial. 

3 . 3 .  Aff ine  L F E  

Let A be any lxk-matrix, be any 1 - v e c t o r  and ( s t  1 be any 
s o l u t i o n  of a LFSR*(q). The 1-state sequence (Ft ) d e f i n e d  by 

( 1 7 )  
- 
rt = A g  + 6  

is the solution of a so-called Affine LFSR.  It verifies 

- If R t  = [Ft ,  . . . r t + k - I  J ( a  lxk-matrix), 
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4 .  Varying PSR 

4 . 1 .  Definitions 

Modifying Eq.2 as 

S t r k  = F t ( S t ,  S t r l ,  m . .  S t t k - 1 )  (20) 

we define a FSR with varying feedback functions ( F t  ) *  If there 
exist u and t such that 

every solution of Eq.20 ( a t )  is ultimately periodic and the 
register is called a Periodic FSR. 

If u = 0 and Ft is a linear function for every t, the PFSR is 
called a t-PLFSRk(q) defined by 

Such a t-PLFSRk(q) is equivalent to a classical LFSRk(q) iff 
T = 1. 

4 . 2 .  Generating function 

Let Ct be companion matrix of Ftl the generating function 
associated with the t-PLFSRk(q) is 

G ( z )  = C Z t  C t - 1  . . . Ci Co ( 2 3 )  

where C = Cr-1 . . . C1 CO . = ( I  + z co + . . .  + z r - 1  Cr-2 . . .  C O )  ( I  - zr C ) - 1  

In Eq.25 we note G c ( z )  the generating function associated to 
the LFSRk(q) with transition matrix C (see Eq.12). 

If m ( x )  is the minimal polynomial of ( s t  and mc(x) the 
minimal polynomial of C, 

and the linear of a r-PLFSRk(q) is 
( 2 6 )  

at most tk 
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4.3. Period and einpularity 

The state of a r-PLFSRk(q) does not only depend on the value of 
s t .  It includes the feedback index: t (mod t). In this context, 
such a register is non-singular iff 

C t , o  # 0 V t  ( 2 7 1  

Let x be the actual period of any solution (s t  )of a 
r-PLFSRk(q), its state-period is CI = lcm(x, t). 

It can be shown that any solution ( 8 t  ) of a r-PLFSRk ( q )  w i t h  
actual period x oan be produced by 'a 8-PLFSRk(q) with 
6 = pcd(x, T I .  Thus, if t i n  a prime, any solution can either 
be produoed by a classical LFSRk(q), or satisfies T I x = c1. 

6 .  Coupled LFSR 

5.1. Definitions 

In order to generate periodically varying feedback f U n C t i O n f 3 ,  
we can use anaother LFSR. so we define a k,l-stage Coupled LFSR 
noted CLFSRki 1 (q) as a T-PLFSRI (9) where each ct is the state 
of an Affine GLFSRk(q) (see Fig.3). 

1 

Fig.3 

Such a model corresponds to equations 

j = O  . . .  1-1 ( 2 8 )  
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It depends on kl+k+l parameters: the matrix A and the Vectors 
and 6. 

Such a CLFSRkt' ( q )  is non-singular i f f  

Y I , O  = bo % 0 V t  ( 2 9  I 
i.e. bo # 0 and a a , ~  = 0, i=O . . .  k-1. 

We shall only consider non-singular CLFSR. 

6 . 2 .  Transition matrix 

The s t a t e  of a CLFSRkol (q) is given by the (kt1)-vector 
- - 
Vt' = X I ' ]  = [ S t ,  . a .  S ( + I - I ; X I ~  0 . .  X i t k - 1 1  ( 3 0 )  

So we define t h e  associated transition matrix 

r ,  1 

l o  I I I 

where Ti = t y t , 1 ,  . . .  Y t , 1 - 1 1  and C '  is 
transition matrix of the included LFSRY(q). 

If 6" = Ibl, . . .  bi-11, we have 
= A '  zt t 6' - .  

2 - 
X I + l  = C '  XI 

We now define the invertible matrices 

xi = 

A =  

c =  

Y t  

B 

P 

the classical 

( 3 2 )  

I I I 
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X I  A - 1 ,  we have 

In these formulae, we have the following properties: 

- C' can be placed anywhere; 
- B 6 [ X t  ' A - 1 1  commute iff bo = 1 or A '  = 0 ;  

- B & P commute iff bo = 1 and 6' = 0 (i.e. B = I); 

- P & [Xt ' A - 1  ] commute only if Ft E Ker(A' 1 .  

T h i s  last property aasure that if (xt) is a solution Of a 
primitive LFSRk(q), and if A '  = 0, can never be expressed 
as a linear function of T't . 
5 .3 .  Statistical properties 

In order to obtain the best statistical properties for the 
solution ( 8 % )  of a CLFSRkeI (q), we choose ( x t )  as a solution of 
a primitive LFSRk(q) which has period t qk-1. 

For coupled registers, it can be proved that the period of any 
non-degenerated solution ( s t  ) is divisible by t .  The maximal 
period is then ( q k - l ) ( q l  -1) which can be reached only if 
( q - 1 )  I 1. 
There exist sufficient conditions to assure this maximal 
period, but they are not easy to verify. In practical 
applications however, q = 2 and we can choose k and 1 such that 
2 k - 1  and 2 1 - 1  are Mersenne primes. In this case, most solutions 
are maximal. 

In a maximal solution, the distribution of multigrams 
[ S c  , ... ~ t t p l  satisfies: 

- if ~1 < 1, the null multigram occurs ( q I - ~ - l - l ) ( q k - l )  times 
and the other ones occur ql - P-  1 ( q k  - 1  ) eimes. 

- i f  p = 1, there exist 
(ql  -ql - r  ) multigrams occurring (qk- 1 - 1  1 times 

(q-1) (9'  -9' - r  1 q k -  I 

(9 '  - ' - I  1 (qk-1 I 
(q-l)(q'-r-l)+q 0 

where 0 S r I 1-1 is the rank of A ' .  Bigger is r ,  more 
uniform is the multigrams distribution. 
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Moreover, the X' of the cross distribution of SI and at + p  is 

where 13 eventually depends on the rank of M = 16'1A'I. 

If p C 1, then fj = 0 and Xa(0) has the same constant Value as 
in a classical primitive LFSR' (q). 

If p = 1, 
if rank(M1 = r+l, then = 0 as in the previous case; 
if rank(M) = r, but 6' # 0, then R = q k - r ;  
if 6' = 0, then = ( q k - r - 1 ) .  

In the binary case, Eq.35 corresponds to the auto-correlation 

I 
2' -1 
Z k - 1  

-1 [ I - R -  
P(R) = 2 , - 2  (36) 

Thus, the classical Golomb's theorems are locally satisfied for 
maximal solutions of a CLFSR. 

6. Conclusion 

Coupled Linear Feedback Shift Registers are simple designs 
involving LFSR producing non-linear pseudo-random sequences. 
They seem to be cryptographically strong enough f o r  stream 
cipher systems, because the behaviour of one component is not 
independent f r o m  the oTher one, Nevertheless, a CLFSR can easy 
be implemented as a piece of hardware o r  software in a very 
efficient way. 
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