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Abstract 
It is shown how to distribute a secret t o  TI persons such that each person can 

verify that he has received correct information about the secret without talking 
with other persons. Any I; of these persons can later find the secret (1 5 k 5 n), 
whereas fewer than I;  persons get no (Shannon) information about the secret. The 
information rate of the scheme is 4 and the distribution as well as the verification 
requires approximately 2k  modular multiplications pr. bit of the secret. It is also 
shown how a number of persons can choose a secret “in the well” and distribute it 
verifiably among themselves. 

1 Introduction 
Secret sharing schemes were introduced independently in [Sha79] and [Bla79] and since 
then much work has been put into the investigation of such schemes (see [SimSO] for a list 
of references). The verifiable secret sharing schemes constitute a particular interesting 
class of these schemes as they allow each receiver of information about the secret (share 
of the secret) to verify that the share is consistent with the other shares. 

Let the dealer be the person who has a secret and distributes it to n shareholders, 
where n > 0. If the dealer trusts one of the shareholders completely, he could give the 
secret to this person and then avoid the troubles of having a secret sharing scheme. Thus 
in many applications the dealer does not trust the shareholders completely, and therefore 
it should be expected that (some of) the shareholders do not trust the dealer either. For 
this reason efficient verifiable secret sharing schemes are necessary in practice. 

However, verifiable secret sharing has also turned out to be a useful tool in more the- 
oretical work. In [BGW88] and [CCDSS] unconditionally secure verifiable secret sharing 
schemes are constructed and used to design secure multi-party protocols. Unfortunately, 
these schemes are interactive - interaction between the participants is needed in order 
to verify the shares. Both of these schemes require that less than 3 of the shareholders 
are dishonest. This is improved in [RB89], where a scheme with the same properties is 
presented, except that  it allows less than f dishonest participants. These three schemes 
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all have the property that  even an all powerful dealer cannot distribute incorrect shares 
(in [CCDSS] and [RB89] there is an exponentially small error probability however). 

In this paper, we are mainly interested in non-interactive verifiable secret sharing. In 
such a scheme only the dealer is allowed to  send messages -in particular the shareholders 
cannot talk with each other or the dealer when verifying a share. This model is very 
suitable in practice as it allows distribution by mail for instance. 

[Ben871 presented the first non-interactive verifiable secret sharing scheme, but it 
relied on the existence of a mutually trusted entity. In [Fe187] this entity is avoided by 
letting the dealer publish probabilistic encryptions of the polynomial used to  compute 
the shares, and due to a homomorphism property of the encryption scheme verification 
of the shares is possible. This scheme is quite efficient, but after the distribution, the 
privacy of the secret depends on a computational assumption - such as the intractability 
of computing discrete logarithms. 

The goal of this paper is to construct an efficient non-interactive scheme for verifiable 
secret sharing in which no (Shannon) information about the secret is revealed. [Pedgl] 
presents a non-interactive verifiable secret sharing scheme which can be used for secrets, 
s, for which g‘ is known, where g is the generator of a group. In this paper the scheme 
suggested in [PedSl] is modified in order to remove the assumption that g’ is known 
beforehand. This results in a secret sharing scheme which is unconditionally secure for the 
dealer. However, in this scheme the dealer can succeed in distributing incorrect shares, 
if he can solve the discrete logarithm problem (see [BM84] for a formal definition). This 
property is inevitable as we shall see that it is impossible to construct a non-interactive 
secret sharing scheme in which no information about the secret is revealed and even a 
dealer with unlimited computing power cannot cheat. Thus this scheme is in some sense 
dual to that of [Fe187] (see Section 4.3). 

The new secret sharing scheme is constructed by combining Shamir’s scheme (see 
[Sha79]) with a commitment scheme, which is unconditionally secure for the committer 
and furthermore allows commitment to  many bits simultaneously. This commitment 
scheme is a variant of a scheme proposed in [BCP]. 

After introducing some notation in Section 2, Section 3 describes the commitment 
scheme, and in Section 4 the secret sharing scheme is presented. As an application of 
this scheme, Section 5 shows how the shareholders can compute linear combinations of 
shared secrets and Section 6 concludes the paper. 

2 Notation 
Throughout this paper p and q denote large primes such that q divides p - 1, G, is the 
unique subgroup of Zp of order q ,  and g is a generator of G,. It can easily be tested if 
an element a E iz; is in G, since 

a E G ,  e a q = l .  

As any element b # 1 in G, generates the group, the discrete logarithm of u E G, with 
respect to the base b is defined and it  is denoted log,(a). 

I 

For any integer z the length of the binary representation o f t  is denoted 1.1. 



This section describes a commitment scheme, which is very similar to that of [BCP]. The 
only difference is in the choice of g and h. 

Let g and h be elements of G, such that nobody knows log, h .  These elements can 
either be chosen by a trusted center, when the system is initialized, or by (some of) the 
participants using a coin-flipping protocol. 

The committer commits himself to an s E Zq by choosing t E 22, at random and 
computing 

Such a commitment can later be opened by revealing s and t .  The following theorem is 
very easy to prove and shows that E(s ,  2 )  reveals no information about s, and that the 
committer cannot open a commitment to s as s’ # s unless he can find log,(h). 

Theorem 3.1 
For any s E Zq and for randomly uniformly chosen t E Z,, E(s , t )  is uniformly dis- 
tributed in G,. 
If s, s’ E 22, satisfies s # s’ and E(s , t )  = E(s ’ ,  t’), then t # t’ mod q and 

E ( s , t )  = g’h‘. 

s - s’ 
log, h = - mod q. t ‘ - t  

Even though it will not be used in the following we mention that it is quite easy to  
prove one’s ability to open two commitments as the same value without revealing this 
value. Let namely 

P = E(s ,  t )  and B’ = E(s ,  t ’ )  

where t # t’. Anyone who knows an r such that PIP‘ = h’ can open p aa s if and 
only if he can also open p’ as s. By revealing r = t - t’ it is therefore possible t o  prove 
equality of the contents of t w o  commitments. Furthermore, t - t‘ does not contain any 
information about s. It is not clear how to prove efficiently, that commitments t o  two 
different values really do contain different values. In particular, the proof of [BCC88] that 
two blobs contain different bits given a method of proving equality does not generalize 
to this commitment scheme. 

Finally consider the efficiency of the commitment scheme. If p and q are constructed 
by first choosing q and then determining p a s  the first prime congruent to 1 mod q ,  
heuristics show that p 5 p(logq)2 (see [Wag79]). Thus a commitment to 19.1 bits requires 
at most l p l+2  log IqI bits. Furthermore, by first computing the product gh a commitment 
to s can be done in less than 21q1 multiplications modulop or less than two multiplications 
pr. bit of s. Thus the commitment scheme is quite efficient with respect to the size of 
commitments as well as the computation required. 

4 Non- interactive Verifiable Secret Sharing 
This section first defines verifiable secret sharing, and then the commitment scheme 
described above and the Shamir scheme are combined resulting in a non-interactive 
verifiable secret sharing scheme. Finally, the efficiency of the scheme is estimated. 
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4.1 Verification of Shares 
Assume that a dealer, D, has a secret s E Zq and wants to distribute it among n parties, 
P I ,  . . . , P,, such that any k of the shareholders can find s if necessary, but less than k 
shareholders get no (Shannon) information about s (a (k, n)-threshold scheme). Shamir 
suggested that the dealer could do this by choosing a polynomial f E Z , [ z ]  of degree at  
most k - 1 such that f(0) = s and then give Pi the share f ( i ) .  Pi, ~. . . , Pik can later find 
s from the formula for f: 

k 

as 
k 

s = x(n L)j(Zj). l j  - ll 
j = 1  l# j  

Our goal is to extend this scheme with a verification protocol, V P ,  such that any 6 
participants, who have (honestly) accepted their shares in V P  can find s. More formally 
V P  must satisfy: 

Definition 4.1 
A verification protocol, V P ,  takes place between the dealer and P I , .  . ., P,,. It  must 
satisfy the following two requirements: 

1 .  If the dealer follows the distribution protocol and if the dealer and Pi both follow 

2. For all subsets S1 and Sa of (1,. . . , n} of size k such that all parties (Pi)ies, and 
(Pi)iEs, have accepted their shares in V P  the following holds except with negligible 
probability in IqI:  If si is the secret computed by the participants in Si (for i = 1 , 2 )  
then s1 = s2. 

V P ,  then Pi accepts with probability 1. 

A share is called cowecf ,  if it  is accepted in V P .  

Even though this definition allows any kind of interaction between the dealer and the 
participants we shall only be concerned with non-interactive verification protocols here. 
In this case the dealer sends extra information to each participant during the distribution, 
and in the verification protocol P, verifies that his secret share is consistent with this 
extra information. 

Definition 4.1 does not refer to the secret when defining the correctness of a share. 
This is in accordance with the fact that no participant have any information about s 
during the verification and therefore s could be whatever the dealer claims. After the 
execution of the verification protocol the secret is defined aa the value, which any k 
participants with correct shares will find when combining their shares. If the dealer 
succeeds in distributing inconsistent shares, this is not well-defined, but Definition 4.1 
guarantees that the dealer will be caught almost always when trying to cheat. 

4.2 The Scheme 
Let g, h E G, be given such that the commitment scheme from Section 3 can be applied. 
By the fact that Zq is a field, the dealer can distribute s E Zq as follows: 
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I k - 1  

1. D publishes a commitment to s: EO = E ( s ,  t )  for a randomly chosen t E Zq. 

satisfies e ( i )  = si + dti  for i E S. Thus 
I 

e(z) = (F’ dG‘)(z) 

and in particular 

2. D chooses F E zZ,[z] of degree at most k - 1 satisfying F ( 0 )  = s, and computes 
s, = F ( i )  for i = 1, .  . . , n. 
Let F ( x )  = s + F l x + .  . .+Fk-ixk-I. D chooses G I , .  ..,Gk-l E Zq at  randomand 
uses Gi when committing to to Fi for i = I , .  . . , k- 1. D broadcasts Ei = E(Fi ,  Gi) 
f o r i = l ,  ..., k -  1. 

3. Let G(z)  = t + G l x  -+ . . . + Gk-ld-’ and let t i  = G(i) for i = 1, .  . .n. Then D 
sends (S ir  t i )  secretly to Pi for i = 1 , 2 , .  . . ,n .  

When Pi has received his share (si ,  2,) he verifies that 

k-i 

Lemma 4.2 
Let S c (1, . . . , n} be a set of k participants such that (*) holds for these k parties. Then 
these k parties can find a pair ( s ’ , t ’ )  such that Eo = gS’ht’. 

Proof 
Let S 5 { 1,. . . , n} of size k be given. The participants in S first find the two unique 
polynomials F’ and G’ of degree at  most k - 1 satisfying 

F y i )  = si 

G’(i) = t i  

for i E S. Now let h = gd .  Then 

for i E S. Thus (F’ + dG’)(x) is the unique polynomial of degree at most k - 1 mapping 
i to si + dti .  Let Ej = g e j .  Then the polynomial 

The members in S do not have to find F‘ in order to  find the secret. It is more 
efficient to use the formula 
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Note that they can also find t by the formula 

Theorem 4.3 
Under the assumption that the dealer cannot find log, h except with negligible probability 
in 191, the verification protocol satisfies Definition 4.1. 

Proof 
It is not hard to see that (*) will be satisfied for all participants if the dealer follows the 
protocol. 

Let S and S' be two subsets of (1,. . . , n} of size k such that all participants in S and 
S' have accepted their shares correctly. According to Lemma 4.2 the members of S and 
S' can find pairs ( s , t )  and ( s ' , t ' ) ,  respectively, such that Eo = E(s , t )  = E(s', t ') .  

As the shares are consistent if and only if there is a polynomial, f, of degree at  most 
b - 1 such that 

f ( i ) = s i  f o r i = 1 , 2 ,  ..., n 

the dealer can find the two sets S and S' as follows, if the shares are inconsistent: 

1. Let f be the unique polynomial of degree at most k - 1 such that f(i) = sj for 
i = 1 , 2  , . . . )  R .  

2. Let i= k +  1. 

3. If i > n then stop (all shares are consistent). 
If f ( i )  = S i  then put i := i + 1 and goto 3. 
Otherwise return the sets S = {1,2, .  . .) k} and S' = {1,2,. . . , k - 1, i}. 

Thus, if the dealer has succeeded in distributing inconsistent shares, he can find log, h by 
first finding S and S' as described above and then computing log, h as in Theorem 3.1. 

As a consequence of Theorem 4.3 all the shares satisfying (*) are consistent unless 
the dealer succeeds in finding log,(h) before the last share has been sent. 

The following theorem shows, that fewer than Ic participants get no (Shannon) infor- 
mation about the secret. For any subset S C { 1,. . . , n}, views denotes the messages, 
that the members of S see: 

views = (Eo~EI , .  . . , E k - l , ( S i , t i ) i ~ s ) .  

Theorem 4.4 
For any S c (1,. . . , n }  of size at most k - 1 and any views 

Prob[D has secret s I views] = Prob[D has secret s] 

for all s E Zg.  

Proof 
It is sufficient to prove the theorem in the case where S has size k - 1. If k - 1 parties 
do not get any information about s then neither does fewer than k - 1 parties. 
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Let s = {I , .  . . I  k - 1)  and let views = ( & , E l , .  . . , Ek-1, ( S i ,  t i) i=l,  ..., k-1). For 
every s E Zq there is exactly one t E Zq such that Eo = E(s,t) and there is exactly one 
polynomial F of degree at most k - 1 satisfying 

F ( 0 )  = s 

F ( i )  = s; f o r z = I ,  . . . ,  k - 1  

and exactly one polynomial G of degree at most k - 1 satisfying 

G(0) = t 

G(i)  = t i  for i = 1,. . ., k - 1 

Let F ( z )  = s + F1r + . . . + Fk-1zk-l and G ( r )  = i + Glz + . . . + Gk-1zk-l. In order 
to show that views does not contain any information about the secret it must be shown 
that F and G satisfies 

E(Fj ,Gi)=E;  f o r i = l , . . . I k - l ,  

as this is true for the polynomials chosen by the dealer. As in the proof of Lemma 4.2 
this follows from the,fact that there is one and only one polynomial, f, of degree at  most 
k - 1 satisfying (so = s, t o  = t )  

g l ( i )  = g"htf 

for i = 0 , 1 , .  . . , k - 1 and the polynomial F + dG satisfies this for d = log, h.  

{ 4.3 Efficiency and Security 

' 
' 

I 

In this section, the computational requirements of the scheme are estimated and the 
scheme is compared to [Fe187]. 

First consider the size of the secret shares. The information rate (see [BD90]) is 

size of secret - 1 
size of share 2 ' 

Ignoring the time needed to evaluate F ( z )  and G(x)  (this is reasonable as the polynomi- 
als are only evaluated on small arguments), the dealer has to compute E commitments in 
order to verify a share. This requires less than 2)q lk  multiplications modulop or approx- 
imately 21c multiplications pr. bit of the secret, if every element in Zq can be chosen as 
the secret. 

The verification requires k - 1 exponentiations modulo p and the computation of one 
cmxxitment. This can be done in less than (again ignoring the computation of ij for 

- -  

j= 1, ..., k-1) 
21ql(k - 1) + 214 + (k - 1) = ( 2 k I  + 

multiplications. This is however, a pessimistic estimate as many of the exponents in the 
exponentiations are rather small (in particular, for PI they all equal 1). 

The scheme presented here is in many respects similar to that of [Fe187], which works 
for any probabilistic encryption scheme in which a number of bits (say I )  are encrypted 
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as the “hard-core” bits of a one-way function with homomorphic properties. Specifically, 
it is suggested to use the function 

z H g“ for z E Z; 

and encrypt 1 = O(1ogIql) bits as gc where the 1 bits in question are easy to compute 
from I .  Using this scheme, the computational requirements when distributing an I-bits 
secret is very similar to the requirements in our scheme when distributing a Iql-bits secret 
(note that IpI M 2’). 

With respect to security the two schemes are dual to each other, because the en- 
cryption schemes used in [Fe187] only protects the secret under the assumption that the 
one-way function cannot be inverted. However, even an infinitely powerful dealer can- 
not distribute incorrect shares. In contrast, the new scheme protects the privacy of the 
secret unconditionally, but the correctness of the shares depends on a computational 
assumption. 

Having these two secret sharing schemes it is natural to ask for a non-interactive 
scheme in which 

no information about the secret is revealed; and 

even an infinitely powerful dealer cannot compute inconsistent shares. 

However, the following shows that such a scheme is impossible in the model which is 
used here. Let namely b denote all the information which the dealer broadcasts in a 
non-interactive secret sharing scheme, and let s, be the secret share which is sent to Pi. 
Let V(i ,  6, s;) denote the verification predicate which Pi computes in order to verify his 
share. Now consider P I , .  . . ,Pk-1 and assume that they have received correct shares. 
Let s k  be the set of shares which Pk can receive: 

sk(b) {sk I V ( k , b ,  sk)}. 

As even an all powerful dealer cannot find inconsistent shares then PI,. . . ,pk-1, Pk will 
find the same secret for any Sk E sk. This means that 4,. . . , Pk-1 can find the secret 
by guessing a secret share sk E sk and then combine their own shares with 8k. 

In particular note that S k ( b )  is in NP if V can be computed in polynomial time. 
Therefore does P I ,  . . . , Pk-1 “only” need nondeterministic polynomial time in order to 
find the secret if the scheme is unconditionally secure for the shareholders. Similarly, a 
dishonest dealer can distribute inconsistent shares in nondeterministic polynomial time 
if the scheme reveals no information about the secret. 

5 Computing on Shared Secrets 
As mentioned in the introduction verifiable secret sharing is an important tool in the 
construction of secure protocols for multiparty computations. In particular both the 
construction in [BGW88] and [CCDSS] utilize the fact that it is easy to compute linear 
combinations of shared secrets. In this section we show that this is also true if the secret 
sharing scheme presented here is used, and we present an application of this property. 
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5.1 Linear Combinations 
Assume that two secrets s‘ and s“ have been distributed as described in Chapter 4. 
In particular let (silt:) and ( s i ( , t r )  be Pi’s share of s/ and sI’, respectively, and let 
(EA, E:,  . . . , Eb-,) and (Ei, EY, I . . , Et-l) be the broadcasted messages when the two 
secrets were distributed. 

Each Pi can compute (Eo, E l ,  . . . , Ek-1) corresponding to a verifiable distribution of 
s = s’ + sJl mod q as 

Furthermore, Pi’s secret share, ( s i ,  t i ) ,  of s is given by 

si = si  + s y  modq  
t i  = t i + t y m o d q  

By insertion it is easy to see that if both (silt;) and ( s r , t : )  are correct shares (satisfy 
(*)) then (silt;) is also a correct share of s; i.e. 

Ej =EjEY f o r j = 0 , 1  . . .  k - 1 .  

. k - 1  galhts  = EoEf . . 
If, instead, s is computed as s = as’ mod q for some a E Zi, then Pi can compute his 
share(s;,t;) and ( E o , E I ,  ..., Ek-1) as follows 

Ej = E f  f o r j = O , l ,  . . . ,  k - 1  
s; = as: modq  
tj = at; mod q 

Again, it  is easy to see that 

g J s h * *  = EoEf . . . Ef--;. 

In both of the above cases Lemma 4.2 implies that any k shareholders who have accepted 
their shares of s’ and S” can find a pair (s, t )  such that 

g’h‘ = Eo. 

Furthermore, it is an immediate consequence of Theorem 4.4 that fewer than k persons 
have no information about s if d and sll are distributed correctly. 

5.2 Choosing an Anonymous Shared Secret 
In [IS911 it was shown how to set up a secret sharing scheme without a mutually trusted 
authority, who knows the secret and distributes it. In this section we show how to 
achieve the same goal with verifiable secret sharing by demonstrating how n participants 
can select a secret so that nobody knows it and distribute i t  verifiably among themselves 
in a (k, n) secret sharing scheme. It  is not hard to generalize the proposed method to let 
1 person (k 5 1 5 n) select and distribute the secret. 

Let P I , .  . . , P, be the n persons who want to choose a secret and distribute it among 
themselves and assume that each Pi can make digital signatures. The protocol for P; is 



1. Choose sio E Zg at random. 

2. Distribute Sio verifiably among P I ,  . . . , P,,. 
Furthermore Pi signs each secret share and sends the signature with the share. 

3. Verify all the received shares. If a share is incorrect, P; publishes the share and its 
signature. Then Pi stops. 

4. Compute the share ( s i f t ; )  of s = s10 + szo + sno and the corresponding public 
information (Eo,  El , .  . . , Ek-1) as described in Subsection 5.1. 

It follows from the arguments in the previous subsection that 

(Si I t i )  is a correct share of s if Pi has accepted all shares correctly; and 

any k participants can find a pair ( s ' , t ' )  such that EO = E(s', t ') .  

We now show that s is uniformly distributed in Zq, and that fewer than k participants 
have no information about s. 

Theorem 5.1 
If Pi chooses S;O E Zq uniformly at  random and at  most k - 1 of the other parties 
cooperate, then s is uniformly distributed in Zq. 

Proof 
Follows from the fact that no set of at  most k - 1 participants (excluding Pi) get any 
information about sio. This implies that if at least one of the participants chooses sio at 
random then 

s = SIO + S ~ O  + . + 6no 

is uniformly chosen in Z,. I 

As before let views be the messages, which the participants in a subset S of { 1,. . . , n} 
see. 

Theorem 5.2 
For any S C { 1,. . . , n} of size at  most k - 1 and any views 

1 Prob[s is chosen I views] = - 
Q 

for all s g Zq, if the participants not in S follow the protocol. 

Proof sketch 
Under the assumptions in the theorem it follows from Theorem 5.1 that each s E Z, is 
chosen with probability 1. 

For any s E Z, there exists 
qn-(k-l)- l  = qn-k  values of (sjo)j@s such that s = C;=, sjo, and aa in the proof of 
Theorem 4.4 for each for these values of s jo  ( j  $ S) there is exactly one value of t j o  

I 

Q 
Given S C (1,. . .,n} of size k - 1 and views. 

which gives the same messages from Pj . 
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6 Conclusion 
We have presented a non-interactive verifiable ( b ,  n)-threshold scheme which is a t  least 
as efficient as earlier proposals. Unlike the schemes in [BGW88], [CCDSS] and [RBBg] 
this scheme protects the secret to be distributed unconditionally for any value of k 
(1 5 k 5 R), but the correctness of the shares depends on the assumption that the 
dealer cannot find discrete logarithm before the distribution has been completed. This 
result is optimal because in any non-interactive verifiable secret sharing scheme, which 
reveals no information about the secret, it is possible for a dishonest dealer to distribute 
inconsistent shares in nondeterministic polynomial time. 

The information rate of the presented scheme is f and the distribution of a secret in 
Zq as well as the verification of a share requires a t  most 21qjlc multiplications modulo p .  

It was shown that it is very easy to compute linear combinations of shared secrets, 
and in particular it was  demonstrated how, I persons, 4,. . . ,Pi, can select a secret 
democratically (without knowing the secret) and distribute i t  verifiably to P I ,  . . . , PI, 
Pr+1,. . . , P,, in a ( b ,  n)-threshold scheme. 
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