
Cyclic Debugging Using Execution Replay

Michiel Ronsse, Mark Christiaens, and Koen De Bosschere

ELIS Department, Ghent University, Belgium
{ronsse,mchristi,kdb}@elis.rug.ac.be

Abstract. This paper presents a tool that enables programmers to use
cyclic debugging techniques for debugging non-deterministic parallel pro-
grams. The solution consists of a combination of record/replay with au-
tomatic on-the-fly data race detection. This combination enables us to
limit the record phase to the more efficient recording of the synchroniza-
tion operations, and checking for data races during a replayed execution.
As the record phase is highly efficient, there is no need to switch it off,
hereby eliminating the possibility of Heisenbugs because tracing can be
left on all the time.

1 Introduction

Although a number of advanced programming environments, formal methods
and design methodologies for developing reliable software are emerging, one no-
tices that the biggest part of the development time is spent while debugging and
testing applications. Moreover, most programmers still stick to arcane debugging
techniques such as adding print instructions or watchpoints or using breakpoints.
Using this method, one tries to gather more and more detailed and specific infor-
mation about the cause of the bug. One usually starts with a hypothesis about
the bug that one wants to prove or deny.

Normally, a program is debugged using a program execution. Indeed, repeat-
ing the same program execution over and over will eventually reveal the cause of
the error (cyclic debugging). Repeating a particular execution of a deterministic
program (e.g. a sequential program) is not that difficult. As soon as one can re-
produce the program input, the program execution is known (input and program
code define the program execution completely). This turns out to be consider-
ably more complicated for non-deterministic programs. The program execution
of such a program can not be determined a-priori using the program code and
the input only, as these programs make a number of non-deterministic choices
during their execution, such as the order in which they enter critical sections, the
use of signals, random generators, etc. All modern thread based applications are
inherently non-deterministic because the relative execution speed of the different
threads is not stipulated by the program code. Cyclic debugging can not be used
as such for these non-deterministic programs as one cannot guarantee that the
same execution will be observed during repeated executions. Moreover, the use
of a debugger will have a negative impact on the non-deterministic nature of the
program. As a debugger can manipulate the execution of the different threads of

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 851–860, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



852 M. Ronsse, M. Christiaens, and K. De Bosschere

the application, it is possible that a significant discrepancy in execution speed
arises, giving cause to appearing or disappearing. The existence of this kind
of errors, combined with the primitive debugging tools used nowadays, makes
debugging parallel programs a laborious task.

In this paper, we present our tool, RecPlay, that deals with the non-
determinism introduced by one cause of non-determinism that is specific for
parallel programs: unsynchronized accesses to shared memory (the so-called race
conditions1). RecPlay uses a combination of techniques in order to allow the
usage of standard debuggers for sequential programs for debugging parallel pro-
grams. RecPlay is a so-called execution replay mechanism: information about
a program execution can be traced (record phase) and this information is used
to guide a faithful re-execution (replay phase). A faithful replay can only be
guaranteed if and only if the log contains sufficient information about all non-
deterministic choices that were made during the original execution (minimally
the outcome of all the race conditions). This suffices to create an identical re-
execution, the race conditions included. Unfortunately, this approach causes a
huge overhead, severely slows down the execution, and produces huge trace files.
An alternative approach we advocate in this paper is to record an execution as
if it did not contain data races, and to check for the occurrence of data races
during a replayed execution. As has been shown [CM91], replay will be guaran-
teed to be correct up to the race frontier, i.e., the point in the execution of each
thread were a race event is about to take place.

2 The RecPlay Method

As the overhead introduced by tracing all race conditions is far too high (it
forces us to intercept all memory accesses), RecPlay uses an approach based
on the fact that there are two types of race conditions: synchronization races and
data races. Synchronization races (introduced by synchronization operations)
intentionally introduce non-determinism in a program execution to allow for
competition between threads to enter a critical section, to lock a semaphore or
to implement load balancing. Data races on the other hand are not intended by
the programmer, and are most of the time the result of improper synchronization.
By adding synchronization, data races can (and should) always be removed.

RecPlay starts from the (erroneous) premise that a program (execution)
does not contain data races. If one wants to debug such a program, it is sufficient
to log the order of the synchronization operations, and to impose the same order-
ing during a replayed execution.2 RecPlay uses the ROLT method [LAV94], an
ordering-based record/replay method, for logging the order of the synchroniza-
tions operations. ROLT logs, using Lamport clocks [Lam78], the partial order
of synchronization operations. A timestamp is attached to each synchronization
1 Technically, a race condition occurs whenever two threads access the same shared

variable in an unsynchronized way, and at least one thread modifies the variable.
2 Remember that RecPlay only deals with non-determinism due to shared memory

accesses, we suppose e.g. that input is refed during a replayed execution.



Cyclic Debugging Using Execution Replay 853

operation, taking the so-called clock condition into consideration: if operation a
causally occurs before b in a given execution the timestamp LC(a) of a should be
smaller than the timestamp LC(b) of b. Basically, ROLT logs information that
can be used to recalculate, during replay, the timestamps that occurred during
the recorded execution.

The ROLT method has the advantage that it produces small trace files and
that it is less intrusive than other existing methods [Net93]. This is of paramount
importance as an overhead that is too big will alter the execution, giving rise
to Heisenbugs (bugs that disappear or alter their behavior when one attemps to
isolate or probe it, [Gai86]. Moreover, the method allows for the use of a sim-
ple compression scheme [RLB95] which can further reduce the trace files. The
information in the trace files is used during replay for attaching the Lamport
timestamps to the synchronization operations. To get a faithful replay, it is suffi-
cient to stall each synchronization operation until all synchronization operations
with a smaller timestamp have been executed.

Of course, the premise that a program (execution) does not contain data
races is not correct. Unfortunately, declaring a program free of data races is an
unsolvable problem, at least for all but the simplest programs [LKN93]. Even
testing one particular execution for data races is not easy: we have to detect
whether the order in which two memory accesses occur during a particular exe-
cution is fixed by the program code or not. Unfortunately, this is only possible
if the synchronization operations used reflect the synchronization order dictated
by the program code. E.g. this is possible if the program only uses semaphores
and the program contains no more than one P () and one V () operation for each
semaphore. If this is not the case, it is impossible to decide whether the order
observed was forced by the program code or not. However, for guaranteeing a
correct replay, we do not need this information as we want to detect if this re-
played execution contains a data race or not, as a data race would render the
replay unreliable. And as we are imposing a particular execution order on the
synchronization operations using the trace file, we know that the synchronization
operations are forced in this order. However, this order is forced by RecPlay,
and not by the program itself.3

The online data race detection used by RecPlay consists of three phases:

1. collecting memory reference information for each sequential block between
two successive synchronization operations on the same thread (called seg-
ments). This yields two sets of memory references per segment: S(i) are the
locations that were written and L(i) are the locations that were read in
segment i. RecPlay uses multilevel (see Figure 1) bitmaps for registering
the memory accesses. Note that multiple accesses to the same variable in a
segment will be counted as one, but this is no problem for detecting data
races. The sets L(i) and S(i) are collected on a list.

3 In fact, it is not necessary to re-execute the synchronization operations from the pro-
gram, as RecPlay forces an execution order (a total order) on the synchronization
operations that is stricter than the one contained in the program (a partial order).



854 M. Ronsse, M. Christiaens, and K. De Bosschere

2. detecting conflicting memory references in concurrent segments. There will
be a data race between segment i and segment j if either (L(i) ∪ S(i)) ∩
S(j) 6= ∅ or (L(j) ∪ S(j)) ∩ S(i) 6= ∅ is true. If the comparison indicates the
existence of a data race, RecPlay saves information about the data race
(address and threads involved, and type of operations (load or store)). For
each synchronization operation, RecPlay will compare the bitmaps of the
segment that just ended against the bitmaps of the parallel segments on the
list. Moreover, RecPlay will try to remove obsolete segments from the list.
A segment becomes obsolete if it is no longer possible for future segments to
be parallel with the given segment.

3. identifying the conflicting memory accesses given the traced information.
This requires another replayed execution.

512 X

32bit

16384bit

9bit 9bit 14bit

memory address (32 bit)

32bit

512 X

root:

0 100 11 0 0 11

Fig. 1. RecPlay uses a 3-level bitmap where each level is addressed using a different
part of the address: the first two parts are used to address lists of pointers, while the
last part of the address points to the actual bit. Such a bitmap favors programs with
a substantial memory locality.

In our race detection tool, we use a classical logical vector clock [Mat89,
Fid91] for detecting concurrent segments as segments x and y can be executed
in parallel if and only if their vector clocks are not ordered (px is the thread on
which segment x was executed):

x‖y ⇔



(V Cx[px] ≥ V Cy[px]) and (V Cx[py] ≤ V Cy[py])
or

(V Cx[px] ≤ V Cy[px]) and (V Cx[py] ≥ V Cy[py])

This is possible thanks to the strong consistency property of vector clocks. For
detecting and removing the obsolete segments, RecPlay uses an even stronger
clock: snooped matrix clocks [DBR97].

It is clear that data race detection is not a cheap operation. The fact that
all memory accesses must be intercepted does indeed impose a huge overhead.



Cyclic Debugging Using Execution Replay 855

Fortunately, RecPlay performs the data race detection during a replayed ex-
ecution, making it impossible for the data race detector to alter the normal
execution. Moreover, for each recorded execution, only one data race check is
necessary. If no data races are found, it is possible to replay the execution with-
out checking for data races. This will lead to a much faster re-execution that can
be used for cyclic debugging.

3 Evaluation

Table 1. Basic performance of RecPlay (all times in seconds)

program normal record replay replay+detect
runtime runtime slow- runtime slow- runtime slow-

down down down
cholesky 8.67 8.88 1.024 18.90 2.18 721.4 83.2
fft 8.76 8.83 1.008 9.61 1.10 72.8 8.3
LU 6.36 6.40 1.006 8.48 1.33 144.5 22.7
radix 6.03 6.20 1.028 13.37 2.22 182.8 30.3
ocean 4.96 5.06 1.020 11.75 2.37 107.7 21.7
raytrace 9.89 10.19 1.030 41.54 4.20 675.9 68.3
water-Nsq. 9.46 9.71 1.026 11.94 1.26 321.5 34.0
water-spat. 8.12 8.33 1.026 9.52 1.17 258.8 31.9

The RecPlay system has been implemented for Sun multiprocessors running
Solaris using the JiTI instrumentation tool we also developed [RDB00]. The
implementation uses the dynamic linking and loading facilities present in all
modern Unix operating system and instruments (for intercepting the memory
accesses and the synchronization operations) on the fly: the running process is
instrumented.

While developing RecPlay, special attention was given to the probe effect
during the record phase. Table 1 gives an idea of the overhead caused during
record, replay, and race detection for programs from the SPLASH-2 benchmark
suite 4. The average overhead during the record phase is limited to 2.1% which is
small enough to keep it switched on all the time. The average overhead for replay
is 91% which can seem high, but is feasible during debugging. The automatic race
detection is however very slow: it slows down the program execution about 40
times (the overhead is mainly caused by JiTI intercepting all memory accesses).
Fortunately, it can run unsupervised, so it can run overnight and we have to run
it only once for each execution.

The memory consumption is far more important during the data race de-
tection. The usage of vector clocks for detecting the races is not new, but the
4 All experiments were done on a machine with 4 processors and all benchmarks were

run with 4 threads.



856 M. Ronsse, M. Christiaens, and K. De Bosschere

Table 2. Number of segments created and compared during the execution, and the
maximum number of segments on the list.

program created max. stored compared
cholesky 13 983 1 915 (13.7%) 968 154
fft 181 37 (20.5%) 2 347
LU 1 285 42 (3.3%) 18 891
radix 303 36 (11.9%) 4 601
ocean 14 150 47 (0.3%) 272 037
raytrace 97 598 62 (0.1%) 337 743
water-Nsq. 637 48 (7.5%) 7 717
water-spat. 639 45 (7.0%) 7 962

mechanism used for limiting the memory consumption is. The usage of multi-
level bitmaps and the removal of obsolete segments (and their bitmaps) allows
us to limit the memory consumption considerably. Table 2 shows the number of
segments that was created during the execution, the maximum number on the
list, and the number of parallel segments during a particular execution (this is
equal to the number of segments compared). The average maximum number of
segments on the list is 8.0%, which is a small number. Without removing obso-
lete segments, this number would of course be 100%. Figures 2 and 3 show the
number of segments on the list and the total size of the bitmaps in function of
the time (actually the number of synchronization operations executed so far) for
two typical cases: lu and cholesky5. For lu, the number of segments is fairly
constant, apart from the start and the end of the execution. The size of the
bitmaps is however not that constant; this is caused by the locality of the mem-
ory accesses as can be seen in the third graph showing the number of bytes used
by the bitmaps divided by the number of segments. The numbers for cholesky
are not constant, but the correlation between the number of segments and the
size of the bitmaps is much higher, apart from a number of peaks. The number
of segments drops very quickly at some points, caused by barrier synchronization
creating a large number of obsolete segments.

4 Related Work

In the past, other replay mechanisms have been proposed for shared memory
computers. Instant Replay [LM87] is targeted at coarse grained operations and
traces all these operations. It does not use any technique to reduce the size
of the trace files nor to limit the perturbation introduced. It does not work
for programs containing data races. A prototype implementation for the BBN
Butterfly is described.

Netzer [Net93] introduced an optimization technique based on vector clocks.
As the order of all memory accesses is traced, both synchronization and data
5 These are not the runs used for Table 2



Cyclic Debugging Using Execution Replay 857

races will be replayed. It uses comparable techniques as ROLT to reduce the size
of the trace files. However, no implementation was ever proposed (of course, the
overhead would be huge as all memory accesses are traced, introducing Heisen-
bugs). We believe that it is far more interesting to detect data races than to
record/replay them. Therefore, RecPlay replays the synchronization opera-
tions only, while detecting the data races.

Race Frontier [CM91] describes a similar technique as the one proposed in
this paper (replaying up to the first data race). Choi and Min prove that it is
possible to replay up to the first data race, and they describe how one can replay
up to the race frontier. A problem they do not solve is how to efficiently find
the race frontier. RecPlay effectively solves the problem of finding the race
frontier, but goes beyond this. It also finds the data race event.

Most of the previous work, and also our RecPlay tool, is based on Lam-
port’s so-called happens-before relation. This relation is a partial order on all
synchronization events in a particular parallel execution. If two threads access
the same variable using operations that are not ordered by the happens-before
relation and one of them modifies the variable, a data race occurs. Therefore,
by checking the ordering of all events and monitoring all memory accesses data
races can be detected for one particular program execution. Another approach is
taken by a more recent race detector: Eraser [SBN+97]. It goes slightly beyond
work based on the happens-before relation. Eraser checks that a locking disci-
pline is used to access shared variables: for each variable it keeps a list of locks
that were hold while accessing the variable. Each time a variable is accessed, the
list attached to the variable is intersected with the list of locks currently held
and the intersection is attached to the variable. If this list becomes empty, the
locking discipline is violated, meaning that a data race occurred.

The most important problem with Eraser is however that its practical appli-
cability is limited in that it can only process mutex synchronization operations
and in that the tool fails when other synchronization primitives are build on top
of these lock operations.

5 Conclusions
In this paper we have presented RecPlay, a practical and effective tool for de-
bugging parallel programs with classical debuggers. Therefore, we implemented
a highly efficient two-level record/replay system that traces the synchronization
operations, and uses this trace to replay the execution. During replay, a race
detection algorithm is run to notify the programmer when a race occurs. After
removing the data races, normal sequential debugging tools can be used on the
parallel program using replayed executions.

References

[CM91] Jong-Deok Choi and Sang Lyul Min. Race frontier: Reproducing data
races in parallel-program debugging. In Proc. of the Third ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming, volume 26,
pages 145–154, July 1991.



858 M. Ronsse, M. Christiaens, and K. De Bosschere

[DBR97] Koen De Bosschere and Michiel Ronsse. Clock snooping and its application
in on-the-fly data race detection. In Proceedings of the 1997 International
Symposium on Parallel Algorithms and Networks (I-SPAN’97), pages 324–
330, Taipei, December 1997. IEEE Computer Society.

[Fid91] C. J. Fidge. Logical time in distributed computing systems. In IEEE
Computer, volume 24, pages 28–33. August 1991.

[Gai86] Jason Gait. A probe effect in concurrent programs. Software - Practice
and Experience, 16(3):225–233, March 1986.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[LAV94] Luk J. Levrouw, Koenraad M. Audenaert, and Jan M. Van Campenhout.
A new trace and replay system for shared memory programs based on Lam-
port Clocks. In Proceedings of the Second Euromicro Workshop on Parallel
and Distributed Processing, pages 471–478. IEEE Computer Society Press,
January 1994.

[LKN93] Hsueh-I Lu, Philip N. Klein, and Robert H. B. Netzer. Detecting race
conditions in parallel programs that use one semaphore. Workshop on
Algorithms and Data Structures (WADS), Montreal, August 1993.

[LM87] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging paral-
lel programs with Instant Replay. IEEE Transactions on Computers, C-
36(4):471–482, April 1987.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems.
In Cosnard, Quinton, Raynal, and Roberts, editors, Proceedings of the Intl.
Workshop on Parallel and Distributed Algorithms, pages 215–226. Elsevier
Science Publishers B.V., North-Holland, 1989.

[Net93] Robert H.B. Netzer. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings ACM/ONR Workshop on Par-
allel and Distributed Debugging, pages 1–11, May 1993.

[RDB00] M. Ronsse and K. De Bosschere. Jiti: A robust just in time instrumenta-
tion technique. In Proceedings of WBT-2000 (Workshop on Binary Trans-
lation), Philadelphia, 10 2000.

[RLB95] M. Ronsse, L. Levrouw, and K. Bastiaens. Efficient coding of execution-
traces of parallel programs. In J. P. Veen, editor, Proceedings of the ProR-
ISC / IEEE Benelux Workshop on Circuits, Systems and Signal Processing,
pages 251–258. STW, Utrecht, March 1995.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems, 15(4):391–
411, November 1997.



Cyclic Debugging Using Execution Replay 859

Fig. 2. Number of segments, size of the bitmaps and number of bytes per segment for
lu.



860 M. Ronsse, M. Christiaens, and K. De Bosschere

Fig. 3. Number of segments, size of the bitmaps and number of bytes per segment for
cholesky.


	Introduction
	The {sc RecPlay}{} Method
	Evaluation
	Related Work
	Conclusions

