
Parallel Algorithms
for Fast Fourier Transformation

Using PowerList, ParList and PList Theories

Virginia Niculescu

Department of Computer Science
Babeş-Bolyai University
Cluj-Napoca, Romania
gina@cs.ubbcluj.ro

Abstract. PowerList, ParList and PList data structures are efficient
tools for functional descriptions of parallel programs that are divide &
conquer in nature.
The goal of this work is to develop three parallel variants for Fast Fourier
Transformation using these theories. The variants are implied by the
degree of the polynomial, which can be a power of two, a prime number,
or a product of prime factors. The last variant includes the first two,
and represents a general and efficient parallel algorithm for Fast Fourier
Transformation. This general algorithm has a very good time complexity,
and can be mapped on a recursive interconnection network.

1 Introduction

PowerList, ParList and PList are data structures that can be successfully used
for simple functional descriptions of parallel programs that are divide&conquer
in nature. To assure methods for verification of the parallel programs correctness,
algebras and induction principles are defined on these data structures[1].

A PowerList is a linear data structure whose elements are all of the same type.
The length of a PowerList data structure is a power of two. A PowerList with
2n elements of type X is specified by PowerList.X.n. Two similar PowerLists
can be combined into a PowerList data structure with double length in two
different ways: using tie operator (p | q) when the result contains elements from
p, followed by elements from q, and using zip operator (p � q) when the result
contains elements from p and q, alternatively taken.

Example 1. (Polynomial Value)
A polynomial with coefficients (ai, 0 ≤ i < 2n), where n ≥ 0, may be rep-

resented by a PowerList – p, whose ith element is ai. The following function
vp evaluates a polynomial p; vp accepts an arbitrary PowerList, which contains
the points, as its second argument.

vp : PowerList.X.n× PowerList.X.m→ PowerList.X.m
vp.[a].[z] = [a]
vp.p.(u|v) = vp.p.u | vp.p.v
vp.(p�q).w = vp.p.w2 + (w · (vp.q.w2))

(1)

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 400–404.
c© Springer-Verlag Berlin Heidelberg 2002

Parallel Algorithms for Fast Fourier Transformation 401

The length of a ParList data structure is not always a power of two. A
ParList with n elements of type X is specified by ParList.X.n. It is necessary
to use two other operators: cons(�) and snoc(�); they allow the adding of an
element to a ParList, at the beginning or at the end of the ParList.

Example 2. (Polynomial Value)

vp : ParList.X.n× ParList.X.m→ ParList.X.m
vp.[a].[z] = a
vp.(p�q).w = vp.p.w2 + w · vp.q.w2

vp.(a � p).w = a+ w · vp.p.w
vp.p.(u | v) = vp.p.u | vp.p.v
vp.p.(z � w) = vp.p.[z] � vp.p.w

(2)

PLists are constructed with the n-way | and � operators; for a positive integer
n, the n-way | takes n similar PLists and returns their concatenation, and the
n-way � returns their interleaving. Functions over PList are defined using two
arguments. The first argument is a list of arities of type PosList (PosList is the
type of linear lists with positive integers), and the second is the PList argument.
Functions over PList are only defined for certain pairs of these input values.

Example 3. (Polynomial Value)
We extend the strategy used for PowerList case by using different radices,

and we define the function vp on PLists (we use the notation n = {0, . . . , n−1}):
vp : PosList× PList.X.n× PosList× PList.X.m→ PList.X.m
defined.vp.lx.p.ly.w ≡ prod.lx = length.p ∧ prod.ly = length.w
vp.[].[a].[].[z] = a
vp.lx.p.(y � ly).[|i : i ∈ y : w.i] = [|i : i ∈ y : vp.lx.p.ly.(w.i)]
vp.(x � lx).[�i : i ∈ x : p.i].ly.w = (+i : i ∈ x : wi · vp.lx.(p.i).ly.wx)

(3)

2 Fast Fourier Transformation

We consider a polynomial pf with coefficients (ai, 0 ≤ i ≤ n). A scalar function
will be used in all the cases: function root : Nat → Com applied to n returns
the principal nth order unity root (Com is the type of complex numbers). Three
functions named powers : Com × PXxxList.Com.n → PXxxList.Com.n will
be used; they each return a PXxxList of the same length as the input list(p)
containing the powers of the first argument from 0 up to the length of p (Xxx
could be Power, Par, or P).

2.1 The Case n = 2k

In this case, for the parallel program specification, PowerList data structures
can be used. The function fft : PowerList.Com.n → PowerList.Com.n can
be defined as:

fft.[a] = [a]
fft.(p � q) = (r + u · s) | (r − u · s)
where
r = fft.p
s = fft.q

u = powers.z.p
z = root.(length.(p � q))

(4)

402 V. Niculescu

The values r, s, and u are independent and can be computed in parallel. So,
the time complexity is O(log2 n), where n is the length of p.

2.2 The Case n Prime

In this case, it is necessary to compute directly the polynomial values:

fft : ParList.Com.n→ ParList.Com.n
fft.p = vp.p.(powers.z.p) (5)

The maximum complexity for the computation of a polynomial value at one
point is obtained when n = 2k −1 (n = length.p), when there are 2k−2 parallel
steps, and the minimum complexity is achieved when n = 2k. If we can compute
the n polynomial values in parallel, the time complexity is still O(log2 n), even
if the constant is larger.

2.3 The Case n = r1 · . . . · rk

If n is not a power of two, but a product of two numbers r1 and r2, the formula
for computing the polynomial value can be generalized in the following way:

pf.wj =
r1−1∑

k=0

{
r2−1∑

t=0

atr1+ke
2πijt

r2 }e 2πijk
n , 0 ≤ j < n (6)

Theorem 1. The best factorization n = r1 · r2 for FFT (from the complexity
point of view) is to choose r1 from the prime factors of n [4].

Therefore, for the specification of the parallel algorithm, we consider the
decomposition in prime factors n = r1 · . . . · rk. The PList data structures will
be used. The PosList is formed by the prime factors of n : [r1, r2, · · · , rp] .

We start the derivation from the classic definition: fft.l.p = vp.l.p.l.w, where
w = powers.z.l.p. Function vp is the one defined on PLists (Example 3).

We use the notation W.z.l = powers.z.l.p. The following properties are true,
due to the properties of the unity roots:

W.z.(x � l) = [|i : i ∈ x :< z
n
x i· > .(W.z.l)],where n = x · prod.l

(W.z.(x � l))x = [|i : i ∈ x :W.zx.l]
(W.z.l)i =W.(zi).l

(7)

We derive a new expression for fft, based on the induction principle:
Base case:

fft.[x].[�i : i ∈ x : [a.i]]
= { definition of fft, calculus}

[|j : j ∈ x : (+i : i ∈ x : a.i · z(i·j))]
(8)

Parallel Algorithms for Fast Fourier Transformation 403

Inductive Step:

fft.(x � l).[�i : i ∈ x : p.i]
= {definitions of fft and vp, properties of function W.z.l, calculus}
. . .

(+i : i ∈ x : [|j : j ∈ x :< z
n
x ij · > .(W.(zi).l) · fft.l.(p.i)]

(9)

So, the definition of fft is now:

fft : PosList× PList.Com.n→ PList.Com.n
defined.fft.l.p ≡ (prod.l = length.p)
fft.[x][�i : i ∈ x : [a.i]] = [|j : j ∈ x : (+i : i ∈ x : a.i · z(i·j))]
where z = root.x
fft.(x � l).[�i : i ∈ x : p.i] = [|j : j ∈ x : (+i : i ∈ x : r.i · u.i.j)]
where
r.i = fft.l.(p.i)
u.i.j =< z(ij· n

x)· > .W.(zi).l
z = root.n
n = length.[�i : i ∈ x : p.i]

(10)

(A special case of the high order functionmap was used: < z· > .p = map.(z·).p.)
For the base case, the algorithm presented when n is prime can be used,

which is more efficient. If the list of arities contains just values equal to 2, the
algorithm becomes the one specified in the first case.

The algorithm for Fast Fourier Transformation can be done simultaneously
with the decomposition of n in prime factors. If the prime factors become too
large, then we can stop and apply the algorithm used when n is prime.

The time complexity of the algorithm depends on the prime factors of n and
on their number m. If we consider that all the prime factors are less than a
number M , then the time complexity is O(m), with a constant that depends on
M . If, for example, n = 3k, then the time complexity is O(log3 n).

We can implement this algorithm using a recursive interconnection network[2],
which has the same arity list of the nodes like the arity list used for the calcu-
lation of fft. The implementation has two stages: a descendent stage and an
ascendent stage.

3 Conclusions

The last algorithm for Fast Fourier Transformation is a general parallel algorithm
that does not depend on the degree of the polynomial. It was formally derived,
and so its correctness was proved.

The time complexity that can be obtained with this algorithm is better than
the complexity of the other two (and so better than the classic one); and also
the algorithm can be mapped on a classic interconnection network.

References

1. Kornerup, J.: Data Structures for Parallel Recursion. PhD thesis, University of
Texas at Austin (1997)

404 V. Niculescu

2. Kornerup, J.: PLists: Taking PowerLists Beyond Base Two. In: Gorlatch, S. (ed.):
First International Workshop on Constructive Methods for Parallel Programming,
MIP-9805 (1998) 102-116

3. Misra, J. : PowerList: A structure for parallel recursion. ACM Transactions on
Programming Languages and Systems, Vol. 16 No.6 (1994) 1737-1767

4. Wilf, H.S.: Algorithms and Complexity. Mason & Prentice Hall (1985)

	1 Introduction
	2 Fast Fourier Transformation
	2.1 The Case n=2^k
	2.2 The Case n Prime
	2.3 The Case n=r_1 cdot ... cdot r_k

	3 Conclusions
	References

