
One-Way Cross-Trees and Their Applications

Marc Joye1 and Sung-Ming Yen2

1 Gemplus Card International, Card Security Group
Parc d’Activités de Gémenos, B.P. 100, 13881 Gémenos Cedex, France

marc.joye@gemplus.com
http://www.gemplus.com/smart/

http://www.geocities.com/MarcJoye/
2 Laboratory of Cryptography and Information Security (LCIS)

Dept of Computer Science and Information Engineering
National Central University, Chung-Li, Taiwan 320, R.O.C.

yensm@csie.ncu.edu.tw
http://www.csie.ncu.edu.tw/˜yensm/

Abstract. This paper considers the problem of efficiently generating
a sequence of secrets with the special property that the knowledge of
one or several secrets does not help an adversary to find the other ones.
This is achieved through one-way cross-trees, which may be seen as a
multidimensional extension of the so-called one-way chains. In a dual
way, some applications require the release of one or several secrets; one-
way cross-trees allow to minimize the amount of data necessary to recover
those secrets and only those ones.

1 Introduction

In [10], Lamport proposed a login protocol based on the iterative use of a one-way
function. This elegant construction was exploited in many cryptographic appli-
cations, including the S/KEY one-time password system [8], electronic micro-
payment schemes [2,16], generation of sever-supported digital signatures [3] or
with bounded life-span [5], and also one-time signature schemes [7,9,13,14].

Lamport’s one-time password scheme can briefly be described as follows.
From an initial value S1 and a one-way function h, a user computes Si = h(Si−1)
for i = 2, . . . , n. The final value Sn is given, in a secure manner, to the remote
system (i.e., the verifier). The first time the user wants to login, he will be
asked to deliver Sn−1 as password. The remote system then checks whether
Sn

?= h(Sn−1). If yes, then access is granted to the user and the remote system
updates the password database by storing Sn−1. This is a one-time password.
The next time the user will login, he has to send Sn−2 as password, the remote
system then checks whether Sn−2

?= h(Sn−1), . . . and so on until S1 is used as
password. The main advantage of this method over the fixed password solution
is that replay attacks are no longer possible.

Roughly speaking, one-way cross-trees generalize the idea behind Lamport’s
scheme through the use of several one-way functions and several initial values.

D. Naccache and P. Paillier (Eds.): PKC 2002, LNCS 2274, pp. 346–356, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

One-Way Cross-Trees and Their Applications 347

The resulting constructions naturally introduce a pyramidal hierarchy between
the secrets (passwords) and therefore provide a simple means to allow control-
lable delegation. Lamport’s scheme also presents some hierarchy but only ver-
tical; for example, given the secret Sr anyone can compute Sr+1, Sr+2, . . . , Sn.
Consequently, if for some reason or other, secret Sr has been disclosed, then the
security of secrets Sr+1, . . . , is compromised. One-way cross-trees are more flexi-
ble, the delegation is fully parameterizable. Such desirable property is useful for
key escrow systems. It is so possible to construct a system wherein the release
of some secret keys only enables to recover the messages encrypted under those
keys and not all the past and future communications.

The rest of this paper is organized as follows. In Section 2, we formally
define one-way cross-trees. We also derive some useful properties. Section 3 shows
how one-way cross-trees allow to efficiently generate and release secrets. Some
applications are then presented in Section 4. Finally, we conclude in Section 5.

2 One-Way Cross-Trees

We begin by formalizing the necessary definitions.

Definition 1. A function h : x �→ h(x) is said one-way if when given x, h(x) is
easily computable; but when given h(x), it is computationally infeasible to derive
x.

Notation. When a function h is iteratively applied r times to an argument x, we
will use the notation hr(x), that is hr(x) = h(h(· · · (h︸ ︷︷ ︸

r times

(x)) · · ·)).

h0(x) = x −→ h1(x) −→ h2(x) −→ · · · −→ hn(x)

Fig. 1. One-way chain.

The iterative application of a one-way function h results in the generation of
a one-way chain. Once generated, the chain is then employed in the backward
direction, exhibiting the useful property that it is computationally infeasible to
derive hi−1(x) from hi(x). One-way cross-trees generalize this concept. Loosely
speaking, in a κ-ary one-way cross-tree, there are κ possible one-way directions
from a given position—a one-way chain corresponds to a unary one-way cross-
tree, there is only one possible one-way direction. More precisely, we have:

Definition 2. Let h1, h2, . . . , hκ be one-way functions and let (I1, I2, . . . , Iκ)
be a κ-tuple. A κ-ary one-way cross-tree (κ-owct for short) is a structure T
consisting of vertices and directed edges. Each vertex is labeled with a κ-tuple of
the form

V r1,r2,...,rκ =
(
hr11 (I1), hr22 (I2), . . . , hrκκ (Iκ)

)
, (1)

348 Marc Joye and Sung-Ming Yen

where r1, r2, . . . , rκ ∈ N. The vertex corresponding to the κ-tuple I = (I1, I2, . . . ,
Iκ) is called the root (or generator) of T . Each vertex (except the root) has at
least one edge directed towards it. Moreover, each vertex (including the root) has
at most κ edges directed away from it. Given an edge directed away from a vertex
P towards a vertex S, vertex P is called the predecessor of S and vertex S is
called the successor of P . A vertex without successor is called a leaf. A κ-owct
is iteratively constructed as follows. Given a vertex labeled V r1,r2,...,ri,...,rκ , its
κ (possible) successors are given by the vertices labeled V r1,r2,...,ri+1,...,rκ =(
hr11 (I1), hr22 (I2), . . . , hri+1

i (Ii), . . . , hrκκ (Iκ)
)
with i ∈ {1, . . . , κ}.

(I1; h
3

2(I2))(h1(I1); h
2

2(I2))(h21(I1); h2(I2))(h31(I1); I2)

(I1; h
2

2(I2))(h1(I1); h2(I2))(h21(I1); I2)

(h1(I1); I2) (I1; h2(I2))

(I1; I2)

Fig. 2. Binary one-way cross-tree (2-owct).

Proposition 1. Let T be a κ-owct. Given any κ-tuple V r1,r2,...,rκ ∈ T , it is

(P1) computationally infeasible to find another κ-tuple V r′1,r
′
2,...,r

′
κ

if r′i < ri
for some 1 ≤ i ≤ κ;

(P2) computationally easy to find another κ-tuple V r′1,r
′
2,...,r

′
κ
if r′i ≥ ri for all

1 ≤ i ≤ κ.

Proof. This immediately follows from the one-wayness of T (see Eq. (1)). Finding
V r′1,r

′
2,...,r

′
κ

for some r′i < ji requires the inversion of the one-way function hi,
which is assumed to be computationally infeasible. 	

Definition 3. The weight of a κ-tuple V r1,r2,...,rκ in a κ-owct T is defined as
W (V r1,r2,...,rκ) =

∑κ
i=1 ri. The depth of V r1,r2,...,rκ ∈ T is given by

∆(V r1,r2,...,rκ) = W (V r1,r2,...,rκ)−W (I) , (2)

where I denotes the root of T . Moreover, the depth of T is defined as being the
depth of the element of greatest depth.

One-Way Cross-Trees and Their Applications 349

Definition 4. A κ-owct T is said complete if all of its leaves have the same
weight.

Proposition 1 is the fundamental property of a one-way cross-tree. It indi-
cates that given one element V r1,r2,...,rκ , only the elements of the κ-ary one-way
subcross-tree generated by V r1,r2,...,rκ can be evaluated. In other words, when
given one element, no elements of lower or equal weight can be computed.

Proposition 2. A complete κ-owct T of depth δ has exactly

N(κ, δ) =
(
δ + κ− 1

δ

)
(3)

(distinct) elements of depth δ.

Proof. We use induction on κ. The case κ = 1 corresponds to one-way chains
and we obviously have N(1, δ) = 1 =

(
δ
δ

)
. Suppose now that κ ≥ 2 and that

Eq. (3) holds for κ − 1. Let R = (R1, R2, . . . , Rκ) be the root of T . Then, the
number of elements of depth δ is given by

N(κ, δ) = #{(hs11 (R1), hs22 (R2), . . . , hsκκ (Rκ)) |∑κ
i=1 si = δ}

= #{(hs11 (R1), hs22 (R2), . . . , hsκκ (Rκ)) | 0 ≤ s1 ≤ δ,
∑κ
i=2 si = δ − s1}

=
∑δ
s1=0N(κ− 1, δ − s1)

=
∑δ
s1=0

(
δ−s1+κ−2
δ−s1

)
by the induction assumption

=
(
δ+κ−1
δ

)
. 	

Corollary 1. A complete κ-owct T of depth δ has
(
δ+κ
δ

)
elements.

Proof. Obvious, since
∑δ
d=0N(κ, d) =

∑δ
d=0

(
d+κ−1
d

)
=
(
δ+κ
δ

)
. 	

Proposition 3. Let T be a κ-owct. Given one or several κ-tuples of T , all the
κ-tuples in the smallest one-way subcross-tree containing the given κ-tuples can
be evaluated.

Proof. Let S =
{
V
r
(j)
1 ,r

(j)
2 ,...,r

(j)
κ

=
(
h
r
(j)
1
1 (I1), h

r
(j)
2
2 (I2), . . . , h

r(j)
κ
κ (Iκ)

)}
1≤j≤� be

the subset of the given κ-tuples. If r̃i denotes the smallest r
(j)
i (1 ≤ j ≤ �) such

that h
r
(j)
i
i (Ii) is a component of a κ-tuple in S, then the one-way subcross-tree

generated by V r̃1,r̃2,...,r̃κ will contain all the κ-tuples of S and is the smallest one.
From the root V r̃1,r̃2,...,r̃κ = (hr̃11 (I1), hr̃22 (I2), . . . , hr̃κκ (Iκ)) of this subcross-tree,
all its κ-tuples can be evaluated. 	

Alternatively, one-way cross-trees may be described in terms of integer lat-
tices (see Fig. 3). Let T be a κ-owct and let (I1, I2, . . . , Iκ) be its root. Each
element (hr11 (I1), hr22 (I2), . . . , hrκκ (Iκ)) ∈ T may uniquely be represented by the

350 Marc Joye and Sung-Ming Yen

x11 30 2

(a) Unary case.

x11 30 2

3

0

1

2

x2

x1 + x2 = 2

(b) Binary case.

Fig. 3. Lattice interpretation.

integer vector (r1, r2, . . . , rκ). We can therefore define a lattice L containing
those integer vectors: L = {∑κ

i=1 xi ei | xi ∈ N} where {ei} is the standard
basis—that is, ei is a vector with a ‘1’ in the ith position and ‘0’ elsewhere. Fig-
ure 3 depicts the lattice analogues of a one-way chain and of a binary one-way
cross-tree. The elements of depth δ correspond to the lattice vectors lying in the
hyper-plan Πδ ≡ x1 + x2 + · · ·+ xκ = δ. Increasing the depth of one unit means
“jumping forward” away from the hyper-plan Πδ towards the parallel hyper-
plan Πδ+1. Moreover, each lattice vector (s1, s2, . . . , sκ) ∈ L defines a sublattice
Ls = {∑κ

i=1 xi ei | xi ∈ N, xi ≥ si}. The one-wayness of cross-tree T implies
that from the only knowledge of the κ-tuple (hs11 (I1), hs22 (I2), . . . , hsκκ (Iκ)), only
the κ-tuples (hx1

1 (I1), hx2
2 (I2), . . . , hxκκ (Iκ)) with (x1, x2, . . . , xκ) ∈ Ls may be

computed. Note that, although less practical in higher dimension, the lattice
formulation can be useful for theoretical purposes. For example, N(κ, δ) (see
Proposition 2) may be considered as |L ∩Πδ|.

3 Generation/Release of Secrets

Suppose that a sequence of n secrets (S1, S2, . . . , Sn) has to be generated. There
are basically two ways to do it:

(M1) A first method consists in randomly choosing S1, . . . , Sn.
(M2) Another method is to randomly choose S1 and then evaluate Si = h(Si−1)

for i = 2, . . . , n, where h is a one-way function.

In this section, we will see that κ-owcts unify these two approaches and
offer a fine control on both efficiency and security.

One-Way Cross-Trees and Their Applications 351

3.1 Efficiency

Method (M1) is computationally more efficient while Method (M2) is more ef-
ficient in terms of storage—only S1 has to be stored and Si is computed as
Si = hi−1(S1). Note that, in (M1), S1, . . . , Sn can be considered as the root of a
n-owct and, in (M2), as the elements of a 1-owct (one-way chain). Therefore,
if the secrets are constructed as elements of a κ-owct where κ varies between 1
and n, we obtain a full range of possibilities, enabling to choose the best trade-off
between computational speed and storage requirements.

However, one-way functions such as SHA [1] or MD5 [15] are very fast; the
storage limitation is thus more restrictive. Consequently, Method (M2) seems
to be optimal since it only requires the storage of one secret, but the following
paragraph brings the opposite consideration.

3.2 Security Considerations

From a security point of view, Method (M1) is superior because the secrets
are totally independent; in Method (M2), from a secret Sr, anyone is able to
compute Sr+1, Sr+2, . . . , Sn. Note that this property is sometimes desired in
certain applications such as Lamport’s one-time password scheme (see Section 1).

3.3 Generation/Release of Secrets in a κ-OWCT

In this paragraph, we discuss in more details how to generate and release a se-
quence of n secrets in a κ-owct T with 2 ≤ κ ≤ n − 1. A first idea is to use
the elements of T as secrets. However, special precautions must be taken: the
elements in a κ-owct are not completely independent (see Proposition 3). An-
other idea is to only use the leaves of a complete κ-owct. Even in that case,
independence between secrets is not guaranteed. Consider for example a com-
plete 3-owct of depth 4 with root (I1, I2, I3). The leaf V 2,1,1 = (h21(I1), h2(I2),
h3(I3)) may for example be obtained from leaves V 2,0,2 = (h21(I1), I2, h

2
3(I3))

and V 1,2,1 = (h1(I1), h22(I2), h3(I3)) (which are also of depth 4).
Consequently, the elements of a κ-owct T may not be used like this as

secrets, they have first to be passed through a one-way hash function H, i.e. the
secrets will be

Si = H(V r1,r2,...,rκ) , (4)

where V r1,r2,...,rκ ∈ T . The use of the hash function H also results in better
performances since it reduces the size of the secrets.

To release a subsequence of secrets {Si, . . . , Sj}, it suffices to reveal their
common predecessor of highest weight, say P ∈ T . Note however that, by Propo-
sition 3, this allows to construct all the secrets in the subcross-tree generated by
P . So, several elements of T must sometimes be released in order to reconstruct
only the secrets in {Si, . . . , Sj}. Consequently, the secrets have to be carefully
arranged into the owct in order to minimize the number of elements to release.

352 Marc Joye and Sung-Ming Yen

3.4 Binary-OWCT vs. OWCT of Higher Dimension

We already learned in §3.1 that a small parameter κ enhances the storage ef-
ficiency in the construction of a κ-owct. It is worth noting that it may also
enhance the overall security, simply because the database containing the root
element I = (I1, I2, . . . , Iκ) is smaller (κ secret components have to be stored,
the other ones are computed), making its maintenance easier.

Another advantage of binary-owcts is that each elements has at most two
successors. Therefore the release of one element of depth δ enables to derive at
most 2 elements of depth (δ + 1) (and hence at most 2 secrets instead of κ for a
κ-owct).

Finally, we can remark that, contrary to owct of higher dimension, all the
components of elements of same depth in a 2-owct tree are different. So, for
efficiency purposes, if only the leaves of a complete 2-owct are used then one-
way hash function H (see Eq. (4)) may advantageously be replaced by the xor
(exclusive OR) operator in the construction of the secrets. More explicitly, if T
is a complete 2-owct of depth n − 1 with root (I1, I2), then secrets S1, . . . , Sn
are given by Si = hi−11 (I1)⊕ hn−i2 (I2).

4 Applications

4.1 Key Escrow

It is well-known that key escrow systems are proposed to reach a balance be-
tween the user’s privacy and the society security if those systems are employed
by an organization or a country. Briefly, a key escrow system goes as follows.
A trusted escrow agent is assumed to hold the secret key of each person in the
group and it will be asked to reveal the secret key under authorized law enforce-
ment when required. Unfortunately, the main problem in key escrow systems,
especially hardware-oriented systems, is that once the personal secret key has
been disclosed, all the past and future communications are no longer secure.
Consequently, a scheme with time-constrained release of personal secret keys
would be very useful. The proposed construction (namely, generation and re-
lease of secrets using κ-owcts) can successfully be applied to construct such a
scheme.

Imagine a company where user’s secret keys are periodically updated for
security reasons, say each day. Consider a complete 2-owct T of depth 364. By
Proposition 2, T has 365 leaves V i,364−i = (hi1(I1), h

364−i
2 (I2)) with 0 ≤ i ≤ 364.

As remarked in §3.4, the xor operator may be used to construct the secrets;
therefore we define secret Sj by

Sj = hj−1(I1)⊕ h365−j(I2) (1 ≤ j ≤ 365) . (5)

Note that the same one-way function h1 = h2 := h has been chosen.
The scheme can therefore be described as follows. At the beginning of each

year, each user A receives a tamper-proof hardware from the trusted center or

One-Way Cross-Trees and Their Applications 353

key escrow agent. Note that this is also the assumption made in the original key
escrow standard. In the hardware, there is a real-time clock or a counter that
can be used as input to compute the sequence of numbers {1, 2, 3, . . . , 365}. The
tamper-proof device also stores a secret value I and user’s identity IDA. Define
I1 = H(I‖1) and I2 = H(I‖2) where H is a one-way hash function. When user
A wishes to encrypt a message m to receiver B using a shared session key KAB ,
both the message and the session key KAB are sent into the hardware and the
hardware outputs

C =
(
j, {KAB}SKj , IDA, {m}KAB

)
(6)

where 1 ≤ j ≤ 365 is the number of the day and {p}k denotes the encryption
(any encryption algorithm adopted by the hardware) of message p under secret
key k. From integer j (computed from the embedded real-time clock or counter)
and the identity IDA, the hardware computes A’s secret key SKj as

SKj = hj−1(I1‖IDA)⊕ h365−j(I2‖IDA) . (7)

On the receiver’s (i.e., B) side, his hardware contains the same information
except that the identity is now IDB . From the transmitted C (Eq. (6)), A’s
secret key SKj can be recovered (by Eq. (7)) and thus the session key KAB can
be correctly extracted. If the computed session key and the entered session key
are the same, then receiver’s hardware starts to decrypt the ciphertext {m}KAB ,
otherwise rejects the decryption request.

Suppose now that for some reason, the wire-tapped communication initiated
from A during days 30 till 116 has to be decrypted. Then the law enforcement
agent submits the set of numbers {30, 31, 32, . . . , 116} to trusted key escrow
agent and receives

(h30−1(I1‖IDA), h365−116(I2‖IDA)) = (h29(I1‖IDA), h249(I2‖IDA)) . (8)

From this information, all the secret keys between SK30 and SK116 can ev-
idently be recomputed. Therefore, all the session keys protected by these se-
cret keys can be extracted and the corresponding wire-tapped ciphertexts can
be correctly decrypted. Note that, from Proposition 3, only one release of the
form (hr(I1‖IDA), hs(I2‖IDA)) is permitted. For example, if the law enforce-
ment agent requests the secret keys SK301, . . . , SK310, he may not be pro-
vided with (h300(I1‖IDA), h55(I2‖IDA)) because he is then also able to compute
SK117, . . . , SK300. Secret keys SK301, . . . , SK310 must thus be released individ-
ually.

To overcome this drawback, one can for example construct a complete 2-
owct of depth 6 with root (I1, I2). By Corollary 1, this owct has

(8
6

)
=

28 elements. These elements are then numbered in a publicly known way as
E1,E2, . . . ,E28. We define

Ri = (Ri,1, Ri,2) = (H(E2i−1), H(E2i)) (1 ≤ i ≤ 12) , (9)

where H is a one-way hash function. From the discussion in §3.3, we know that
all of the H(Ej) are independent. Therefore, Ri (1 ≤ i ≤ 12) may be used as

354 Marc Joye and Sung-Ming Yen

roots to construct 12 independent 2-owcts. The secret keys of user A are now
given by

SKi,j = hj−1(Ri,1‖IDA)⊕ h31−j(Ri,2‖IDA) , (10)

where 1 ≤ i ≤ 12 denotes the number of the month and 1 ≤ j ≤ 31 denotes
the number of the day in month i. Suppose now that the law enforcement agent
requests A’s secret keys used during 20th March till 10th April, then he will
receive

(h19(R3,1‖IDA), R3,2‖IDA, R4,1‖IDA, h
21(R4,2‖IDA)) . (11)

The advantage of this second construction is that one release of a sequence of
secret keys is permitted each month instead of each year.

4.2 Delegation

Consider as the previous paragraph that for security reasons secret keys are
changed each day. Suppose an employee in a company needs to go on a business
trip, and he has no special portable computer available for the access to the
company. Before going on his trip, he plans to give the secret keys (for logging
into his computer account, for decrypting emails, etc.) to his secretary. Since the
secret keys are constructed from owcts, the employee has just to release some
secret values and not all the secret keys. Then the secretary can compute the
corresponding secret keys. She can thus decide in place of the employee according
to his policy told beforehand; or if the employee can make a call to the office, she
follows instructions given by him. Note that the secretary can only recover the
secret keys corresponding to the period during those the employee is away from
the office. She is not able to substitute the employee afterwards or to decrypt
past communications.

4.3 Lamport-Like Schemes

If the elements of a κ-owct (with κ ≥ 2) are passed through a one-way function
(see Eq. (4)), they constitute independent secrets—that is, given one or sev-
eral secrets, it is computationally infeasible to find another one. Owcts provide
thus a simple and efficient means to construct independent secrets. Moreover,
to enhance the performance, one can attribute an element of lower weight to a
secret which is more often used; the computation of this element (and thus of
the corresponding secret) from the root of the owct is then speeded up.

Suppose that an user generates N independent secrets in a κ-owct (κ ≥ 2).
These secrets may represent the initial values of N one-way chains (see Fig. 1).
Each of these chains can then for example be used to construct a micro-payment
protocol with a given merchant [2,16]. The owct just serves as a memo to
compute the initial value of a one-way chain. The advantages are (1) the user
has just to remember (or store) the root of a owct; and (2) if for some reason
one secret has been disclosed, the security of the transactions with the other
merchants is not compromised. Of course, other applications based on one-way
chains (e.g., [3,5,6,7,8,9,10,13,14]) may also be adapted advantageously to such
a construction.

One-Way Cross-Trees and Their Applications 355

5 Conclusions

This paper generalized the concept of one-way chain. The resulting construction,
called one-way cross-tree, finds interesting applications in the generation and
release of secrets. In a κ-owct, only κ secrets have to be stored; moreover, when
required, some selected secrets (and only those ones) may efficiently be released.

Acknowledgments

Sung-Ming Yen was supported in part by the National Science Council of the
Republic of China under contract NSC 89-2213-E-008-049.

References

1. FIPS 180-1. Secure hash standard. Federal Information Processing Standards Pub-
lication 180-1, NIST, U.S. Department of Commerce, April 1995.

2. R. Anderson, H. Manifavas, and C. Sutherland. A practical electronic cash system.
Available from URL <http://www.cl.cam.ac.uk/users/rja14/>, 1995.

3. N. Asokan, G. Tsudik, and M. Waidner. Server-supported signatures. In E. Bertino,
editor, Fourth European Symposium on Research in Computer Security (ESO-
RICS ’96), volume 1146 of Lecture Notes in Computer Science, pages 131–143.
Springer-Verlag, 1996.

4. D. Bleichenbacher and U.M. Maurer. Directed acyclic graphs, one-way func-
tions and digital signatures. In Y.G. Desmedt, editor, Advances in Cryptology —
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 75–82.
Springer-Verlag, 1994.

5. O. Delos and J.-J. Quisquater. An identity-based signature scheme with bounded
life-span. In Y.G. Desmedt, editor, Advances in Cryptology — CRYPTO ’94, vol-
ume 839 of Lecture Notes in Computer Science, pages 83–94. Springer-Verlag, 1994.

6. D. de Waleffe and J.-J. Quisquater. Better login protocols for computer networks.
In B. Preneel, R. Govaerts, and J. Vandewalle, editors, Computer Security and
Industrial Cryptography, volume 741 of Lecture Notes in Computer Science, pages
50–70. Springer-Verlag, 1993.

7. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. In G. Bras-
sard, editor, Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes
in Computer Science, pages 263–275. Springer-Verlag, 1990.

8. N.M. Haller. The S/KEY one-time password system. In Proc. of the ISOC Sym-
posium on Networks and Distributed Systems Security, 1994.

9. L. Lamport. Constructing digital signatures from a one-way function. Technical
Report CSL-98, SRI International, 1979.

10. L. Lamport. Password authentication with insecure communication. Comm. ACM,
24(11):770–772, November 1981.

11. M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing
operations. In Proc. of the 3rd ACM Conference on Computer and Communications
Security, pages 48–57. ACM Press, 1996.

12. R.C. Merkle. A digital signature based on a conventional encryption function. In
C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 369–378. Springer-Verlag, 1988.

356 Marc Joye and Sung-Ming Yen

13. R.C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in
Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer-Verlag, 1990.

14. M.O. Rabin. Digitalized signatures. In D. Dobkin, A. Jones, and R. Lipton, editors,
Foundations of Secure Computation, pages 155–168. Academic Press, 1978.

15. R. Rivest. The MD5 message digest algorithm. Internet Request for Comments
RFC 1321, April 1992. Available at <ftp://ds.internic.net/rfc/rfc1321.txt>.

16. R.L. Rivest and A. Shamir. PayWord and MicroMint: two simple micropayment
schemes. CryptoBytes, 2 (1), 7–11, 1996.

	One-Way Cross-Trees and Their Applications
	1 Introduction
	2 One-Way Cross-Trees
	3 Generation/Release of Secrets
	3.1 Efficiency
	3.2 Security Considerations
	3.3 Generation/Release of Secrets in a κ-OWCT
	3.4 Binary-OWCT vs. OWCT of Higher Dimension

	4 Applications
	4.1 Key Escrow
	4.2 Delegation
	4.3 Lamport-Like Schemes

	5 Conclusions
	Acknowledgments
	References

