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Abstract. Camellia is a 128 bit block cipher proposed by NTT and
Mitsubishi. We discuss the security of Camellia against the square attack.
We find a 4 round distinguisher and construct a basic square attack. We
can attack 5 round Camellia by guessing one byte subkey and using 216

chosen plaintexts. Cosidering the key schdule, we may extend this attack
up to 9 round Camellia including the first FL/FL−1 function layer.

1 Introduction

Camellia[5] is a 128-bit block cipher which was announced by NTT and Mit-
subishi in 2000. It has the modified Feistel structure with irregular rounds, so
called the FL/FL−1 function layer. The round function is based on that of the
block cipher E2[13] by NTT whereas the FL/FL−1 layer comes from MISTY[18]
by Mitsubishi. Camellia was submitted to the standardization and the evalua-
tion projects such as ISO/IEC JTC 1/SC 27, CRYPTREC, and NESSIE. Re-
cently, Camellia was selected as an algorithm for the second phase of the NESSIE
project.

Currently, the most efficient methods analyzing Camellia are truncated
differential cryptanalysis and higher order differential attack. Kanda and
Matsumoto[12] studied the security against truncated differential cryptanaly-
sis from the designer’s standpoint. They found the upper bound of the best
bytewise characteristic probability and proved that Camellia with more than
11 rounds are secure against truncated differential cryptanalysis. Most analyses
on Camellia consider simplified version without FL/FL−1 function layers. For
instance, S. Lee et al.[15] attacked eight round Camellia using truncated dif-
ferential cryptanalysis. M. Sugita et al.[19] found a nontrivial 9 round bytewise
characteristics and a seven round impossible differential for Camellia. Kawabata
and Kaneko[11] showed that Camellia can be attacked by higher order differen-
tial attack up to 10 rounds. Some other analyses can be found in [5].

The square attack was a dedicated attack on the block cipher SQUARE[6]
and applied to block ciphers of the SPN structure such as Rijndael[7,8,16],
CRYPTON[9], and Hierocrypt[3]. In order to apply the square attack on the
Feistel structure, Lucks[17] introduced the saturation attack, as a variation of
the square attack. He analyzed the Twofish algorithm of the modified Feistel
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structure. Recently, Y. He and S. Qing[10] showed that six round Camellia are
breakable by square attack.

In this paper, we apply the square attack to Camellia including FL/FL−1

function layers. We suggest the basic attack which breaks 5 round Camellia using
216 chosen plaintexts and 28 key guessings. Also, the key schedule is considered
so that the square attack on 256 bit Camellia is faster than exhaustive key search
up to 9 rounds.

Section 2 briefly describes the structure of Camellia. A basic attack based on
a 4 round distinguisher is given in Section 3 and extensions of the basic attack
up to 9 round Camellia is proposed in Section 4.

2 Description of the Camellia

Camellia has a 128 bit block size and supports 128, 192 and 256 bit keys. The
design of Camellia is based on the Feistel structure and its number of rounds is
18(128 bit key) or 24(192, 256 bit key). The FL/FL−1 function layer is inserted
at every 6 rounds in order to thwart future unknown attacks. Before the first
round and after the last round, there are pre- and post-whitening layers which
use bitwise exclusive-or operations with 128 bit subkeys, respectively.

One round substitution and permutation structure is adopted as the round
function F . Let X

(r)
L and X

(r)
R be the left and the right halves of the r round

inputs, respectively, and k(r) be the r round subkey. Then the Feistel structure
of Camellia can be written as

X
(r+1)
L = X

(r)
R ⊕ F (X(r)

L , k(r)),

X
(r+1)
R = X

(r)
L .

In the following substitution S, the four types of S-boxes s1, s2, s3, and
s4 are used. Each of them is affinely equivalent to an inversion over GF (28).
Actually, s2, s3, s4 are variations of s1. The only property of S-boxes used for
the square attack is that they are one-to-one functions. The substitution function
S : {0, 1}64 → {0, 1}64 which consists of S-boxes is also a one-to-one function
defined by

(x1, . . . , x8)
S−→ (s1(x1), s2(x2), s3(x3), s4(x4), s2(x5), s3(x6), s4(x7), s1(x8)) .

The permutation function P : {0, 1}64 → {0, 1}64 maps (z1, . . . , z8) to
(z′

1, . . . , z
′
8) defined by

z′
1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8,

z′
2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8,

z′
3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8,

z′
4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,

z′
5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8,
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z′
6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8,

z′
7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8,

z′
8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7.

We can also express the function P in the matrix form:



z′
8

z′
7

z′
6

z′
5

z′
4

z′
3

z′
2

z′
1




=




0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1







z8
z7
z6
z5
z4
z3
z2
z1




.

The round function F : {0, 1}64 ×{0, 1}64 → {0, 1}64 is defined as a composition
of S and P functions as follows:

(X, k) F−→ P (S(X ⊕ k)).

At every 6 rounds the functions FL and FL−1 are inserted. We denote
bitwise-and, bitwise-or operations by ∩, ∪ and a n bit rotation by ≪ n. The
left 64 bit half (XL, XR) is mapped to (YL, YR) by the function FL.

(XL‖XR, klL‖klR) FL−→ (YL, YR),

where

YR = ((XL ∩ klL) ≪ 1) ⊕ XR,

YL = (YR ∪ klR) ⊕ XL.

and the inverse FL−1 of FL is used for the right half as follows:

(YL‖YR, klL‖klR) FL−1

−→ (XL, XR),

where

XL = (YR ∪ klR) ⊕ YL,

XR = ((XL ∩ klL) ≪ 1) ⊕ YR.

The key schedule of Camellia will be briefly considered in Section 4.

3 Basic Square Attack

The concept of the Λ-set, which was introduced by Daemen et al. [6], plays an
important role in the square attack.
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Let F be a collection of state bytes X = (x1, x2, . . . , xn) where xi is the i-th
byte of X. If the i-th bytes of elements in F are different one another, the i-th
byte is called an ‘active’ byte. Likewise, the j-th byte is ‘passive’ (or fixed), if
the j-th bytes of states in F have the same value.

A collection F of 256 state bytes is called a Λ-set, if every byte of F is either
active or passive. More precisely, if X and Y are arbitrary elements of a Λ-set
F , then {

xi �= yi, if the i-th byte is active,
xi = yi, otherwise,

where xi and yi are the i-th byte of X and Y , respectively. Note that an arbitrary
collection F has non-active and non-passive bytes in general. The i-th byte in a
collection F is called balanced, if

⊕
X∈F

xi = 0.

The main operations of the Camellia are bitwise exclusive-or(XOR) and sub-
stitution using one-to-one 8 × 8 S-boxes si. If an active(passive) byte of a Λ-set
is used as an input of S-boxes si, then the output is also active(passive). But the
output of si is not necessarily balanced when its input is balanced.

Some properties of XOR operation can be summarized as shown in Table 1.

Table 1. Some properties of XOR operation

XOR(⊕) active byte passive byte balanced byte
active byte balanced byte active byte balanced byte
passive byte active byte passive byte balanced byte
balanced byte balanced byte balanced byte balanced byte

3.1 Four Round Distinguishers

Let X
(r)
L , X

(r)
R be the left and the right inputs of the r-th round. Then we can

construct a 4 round distinguisher as follows:
Choose

X
(1)
L = (α1, α2, . . . , α8), X

(1)
R = (A, β2, . . . , β8)

as a Λ-set F of 256 input plaintexts, where αi, βj are constants and A is an
active bytes of F . Because X

(1)
L is passive, the output of the first round function

F is also passive. Thus, the input of the 2nd round can be written of the form

X
(2)
L = (A, γ2, . . . , γ8), X

(2)
R = (α1, α2, . . . , α8),

where γi are constants. In the 2nd round, the input X
(2)
L for F is transformed

as follows:
(A, γ2, . . . , γ8)

F−→ (B,C,D, δ′
4, E, δ′

6, δ
′
7, F ),

where B, C, D, E, and F are active. Thus, we have

X
(3)
L = (B,C,D, δ4, E, δ6, δ7, F ), X

(3)
R = (A, γ2, . . . , γ8)
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F

F

F

F

(B, C, D, δ4, E, δ6, δ7, F )

(B, C, D, δ4, E, δ6, δ7, F )

(B1, B2, · · · , B8)

(?,?,· · ·,?)

(α1, α2, · · · , α8)

(A, γ2, · · · , γ8)

(B1, B2, · · · , B8)

(A, γ2, · · · , γ8)

(α1, α2, · · · , α8)

(A, β2, · · · , β8)

Fig. 1. A four round distinguisher

as an input for the 3rd round. Applying the 3rd round function to X
(3)
L , we

expect that each state byte in the left half of the input for the 4th round is
balanced. This implies that all bytes in the right half of the 4th round output
are balanced. Thus, we obtain a 4 round distinguisher.

Note that only 2 round functions are effectively activated in this 4 round
distinguisher. This corresponds to the 2 round distinguisher for the SPN struc-
ture. If we change the position of the active byte in X

(1)
R , we obtain 8 different

distinguishers.

3.2 Five Round Square Attack

From the above distinguisher, we can construct a basic square attack on the 5
round Camellia without pre- and post-whitenings.

Step 1. Guess the 1st byte k of the first round key.
Step 2. As input plaintexts, choose a Λ-set F of the form

F = {(XL(i), XR(i))|0 ≤ i ≤ 255}, (1)

where for arbitrarily chosen constants αi, βj ,

XL(i) = (i, α2, . . . , α8),
XR(i) = (s1(i ⊕ k), s1(i ⊕ k), s1(i ⊕ k), β4, s1(i ⊕ k), β6, β7, s1(i ⊕ k)).
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Step 3. If k is a correct key, we can expect the left half of the 2nd round
inputs consists of constant states. For example, the 1st output byte z′

1
of the 1st round function is z′

1(i) = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, where
z1 = s1(i ⊕ k) and z3, z4, . . . , z8 are constants solely depending upon
α2, . . . , α8. Taking exclusive-or of z′

1(i) and the 1st byte s1(i ⊕ k) of
XR(i), we have a constant byte which is independent of i. Using the
same argument, we can show that each byte of X

(2)
L is a constant.

Step 4. The right half X
(2)
R of the 2nd round input is identical to X

(1)
L . Thus

we can use the 4 round distinguisher previously mentioned.
Step 5. Let CL, CR be corresponding outputs of the input Λ-set F which is

chosen in Step 2. If all bytes of CR are balanced, then we can accept k
as the correct key. Otherwise, go to Step 1 and guess another key and
repeat.

For this 5 round attack, we use 28 times 5 round encryptions in every key
guessing. A wrong key can pass the balance test with a probability 2−64, i.e.
negligible. Thus, the number of plaintexts needed for this attack is 28×28 = 216,
and the same number of 5 round encryptions is required.

3.3 Six Round Square Attack

We can extend this basic attack to 6 round Camellia by adding a round at the
beginning. The key idea for 6 round attack is to choose a collection of plaintexts
whose 1 round output is a Λ-set F as described in (1). To do this, we assume
additional 5 bytes of the first round key.

Let k
(2)
1 be the first byte of the second round key and k

(1)
i the i-th byte of

the 1st round key. Suppose that we guess k
(1)
1 , k

(1)
2 , k

(1)
3 , k

(1)
5 , k

(1)
8 , and k

(2)
1 ,

correctly. Then we can find a set F (1) of plaintexts so that the second round
input is a Λ-set F (2) of the form

F (2) =
{(

X
(2)
L (i), X(2)

R (i)
) ∣∣∣0 ≤ i ≤ 255

}
, (2)

where

X
(2)
L (i) = (i, α2, . . . , α8),

X
(2)
R (i) = (s(i), s(i), s(i), β4, s(i), β6, β7, s(i)) ,

s(i) = s1(i ⊕ k
(2)
1 ).

It is easy to see that the left half X
(1)
L (i) of an input Λ-set

F (1) =
{(

X
(1)
L (i), X(1)

R (i)
) ∣∣∣0 ≤ i ≤ 255

}
(3)

should be exactly equal to X
(2)
R (i) for each i and the right half X

(1)
R (i) of that

can be determined by the subkeys k
(1)
1 , k

(1)
2 , k

(1)
3 , k

(1)
5 , and k

(1)
8 . For example,

the 1st output byte z′
1 of the 1st round function can be written as
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z′
1(i) = s1(s(i) ⊕ k

(1)
1 ) ⊕ s3(s(i) ⊕ k

(1)
3 ) ⊕ s4(β4 ⊕ k

(1)
4 ) ⊕ s3(β6 ⊕ k

(1)
6 )

⊕s4(β7 ⊕ k
(1)
7 ) ⊕ s1(s(i) ⊕ k

(1)
8 )

= s1(s(i) ⊕ k
(1)
1 ) ⊕ s3(s(i) ⊕ k

(1)
3 ) ⊕ s1(s(i) ⊕ k

(1)
8 ) ⊕ β,

where β = s4(β4 ⊕ k
(1)
4 )⊕ s3(β6 ⊕ k

(1)
6 )⊕ s4(β7 ⊕ k

(1)
7 ) is independent of i. Thus

we can choose

i ⊕ s1(s(i) ⊕ k
(1)
1 ) ⊕ s3(s(i) ⊕ k

(1)
3 ) ⊕ s1(s(i) ⊕ k

(1)
8 )

as the first byte S1 of X
(1)
R (i) so that the first byte of X

(2)
L (i) is active. Similarly,

remaining bytes of X
(1)
R (i) can be calculated.

F

F

F

F

F

(A, β2, · · · , β8)

(A, β2, · · · , β8)

(S1, S2, · · · , S8)

F

(S, S, S, β4, S, β6, β7, S)

(S, S, S, β4, S, β6, β7, S)

(α1, α2, · · · , α8)

(B1, B2, · · · , B8)

k
(1)
1 , k

(1)
2

k
(1)
3 , k

(1)
5 , k

(1)
8

(?,?,· · ·,?)

k
(2)
1

Fig. 2. A square attack on 6 round Camellia

For each Λ-set F (1) determined by the 6 byte subkeys guessing, we can check
the balance of the right half of the 6th round output. In this check, a wrong
key can be accepted with a probability 2−64. Thus, the 6 round attack requires
28 × 248 plaintexts and 248 subkeys guessing.

By adding a round at the end, we obtain another square attack(See [10]) on 6
round Camellia. But it makes the attack exceeding 6 rounds with the FL/FL−1

layer much harder.
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4 Key Schedule and Extension of the Basic Attack

4.1 Key Schedule of Camellia

To extend the basic attack on over 6 round Camellia with FL/FL−1 function
layer, we consider the key schedule. The round keys are bitwise rotations of KL,
KR, KA, and KB which are calculated from the master keys KL and KR. In
this calculation, they use the reduced rounds of Camellia with a constant key.
We do not describe the details here(See [1]). Table 2 shows how to select 1–10
round keys from KL, KR, KA, and KB .

Table 2. Subkeys for 192/256-bit secret key

subkey value

F (Round 1) k(1) (KB ≪0)L(64)

F (Round 2) k(2) (KB ≪0)R(64)

F (Round 3) k(3) (KR ≪15)L(64)

F (Round 4) k(4) (KR ≪15)R(64)

F (Round 5) k(5) (KA ≪15)L(64)

F (Round 6) k(6) (KA ≪15)R(64)

FL kl1(64) (KR ≪30)L(64)

FL−1 kl2(64) (KR ≪30)R(64)

F (Round 7) k(7) (KB ≪30)L(64)

F (Round 8) k(8) (KB ≪30)R(64)

F (Round 9) k(9) (KL ≪45)L(64)

F (Round 10) k(10) (KL ≪45)R(64)

Note that seven and eight round keys k(7) and k(8) are nothing but 30 bit
rotations of the first and the second round keys, respectively. This property will
be used to attack more than 6 rounds of Camellia.

4.2 An Observation on the FL/FL−1 Layer

Consider the reduced model of 6 round Camellia with the FL/FL−1 layer. As
mentioned previously, if we assume 6 byte subkeys correctly, every byte of the
right half of the 6th round outputs is balanced. By guessing additional 7 bits of
subkey kl2, we can partially invert FL/FL−1 layer.

Let (CL, CR) be an output of the FL−1 function. Then we can determine
the leftmost 7 bits of the input yR,4 for the FL−1 function from two bytes xR,4
and xL,4 using the relation

yR,4 = xR,4 ⊕ (xL,4 ∩ kl2L,4) ≪ 1,

where yR,4, xR,4, xL,4 and kl2L,4 are the fourth bytes of YR, XR, XL and kl2L,
respectively.
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4.3 Square Attacks on 256 bit Camellia up to 7, 8, and 9 Rounds

Now, we consider 256 bit Camellia and its key schedule. We can extend the
previous observation on the FL/FL−1 layer to a 7 round square attack. We
should assume 7 byte subkeys k

(7)
1 , . . . , k

(7)
7 out of the seventh round key k(7) to

determine two byte outputs xR,4 and xL,4 of FL−1 function. But the 7th round
key k(7) is nothing but the 30 bit left rotation of the first round key k(1). In fact,
we only guess additional 18 bits. Thus, the number of bits we need to guess for
7 round Camellia is 73 = 58(round 1, 7) + 8(round 2) + 7(FL−1 layer). When
we apply the square attack to 7 round Camellia, we can check only 7 bits of the
6th round outputs. Thus, a wrong key can pass the test with a probability 2−7.
We need 11 Λ-sets as input plaintexts to eliminate a wrong key. The algorithm
to attack 7 round Camellia can be summarized as follows:

Step 1. Guess 6 byte subkeys k
(1)
1 , k

(1)
2 , k

(1)
3 , k

(1)
5 , k

(1)
8 , and k

(2)
1 of the first and

the second round.
Step 2. Prepare 11 Λ-sets as plaintexts so that inputs of the third round are of

the form

X
(3)
L = (α1, α2, . . . , α8), X

(3)
R = (A, β2, . . . , β8).

Note that the only byte A of them is active. Thus, we expect the right
half of the 6th round outputs is balanced, if key guessing is correct.

Step 3. Partially decrypt outputs and test the balance of them.
3.1. Guess additional 25 bit subkeys for FL−1 and the 7th round.
3.2. Decrypt ciphertexts and determine 7 bits of the right half of the

6th round outputs.
3.3. Check if this 7 bits are balanced for all 11 Λ-sets.
3.4. If so, accept 73 bit subkeys as a correct key.
3.5. Otherwise, discard 25 bit subkeys guessed in Step 3.1 and choose

another 25 bits. If all possible 25 bits are checked, go to Step 1 and
repeat Step 2 and Step 3.

For each subkey candidate, we need to encrypt 11 Λ-sets, which costs

248(subkeys) × 28(Λ-set size) × 11(the number of Λ-sets)

encryptions of 7 round. Also, one round decryptions and partial invertings of
FL−1 function are needed for them with the computational complexity

273(subkeys) × 28(Λ-set size) × 11(the number of Λ-sets).

Thus, total amount of cipher execution is approximately 281.7 encryptions.
With helpful comments of anonymous referees, this attack could be improved

as follows: for a given 6 byte subkeys of the first and the second rounds, first
prepare 4 Λ-sets and see whether 225 subkeys for the FL−1 and the 7th round
pass balanced tests. With probability 1/8, one of the subkeys can pass these tests.
In that case, the remaining 7 Λ-sets can be exercised. This procedure reduced
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the plaintext cost to (4 + 7/8)256. Also, the time complexity can be reduced to
280.2 encryptions.

By assuming all round keys in round 8 and 9, we construct an attack algo-
rithm on 9 round Camellia. One byte of the 8th round key is already guessed in
the second round. Therefore, 193 bits of subkey guessing is needed to attack 9
round Camellia. It is of course infeasible but faster than exhaustive key search.

5 Conclusion

We have discussed the security of Camellia against the square attack. We have
treated the reduced round Camellia without pre- and post-whitenings including
the FL/FL−1 layers. The key schedule has been considered to reduce the num-
ber of subkey guess and how to treat the FL/FL−1 function layers has been
presented.

Table 3. Summary of attacks on 256 bit Camellia

Rounds FL/FL−1 Methods Plaintexts Time Comments
5 N/A Square Attack 210.3 248 He & Qing[10](Pre-Whitening)
5 N/A Square Attack 216 216 This paper
6 N/A Higher Order DC 217 219.4 Kawabata & Kaneko[11]
6 N/A Square Attack 211.7 2112 He & Qing[10](Pre-Whitening)
6 N/A Square Attack 256 256 This paper
7 × Higher Order DC 219 261.2 Kawabata & Kaneko[11]
7 × Truncated DC 282.6 192 S. Lee et al.[15]
7 © Square Attack 258.3 280.2 This paper
8 × Higher Order DC 220 2126 Kawabata & Kaneko[11]
8 × Truncated DC 283.6 255.6 S. Lee et al.[15]
8 © Square Attack 259.7 2137.6 This paper
9 × Higher Order DC 221 2190.8 Kawabata & Kaneko[11]
9 © Square Attack 260.5 2202.2 This paper
10 × Higher Order DC 221 2254.7 Kawabata & Kaneko[11]

Table 3 summarizes attacks on 256 bit Camellia by the number of rounds.
Time complexities in the table is the number of encryptions.

Up to 9 rounds, the square attack is a faster way to attack Camellia than
the brute force key search.

Acknowledgment. We would like to thank anonymous referees for their helpful
comments and suggestions. As mentioned at the end of Section 4, we could reduce
the plaintext requirement as well as time complexity according to the anonymous
advice.
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