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Abstract. Allocating resources to data tra�c in telecommunication
networks is a di�cult problem because of the complex dynamics exhib-
ited by this kind of tra�c and because of the di�cult trade-o� between
the delivered quality of service and the wasted bandwidth.
We describe and compare the performances of two controllers of di�erent
designs (a Kalman �lter and a neural network) to adaptatively control
the bandwidth of a VP connecting two network nodes so as to keep the
quality of service close to a given target.
Simulations are carried out on a hardware emulator which allows a fast
and faithful simulation of the switch functionalities.
The Kalman �lter obtains good performances and the original (and spe-
ci�c to this problem and its implementation constraints) neural network
training strategy allows to obtain a faster and more accurate control.

1 Introduction

Managing data tra�c in multiservice networks is a signi�cant challenge for net-
work operators since the data tra�c volume is already equivalent to the classical
telephony volume and is increasing at a much faster rate and it is known that
data tra�c is not well represented by classical tra�c models, so that standard
dimensioning techniques fail [4].

More precisely, the study of real data tra�c traces [9], [5], [10] has shown
that such tra�c either is stationnary and should be modelled by processes with
long range dependence and complex short time-scale dynamics [5] [10], or is
not stationary and should be locally modeled by short range processes whose
parameters have to be tracked on-line [9].

Dimensioning the network resources is a signi�cant challenge in both cases:
if the tra�c is non-stationary, on-line tracking and prediction is necessary so
as to allocate the resources; in the other case, static dimensioning from long
range dependent models often leads to the allocation of very large resources
protecting the network from very large deviations; such large deviations are
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however very rare and such static dimensioning wastes a lot of resources [3].
This is why, even assuming that tra�c is stationnary and long-range dependent,
on-line estimation of the parameters and prediction of the resources needed, that
is adaptive dimensioning, seems a more promising approach.

In this work, we shall investigate two approaches for controller design; in the
�rst approach, our a priori knowledge of the system is used to select state vari-

ables which sum up the state of the system as it may be observed (measured)
and the controller design problem reduces to learn the relationship (\mapping")
between the state variables and the behaviour of the system. This approach is
implemented by a neural network. In the second approach, our a priori knowl-
edge of the system is used to build a model of this system depending on a few
parameters and the controller design problem reduces to �t the model to the
behaviour of the system. This approach is implemented by a Kalman �lter.

Since this work is strongly constrained by implementation considerations, we
shall �rst present in some details the mechanisms used to guarantee a minimum
QoS and fairness in the network nodes. The design of the controllers is then
described and the experimental environment and results are discussed.

2 The CMS switch

The CMS switch is an ATM switch developed at CNET with the aim of opti-
mizing transfer of high speed data in an ATM network. It takes into account the
speci�city of data service: large semantic constraints and weak temporal con-
straints. A single connection-oriented data service is implemented in the back-
bone. In each switch, connections are isolated by the use of a per connection
FIFO, and active connections share dynamically the bandwidth. Each connec-
tion is identi�ed by its Virtual Connection (VC), its MinimumGuaranteed Rate
(MCR), its Peak Cell Rate (PCR). The connections are multiplexed in a Virtual
Path (VP) between two CMS nodes.

State

SL

Congestion

Free

SH

Nh

Nm

Level reached in the file

Nl

Fig. 1. The free/congested cycle. See text for explanations.
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A hop by hop ow control is implemented between the transit nodes, en-
suring the absence of packet losses in transit. The implementation of this hop
by hop ow control relies on the watermarking of each individual queue. Two
watermarks (high and low marks) are de�ned for each queue, depending on the
parameters described below (section 3). The ow control operates as described
on Figure 1:

1. free regime: starting from an empty queue, the connection is in its free
regime, as long as the queue length does not reach the high mark SH. The
rate allocated to this source by the upstream node is only constrained by
the upstream node fair queuing algorithm (see below);

2. congested regime: when the queue reaches the high mark SH, a RM cell is
sent upstream requesting the fair rate for this connection to be set at its
minimun guaranteed rate, MCRi, by the upstream node. The connection
stays in the congested regime as long as its queue length stays above the
low mark, SL. When the queue reaches the low mark SL, a RM cell is sent
upstream allowing this connection to go back to its free regime.

The VP (Virtual Path) bandwidth is allocated to the active sources by a
Weighted Round Robin mechanism, which guarantees that each active source
is served at least at its minimum guaranteed rate. The bandwidth in excess of
the sum of the minimum guaranteed rates is then allocated fairly among the
active sources, according to their declared peak cell rates. The fair rates locally
allocated to the sources depend on their free or congested state as noti�ed by
the downstream node:

{ if the source is in the congested mode, its fair rate is its minimumguaranteed
rate: Ri = MCRi

{ if the source is in the free mode, its fair rate is given by

Ri =MCRi +
PCRiP
j�PCRj�

(V P �

X

j

MCRj)

where
P

j � means a summation on the free sources only.

Too large an excess bandwidth will lead to a low VP bandwidth utilization
without any signi�cant enhancement of the Quality of Service (QoS). Our pur-
pose is to adapt periodically the VP bandwidth on each ATM node in order to
maximize the VP bandwith utilization without degrading the Quality of Service.
The QoS indicator is chosen as the ratio of congested sources. This ratio is set
to 20 %. The adaptation period is set to 5 seconds.

3 De�nition of the state variables

As explained above, the neural network predictor requires a description of the
state of the system (\state variables") to compute its prediction. In addition to
the classical trade-o� between the accuracy of the description and the complexity
of the training, we had to take into account that
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{ the limited communication bandwidth left to collect the state variables in
the interface cards and transmit them to the processing unit did not allow
to collect state variables on a queue by queue basis with a sampling time
compatible with our objectives of fast control of the VP bandwidth because
of the possibly large number of VCs (up to 1024 VCs per VP);

{ the limited processing power and storage space available on the interface
cards did not allow to pre-process the raw queue data locally.

We had to rely on a sampling of the average state of the queues. Such a
description requires a communication bandwidth independent of the number of
VCs and does not require any processing power on the interface cards. The
system is described by the ratio of the number of �les found in a given state at
sampling time to the total number of �les: Nl, the ratio of �les under the �rst
mark, Nm, the ratio of �les between the �rst and the second mark, Nh, the ratio
of �les upper the second mark and Ncl, the ratio of sources locally congested
(i.e. sources for which a congestion noti�cation has been sent to the upstream
node).

The description of the system, Dt = (Nl(t); Nm(t); Nh(t); Ncl(t)), is trans-
mitted to the processing unit at sampling time. Storage and pre-processing are
done in the processing unit. Pre-processing consists of an averaging on jumping
windows of size T : Et =

1

T

Pt

t�T+1
Du. These averages are the state variables

used by the neural network. In the following, the sampling period is 1 millisecond
and the averaging period is 1 second.

4 A simple controller

Since the Connection Admission Control (CAC) and the Usage Parameter Con-
trol (UPC) guarantee the conformity of a VC to its tra�c contract, the connec-
tion blocking probability (Ncl) can be increased without a�ecting the Quality
of Service (QoS). Therefore, the method to control the VP bandwidth can be
based on a connection blocking probability target (ONcl) [8]:

V P (t+ 1) =

�
(1 + r)V P (t) if Ncl > ONcl

(1� r)V P (t) if Ncl � ONcl

The drawback of this step by step algorithm is the tuning of the parameter r.
For a large value of r, the algorithm converges quickly with strong oscillations.
For a small value of r, the convergence is slow. An improvement of this algorithm
is to calculate r according to the value of Ncl [7]: r = max(; Ncl�ONcl

1�Ncl

), where
 is an a priori upper bound for the increment r.

The convergence of this algorithm is slow and it has only been proposed for
adaptation periods of the order of the hour [8, 7].

Data tra�c cannot be considered stationary on such a long period; indeed,
the study of real tra�c traces has shown that the local stationarity hypothesis
holds on time scales of the order of a second only [9]. The adaptation of the VP
bandwidth must cope with non-stationarities and therefore must converge on a
time scale of a few seconds.
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(a) Value of the VP bandwidth according to
time

689 496

(b) Value of the ratio of congested �les
according to time

Fig. 2. Results of the step by step algorithm for ONcl = 0:2.

5 A neural network controller

5.1 Learning a function

To control the VP bandwidth, a function using the state variables, E, as in-
puts and the VP bandwidth, V P , as output is needed (Figure 4). The re-
gression consists to �nd a function f� 2 � minimizing the functional risk
R(f�) =

R
(f�(E)� V P )2P (V P jE)dE.

In learning case, the conditional distribution of probability P (V P jE) is un-
known and we approximate the functional risk by the empirical functional risk,
using a set of examples R(f�) =

1

N

P
N

i
(f�(Ei)�V Pi)2, where N is the number

of examples.
The learning machine de�nes the space of functions � . Neural networks (Fig-

ure 3) are powerful learning machines since they are non-linear models with
e�cient and robust training techniques.

5.2 Learning the optimal value of the VP bandwidth

Let F be the control function we want to learn:

V P �(t +H) = max((1 + F (Et�4T ; Et�3T ; Et�2T ; Et�T ; Et))V P (t);
X

i

MGRi)

where H is the period of control (H = 5 seconds in this study), Et the averaged
state variable at time t, T an averaging period (T = 1 second) and MGRi the
minimum guaranteed rate of the source i. To capture the temporal correlations,
the inputs consists of a series of �ve consecutive values of the state variables:
Et�4T ; Et�3T ; Et�2T ; Et�T ; Et.
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Fig. 3. The multilayer perceptron with one hidden layer allows to approximate
non-linear functions. G(x) = 1

exp(�kx)+1 is the sigmoid function.

Note that the output of the controller cannot be lesser than the sum of
minimum guaranteed rates so as to ful�ll the tra�c contract.

ALGORITHM

FAIR

QUEUEING

E(t1),E(t2),E(t3),E(t4),E(t5)

NEURAL

NETWORK

STATE

VARIABLES

SWITCH

VC

VC

VC

VC

VPaggregated traffic

VP(t+H)∆

Fig. 4. Schema of the control process. The series of state variables Et are the inputs
of a neural network. The neural network returns the variation of the VP bandwidth
needed to reach the optimal VP bandwidth fot the next period H.

To obtain a fast control, we use the step by step algorithm previously de-
scribed to generate data along a trajectory (Figure 2). Each trajectory generates
several input examples with the same output: the optimal VP bandwidth (Figure
5). If such a function can be learned, it leads to a very fast convergence of the
control process: anywhere on the trajectory, the function will return the optimal
VP bandwidth. To obtain various outputs, we generate several trajectories, cor-
responding to di�erent tra�c contracts, source rates and initial VP bandwidths.
The set of examples consists of 13000 examples. Each example consists of an
input/output couple:
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Fig. 5. The value of the optimal VP bandwidth is obtained at the end of the conver-
gence of the step by step algorithm. For a trajectory i, at each control period j the
state variables Eij are collected to generate n input examples with the same output:
V P �. The use of m trajectories allows to generate N = mn di�erent input/output
couples.

We de�ne the optimal value of the V P bandwidth, V P �, according to the
target congested rate ONcl: V P � = fV P such that: Ncl = ONclg, as obtained
at the end of the convergence of the step by step algorithm.

Finally, to minimize the functional risk between the learning machine and
the target function F , we use:

{ a multilayer perceptron as learning machine consisting of an input layer
of twenty neurons corresponding to the series of state variables (�ve state
variables, one state variable being a vector with four components), a hidden
layer of �ve neurons and one output neuron,

{ the standard back-propagation algorithm [6] to minimize the empirical func-
tional risk on a training set of 10000 examples,

{ a validation set to control the minimization of the functional risk: the learn-
ing is stopped when the empirical functional risk increases in the validation
set composed by 3000 examples (examples which are not used to minimize
the empirical functional risk).

6 A Kalman controller

To build the Kalman �lter, we consider a simple model of the ATM node (Figure
6). The incoming tra�c is aggregated. It is divided by the ATM node in two
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parts: a part of the incoming tra�c passing through the VP and a blocked
and lost part. Under the assumption that all the sources send at least at their
minimum guaranteed rate, we can write x = Nclx+ y +

P
i
MGRi.

Virtual Path
y+    MGRiΣ

BUFFER

Ncl x
congested part

aggregated traffic x

Fig. 6. The incoming aggregated tra�c is divided in two parts. The �rst part, y and

the sum of the minimum guaranteed rates, passes through the VP and the second part,

the congested part Nclx is blocked and lost.

Let V be the part of the V P bandwidth above the sum of the MGR: V =
V P �

P
i
MGRi.

We assume that the VP bandwidth utilization is high: y � V . Assuming
Gaussian and centered noises, the following non-linear model de�nes the ex-
tended Kalman �lter:

Ncl + �Ncl
= 1�

V

x+ �x

Where the incoming aggregated bandwidth x is the state variable, the excess
bandwidth V the control variable, the ratio of congested sources Ncl the mea-
sured variable, and �Ncl

and �x are respectively the measurement and the pro-
cess noises. At each period H, the rate of congested sources Ncl(t) is mea-
sured, the noises (�x, �Ncl

) and the state variable x(t) are estimated by the
Kalman �lter . Then, the optimal VP bandwidth is given by: V P �(t + H) =
x̂t(1� ONcl) +

P
i
MGRi where x̂t is the estimated state of the system by the

Kalman �lter and ONcl the target congestion rate.
The initial value of �Ncl

is set according to the behaviour of Ncl after conver-
gence of the step by step algorithm and the initial value of �x is set according
to the tra�c contracts, assuming that the instantaneous rate of each source is
drawn independently and uniformly between MGRi and PCRi.

7 Experimental results

7.1 Simulation environment

Tra�c and queue lengths measurements required functionalities which could not
be implemented in the current version of the CMS switch and we had to rely on
simulations. In order to measure the state variables, we had to simulate all the
details of the implementation of the CMS switch as described above (per VC
queuing, bandwidth sharing algorithm, ow control algorithm, see Section 2).
A software-based simulator could not have allowed the implementation of our
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training strategy in reasonable time; instead, we have developped a simulator of
the CMS switch itself and mapped it on a hardware architecture.

With tools currently used in integrated circuit development such as hardware
emulators, it is possible to reproduce a reliable image of the CMS switch by
saving only useful functions for our implementation.Advantages of the hardware
approah are [2] the simulation speed, close to the real switch, and the great
number of VC that can be instanciated, leading to realistic tra�c loads without
slowing down simulation.

699 500

(a) Optimal VP bandwidth according to
time.

699 496

(b) Ratio of congested sources according to
time, at the top the VP bandwidth utiliza-
tion curve.

Fig. 7. Results of the neural network controller for ONcl = 0:2. Every minute (20 time
units) all the tra�c contracts and rates of sources are randomly reset. On the last
period, the optimal VP bandwidth is lower than the sum of minimum guaranteed rate.

Indeed, with a recon�gurable hardware machine, speed is governed by the
clock frequency from 1 to 10 MHz and this speed does not depend on the model
complexity as for a pure software model. This allowed us to instanciate many
sources simulating various VC. This hardware implementation can be achieved
using usual tools in CAD design: a VHDL (VHSIC Hardware Description Lan-
guage) description of the chip is used to describe the system in terms of concur-
rent processes, then a VHDL synthesiser translates the VHDL description into
combinational logic and registers, the basic elements used in electronic systems,
and �nally, a compiler computes the link to map this hardware description on
the sea of gates of the emulator. The use of an emulator is original in this ap-
proach. This machine is composed of a sea of gates that can be dynamically
linked to reproduce an electronic design. The M500 emulator from Metasys-
tems comprises 500,000 programmable logic gates, connectable to each other, 17
Mbytes of memory, single or double port, an adjustable clock frequency from
1 to 10 MHz. The M500 emulator and the associated software has important
features for debugging: it stores signal values of the last 7000 clock cycles, allows
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the user to start, stop, and run clock step by clock step simulation as desired.
Recon�gurable hardware machines are therefore very appealing simulation tools
for complex systems such as the dynamical coupling between the bandwidth
sharing and ow control as implemented in the CMS node.

The simulator comprises three main blocks [1]:

{ Tra�c sources, most widely used statistical models are implemented: peri-
odic sources with a period modi�ed regularly, uniform tra�c and geometric
process, Markov modulated Bernouilli process with on-o� sources, which
simulated bursty tra�c.

{ Switch model: the CMS model can receive up to 64 sources or VC to �t in
the hardware emulator.

{ Tra�c analysis: several quantities (such as cell number, lost cell number,
inter-arrival process, queue occupancy, dates when SL and SH marks are
reached) can be stored \on the y" to evaluate the state variables.

This simulator has been used for the generation of the training and validation
sets and for the test experiments presented below.

699 500

(a) Value of the VP bandwidth according
to time.

699 496

(b) Value of the ratio of congested �les ac-
cording to time, at the top the VP band-
width utilization curve.

Fig. 8. Results of the Kalman controller for ONcl = 0:2. Every minute (20 time units)
all the tra�c contracts and rates of sources are randomly reset.

7.2 Discussion

Corresponding to the implementation constraints, the prediction period H is 5
seconds the sampling period of the state variables is 1 ms and the target ratio of
congested sources is ONcl = 0:2. To evaluate and to compare the control of the
Kalman �lter and of the neural network �lter, we generated 64 various periodic
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tra�cs on a period of one minute. After this minute, we introduced an important
non-stationarity by randomly resetting the tra�c contracts and rates of all the
sources. The emission rates and tra�c contracts of the sources were drawn from
Gaussian distributions (with the constraint that the emission rate cannot exceed
the declared peak cell rate; note that sources can emit at a lower rate than their
minimum guaranteed rate). We introduced a increasing trend of the means of
Gaussians on a �rst period and a decreasing trend on a second period.

The neural network experiment and the Kalman �lter experiment were built
using the same methods but with slightly di�erent values of the mean of Gaus-
sians generating the parameters of sources. The quality and stability of the
convergence can be compared on the stationarity period and the speed of con-
vergence on the non-stationarity period.

First, the purpose is to maximize the VP bandwidth utilization. In both
cases, it is close to 1 (Figure 7b, 8b). The analysis of the curves shows that
the control of the Kalman �lter (Figure 8a) is slower than the one of neural
network (Figure 7a): a stable value of the VP bandwidth is reached on one or
two iterations (5 to 10 seconds) in the case of neural network and two or three
iterations for the Kalman �lter. Moreover, the quality and stability of the neural
network controller (Figure 7b) is better than the Kalman controller (Figure 8b):
the oscillations of the measured congested rate have lower amplitudes for the
neural network controller than for the Kalman controller.

It may be argued that the switch model designed for the Kalman �lter is
grossly simpli�ed as it implements almost nothing of the complex queue man-
agement, fair service and congestion control described above in Section 2. The
problem is that modeling such a complex system in greater details leads very
fast to untractable models.

This illustrates the di�erence between the two kinds of controllers when deal-
ing with complex systems: the \mapping approach" (neural network controller
in this work) allows us to describe the system in great details (the hardware
simulator implements all the complexities of the CMS switch, so that the state
variables describe the behaviour of true switch), to the expense of �nding a good
mapping between high dimensional spaces by an o�-line training, whereas the
\modeling approach" (Kalman controller in this work) forces us to use simpli�ed
models but allows us to adapt the model parameters on-line.

Training of the neural network is performed o�-line and gives superior per-
formances, but it must be emphasized that the performances will stay good only
as long as the examples used for the o�- line training will be representative of
the behaviour of the system. This implicit stationarity hypothesis is certainly
wrong in the long term and appropriate strategies (such as periodic re- training)
have to be developped to cope with non-stationarities.

The modeling approach has good although slightly inferior performances but
these performances will stay good as long as the model is representative of the
behaviour of the system and non- stationarities are coped with by the adaptivity
of the Kalman �lter.
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8 Conclusion

We have described, implemented and compared the performances of two con-
trollers of very di�erent designs (a Kalman �lter and a neural network) so as to
adapatively dimension the VP bandwidth between two nodes so as to keep the
quality of service close to a target value.

Simulations were made possible by the use of a hardware emulator allowing
to reproduce faithfully the complex behaviour of the switch.

Both controllers showed good performances with a faster and more accurate
control by the neural network. We have discussed how this improved performance
came at the expense of adaptivity to long-term non-stationarities.

Both controllers are currently being implemented in a prototype of the CMS
switch so as to test their performances under real workload.
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