Skip to main content

Spatiotemporal intermittency in Taylor-Dean and Couette-Taylor systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 549))

Abstract

Spatiotemporal intermittency manifests itself by the coexistence of laminar and turbulent domains for the same value of the control parameter. In the Taylor- Dean system, the distributions of laminar domains size after algebraic and exponential regimes allow for a determination of critical properties in an analogy with directed percolation. In the Couette-Taylor system, only algebraic distribution of laminar domains size has been evidenced. A turbulent spiral coexists with laminar spiral destroying the occurrence of exponential regime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Manneville, Structures Dissipatives et turbulence, ed. Alea-CEA Saclay (1991). See also H. Chaté and P. Manneville:’ spatiotemporal intermittency’, In: Turbulence: a tentative dictionary, ed. by P. Tabeling and O. Carodos, Plenum Press, N.Y. (1995), 341, 111-116.

    Google Scholar 

  2. D.J. Tritton, Physical Fluid Dynamics, Oxford University press, Oxford (1989). see also G.B. Schubauer and P.S. Klebano., NACA TN-3489 (1955).

    Google Scholar 

  3. I.J. Wygnanski and F. Champagne, J. Fluid Mech. 59, 281 (1973).

    Article  ADS  Google Scholar 

  4. F. Daviaud, J.J. Hegseth, P. Bergé, Phys.Rev. Lett. 69, 2511(1992).

    Article  ADS  Google Scholar 

  5. O. Dauchot and F. Daviaud, Phys. Fluids 7, 335(1995). See also O. Dauchot and F. Daviaud, Phys. Fluids 7, 901 (1995).

    Article  ADS  Google Scholar 

  6. S. Bottin, O. Dauchot and F. Daviaud, Phys. Rev. Lett. 79, 4377(1997).

    Article  ADS  Google Scholar 

  7. D. R. Carlson, S. E. Widnall and M.F. Peters, J. Fluid Mech. 121, 487 (1982). See also M. Nishioka and M. Asai, J. Fluid Mech. 150, 441 (1985).

    Article  ADS  Google Scholar 

  8. D Coles, J. Fluid Mech. 21, 385(1965). See also C. Van Atta, J. Fluid Mech 25, 495(1966).

    Article  MATH  ADS  Google Scholar 

  9. C.D. Andereck, S.S. Liu and H.L. Swinney, J. Fluid Mech. 164, 155 (1986).

    Article  ADS  Google Scholar 

  10. M. Degen, I. Mutabazi and C.D. Andereck, Phys. Rev. E 53, 3495(1996).

    Article  ADS  Google Scholar 

  11. S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60, 286 (1988).

    Article  ADS  Google Scholar 

  12. F. Daviaud, M. Bonetti and M. Dubois, Phys. Rev. A 42, 3388 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Willaime, O. Cardoso and P. Tabeling, Phys. Rev. E 48, 288 (1993).

    Article  ADS  Google Scholar 

  14. M. Rabaud, S. Michalland and Y. Couder, Phys. Rev. Lett. 64, 184 (1990).

    Article  ADS  Google Scholar 

  15. K. Kaneko, Prog. Theo. Phys. 74, 1033 (1985).

    Article  MATH  ADS  Google Scholar 

  16. H. Chate and P. Manneville, Europhys. Lett. 6, 591 (1988). See also H. Chate and P. Manneville, J. Stat. Phys. 56, 357 (1989).

    Article  ADS  Google Scholar 

  17. H. Chate et P. Manneville, Phys. Rev Lett. 58, 112 (1987).

    Article  ADS  Google Scholar 

  18. F. Daviaud, J. Lega, P. Bergé, P. Coullet and M. Dubois, Physica D 55, 287 (1992).

    Article  ADS  MATH  Google Scholar 

  19. R.J. Deissler, J. Stat. Phys. 40, 371 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. H. Chate, Nonlinearity 7, 185(1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Y. Pomeau, Physica D 23, 3 (1986).

    Article  ADS  Google Scholar 

  22. P. Grassberger and T. Schreiber, Physica D 50, 177 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. K. Coughlin and P.S. Marcus, Phys. Rev. Lett. 77, 2214 (1996).

    Article  ADS  Google Scholar 

  24. P.W. Colovas et C.D. Andereck, Phys. Rev. E 55, 2736 (1997).

    Article  ADS  Google Scholar 

  25. J.J. Hegseth, C.D. Andereck, F. Hayot and Y. Pomeau, Phys. Rev. Lett. 62, 257 (1989).

    Article  ADS  Google Scholar 

  26. F. Hayot and Y. Pomeau, Phys. Rev. E 50, 2019 (1994).

    Article  ADS  Google Scholar 

  27. V. Hakim and Y. Pomeau, Eur.J. Mech.B. 10 Suppl., 131 (1991).

    MathSciNet  Google Scholar 

  28. I. Mutabazi, J.J. Hegseth, C.D. Andereck and J. Wesfreid, Phys. Rev. Lett. 64, 1729 (1990).

    Article  ADS  Google Scholar 

  29. Y. Demay, G. Iooss and P. Laure, Eur. J. Mech. B 11, 621 (1992).

    MATH  MathSciNet  Google Scholar 

  30. P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, N.Y. (1981).

    MATH  Google Scholar 

  31. P. Chossat and G. Iooss, The Couette-Taylor problem, Springer-Verlag, N.Y. (1994).

    MATH  Google Scholar 

  32. D. Stassinopoulos, J. Zhang, P. Alström and M.T. Levinsen, Phys. Rev. E 50, 1189 (1994).

    Article  ADS  Google Scholar 

  33. H. Litschke and K.G. Roesner, Exp. Fluids 24, 201 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mutabazi, I., Goharzadeh, A., Laure, P. (2000). Spatiotemporal intermittency in Taylor-Dean and Couette-Taylor systems. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids. Lecture Notes in Physics, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45549-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45549-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67514-3

  • Online ISBN: 978-3-540-45549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics