
On the Use of a Differentiated Finite Element
Package for Sensitivity Analysis?

Christian H. Bischof, H. Martin Bücker, Bruno Lang, Arno Rasch, and
Jakob W. Risch

Institute for Scientific Computing, Aachen University of Technology,
D–52056 Aachen, Germany

{bischof, buecker, lang, rasch, risch}@sc.rwth-aachen.de
http://www.sc.rwth-aachen.de

Abstract. Derivatives are ubiquitous in various areas of computational
science including sensitivity analysis and parameter optimization of com-
puter models. Among the various methods for obtaining derivatives, au-
tomatic differentiation (AD) combines freedom from approximation er-
rors, high performance, and the ability to handle arbitrarily complex
codes arising from large-scale scientific investigations. In this note, we
show how AD technology can aid in the sensitivity analysis of a com-
puter model by considering a classic fluid flow experiment as an example.
To this end, the software tool ADIFOR implementing the AD technology
for functions written in Fortran 77 was applied to the large finite element
package SEPRAN. Differentiated versions of SEPRAN enable sensitivity
analysis for a wide range of applications, not only from computational
fluid dynamics.

1 Introduction

In assessing the robustness of a computer code, or to determine profitable av-
enues for improving a design, it is important to know the rate of change of the
model output that is implied by changing certain model inputs. Derivatives are
one way to implement such a sensitivity analysis. Traditionally, divided differ-
ences are employed in this context to approximate derivatives, leading to results
of dubious quality at often great computational expense. Automatic differentia-
tion (AD), in contrast, is an alternative for the evaluation of derivatives providing
guaranteed accuracy, ease of use, and computational efficiency. Note that deriva-
tives play a crucial role not only in sensitivity analysis but in numerical comput-
ing in general. Examples include the solution of nonlinear systems of equations,
stiff ordinary differential equations, partial differential equations, differential-
algebraic equations, and multidisciplinary design optimization, to name just a
few. Therefore, the availability of accurate and efficient derivatives is often in-
dispensable in computational science.
? This research is partially supported by the Deutsche Forschungsgemeinschaft (DFG)

within SFB 540 “Model-based experimental analysis of kinetic phenomena in fluid
multi-phase reactive systems,” Aachen University of Technology, Germany.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 795–801, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



796 C.H. Bischof et al.

In this note we give an answer to the following question. Given an arbitrarily
complicated computer program in a high-level programming language such as
Fortran, C, or C++, how do we get accurate and efficient derivatives for the
function implemented by the computer program? We will argue that the answer
is to apply automatic differentiation. Although AD is a general technique appli-
cable to programs written in virtually any high-level programming language [1,
4,5,6], we will assume in this note that the function for which derivatives are
desired is written in Fortran 77, as it is the case for the package SEPRAN [8].
Developed at “Ingenieursbureau SEPRA” and Delft University of Technology,
SEPRAN is a large general purpose finite element code intended to be used for
the numerical solution of second order elliptic and parabolic partial differen-
tial equations in two and three dimensions. It is employed in a wide variety of
engineering applications [3,9,10,11,12,13,14] including structural mechanics and
laminar or turbulent flow of incompressible liquids.

In Sect. 2, we describe the basic principles behind the AD technology as well
as the application of an AD tool to SEPRAN leading to a differentiated version
of SEPRAN called SEPRAN.AD hereafter. The simulation of a classic fluid flow
experiment, namely the flow over a 2D backward facing step, is taken as a simple,
yet illustrative, example for carrying out numerical experiments in Sect. 3. We
show how a SEPRAN user benefits from the preprocessed code SEPRAN.AD in
that it provides—with no more effort than is required to run SEPRAN itself—a
set of derivatives that is accurate and consistent with the numerical simulation.
Finally, we point out that the functionality contained in differentiated versions
of SEPRAN allows the sensitivity analysis of a wide range of potential SEPRAN
applications, not only from computational fluid dynamics.

2 Automatic Differentiation and SEPRAN

Automatic differentiation is a powerful technique for accurately evaluating deriv-
atives of functions given in the form of a high-level programming language, e.g.,
Fortran, C, or C++. The reader is referred to the recent book by Griewank [5]
and the proceedings of AD workshops [1,4,6] for details on this technique. In
automatic differentiation the program is treated as a—potentially very long—
sequence of elementary statements such as binary addition or multiplication,
for which the derivatives are known. Then the chain rule of differential calculus
is applied over and over again, combining these step-wise derivatives to yield
the derivatives of the whole program. This mechanical process can be auto-
mated, and several AD tools are available that augment a given code C to a
new code C.AD such that, in addition to the original outputs, C.AD also com-
putes the derivatives of some of these output variables with respect to selected
inputs. This way AD requires little human effort and produces derivatives that
are accurate up to machine precision.

The AD technology is not only applicable for small codes but scales up to
large codes with several hundreds of thousand lines; see the above-mentioned pro-
ceedings and the references given therein. We applied automatic differentiation



On the Use of a Differentiated Finite Element Package 797

to the general purpose finite element package SEPRAN consisting of approxi-
mately 400,000 lines of Fortran 77. The package enables simulation in various
scientific areas ranging from fluid dynamics, structural mechanics to electromag-
netism. Analyses of two-dimensional, axisymmetric and three-dimensional steady
state or transient simulations in complex geometries are supported. Examples
include potential problems, convection-diffusion problems, Helmholtz-type equa-
tions, heat equations, and Navier-Stokes equations.

We used the ADIFOR tool [2] to generate SEPRAN.AD, the differentiated
version. ADIFOR (Automatic DIfferentiation of FORtran) implements the AD
technology for Fortran 77 codes. The details of this process will be presented
elsewhere. In general, a user of an AD tool needs to perform the following steps:

1. As a preprocessing step, “dirty” legacy code needs certain manual massaging
to produce “clean” code conforming to the language standard. Notice that
SEPRAN is programmed in an almost clean way so that only small changes
to the original code had to be done by hand, examples being several instances
where different routines interpret the same memory as holding either double
precision real data or single precision complex data. This non-standard tech-
nique is sometimes employed in order to save memory, and it is not detected
by current Fortran compilers because their view of the program is restricted
to one routine or file at a time. ADIFOR, by contrast, does a global data
flow analysis and immediately detects this kind of inconsistency.

2. The user indicates the desired derivatives by specifying the dependent (out-
put) and independent (input) variables. This is typically done through a
control file.

3. The tool is then applied to the clean code to produce augmented code
for the additional computation of derivatives. We applied ADIFOR 2.1 to
SEPRAN (approximately 400,000 lines of code including comments) to ob-
tain SEPRAN.AD (roughly 600,000 lines of code including comments). Note
that the global analysis enables ADIFOR to decide whether the work done
in a routine is relevant to the desired derivative values. Therefore only a
subset of the routines is actually augmented.

4. A small piece of code (driver code) is constructed that calls the generated
routines made available by SEPRAN.AD.

5. The generated derivative code and the driver code is compiled and linked
with supporting libraries.

Upon successful completion of these steps, derivatives are available by simply
calling the corresponding routines from SEPRAN.AD, the differentiated version,
rather than from SEPRAN, the original code.

Once the differentiated code is available, it enables sensitivity analysis of dif-
ferent problems (e.g., flow around obstacles, flow over a backward facing step,
etc.) with respect to the specified input and output variables. If other variables
are to be considered then steps 2 through 5 of the above procedure are repeated,
which requires only little human interaction. (There is a slightly more sophisti-
cated way to do it, which even avoids repeating steps 2 and 3.) Note that step 1
is the only step that might need substantial human effort and is done only once.



798 C.H. Bischof et al.

The above discussion demonstrates the ease of use and the versatility of
the AD technology.

3 Results

In the numerical experiments reported in this section, a simulation of a classic
fluid flow experiment, namely the flow over a 2D backward facing step [7], is taken
as a sample problem. The goal of this note is not to concentrate on the values of
the flow field but to give the reader an impression of the improved functionality
of the differentiated version SEPRAN.AD as compared to SEPRAN. In this
standard benchmark problem for incompressible fluids, a stationary flow over
a backward facing step is considered. We carried out numerical experiments at
Reynolds numbers around 50 with no-slip boundary conditions at the upper and
lower walls of the pipe, a parabolic inflow in horizontal direction, and a parallel
outflow.

Given the maximal horizontal velocity component v0 of the inflow, the den-
sity ρ, and the viscosity µ, one can easily use SEPRAN to compute the velocity v
and the pressure p at any point in the pipe. From an abstract point of view, the
corresponding code implements a function f taking v0, ρ, and µ as input and
producing the output v and p; that is

(
v
p

)
= f(v0, ρ, µ) .

Invoking the corresponding SEPRAN code evaluates f at a given input.
Suppose that we are interested in evaluating the derivatives of some outputs

of f with respect to some of its inputs at the same point where f itself is
evaluated. For instance, an engineer might be interested in the rate of change of
the pressure p with respect to the inflow velocity v0, i.e., ∂p/∂v0. A numerical
approach would make use of divided differences to approximate the derivative.
For the sake of simplicity, we only consider first-order forward divided differences
such as

∂p(v0, ρ, µ)
∂v0

≈ p(v0 + h, ρ, µ) − p(v0, ρ, µ)
h

, (1)

where h is a suitably chosen step size. An advantage of the divided difference
approach is its simplicity; that is, the corresponding function is evaluated in
a black-box fashion. The main disadvantage of divided differences is that the
accuracy of the approximation depends crucially on a suitable step size h. Un-
fortunately, an optimal or even near-optimal step size is often not known a priori.
Therefore, the program is usually run several times to find a reasonable step size.
Note that there is a complementary influence of truncation and cancellation error
to the overall accuracy of the method: on the one hand, the step size should be
as small as possible to decrease the approximation error that would be present
even if infinite-precision arithmetic were to be used. On the other hand, the step
size must not be too small to avoid cancellation of significant digits when using
finite-precision arithmetic in the evaluation of (1).



On the Use of a Differentiated Finite Element Package 799

The above problem of determining a step size is a conceptual disadvantage
in the divided difference approach and also applies to higher-order derivatives.
Automatic differentiation, on the contrary, does not involve any truncation error.
Derivatives produced by AD are exact up to machine precision. To demonstrate
the difference in accuracy between AD and divided differences, we formally define

diff(p, v0) :=
∥∥∥∥∂p(v0, ρ, µ)

∂v0
− p(v0 + h, ρ, µ) − p(v0, ρ, µ)

h

∥∥∥∥
∞

, (2)

where the first term on the right-hand side is the value computed by automatic
differentiation. Hence, diff(p, v0) is a measure of the difference of the numerical
accuracy of the derivatives of p with respect to v0 obtained from automatic
differentiation and divided differences.

For the backward facing step example, the difference between the derivative
values generated by AD and divided differences using varying step sizes h is
shown in Tab. 1.

Table 1. Comparison of the accuracy of derivatives obtained from divided differences
using a step size h and automatic differentiation.

h diff(v, v0) diff(v, ρ) diff(v, µ) diff(p, v0) diff(p, ρ) diff(p, µ)

10−2 0.002189 0.001134 11.774571 0.002310 0.001087 5.259458
10−3 0.000218 0.000111 2.039314 0.000230 0.000107 0.996281
10−4 0.000043 0.000042 0.217868 0.000032 0.000028 0.107945
10−5 0.000277 0.000251 0.021579 0.000304 0.000326 0.010897
10−6 0.002078 0.003096 0.002766 0.002146 0.001811 0.002294
10−7 0.029861 0.038406 0.027861 0.020655 0.023987 0.028521
10−8 0.197591 0.260977 0.213695 0.155814 0.193424 0.184808
10−9 5.313513 3.374881 3.746390 1.622882 2.115335 3.093727
10−10 25.566379 20.481873 27.184625 21.904384 14.420520 24.604476

Here, the definition (2) is extended to derivatives other than ∂p/∂v0 in a
straight forward fashion. The derivatives of the pressure and the velocity fields
are evaluated at (v0, ρ, µ) = (1.0, 1.0, 0.01). The table demonstrates the depen-
dence of the divided difference approach from the step size. In all columns of the
table, the difference values first decrease with decreasing step size and then in-
crease again, and the optimum step size depends on the particular derivative. For
instance, diff(p, v0) is minimal for h = 10−4 whereas the minimum of diff(p, µ)
is at h = 10−6 indicating the need for finding different suitable step sizes when
differentiating with respect to v0 and µ.

In contrast to divided differences, there is no need for experimenting with
step sizes at all when applying automatic differentiation because there is no
truncation error. Using AD, the accurate derivative values of p and v with respect
to all three input parameters, together with the function values, were obtained



800 C.H. Bischof et al.

with a single call to the differentiated version SEPRAN.AD. This computation
required roughly 3.3 seconds and 95 MB of memory, compared to 1.2 seconds
and 26 MB for one run of SEPRAN. Note that using divided differences for
approximating the derivatives with respect to three variables requires at least
a total of four SEPRAN calls. Thus AD, in addition to providing more reliable
results, also takes less time than divided differences. We finally mention that
SEPRAN.AD needs additional memory to store the three derivatives. So, the
above mentioned increase of a factor of 3.7 is moderate.

4 Concluding Remarks

The technique of automatic differentiation is proved to be an efficient way to ob-
tain accurate derivatives of functions given in the form of a computer program
written in any high-level language such as Fortran, C, or C++. The technique
scales up to large simulation codes that are used today as a crucial part in a
broad variety of scientific and engineering investigations. We applied automatic
differentiation to the general purpose finite element package SEPRAN consisting
of approximately 400,000 lines of Fortran 77. The resulting differentiated version
is produced in an automated way by augmenting the original version by addi-
tional statements computing derivatives. For a classic fluid flow experiment, we
showed the improved functionality including its ease of use. Moreover, we com-
pared the values obtained from automatic differentiation with those produced
by numerical differentiation based on divided differences. The latter approach is
a sensitive approximation process inherently involving the choice of a suitable
step size. On the contrary, there is no concept of a step size in automatic dif-
ferentiation because it accumulates derivatives of known elementary operations,
finally leading to exact derivatives. For the numerical fluid flow experiment, we
also showed that automatic differentiation is more efficient in terms of execution
times than divided differences while only moderately increasing storage require-
ment.

Besides the basic features presented in this note, automatic differentiation
and the software tools implementing the technology offer even more functional-
ity. One of the highlights of automatic differentiation is the fact that a particular
way to accumulate the final derivatives, the so-called reverse mode, can deliver
the gradient of a scalar-valued function at a cost proportional to the function
evaluation itself. That is, its cost is independent from the number of unknowns,
whereas the cost for divided differences is roughly proportional to the gradi-
ent’s length. For purposes different from mere sensitivity analysis, derivatives
of arbitrary order and directional derivatives can also be obtained with similar
techniques.

References

[1] M. Berz, C. Bischof, G. Corliss, and A. Griewank. Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.



On the Use of a Differentiated Finite Element Package 801

[2] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic differ-
entiation of Fortran 77 programs. IEEE Computational Science & Engineering,
3(3):18–32, 1996.

[3] E. G. T. Bosch and C. J. M. Lasance. High accuracy thermal interface resistance
measurement using a transient method. Electronics Cooling Magazine, 6(3), 2000.

[4] G. Corliss, A. Griewank, C. Faure, L. Hascoët, and U. Naumann, editors. Auto-
matic Differentiation 2000: From Simulation to Optimization. Springer, 2001. To
appear.

[5] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia, 2000.

[6] A. Griewank and G. Corliss. Automatic Differentiation of Algorithms. SIAM,
Philadelphia, 1991.

[7] G. Segal. SEPRAN Standard Problems. Ingenieursbureau Sepra, Leidschendam,
NL, 1993.

[8] G. Segal. SEPRAN Users Manual. Ingenieursbureau Sepra, Leidschendam, NL,
1993.

[9] G. Segal, C. Vuik, and F. Vermolen. A conserving discretization for the free bound-
ary in a two-dimensional Stefan problem. Journal of Computational Physics,
141(1):1–21, 1998.

[10] A. P. van den Berg, P. E. van Keken, and D. A. Yuen. The effects of a composite
non-Newtonian and Newtonian rheology on mantle convection. Geophys. J. Int.,
115:62–78, 1993.

[11] P. van Keken, D. A. Yuen, and L. Petzold. DASPK: a new high order and adaptive
time-integration technique with applications to mantle convection with strongly
temperature- and pressure-dependent rheology. Geophysical & Astrophysical Fluid
Dynamics, 80:57–74, 1995.

[12] P. E. van Keken, C. J. Spiers, A. P. van den Berg, and E. J. Muyzert. The effec-
tive viscosity of rocksalt: implementation of steady-state creep laws in numerical
models of salt diapirism. Tectonophysics, 225:457–476, 1993.

[13] N. J. Vlaar, P. E. van Keken, and A. P. van den Berg. Cooling of the Earth in the
Archaean: consequences of pressure-release melting in a hot mantle. Earth Plan.
Sci. Lett., 121:1–18, 1994.

[14] C. Vuik, A. Segal, and F. J. Vermolen. A conserving discretization for a Stefan
problem with an interface reaction at the free boundary. Computing and Visual-
ization in Science, 3(1/2):109–114, 2000.


	Introduction
	Automatic Differentiation and SEPRAN
	Results
	Concluding Remarks

