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Abstract. An efficient precise integration method for solving the matrix Riccati
differential equation is described in this paper. The method is based on repeated
combination of extremely small time intervals, which leads to solutions with an
accuracy within the machine precision.

1   Introduction

The general matrix Riccati differential equation can be written as

�S B SA
CS SDS= − + − +      (1)

where S( )t  is an m n×  matrix to be solved, �S  is the derivative of S( )t  with re-

spect to t, and A B C D, , , are all given matrices with dimensions n n× , m n× ,
m m× , n m× , respectively. The solution of the matrix Riccati differential equation
is very important in various applications, such as in optimal control theory, wave
propagation, structural mechanics, and game theory [1-4].  The integration domain is
0 ≤ ≤t t f , where t f is given, and the boundary condition is given by

,for,)( fff ttt == SS      (2)

where S f  is given.  Note that the integration of  (2) goes backward from t f  to 0.

  The respective dual Riccati differential equation can be written as
�T D TC AT TBT= − − + + ,                    (3)

where T( )t  is an n m×  matrix to be solved with the initial condition

T G( )0 0= .       (4)

    Since both equations (1) and (3) are nonlinear, it is very difficult, if not impossible,
to find analytical solutions for application problems. The most commonly used solu-
tion methods are numerical integration schemes based on finite difference [1,5].   The
application of these schemes can be difficult when very high accuracy is desirable, or
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when the solution changes dramatically (caused by large matrix S f at the boundary,

for example), or else when the problems being solved are stiff. In this paper, an effi-
cient and accurate scheme for solving Riccati differential equations will be presented.
The new scheme is based on the precise time integration method for systems of linear
differential equations [6-8].  It can provide accurate numerical solutions to equation
(1) with errors in the order of computer round-off errors.

2   Linear Equations and Boundary Conditions

The n -dimensional linear transport process can be described [1,2] by
                 CpBqpDpAqq +=+= �� ,      (5)

where pq,  are vectors of  dimension n and m,  respectively. When n m= ,

C A= − T , and B D,  are non-negative symmetric matrices, equation  (5) becomes
the dual equation of continuous time optimal control problem. In general, most prob-
lems require m n+  boundary conditions corresponding to (5) in the form of

q q p p( ) , ( )0 0= = =    when     = 0;           when f f ft t t t ,       (6)

where q p0 , f  are given vectors of dimensions n and m, respectively. The precise time

integration method in [6] was for initial value problems, and those in [7,8] were for
conservative systems with m n= . The present paper will discuss the precise time
integration method for two point boundary value problems in the form of (5).
   For numerical solution of most boundary value problems, the finite difference
method is the most commonly used algorithm, which could be difficult to use for some
cases due to the loss of accuracy or important properties of the original equation, for
example, the conservation property.
   To derive the precise time integration method for the Riccati equation, we first need
to establish the equations that connect the state vectors q pa a,  at t t= a , with

q pb b,  at  t t= b . If the interval ( , )t ta b  is considered as an interval of the entire

integration domain [ ]0, t f , the equations can be expressed as

q Fq Gpb a b= −    (7a)

p Qq Epa a b= +    (7b)

where F G Q E, , ,  are n n n m m n m m× × × ×, , ,    matrices, respectively, to be

determined. For time independent system, the matrices A B C D, , ,  are independent

of t . Hence, the F G Q, ,  and E  will only depend on the length of the interval

∆t t t= −b a      (8)

Treating q pa a,  as the given initial vectors at ta , and taking the partial derivative of

equation (7a) with respect to tb , we have
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Since equation (5) can be written as
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Equations (10) can be substituted into (9) to get
∂
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Note further that the vectors q qa b,  and p b  in equation (11) are not linearly inde-

pendent. Substituting equation (7a) into (11), we obtain
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Since qa and p b are linearly independent, equation (12) leads to the following
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The initial conditions at ab tt = are

G 0 Q 0 E I F I= = = =, , ,            m n ,     (14)

where Im  and In  are identity  matrices with dimensions m  and n , respectively.

   Similarly, we can treat ta  as a variable while fixing tb , which leads to

)(
 

 
,

 

 

aa

DQAF
F

FDE
G +−==

tt ∂
∂

∂
∂

,     (15a)

.
 

 
,)(

 

 

aa

QDQCQQAB
Q

EQDC
E −+−=−=

tt ∂
∂

∂
∂

    (15b)

The initial conditions are similar to (14) at t ta b= . For time independent system with

matrices A B C D, , ,  independent of time, the matrices F G Q, ,  and E  depend

only on the length of the interval ∆t t t= −b a .    Therefore the relations
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hold for matrix Q , and similarly also hold for  matrices F G E, , . With these rela-
tions, equations (13) can be written as

� ,G AG GBG D GC= + − −   (17a)

� ( )F GB A F= + ,    (17b)

� ( )E E BG C= − ,   (17c)

�Q EBF= − .   (17d)

The dot above F G Q, ,  and E  now represents derivatives with respect to ∆t .
Similarly, equation (15) can be written as

�G FDE= − ,   (18a)
� ( )F F A DQ= + ,   (18b)

� ( )E C QD E= − − ,   (18c)

.QDQCQQABQ +−+−=�   (18d)
Although equations (17) appear to be quite different from (18), it can be proved that
they are consistent with each other. Note that equation (18d) is the same as equation in
(1).  If an algorithm can be developed to calculate the matrix Q in (18d), such that Q
also satisfies the boundary condition (2), then Q  is the solution matrix S  of (1).

3 Interval Combination

Given two contiguous intervals ),( a btt  and ),( cb tt , we can eliminate the interior

state vectors q pb b, at tb  to form a larger combined interval ),( ca tt , and obtain

equations similar to those in (7) that connect state vectors defined at the two ends ta

and tc , respectively. Mathematically, the equations for the interval ( , )t ta b  are

q F q G pb a b= −1 1 ,   (19a)

p Q q E pa a b= +1 1 ,   (19b)

and those for the interval ( , )t tb c  are

q F q G pc b c= −2 2 ,   (20a)

p Q q E pb b c= +2 2 .   (20b)

To eliminate the interior vectors q pb b, , we solve from (19a) and (20b)

q I G Q F q I G Q G E pb a c= + − +− −( ) ( )n n1 2
1

1 1 2
1

1 2 ,     (21a)

p I Q G Q F q I Q G E p1 1b 2 a c= + + +− −( ) ( )m m2
1

1 2
1

2 ,    (21b)

and substituting (21) into (20a) and (19b), respectively. This leads to, after eliminating
q pb b,  and combining the intervals ( , )t ta b  and ( , )t tb c , the equations

,, ccacaccacc pEqQppGqFq +=−=   (22)
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where

G G F I G Q G Ec = + + −
2 2 1 2

1
1 2( )n ,    (23a)

Q Q E I Q G Q Fc = + + −
1 1 2 1

1
2 1( )m ,    (23b)

.)(,)( 2
1

121c1
1

212c EGQIEEFQGIFF −− +=+= mn   (23c)

4   The 2 N  Type Algorithm

In structural mechanics, the substructuring technique has been widely used to improve
computational efficiency. If there are multiple identical substructures, only one of
them needs to be analyzed and the result can be used for all other identical substruc-
tures. This technique has been used successfully for the computation of some optimal
control problems [9].  In the present paper, we extend this technique to the solution of
matrix Riccati differential equations. Note that the equations in (7) describe state vec-

tors at a small interval from ta  to bt , which corresponds to a single substructure,

while those in (22) connect state vectors defined at ta  and tc , which correspond to

the combination of two contiguous substructures after elimination of the state vectors

at bt . The N2  type algorithm described in [10] is very efficient for this kind of com-

bination involving a large number of similar substructures.

   Let η  be a typical time step length of an interval [ ta , bt ] for the integration of the

equations. We can further divide it uniformly into N2  subintervals of length τ . For
example, with 20=N , the length of a subinterval is

1048576// 2 ηητ == N .    (24)

For time independent systems, all equations corresponding to different subintervals are
the same. After 20=N  combination steps, all 1048576 subintervals would have been
combined to generate a equation system like (7). Note that the entire domain of inte-

gration runs from 0 to t f , in which the integration can also be done using the 2 N

type algorithm to combining all intervals of length .η
    The main part of the computation of this 2 N  type algorithm is the repeated execu-
tion of

    ,)(,)( 1
c

1
c QFQGIEQQGEGQIFGG −− ++=++= mn   (25a)

    EQGIEEFGQIFF 1
c

1
c )(,)( −− +=+= mn ,   (25b)

for N times. Each time the calculated matrices G Q Fc c c, ,  and Ec  are put into the

right-hand side of (25) to calculate new matrices for the larger combined intervals.
    To start the recursive computation given by equations in (25), it is necessary to
generate FQG ,,  and E  corresponding to the smallest subinterval of

length τ defined by (24). These matrices are defined by equations in (17) (or its
equivalent equations in (18)), with the initial conditions in (14).  Although equation



952          W.-X. Zhong and J. Zhu

(17) is non-linear, the power series expansion method can be used to solve them ap-
proximately.
    Let ∆t = τ  in equations (17) and (18), and expand G Q F, ,  and E as

4
4

3
3

2
21)(,4

4
3

3
2

21)( ττττττττττ qqqqQggggG +++=+++=      (26a)

4
4

3
3

2
21)(,4

4
3

3
2

21)( ττττττττττ eeeeIEffffIF ++++=++++= (26b)

Substituting the first equation in (26a) into (17a) and comparing the coefficients of
different powers of τ , we have

.4/)(

,3/)(  ,2/)(  ,

2112334

112231121

BggBggCgAgg

BggCgAggCgAggDg

++−=
+−=−==

   (27)

Applying similar procedures to (17b), (17c) and (17d), we obtain

,4/)(

,3/)(    ,2/)(    ,

2112334

112231121

BfgBfgBgAff

BfgBgAffBgAffAf

+++=
+−=−==

               (28)

,4/)(

,3/)(   ,2/)(   ,

2112334

112231121

BgeBgeCeBge

BgeCeBgeCeBgeCe

++−=
+−=−=−=

     (29)

.4/)(

,3/)(   ,2/)(   ,

2112334

112231121

BfeBfeBeBfq

BfeBeBfqBeBfqBq

+++−=
++−=+−=−=

    (30)

Higher order approximations can be easily obtained in a similar way, but is unneces-
sary. Substituting the coefficient matrices given by (27)-(30) into equation (26), we
obtain approximations of G Q F, ,  and E  for the subinterval of length ∆t = τ .
    Note that all formulations before equation (26) are exact. There are truncation er-
rors caused by disregarding terms of order higher than four in equation (26). For stiff
problems, a larger N can be used to further reduce the truncation error in (26).

    The use of 2 N  type algorithm, however, changes the order of integration of equa-
tion (17), because the combination of subintervals does not proceed in exactly the
same order as from t f  backward to 0. For example, to combine three contiguous sub-

intervals numbered 1-3 into a new subinterval C, we can proceed in two obvious ways:
1) Combine subintervals 1 and 2 to get a new subinterval A, then combine subintervals
A and 3 to get the final interval C; 2) Combine subintervals 2 and 3 to get subinterval
B, then combine subintervals 1 and B to get the final interval C. Based on the matrix
inversion lemma [11] and the combination equations in (23), it is not difficult to prove
that the results from both combinations are identical.
    For practical implementation, noted that the direct use of the combination equations
in (25) would cause serious round-off errors when the length of the subintervals τ  is
very small.  To avoid this, the matrices F  and E  should be written as

cccc ’   ,’   ,’   ,’ EIEFIFEIEFIF +=+=+=+= mnmn        (31)

and equation (25) should be replaced by

              G G I F G Q I Ec = + + + +− −( ’)( ) ( ’)n n
1 1     (32a)
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Q Q I E Q G I Fc = + + + +− −( ’)( ) ( ’)m m
1 1     (32b)

211
c ’’22/)’]()()()[’(’ FFFIGQGQIGQIGQFIF +++++++−= −−

nnnn  (32c)

E I E QG I QG I QG QG I E E E’ ( ’)[ ( ) ( ) ]( ’) / ’ ’c = − + + + + + + +− −
m m m m

1 1 22 2   (32d)

5   Conservative Systems

For continuous time optimal control and elastic wave propagation problems, the sys-
tem being studied are conservative. In these cases, we have m n= , and the matrices
D  and B  in dual equations (5) are symmetric with

C A D D B B= − = =T T T        , , .     (33)

Similarly, matrices Q  and G  in equation (7) are also symmetric with

F E G G Q Q= = =T T T       , , .     (34)
Actually, (7) is the integrated form of (5) based on the theory of Hamiltonian systems
[9]. Substituting (34) into (7), we have

q Fq Gp p Qq F pb a b a a
T

b    = − = +, ,     (35)

which can be rewritten as

     ⎥
⎦

⎤
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⎡
−

−+
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GFQGFF
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q
    (36)

It is easy to verify that

              ⎥
⎦

⎤
⎢
⎣

⎡
−

==
0I

I0
JJJTT with,T ,      (37)

so T  is a symplectic matrix. Therefore it is easy to find the integration invariant of
(35) in the form of

⎭
⎬
⎫

⎩
⎨
⎧

==Λ
p

q
vJPvv          ,T ,     (38)

where v  is the state vector and P  is a 2 2n n×  matrix. It is necessary to find the
condition for P  so as to keep Λ  invariant. It is not difficult to show that if the multi-
plication of P  and T  is commutative, i.e.

PT TP=  ,     (39)
then Λ  remains invariant under transformation T . This implies that if P  is any
polynomial of T  then Λ  is invariant. A good numerical scheme should maintain all
invariants in order to correctly represent the behavior of a conservative system.
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6   Solution of the Riccati Differential Equation

Based on the discussions in the previous sections, the matrices ),(τG  ),(τQ  ),(τF
and E( )τ  of the small subinterval of length τ  can be computed first by the equations

in (26). Then the 2 N  type algorithm can be used to calculate these matrices for a

typical time interval  [ ta , bt ] of length η . Based on these typical interval matrices,

the final matrix function Q( )t  can be calculated, which satisfies the differential

equation (18d), the same as equation (1). However, the boundary condition that Q( )t
satisfies is given in (14) as

Q 0= , at t t= f ,     (40)

which is not the same as that given in condition (2) for S( )t . On the other hand, the

differential equation (17a) for the matrix function G( )t  is the same as equation (3)

for the matrix function T( )t , however, the initial condition for G( )t  is  (14)

G 0( )0 = , at  t = 0 ,       (41)

which is again different from the condition in  (4) for T( )t .

      To satisfy the boundary condition (2), we need to construct the matrix function
S( )t  from the functions G Q F( ), ( ), ( )t t t  and E( )t by the equation

S Q E I S G S F( ) ( )t m= + + −
f f

1 .    (42)

Since E I→ m , F I→ n , G 0→  and Q 0→  as t t→ f , it can be easily veri-

fied that the S( )t  given in equation (42) satisfy the boundary condition given in (2).

To show that S( )t  in (42) satisfies equation (1), we need to use the relation
11d −−− −= XXXX 1 �dt  and equations (18). The physical interpretation for the

above equation is the use of combination equation (23) for the interval ( , )t t f  with

matrices [ ]G Q F E, , ,  being treated as interval 1, and at the end t t= f  a fictitious

interval with matrices [ ]0 S I I, , ,f n m  being treated as interval 2. Here, only the

equation (23b) is used to obtain equation (42).
    The matrix function T( )t  can be constructed similarly by

T G F I G Q G E= + + −( )n 0
1

0 .    (43)

Since E I→ m , F I→ n , G 0→  and Q 0→  as t → 0 , it can be easily veri-

fied that T( )t  in (43) satisfies the initial condition given in (4). The verification that

T( )t  in (43) satisfies differential equation (3) can be done similarly as for S( )t ,

except that the equations in (17) should be used. Let S( )t =S∞  when t → ∞ , we

have
− + − + =∞ ∞ ∞ ∞B S A CS S DS 0 ,   (44)

which is the algebraic Riccati equation. For non-conservative systems, such as the
source free transport system and elastic wave propagation with damping, the matrix
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S∞  can also be calculated using the 2 N  type algorithm.    In this case, the procedure

described in the previous sections should be carried out until E  and F  are nearly
zero matrices.  The matrices Q  and G  are then S∞  and T∞ , respectively.    The

algebraic Riccati equation for T∞  is

− − + + =∞ ∞ ∞ ∞D T C AT T BT 0   (45)

7   Numerical Examples

Although the 2 N  type precise time integration is applicable to problems with finite

integration domain [ ]0, t f , we choose a infinite domain in these examples to demon-

strate  its application to algebraic Riccati equation.
Example 1: n m= 4;   = 4;  the system matrices are given as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−−

=

0000

0i100-100-100

00i10100

0000

   ,

6923.7000

9694.05523.3059.11821.

001705.7825.26

2771.01579.5821.03379.0

BA  ,

[ ]1.0i-10.0-000diag    ,

7.71.00.2-

00.500.1

03.00.20.5-

01.010i+200.4i+0.4

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

= DC .

The algebraic Riccati equation (46) was solved  by using the 2 N  type precise time
integration algorithm with 0.1=η  and 4.0, respectively. The calculated matrices

∞S are exactly the same. This indicates that the accuracy has reached machine preci-

sion, so using a smaller η will not further improve the accuracy.  Substituting S∞

into (44), we found that the entries in the residual matrix are all smaller than 1010− .

Similarly, the calculated matrix ∞T also satisfies equation (45) with entries in the

residual matrix smaller than 1010− .

Example 2.  In this example, we have .1 ;5 == mn  The system matrices are

[ ]A B C D=

− −
−

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦
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⎥
⎥
⎥
⎥
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⎡
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⎢
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⎥
⎥
⎥
⎥

= =

⎡
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⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

08 05 04 02 04

03 21 0 0 0

01 03 05 02 06

0 0 0 08 05

03 10 0 0 09

0

50

0

0

0

05

. . . . .

. .

. . . . .

. .

. . .

,

.

, . ,         

0

0

0

2.0

0

T

.
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The algebraic Riccati equations (44) and (45) were solved using η = 0 4.  and

η = 50. , respectively. The numerical results are exactly the same for both cases.

Substitute the matrix S∞  and T∞  into (44) and (45), respectively, we found again

that the entries in the residual matrices are smaller than 1010− .

8  Concluding Remarks

The 2 N  type precise time integration algorithm discussed in this paper is very effi-
cient for calculating accurate solutions to matrix Riccati equations. The computer
programming for this method is also straightforward since it uses only matrix opera-
tions.
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