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Abstract. Morphological connected set filters for extraction of filamen-
tous details from medical images are developed. The advantages of these
filters are that they are shape preserving and do not amplify noise. Two
approaches are compared: (i) multi-scale filtering (ii) single-step shape
filtering using connected set (or attribute) thinnings. The latter method
highlights all filamentous structure in a single filtering stage, regardless
of the scale. The second approach is an order of magnitude faster than
the first, filtering a 2563 volume in 41.65 s on a 400 MHz Pentium II.

1 Introduction

Enhancement of curvi-linear, dendritic or other filamentous details has many
applications in medical image analysis. Examples include computer analysed mi-
croscopy of filamentous microorganisms [9], confocal laser scanning microscopy
of neurons, and various forms of angiography [4, 13]. Many methods have been
proposed to enhance such details (for a review see e.g. [6]). Many of these meth-
ods have shortcomings, either in amplifying noise, or distorting certain important
details, such as aneurisms or stenoses which may not be classified as filamentous
features in some filters [6]. In particular, the use of linear scale spaces using Gaus-
sian filters in multi-scale analysis can lead to distortion, merger, and movement
of features in the image as more and more blurring is applied.

An entirely different issue is that of computational cost. Some of the more
successful multi-scale approaches can be computationally very costly. For exam-
ple, the multi-scale method of Sato et al. [8] requires 10 minutes of computations
using eight 168 MHz Sun Ultrasparc processors for an image of 256× 256× 102
voxels, even when using just three scales. A similar method by Frangi et al. [4] is
also done off-line due to the computational burden [13]. Even if the approaches
are not multi-scale, they often require repeated filtering with kernels sensitive to
filaments running in different directions, which may mean combining 13 different
directional filters [3].

The aim of this paper is to explore the possibilities offered by connected-set
morphological filters in this context. Connected-set filters [5] have the distin-
guishing characteristic that they can enhance or remove an existing edge in an
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image, but never move it or introduce new edges. It is this edge, and therefore
shape preserving property which offers the promise of vessel enhancement with-
out changing vessel shapes, which is a prevalent problem in existing methods.
Furthermore, because a great deal of progress has been made in the development
of fast algorithms for these filters [1, 7, 12], filament extraction by connected fil-
ters is now a viable option.

We will first discuss the use of multi-scale morphological approaches, com-
paring classical morphological openings with their connected set counterparts:
openings-by-reconstruction. One problem with these multi-scale methods is the
repeated use of often costly filters: at least one for each scale. We therefore com-
pare this approach with the use of shape based filters [10], which can extract
all features of a given shape, regardless of their scale. These could find e.g. all
filamentous structures in an angiogram in a single filtering stage, rather than
by repeated operations as is done classically. It will be shown that operators
with these characteristics can be found in the class of attribute operators [1, 7].
The discussion will focus on enhancing bright filamentous details only, because
extension to dark details is trivial.

This paper mainly aims to show the speed gains of shape filters. A full-blown
comparison with existing techniques will be performed later.

2 Multi-scale Mathematical Morphology

2.1 Openings

Extracting details at a particular scale using mathematical morphology can be
done in a variety of ways, but the simplest is through the use of openings. An
opening is a filter that removes bright or foreground details smaller than some
particular scale from an image. A straightforward way to do this is by using
grey scale erosions and dilations, also known as minimum and maximum filters,
respectively. To perform an opening we first erode the image by assigning to
each voxel the minimum grey value in a given neighbourhood (called structuring
element). Next, the eroded image is dilated by assigning to each voxel the maxi-
mum grey value in the same neighbourhood. The size of the structuring element
determines the scale of the details removed. In the following discussion, openings
with spherical or cubic structuring elements of radius r will be denoted by γB

r .
In these openings the scale is determined by the local width of structures in the
image.

Openings by structuring elements are not connected set filters, and there-
fore not shape preserving. An adaptation of these openings, called openings-by-
reconstruction [11] are connected set filters, and therefore shape preserving. An
opening-by-reconstruction is performed by first eroding the image with a struc-
turing element, and then reconstructing all details not completely removed by
the erosion. In this way they remove image details completely, or leave them
unaffected, but never change their shapes. Using structuring elements as above,
the scale is again defined by width, but in this case it is the maximum width of
a feature which determines the scale.
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A different class of openings, which use different scale parameters is the class
of attribute openings [1]. The earliest of these was the area opening [2], which in
3-D becomes a volume opening. In the binary case, a volume opening removes
all connected foreground components with a volume smaller than some given
threshold λ. If Th(f) denotes a binary image obtained by thresholding f at grey
level h, and Γ V

λ denotes the binary volume opening with scale parameter λ, the
grey scale volume opening γV

λ for image f is given by:

(γV
λ (f))(x) = sup{h|x ∈ Γ V

r (Th(f))}. (1)

The interpretation of this equation is that the volume opening of an image
assigns each point the highest threshold at which it still belongs to a connected
foreground component C with V (C) ≥ λ, with V (C) denoting the volume of C.
This removes details in much the same way as the opening-by-reconstruction,
but it uses the volume, rather than width as criterion.

In the following subsection we will introduce sets of openings called size
distributions which can be used for filament extraction.

2.2 Size Distributions

A set of openings {γr}, in which r is from some totally ordered set, with the
property that

γr(γs(f)) = γmax(r,s)(f) (2)

is called a size distribution or granulometry. All the openings described previ-
ously can be used to construct size distributions.

Suppose r < s. Obtaining an image g containing all details from image f
within scale range [r . . . s) boils down to

g = γr(f)− γs(f) ≡ γr(f)− γs(γr(f)). (3)

In words: remove everything smaller than r from f , then remove all details
smaller than s, and deduct the result from the opening at scale r. It does not
matter whether we remove the details smaller than s from the original image or
from γr(f).

2.3 Multi-scale Filament Extraction

If the scale parameter used is based on the width of the details, which is the case
if we use {γB

r } as size distribution, we can extract elongated details by removing
all details with a volume smaller than some given threshold from g. If the scale r
defines the radius of the neighbourhood used in γB

r , objects with volumes larger
than ε8r3, with ε 	 1 a measure of eccentricity of the object, are likely to be
filamentous. Thin slabs of sufficient size will also be retained. Thus, the image
γV

ε8r3(g) will contain the filamentous details at scale r. It will retain straight,
curved and forked filaments equally.
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Fig. 1. Multiscale extractions of filamentous details using openings γB
r at scales

1, 3 and 9, using ε = 4. The leftmost column shows the original image (top)
and final result (bottom). Each of the columns to the right show the process
of extracting filamentous details at each of the scales. The top row contains
the openings γB

ri
; the centre row the difference images with the opening at the

previous scale (or original image at scale 1); the bottom row contains the volume
opening γV

32ri
of the difference image.

We are now in a position to extract the filamentous details, starting at the
thinnest, at N different scales r1, r2, . . . , rN . The basic method is shown in Fig-
ure 1, which shows maximum intensity projections (MIP) of a 256× 256× 256
rotational b-plane CT-angiogram (CTA) of the arteries of the right half of a
human head. A contrast agent was used and an aneurism is present. In the first
step, the original image f0 (top left) is opened by γB

r1
(second column, topmost).

This image is subtracted from the original to extract the details at scales smaller
than r1 (second column, middle row), yielding an image we will denote as fB

1 .
After this, we apply a volume opening γV

ε8r1
(second column, bottom row) to this

image to obtain the filamentous detail at scale r1. This image is denoted fV
1 .

At the next scales, we compute the opening γB
ri
, subtract this from γB

ri−1
(f0),

to obtain detail image fB
i , open that using γV

ε8ri
to obtain filament image fV

i .
This is shown for two higher scales in the third and fourth column. Once all fV

i

are obtained, we sum them to obtain the output image (bottom left).
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Figure 1 shows that filamentous details are indeed extracted, but that the
aneurism is processed after it has been separated from the vessels, and that its
grey level is greatly reduced. In other words, it is not recognized as a clearly
filamentous structure by this version of the algorithm. This is easily corrected
by the use of connected set filters, which cannot separate the aneurism from the
vessels. The multi-scale algorithm can be modified by replacing γB

r by the equiv-
alent openings-by-reconstruction. The result can be seen in Figure 2. Clearly, the
opening-by-reconstruction retains the aneurism much better.

2.4 Problems with the Multi-scale Approach

One problem which arises is the quantization of the scale parameter. In the ex-
ample shown in Figure 1 only three scales are used. In particular, there is a wide
gap between scale r2 = 3 and r3 = 9. This means that image fB

3 contains objects
with widths ranging from r = 3 to r = 8. If such a fairly coarse quantization
is used, elongated structures at the lower end of the range within one bin will
be removed sooner than the thicker ones. This means that there will be a bias
towards thicker structures in fV

3 . Ideally, we would want to filter at all scales,
but this would be prohibitively costly. As it stands, performing a 3-scale filament
extraction of a 256 × 256 × 256 volume takes about 168 s on a 400 MHz Pen-
tium II processor (640 MB RAM) for the structural openings γB

r , and 192 s for
openings-by-reconstruction. On a Compaq ES-40 (500 MHz DEC-Alpha) this
takes 146 s and 131 s respectively. In general, the algorithm described here will
have a computational cost proportional to the number of scales N . In the next
section we will introduce a single step, connected set filtering approach, which
effectively processes the image at all scales, without the computational cost.

Fig. 2. A comparison of connected set filters and non-connected-set filters for
filament extraction: from left to right: MIP of original image; result of multi-scale
method using γB

r ; result of multi-scale method using openings-by-reconstruction;
result using attribute thinning φS

2.0 as shape filter (see Section 3).

3 Shape Filters

A shape filter allows filtering based strictly on shape criteria, regardless of scale.
As is shown in [10] attribute thinnings using the so-called subtractive rule pro-
vide such shape filters. This type of attribute thinning can be thought of as
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thresholding the original image at all possible grey levels, removing all connected
foreground components of the wrong shape in each of the resulting binary im-
ages, and adding the resulting binary images up again. Selection of a particular
shape category can be done by computing some shape number of each connected
foreground component, and comparing it to some threshold value. The action of
such an attribute thinning is shown in Figure 3. As can be seen, the thinning
removes those features in the image which do not meet some shape criterion,
whilst retaining all others. These filters can be computed efficiently for a variety
of shape criteria using an adaptation of the Max-tree algorithm by Salembier
et al. [7]. The only problem that remains is that of obtaining a shape criterion
which can distinguish filamentous objects from all others.
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Fig. 3. The components P i
j of a grey level image f (left), the corresponding

attributes (middle) and the attribute thinning with a threshold t = 10 (right).

The shape filter we propose is based on two different size criteria: the volume
V discussed above, and the moment of inertia I. For a given volume, the moment
of inertia is minimal for a sphere, and increases rapidly as the object becomes
more elongated. It can also be computed efficiently in the context of the Max-tree
algorithm. For a connected set of pixels C it is defined as

I(C) =
V (C)
4

+
∑

x∈C

(x − x̄)2, (4)

in which V (C) denotes the volume of C. The first term is required to account for
the moment of inertia of individual voxels (which are assumed to be cubes). For
a given 3-D shape, the moment of inertia scales with the size to the fifth power,
whereas the the volume scales with the third power of the size. Therefore the
ratio S = I

V 5/3 is a purely shape dependent number, i.e. it is scaling invariant,
which has a minimum for a sphere (0.23) and increases rapidly with elongation.
A thinning which extracts only components in which S is larger than some
threshold t is denoted as φS

t . An example of applying φS
2.0 to the CTA used

before is shown rightmost in Figure 2. The results are difficult to distinguish
from the multi-scale connected set filter approach, but the thinning takes only
41.65 s to compute on a 400 MHz Pentium II, and 33.15 s on a 500 MHz DEC
Alpha.
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4 Discussion

Traditional structured openings such as γB
r have a number of drawbacks for vessel

extraction. Figure 4 shows a slice from the CTA cut through the aneurism, after
filtering using the structured openings γB

r , and with the connected set shape
filter φS

2.0. The former method “hollows out” both the aneurism and thicker
vessels: the central grey level is distinctly lower than that at the edge. This could
pose severe problems for subsequent segmentation algorithms. By contrast, the
connected set method does not suffer from this problem.

Fig. 4. Slice through CTA containing aneurism: (left) original; (middle) filtered
using multi-scale approach with γB

r ; (right) filtered using φS
2.0. The middle image

clearly shows a reduced grey level in the centre of the aneurism and some of the
larger vessels. The connected filter approach does not suffer from this problem.

Figure 5 shows the results for φS
2.0 applied to a phase contrast magnetic

resonance angiogram (MRA) of 256 × 256 × 124. The background is clearly
suppressed, and the vessels are retained without distortion.

Fig. 5. MIP of MRA of a human brain: (left) original; (right) filtered using φS
2.0.

Filamentous detail is retained, whereas the background is suppressed.

It has been shown that connected-set filters can be used to extract filamentous
details from images, either by a multi-scale approach, or by connected set shape
filters. The latter approach is far faster, especially if many scales are needed.
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The great advantage of connected-set filters is their inability to move edges.
This allows extraction of filamentous details without distortion, and without
increasing noise. Of course, these filters are not perfect. There are many instances
in which edges should be moved, e.g., to suppress boundary noise. This could be
achieved by post-processing. It also remains to be seen whether connected-set
shape filters improve segmentation. Finally, the attribute and threshold used in
this shape filter may not be optimal, even though the performance in the images
tested is encouraging. In the near future we intend to address these issues, and
test shape filters against other methods systematically.
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