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Abstract. In this article we propose a cardiac motion estimation tech-
nique that uses non-rigid registration to compute the dense cardiac dis-
placement field from 2D ultrasound sequences. Our method employs
a semi-local deformation model which provides controlled smoothness.
We apply a multiresolution optimization strategy for better speed and
robustness. To further improve the accuracy, the sequence is registered
in both forward and backward directions. We calculate additional pa-
rameters from the displacement field, such as total displacement and
strain.
We create an artificial ultrasound sequence of one heart cycle using a mo-
tion model and use it to validate the accuracy of the algorithm. Finally,
we present results on real data from normal and pathological subjects
that show the clinical applicability of our method.

1 Introduction

Cardiac motion estimation constitutes an important aid for the quantification
of the elastic and contractility properties of the myocardium. Localized regions
with movement abnormalities are related to the existence of ischemic segments,
damaged by insufficient tissue microcirculation.

MR imaging and especially tagged MR are currently the reference modalities
to estimate dense cardiac displacement fields with high spatial resolution. The
deformation fields, as well as derived parameters such as myocardial strain, can
be found with good accuracy [1, 2, 3].

Nuclear modalities, such as SPECT and PET were used [4] despite their low
spatial and temporal resolutions, high cost and the requirement for specialized
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equipment [5, 6]. Computed tomography has also been considered [7, 8] but has
the drawback of high patient radiation dose.

Echocardiography is currently the imaging method most widely used to assess
cardiac function. It offers significant advantages over the rest of the imaging tech-
niques: availability, portability, low cost, and no adverse secondary effects. While
new ultrasound techniques provide high image quality, increasing attention is be-
ing paid to the automatic processing of ultrasound image sequences [8, 9, 10, 11].

Many of the aforementioned approaches to cardiac motion analysis start by
the segmentation of the myocardial wall, followed by geometrical and mechanical
modelling using active contours or surfaces to extract the displacement field
and to perform the motion analysis [8, 9, 3]. Some authors introduce temporal
modelling of the cardiac motion to provide temporal smoothness and better
motion tracking [1, 2]. Alternative methods use energy-based warping and optical
flow techniques to compute the displacement of the myocardium [5, 6, 7].

For echocardiography, deformable and mechanical model-based techniques
are the most popular. They require a presegmentation step which is particularly
difficult in the case of cardiac ultrasound images due to the noise and the com-
plexity of cardiac structure [8, 9, 10]. Speckle tracking techniques have also been
proposed to estimate heart motion [11].

Here we propose to compute the dense cardiac displacement field from ul-
trasound sequences using a non-rigid registration algorithm based on a global
pixel-based matching criterion. To the best of our knowledge, this kind of ap-
proach has not been pursued before, except for the simpler case of M-mode
data where dynamic programming-based unidimensional registration has been
used [12]. We present a fully automatic method that does not require segmenta-
tion. We use a semi-local deformation model that provides controlled smoothness
of the motion field. Multiresolution strategy yields speed and robustness with
respect to the speckle changes in time. While we deploy the methodology for
bidimensional ultrasound sequences, it is also applicable to 3D data.

The accuracy of the algorithm was validated using an artificial heart motion
model. Real data from normal and pathological subjects were also analysed to
show the clinical applicability of the method.

2 Methodology

2.1 Non-rigid Registration Method

The workhorse of our approach is an elastic registration algorithm. Given a ref-
erence image fr and a test image ft, it finds a correspondence function g, which
relates coordinates in ft and fr. More specifically, we consider registration as
a minimization problem. We search a correspondence function g : R2 → R

2 ,
such that the warped test image fw(x) = ft(g(x)) is as close as possible to the
reference image fr. We measure the quality of the fit using a sum of squared
differences (SSD) criterion
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E =
∑
i∈I

e2
i =

∑
i∈I

(
fw(i) − fr(i)

)2 (1)

where the summation is taken over all the pixels in the reference image. We
generate a continuous version f c

t of the discrete image ft by spline interpolation.

f c
t (x) =

∑
i∈I

biβq(x − i) (2)

where βq(x) is a tensor product of centered B-splines of degree q. It has the
advantage of good accuracy and the possibility of evaluating spatial derivatives
analytically. We represent the correspondence function g using splines as well.

g(x) = x +
∑
j∈ZN

cjβr (x/h − j) (3)

Therefore g is a linear combination of basis functions βr(x) placed on a rectan-
gular grid. The scale parameter h governs the node spacing, the total number
of parameters cj, and the smoothness of the solution. The advantages of this
model are good approximation properties, fast evaluation of the deformation,
local influence of the parameters, and automatically imposed smoothness.

The resulting problem of optimising (1) with respect to the coefficients cj is
solved using a standard multidimensional optimisation algorithm. We found that
a Marquardt-Levenberg-like algorithm was fastest with respect to the number
of iterations, while simple gradient descent-like optimizer converged in the least
amount of time.

The original idea of the algorithm was described in [13] and its extensions
to multiple dimensions in [14]. For the present application, the algorithm was
completely redesigned, resulting in a major speed-up. It now registers 256× 256
images pixels in less than 10 s with subpixel precision on a standard PC. The
time required is essentially proportional to the number of pixels.

For the echocardiographic sequences we typically use a control grid of 8 × 8
points, represent the deformation using quadratic or cubic splines, and the image
using cubic or linear splines.

2.2 Extraction of the Displacement Field

The input to our algorithm is an ultrasound sequence of a cardiac cycle composed
of N images (frames). We apply the registration algorithm to consecutive pairs
of frames within the sequence. The correspondence function g from (3) provides
the displacement field between images i and i + 1 which we denote rf

i,i+1. That
is, a point at position x in image i moves to position x+rf

i,i+1(x) in image i+1.
The cumulative displacement field along the sequence for a given frame i + 1 is
then computed as

rf
0,i+1 = rf

0,i + rf
i,i+1 with rf

0,0 = 0 (4)
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where for brevity we have omitted the spatial coordinates x = (x, y). As our
sequence is cyclic, rf

0,N ≡ rf
0,0 should be equal to zero. In practice, we find this

error to be small, typically about one pixel. For even better precision, we carry
on the registration backward, yielding rb

i,i−1 and a cumulative field

rb
0,i ≡ rb

N,i = rb
N,i+1 + rb

i+1,i (5)

If we consider the error distribution of the registration as independent, identically
distributed and normal, then the maximum likelihood (ML) estimate of the
cumulative displacement is

r0,i = ωir
f
0,i + (1 − ωi)rb

0,i with ωi =
N − i

N
(6)

2.3 Spatio-temporal Derived Parameters

Once the displacement field is obtained, other parameters of clinical interest are
computed. We calculate the velocity and acceleration fields

vi =
∂ ri

∂t
ai =

∂2 ri

∂t2
(7)

We compute also the Lagrangian strain, which provides information about my-
ocardial contractility [15, 5]. Strain is defined as the spatial gradient ε = ∇x r
where ε is the strain tensor, with diagonal terms ∂rx/∂x and ∂ry/∂y correspond-
ing to normal directional strains, and antidiagonal terms corresponding to shear
strains. The spline representation (3) allows for an analytical computation of the
strain.

2.4 Simulated Sequence Model

An artificial ultrasound sequence has been generated to validate the algorithm.
The sequence is generated by warping an end-diastole apical view image using
cubic spline interpolation (2). We used the following motion model

r0,i(x) =

[
sin2(iπ/T )ax sin π(x0−x)

2|xmax−x0|
sin2(iπ/T )ay

]T

(8)

where i is the frame index and x0 is the coordinate of the left ventricular
long axis, which is oriented vertically; i.e., parallel to axis y. We corrupted
the deformed images by a multiplicative Rayleigh noise ηm representing speckle
changes, and an additive Gaussian noise ηa to simulate acoustic attenuation [16,
17].

n(x) = ηm

√
f(x) + ηa where ηa ∼ N (0, σ), ηm ∼ R(α) =

z

α2
e−z2/2α2

and f(x) is the original image. For our images in the 0 ∼ 255 range, we used
σ = 20 and α ≈ 0.8, which corresponds to E[ηm] = 1.
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2.5 Real Sequences

Real data from normal volunteers and ischemic patients were acquired with
a Siemens-ACUSON Sequoia c© scanner (Mountain View, CA, USA). Two and
four chamber view sequences of the left ventricle were analysed.

3 Experiments and Results

3.1 Simulated Sequence

This section presents the results with the artificial sequence described in Sec-
tion 2.4. First, a series of experiments was conducted to choose the most suitable
parameters for the registration algorithm. Figure 1 shows the accumulated dis-
placement and velocity fields as small arrows superimposed on the ultrasound
images.

Fig. 1. Simulated sequence results. Left : Accumulated displacement field at the
time of maximum contraction (t = 320 ms). Right : Velocity field during contrac-
tion (t = 120 ms).

Figure 2 shows the axial and longitudinal accumulated displacements for
a middle septum point (a point in the middle of the vertical wall on the left in
the images). Even in this noisy case we found good agreement between the true
movement and the movement found by the algorithm.The mean square error over
the whole sequence for 25 selected points within the myocardium was 1.3 mm.

3.2 Real Sequences

In this section, we describe experiments on real sequences from normal volun-
teers and ischemic patients. Figure 3 shows the computed displacement field
vectors of two chamber view sequences from a normal volunteer and an ischemic
patient. The ischemic patient presents an infarct in the inferior wall with se-
vere hypokinesis and a normokinetic basal aneterior segment. For the healthy
volunteer the accumulated displacement observed corresponds to normal left
ventricular contraction. On the other hand the analysis of the ischemic patient



894 M.J. Ledesma-Carbayo et al.

-1

0

1

2

3

4

5

6

Noisy model, Axial displacement

true
backward

forward
combined

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

Noisy model, Longitudinal displacement

true
backward

forward
combined

Fig. 2. Simulated sequence results. Axial (left) and longitudinal (right) displace-
ments in mm for a middle septum point. Real displacements, results of the for-
ward and backward registration, and the combined result.

confirms the pathological function of the inferior wall, having very small move-
ment, and quasi normal motion of the basal anterior segment. These results are
also shown quantitatively in Figure 4 that represents the axial and longitudinal
displacement of a point in the medial inferior segment for the normal and the
ischemic cases.

Fig. 3. Accumulated displacement field at the mechanical systole for a normal
subject (right) and an ischemic patient with inferior infarct (left).

Figure 5 shows the results of the analysis of a four chamber sequence from
an ischemic patient with hypokinetic function of the lateral wall and basal and
distal septum segments. The displacement field correlates well with the diagnosis.
Strain analysis shows constantly low lagrangian longitudinal strain and normal
axial strain for the medial and distal septum segments.

4 Conclusions

We have presented a fully automatic method to compute myocardial displace-
ment and deformations from ultrasound sequences. The method has been vali-
dated on simulated and real sequences. Results show that the proposed method
is able to estimate heart motion and to provide plausible displacement and veloc-
ity fields. The results of applying the method to data from normal and ischemic
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Fig. 4. Axial and longitudinal systolic displacements of a medial inferior segment
point for a normal volunteer and an ischemic patient with inferior infart.

Fig. 5. Accumulated displacement for a four chamber sequence of an ischemic
patient (left). Axial (middle) and longitudinal (right) strain images for mid-
systole (t = 120 ms).

patients is promising and encourages clinical applicability. Further clinical vali-
dation is planned for the immediate future.
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