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Abstract. Assembly of blackbox components is made difficult by the
lack of precise information on the way components interact. What is
needed is a behavioral model of the component, at the input and output
interface levels. This paper introduces the notion of behavioral points of
view and an associated graphical notation, SyncClass, to represent such
a model. The underlying semantics of SyncClass makes it possible to au-
tomatically verify component assembly, either for individual components
or for a whole system.

1 Introduction

We are currently working on the definition and the implementation of a CASE
environment, named Co21, which provides notations and tools to specify, de-
velop, and use components.

This communication focuses on the notations and tools devoted to the user
of components, that is the person who assembles existing components to build an
application. More specifically it addresses the problem of verifying components
assembly, either for individual components or for a whole system.

The ideal way of assembling components should rely on the sole knowledge of
the component interfaces (blackbox reuse [19]). However the reality is different,
and the developers often require knowledge about component internals (glassbox
reuse [19]). Indeed the user is generally provided with a static description of
the interface (a simple list of operations) whereas information about the valid
sequences of operation calls would be needed. The latter information is what we
call the component protocol of use.

The situation is even worse when components are organized into a component
framework [19]. In order to respect a given component protocol, the user cannot
just consider his/her own calls to the component but also the calls originating
from other components and targeted to the component under study. Thus the
user has to guess the part of the protocol to which he/she must comply.

1 Co2 stands for Components and Composition
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This reveals that to use a component framework the knowledge of individ-
ual component protocols is not sufficient and that describing the messages ex-
changed among components is also required. Thus we need to accompany the
input interface with the description of an output interface. In the same way as
the input interface comes with a protocol of use, the output interface should
sport a protocol of composition.

In order to describe these protocols without showing too much of the inner
behavior, we propose a protocol model and a lightweight notation that can be
used from analysis to reuse time. This graphical notation, called SyncClass,
and the associated tools to verify the assembly of components constitute the
major topics of this paper. SyncClass diagrams are used to represent both the
input and the output protocols of components; they are to be embedded into
the components. Since our main objective is to make the verification automatic,
SyncClass has to rely on formal semantics. Because of our cultural background
as well as for the many tools it proposes, we chose the so-called Synchronous
Model [10,4].

This paper is organized as follows: section 2 describes existing techniques
used to represent protocols, including the synchronous model itself. Section 3
describes the model and the language of SyncClass, and an example of this
notation is used in section 4. Section 5 briefly presents the relationship between
the synchronous model and our component model, and section 6 details static
and dynamic verification.

2 Models for Components Protocols

In the following, we only mention the most common techniques for representing
protocols. To get further information on emerging works in the domain (and
even broader) one may refer to the workshop on “Specification and Verification
of Component-based Systems” at OOPSLA’01 [1].

Automata-Based Models. A popular choice for representing protocols (of any
kind) is finite state machines and their derivatives (e.g., regular expressions,
path expressions [7]...). However, it is not suitable to describe complex behavior
because automata lack readability when the number of states and/or transitions
becomes large.

The work on “regular types” [15] follows the same line. It aims at checking
type substitutability [12] and uses automata to specify the protocol of a type.
However, regular types do not describe the effect of method calls; thus they are
not appropriate to express interactions between components.

Architectural Description Languages. ADLs generally represent the architecture
of a system as a combination of two kinds of entities: components and glue [2]. A
component is a unit of computation, a connector describes a connection protocol.
This model is flexible in that it permits to reuse components or connectors
independently. However, even if the component/connector distinction can be
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twisted to represent components and frameworks [18], we do not think that
ADLs are appropriate for blackbox components. Indeed, ADL components have
no context dependencies and thus they need connectors to establish links with
other components. In the blackbox reuse model, a component is aware of the
components to which it connects.

UML-Based Models. UML component diagrams are purely structural and do
not depict dynamic information like operation calls and protocols. Sequence
diagrams, collaboration diagrams and statecharts specify the dynamic aspects
of a system. However, the first two ones are meant to represent only one execution
of the system and many diagrams are necessary to cover (even partially) the all
the possibilities; the third ones are used to detail the inner states of objects
and can also describe protocols [16, p. 2-175]. However, because Statecharts
semantics is not satisfactory to build a proof system, most works interested in
proof systems have to introduce their own ad hoc formalism2.

Synchronous Model. In order to represent protocols, we chose the synchronous
model [9,4]. It is a specialization of the theory of automata. The reasons for this
choice are multiple: the model relies on formal semantics allowing automated
proofs [6], and comes with a complete development platform which provides
model checkers and simulators. There exists several textual or graphical lan-
guages supporting it (Esterel [5], Lustre [10], Argos [13], SyncCharts [3]), and
there is a research and commercial support for the tools.

To the best of our knowledge, synchronous languages have never been ap-
plied to software component specification, despite their proof capabilities. The
description of the synchronous model is out of the scope of this paper; we shall
just introduce the concepts we use in section 5.

3 A Model and a Language for the Protocol

3.1 What Do We Mean by a Component?

Our definition of a component includes the following characterisitics: it is a unit
of composition, it is encapsulated (it promotes black box reuse), it provides an
input interface (a set of operations described by their signatures), it provides an
output interface (a set of called operations together with the external compo-
nents which sport them). These four first items are closed to Szyperski’s compo-
nent definition where “a component is a unit of composition with contractually
specified interfaces and explicit context dependencies” [19].

The following three characteristics are related to the execution model that
we consider. A component constitutes an unit of execution, acting as a reactive
entity, it contains one thread of execution (there might be several but method
reentry is not authorized), its methods run to completion. This may appear as

2 To get convinced, one just has to look at the session(s) on Statecharts semantics in
the yearly UML Conference.
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limitations. Indeed, our work cannot presently support the general concurrency
issues. Thus we restrict to a pure sequential use of components, an approach
which is still useful in many applications (see for instance [14]).

Finally a component embeds its own documentation. This last characteristics
is essential for our work. We claim that a component is not only a piece of
code, but that it must contain the documentation for using it. Embedding the
documentation constitutes the last step of component development, just before
final releasing.

In our view, this documentation must be usable by automatic verification
tools and still be readable by human beings. Thus it should externally describe
the protocol of the component, without displaying internal details. Moreover,
writing this documentation should not constitute extra work ; it should be deriv-
able from the analysis and design models.

3.2 Behavioral Points of View

We introduce the notion of behavioral points of view to describe the protocol
of a component from a given perspective. For each component, we identify two
such perspectives: the client point of view expresses how the component should
be used, the composition points of view describe how the component uses other
components.

To illustrate these points of view, we consider the hypothetical system made
of three components presented on figure 1.

Fig. 1. A system made of three components.

The Client Point of View. The client point of view describes the protocol of use
of a component. It is the dynamic counterpart of the static interface: it specifies
in which order the component operations can be called. Thanks to this view, a
user knows when an operation can be called or when it must not be.

There is one client point of view per component. Thus, in the three compo-
nents example, there are three client points of view. For instance the client view
of A describes the valid order of calls to aOperation1, aOperation2...

Composition Points of View. Whereas the client point of view focuses on the
protocol of one component, composition points of view abstract the protocol
with which one component uses an other one. Thus, a given component has one
composition point of view for each other component to which it is associated.
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The composition point of view of component A with respect to component
B specifies both the operations of B used by A and the order of the correspond-
ing calls. Thus it constitutes a part of the dynamic specification of the output
interface.

For the given example, we have one composition point of view describing how
A uses B. It gives the protocol used by A to communicate with B. It represents a
relation order over B’s operations. A second composition point of view does the
same for components A and C. Two more composition points of view are needed
to reflect the reverse associations (i.e., B w.r.t. A, and C w.r.t. A).

Relation between Client and Composition Points of View. These two kinds of
points of view are not independent. Indeed, the composition point of view of A
with respect to B depends on the list of operations called by A and on the order
of the corresponding calls. Since these B operations are called from A, it also
depends on the order with which A operations are called (that is the client point
of view of A).

The corresponding descriptions should not be duplicated; instead, they should
be consolidated into a unique (graphical) representation. This representation ex-
tends the client point of view of a component A by adding to any operation of A
the operations it calls on other components. This synthetic representation, that
we call the component protocol, not only describes the input interface behavior
but also completely specify the dynamics of the output interface. As a conse-
quence, it makes it possible to know the overall communication protocol among
components.

The composition points of view are just restrictions of the component proto-
col. In the example, the composition point of view of A w.r.t. B corresponds to
the set of operations that are called by component A and that are defined in B’s
protocol. The composition points of view can be automatically built from the
component protocol. It is important to note that, dualy, the composition point
of view of A w.r.t. B is also a restriction of the client point of view of B.

Of course, the number of views increases quickly. However, in a real system,
all the views are not required for every component. The component developers
will only provide the views for those components for which there is an interest
in precise documentation or verification.

Those views are provided with the component they describe. In our three
components example, the client point of view of A comes with component A, as
does the composition point of view of A w.r.t. B and the one of A w.r.t. C.

3.3 SyncClass: A Graphical Language for Behavioral Points of View

In order to represent those views, we chose to introduce a graphical language,
close to what is already known by designers, so it can easily be used and un-
derstood. It is named SyncClass3. SyncClass inherits from SyncCharts [3], a
synchronous extension of Harel’s StateCharts [11].
3 We write SyncClass to describe the model, and syncClass to describe an instance of
it.
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Fig. 2. Example of a SyncClass.

Graphically SyncClass is
an automata-based represen-
tation, made of states and
transitions, as represented on
figure 2. Macrostates make it
possible to encapsulate a sub-
automaton and provide a hi-
erarchical decomposition fea-
ture. Note that a transition
cannot cross the border of
a macrostate. The concur-
rency, expressed in SyncClass
by dashed lines splitting a
macrostate into several parts,
does not represent true run-
time concurrency. It indicates
that the operations contained
in the subparts are not de-
pending on each other. Such a
macrostate is said to be com-
posite. The notation defines
four kinds of transitions. An
initial transition starts with a
black circle; its target is the
initial state. A regular transi-
tion is represented by a simple arrow and corresponds to an operation call.
An exception transition is represented by an arrow starting with a circle and
corresponds to an exception raised by the component itself; it means that the
component protocol enters some exception mode and it will be the responsibility
of the user to catch the exception and to ensure a valid continuation. Finally
a normal termination transition starts with a triangle; it is automatically trig-
gered when a macrostate reaches a final state (a final state is represented by a
double circle).

Only exception transitions and regular transitions can and must be labeled.
For regular transitions, the label is divided into two parts separated by a slash.
The left part represents the signature of the operation that will trigger the tran-
sition, and the right part (also called the action part) is an abstraction of the
operation behavior: it uses a small language to describe the control flow of the
operation designated in the left part. This language offers optionality4 (indicated
by a # prefix), iteration (a list of instructions enclosed within braces), exception
catching ([...] catch exception [...]) and raising (operator throw), and op-
eration call (using the dot notation to specify the target component). Semicolons
separate instructions and indicate sequentiality. The label of exception transi-

4 The condition expression itself is not represented: the inner state is not shown and
thus encapsulation is not broken.
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tions is only made of a left part representing the exception that causes this
transition to be triggered.

Thus a syncClass represents the overall protocol of a component: the left
part of transitions corresponds to the client point of view whereas the right part
corresponds to the composition ones.

The operational semantics of SyncClass is the following: the initialization
of a syncClass is done by activating all top level macrostates, which is equiv-
alent to triggering their initial transition, that is to activate their initial state.
This is done recursively. After the initialization has been done and all along
the syncClass “execution”, several states may be active. Regular and exception
transitions are triggered when their origin state is active and the corresponding
operation [resp. exception] is called [resp. raised]. When a transition leaving an
active macrostate5 is triggered, the macrostate is no longer active. When an ac-
tive simple macrostate reaches its final state, its normal termination transition
(if any) is triggered. The end of a composite macrostate is reached when every
subpart reaches its end. When an unexpected trigger occurs, it is considered as
an error.

When a transition is triggered, the associated action part is executed which
causes its messages to be sent. If an instruction is marked as optional, this
indicates the possibility of several exclusive execution paths.

4 An Example: A Petrol Pump

This section gives an example of syncClass to represent the behavioral points
of view of a petrol pump system. The petrol pump is made of five components:
a box, a pistol, an engine, a volume display, and a message display. The class
diagram on figure 3 describes the associations among the components. The role
names on the associations will be used to denote target components when sending
messages.

Fig. 3. Class diagram of the petrol pump.

5 A macrostate is said to be active if it contains an active (macro)state.
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Fig. 4. Component protocol
of the volume display.

In fact, figure 2 presents the component pro-
tocol of the Box. The Box is considered as the
“main” component since it switches the others on.
The client point of view indicates that operation on
needs to be called first. One can also see that opera-
tion on of the box calls operations on of the volume
and message displays. Only once the on operation of
the box has been executed, can the operation init
be called. The action part on the getPistol tran-
sition, shows an example of exception catching.

Fig. 5. Composition view
of the box with respect to
the volume display com-
ponent.

The component protocol of the volume display
presents the sequence of authorized operations (fig-
ure 4). The absence of action on the transitions in the
protocol indicates that this component can be used
alone.

The composition point of view of the box w.r.t. the
volume display (figure 5) specifies the order in which
the operations of VolumeDisplay are called by the Box.
It is a restriction of the protocol of Box. By comparing
this composition point of view to the client point of
view of VolumeDisplay (figure 4), one can deduce that

VolumeDisplay is probably used by something else than Box. Indeed the box only
uses a subset of VolumeDisplay operations (operation add is not called). Facing
such a situation, the user needs to determine whether the missing operations are
called by other components or whether he/she is required to call them.

5 SyncClass and the Synchronous Model

As indicated in section 2, we use the synchronous model as a formal basis. This
model allows us to use its model checkers, its simulators, and its languages either
textual like Esterel [5] or its graphical equivalent, the SyncCharts [3]. We could
not use the usual synchronous notation since our model differs from the syn-
chronous one on the following points: an operation call cannot be considered as
instantaneous (we need to distinguish beginning and end of methods); we do not
need a general broadcast ; we have to make our SyncClass model deterministic,
even though the application is not. Thus we have an automatic translation of
SyncClass to SyncCharts. However we are short of space to describe the trans-
lations.

6 Verification of Components Assembly

6.1 Static Verification

The mapping to a semantically sound model allows to use model checkers for
static verification. We support two kinds of static verification. One checks the
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compatibility of one component with respect to another one and the other checks
a complete system of components.

For both kinds of verification we use model checking [6,9]. Indeed, it provides
automatic tools to prove properties on automata. These properties are classically
represented by observers, which are also synchronous (SyncCharts), composed
in parallel with the system to prove. The proof relies on the exploration of the
overall state space (system and observers).

Checking the Compatibility of One Component with an Other One. Here the
objective is to check whether a given component, say A, correctly uses an other
component, say B, with which it is associated. In our model this means to verify
the compatibility between the composition view of A w.r.t. B and the client
view of B. In the example of the petrol pump, one could check whether the box
correctly uses the volume display. To do so, we consider the composition point
of view of the box w.r.t. the volume display (figure 5), and the client point of
view of the volume display (figure 4).

Fig. 6. SyncCharts
of the observer used
for static verifica-
tions.

We associate an observer to each operation. Its role is
to check that each call is correctly received. For this the
operation is instrumented, so that it sends an acknowledge
signal (ack) when it starts. Owing to synchronous signals
broadcast, the observer has just to check that the call and
the acknowledge match each other. Figure 6 presents the
observer for operation on of component Box: if the oper-
ation is called and no acknowledge is received, an error
signal is emitted (KO). The observers as well as the needed
instrumentation are automatically generated.

Then the client point of view of the box and one of
the composition point of view are composed in parallel
together with the observers for all the operations involved
in the composition point of view. The result is fed into the model checker which
is then asked to find whether the KO message can possibly be emitted.

System Checking. The goal of this second kind of static verification is to check
whether an assembly of components can cooperate so that each component re-
spects the others protocol. For example, one can check whether the five compo-
nents constituting the petrol pump can work together.

This verification requires a specification of the (overall) protocols of all the
components. They contain all the information required: the protocol, and the
interaction of a component with the others. The verification also requires an
observer which listens to all operation calls and check that they are all correctly
received. This observer is thus a parallel composition of simple observers such
as the one in figure 6.

It is necessary to constrain the exploration order of the model checker, so
that call sequences that are known to be erroneous are not considered–otherwise
the checker will automatically fail since unexpected operation will be called.
Such sequences can be automatically computed from component protocols. If an
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error occurs (KO gets emitted) the model checker is able to display a sequence of
operation calls causing the problem. If no error appears, then it is sure that the
system under test will behave correctly provided that it is used correctly.

Instead of being computed from component protocols, the input sequences
can be produced by the user. An interesting case is when they are derived from
the user glue code. The check will then indicate whether or not the system fails
when used by the glue. This can be seen as a kind of integration test.

Another benefit is to verify component replacement. If we substitute a com-
ponent with another one in a validated system, the same verification techniques
apply to check whether this substitution is correct.

Both kinds of static verification have been implemented and the petrol pump
has been checked. The verification of the whole system took approximately 26
seconds on a Pentium III 1Ghz.

6.2 Run-Time Verification

The goal of run-time verification is to detect operation calls which do not re-
spect component protocols. For this, we use the syncClass embedded within the
component. Each operation call is dynamically checked against this syncClass.

To avoid two versions of each component, one for debug and one for the final
release, we have to trap operation calls: we use meta-programming techniques
when applicable. We successfully implemented dynamic verification [17], first
for simple classes using Javassist [8], then for JavaBeans components using their
built-in meta-facilities. For these examples, the documentation has been embed-
ded into the component most suitable format. For JavaBeans, we enhanced the
meta information associated with the beans so that it may contain the protocol.
For the classes, we added the documentation in the user attribute zone of the
classfile.

7 Conclusion

This paper introduces a graphical notation, named SyncClass, to describe com-
ponent protocols of use. This protocol is composed of two kinds of behavioral
points of view: the client view describes the valid sequences of operations that
can be applied to the component; the composition view specifies the way one
component uses another one. In this approach, the documentation is fully inte-
grated into each component and SyncClass constitute an essential part of it.

SyncClass relies on the Synchronous Model, which permits to take advantage
of synchronous platforms and tools. In particular we show how model checkers
can use the embedded syncClasses to automatically verify components assembly,
at the individual component level as well as at system level. The same documen-
tation may also be used at run-time to dynamically check proper component
usage.

The Co2 environment, the context of this work, provides tools to ensure the
consistency between component implementation and their protocol documen-
tation. This is even more true when the syncClasses can be derived from the
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design documents. Most of the Co2 tools (SyncClas editor and generator, code
generator, interface with model checker...) have been implemented, only a test
generator is missing. Co2 addresses not only the component developer’s task
but also the component user’s one. The embedded documentation (especially
SyncClass) bridges the gap between the two activities.

Some features of SyncClass were not presented here. The most important
one is callback specification, which is part of the composite view. Another is the
possibility to handle a restricted form of concurrency instead of assuming a pure
sequential usage of components.

Other features would be desirable, such as supporting a general model of con-
currency. An other important issue is related to the graphical representation of
component interfaces (both input and output) and component interconnections.
A third improvement would be to handle component inheritance and substi-
tutability. These features will constitute the topic of future work.

In a near future we shall also experiment our notation and tools on big-
ger examples, such as the framework Blocks [14] in order to demonstrate the
applicability of our approach to real life systems.
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