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Abstract. The concept of confirmation rule sets represents a frame-
work for reliable decision making that combines two principles that are
effective for increasing the predictive accuracy: consensus in an ensem-
ble of classifiers and indecisive or probabilistic predictions in cases when
reliable decisions are not possible. The confirmation rules concept uses
a separate classifier set for every class of the domain. In this decision
model different rules can be incorporated: either those obtained by app-
lying one or more inductive learning algorithms or even rules representing
human encoded expert domain knowledge. The only conditions for the
inclusion of a rule into the confirmation rule set are its high predictive
value and relative independence of other rules in the confirmation rule
set. This paper introduces the concept of confirmation rule sets, together
with an algorithm for selecting relatively independent rules from a set
of all acceptable confirmation rules and an algorithm for the systematic
construction of a set of confirmation rules.

1 Introduction

The concept of confirmation rule sets represents a framework for reliable deci-
sion making that combines two principles that are effective for increasing the
predictive accuracy: consensus in an ensemble of classifiers and indecisive or
probabilistic predictions in cases when reliable decisions are not possible. It is
known that ensembles of classifiers generally demonstrate better results than any
of their components [2,3] and that the accuracy and diversity of the components
determine the ensemble performance [10]. In most cases classifiers are combined
by voting to form a compound classifier. Different classifiers can be obtained
either by the application of different learning algorithms on the same training
set or by the same learning algorithm on different training (sub)sets. The later
approach is used in the well-known bagging and boosting approaches that employ
redundancy to achieve better classification accuracy [4,5,16]. For critical appli-
cations the predictive accuracy of compound classifiers can be further increased
if, instead of voting, the consensus of classifiers’ answers is requested. Regard-
less of the used combination scheme, the fact that it is difficult or impossible to
ensure the independence of the ensemble components has the consequence that
high prediction reliability of such classifiers can not be ensured in all situations.
Another way for achieving reliable predictions is the systematic construction
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of redundant rules, whose problem is, however, their algorithm and decision
complexity. Independently, there has been significant effort devoted to the deve-
lopment of different other techniques aimed at improving the quality of decision
making. Especially in medical domains, some techniques are aimed at the con-
struction of either very sensitive or very specific rules instead of rules with a
high overall predictive accuracy.1 This is however not a general solution because
false positive predictions are as inadequate as false negative predictions in many
applications. Consequently, some of the techniques applied in medical problems
aim at classifiers with high ROC (Receiver Operating Characteristic) curve area
(see e.g., [11]).2 An alternative approach to reliable predictor construction is the
introduction of indecisive predictions. In this approach, in the case of a two-class
problem, three different predictions are possible: class positive, class negative,
and prediction not possible. The approach follows the concept of reliable, proba-
bly almost always useful learning defined in [17]. In [15] it was shown how existing
machine learning algorithms can be transformed into the form which enables in-
decisive predictions. In [15] a simple voting based decision model that includes
indecisive predictions based on a set of concept descriptions constructed by the
FOCL system has been introduced. The achieved predictive accuracies measu-
red on a few medical domains show that significant accuracy improvements are
possible. The substantial disadvantage of the approach are however indecisive
answers, whose amount has to be kept as low as possible. The confirmation rule
sets concept presented in this work follows the above paradigm of reliable, proba-
bly almost always useful learning, allowing for indecisive predictions. However,
it represents a more general, consensus based approach to decision making from
a set of rules. Its basic characteristic is that it uses separate rules sets for every
target class. In this way it is similar to human decision making processes. In
addition, like in association rule learning [1], the presented approach utilizes the
minimal support requirement as a rule reliability measure which must be satis-
fied by every rule in order to be accepted as a confirmation rule and included
into the confirmation rule set. The approach is introduced in Section 2. The
confirmation rule sets concept does not present a novel rule induction approach
but rather a decision model in which different rules can be incorporated: either
rules induced by (one or more) learning algorithms or even rules representing
human encoded expert domain knowledge. High prediction quality is expected
only if, besides the predefined predictive value of every included rule, the whole
set is as diverse as possible. A simple and general algorithm for the selection
of appropriate confirmation rules is presented in Section 2 together with an ex-
1 Sensitivity measures the fraction of positive cases that are classified as positive,

whereas specificity measures the fraction of negative cases classified as negative.
Let TP denote true positives, TN true negatives, FP false positives and FN false
negative answers, then Sensitivity = TP

TP+FN
, and Specificity = TN

TN+FP
.

2 A ROC curve indicates a tradeoff between the false alarm rate (1 - Specificity, plotted
on X-axis) that needs to be minimized, and the detection rate (Sensitivity, plotted
on Y -axis) that needs to be maximized. An appropriate tradeoff, determined by
the expert, can be achieved by applying different algorithms, as well as by different
parameter settings of a selected data mining algorithm.
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haustive search procedure which can be used for systematic confirmation rules
construction. This algorithm has been used to construct rule sets for the coro-
nary arthery disease domain. Prediction results of induced rule sets, measured
for different acceptance levels of the consensus scheme, are presented in Section
3, illustrating properties of the confirmation rule sets concept in a real medical
domain.

2 Confirmation Rules

In the decision model using confirmation rule sets, every diagnostic/prognostic
class is treated separately as the target class for which a separate set of con-
firmation rules is constructed. The basic property of confirmation rules is that
they should cover (satisfy) only examples of the given target class. Additionally,
in order to ensure high predictive quality of confirmation rule sets, every rule
included into the set must be a reliable target class predictor by itself. Given
that a conclusion of a confirmation rule is a target class assignment, and a con-
dition is a conjunction of simple literals, confirmation rules are similar to if-then
rules as induced by the AQ algorithms [14], and to association rules [1]. In the
confirmation rule concept, however, every complex (conjunction) of an AQ rule
would constitute a separate and independent rule. Moreover, the main difference
with association rules is that confirmation rules have only the target class assig-
nment in the conclusion of a rule whereas a conclusion of an association rule is
a conjunction of arbitrary attribute values.

2.1 Properties of Confirmation Rules

To summarize, confirmation rules are defined by the following properties:

a) The condition of a confirmation rule has the form of a conjunction of sim-
ple literals each being a logical attribute value test. The conclusion of a
confirmation rule is a target class assignment.

b) Confirmation rules should cover (satisfy) only examples of their target class;
since rules cover only target class examples, prediction quality can be esti-
mated by the number of covered target class examples.

c) Acceptable confirmation rules which may be included into confirmation sets
are only those rules that cover a sufficient number of target class examples;
the minimal support level parameter can be used to define the requested
minimal number of covered target class examples.3

The number of rules in a confirmation rule set is generally not determined and
does not have to be equal for all classes. The sets can include all, or only subset
of all, acceptable confirmation rules for the target class. There can be one rule
in the set, many of them, but it is also possible that the set is empty if no
3 In our system, the default value of the support level is equal to the second root of

the total number of target class examples available.
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acceptable confirmation rule is known for the class. In the defined concept it
does not matter how confirmation rule have been induced but rather how they
cover the problem space. Every confirmation rule may be induced and used
independently of other confirmation rules. When confirmation rule sets are used
for prediction, the following outcomes are possible:

a) If no confirmation rule fires for the example, class prediction is indecisive
(the example is not classified).4

b) If a single confirmation rule fires for the example, class prediction is deter-
mined by this rule.

c) If two or more confirmation rules from the same set fire for the example, the
target class of the set is predicted with increased reliability.

d) If two or more confirmation rules fire for the example and at least two of
these rules are from different sets, class prediction is indecisive.

This indicates that the confirmation rule sets do not give decisive predictions in
every situation (cases (a) and (d)), and that predictions of increased reliability
are made possible (case (c)). In some situations one may decide to accept only
predictions of increased reliability as decisive predictions. How many confirma-
tion rules must cover an example in order to make the decisive classification can
be determined by the so-called acceptance level parameter. Acceptance level 1
denotes that a single rule coverage is sufficient for example classification (case
(b)). Typical values for the acceptance level parameter are 1–3.

2.2 Confirmation Rule Subset Selection Algorithm

Typically, there are many acceptable confirmation rules for every class, satisfy-
ing the requested minimal number of covered target class examples (defined by
the minimal support level parameter). Inclusion of all these rules into the rule
set is generally not desired because (a) it is difficult to make decisions based on
very large sets of rules, and (b) experiments demonstrated that there are subsets
of very similar rules which use almost the same attribute values and have similar
prediction properties. The second characteristic is especially undesirable in cases
when the acceptance level greater than one is used, intended at increasing the
prediction reliability because in this case very similar rules will cover an example
more than once. A solution to this problem is to reduce confirmation rule sets so
that they include only a relatively small number of confirmation rules which are
as diverse as possible. It must be noted that a simple increase of the required
support level can reduce the number of acceptable confirmation rules, however
probably the remaining rules will still be from the same subset of similar rules.
This fact was experimentally detected. A better solution is to leave the required
support level unchanged so that there are many acceptable confirmation rules

4 Alternatively, a probabilistic classification could be proposed for this case, e.g., using
a simple Bayesian classifier scheme. In our system this approach has not yet been
implemented and tested.
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and then select among them a small subset of relatively independent rules. Sel-
ecting a subset of independent classifiers for the same target class is known as
a complex task which occurs in most multiclassifier decision systems [9]. The
problem is difficult because there are many combinations which can make diffe-
rent rules statistically dependent, including (even for domain expert unknown)
relations among attribute values reflecting inherent domain properties. The con-
firmation rule sets concept is intended to be able to include and combine all
the available knowledge without other restrictions than the requested prediction
quality of individual confirmation rules. Consequently, our approach accepts as
diverse those rules that cover as different sets of target class examples as pos-
sible. Obviously the approach can not guarantee statistical independence of the
selected rules, but its advantages are the simplicity and robustness concerning
all the known and unknown dependences among attribute values. Algorithm

Algorithm 1: CONFIRMATION RULE SUBSET SELECTION
Input: A set of all acceptable confirmation rules for the target class

P target class examples
Parameter: number (number of rules in the selected subset)
Output: subset of number relative independent confirmation rules

for the target class
(1) for every e ∈ P do c(e)← 1
(2) repeat number times
(3) select from A the rule with

the highest weight
∑

1/c(e) where summation is over the set
P ′ ⊆ P of target class examples covered by the rule

(4) add the selected rule into the output confirmation rule set
(5) for every e ∈ P ′ of the selected rule do c(e)← c(e) + 1
(6) eliminate the selected rule from A
(7) end repeat
(8) exit with number of selected confirmation rules

1 presents an approach to selecting the subset of a number of relative indepen-
dent confirmation rules. Input is the set of all acceptable confirmation rules A
and the set of all target class examples P . For every example e ∈ P there is a
counter c(e). Initially the output set of selected rules is empty and all counter
values are set to 1 (step 1). After that in each iteration of the loop (steps 2 to
7) one confirmation rule is added into the output set (step 4). From set A the
rule with the highest weight value is selected. For each rule, weight is computed
such that 1/c(e) values are added for all target class examples covered by this
rule (step 3). After rule selection, the rule is eliminated from the set A (step
6) and c(e) values for all target class examples covered by the selected rule are
incremented by 1 (step 5). This is the central part of the algorithm which en-
sures that in the first iteration all target class examples contribute the same
value 1/c(e) = 1 to the weight, while in following iterations the contributions
of examples are inverse proportional to their coverage by previously selected
rules. In this way the examples already covered by one or more selected rules
can contribute substantially less to the weight and the rules covering many yet
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uncovered target class examples have a greater chance to be selected in the follo-
wing iterations. For noisy domains the condition that confirmation rules should
not cover any of the non-target class examples may be too strong since it may
result in a small total number of target class examples covered by every possible
confirmation rule. The requirement may be relaxed by accepting also confirma-
tion rules covering a few non-target class examples as well. Such a modification
offers a simple and practical noise handling approach, but it may lead to the
reduction of predictive accuracy of induced confirmation rules. Instead of such
noise handling, experiments presented in Section 3 are done using a procedure
for explicit noise detection and elimination [7]. This procedure is based on the
consensus of saturation filters, performing reliable filtering of noisy examples in
preprocessing. The characteristic of this approach is that only a small number of
examples with high probability of actually being noisy are detected and elimina-
ted from the training set before confirmation rule induction. This is important
for the confirmation rules concept which should provide for a high reliability of
decisive predictions.

2.3 Confirmation Rule Set Construction

Algorithm 1 builds the set of relative independent confirmation rules by selec-
ting the rules from the input set A, consisting of all acceptable confirmation
rules. In some cases there are neither expert knowledge nor rules generated by
inductive learning systems that can be used as acceptable confirmation rules.
In such situation Algorithm 1 can be modified so that instead of its steps 3
and 6, Procedure 1 is used in every iteration to construct a confirmation rule
with highest weight

∑
1/c(e). This procedure is actually an exhaustive search

algorithm which uses a set of literals defined for the domain. Such set can be
constructed and potentially optimized by algorithms described in [12]. The pro-
cedure builds the confirmation rule in the form of logical conjunction of literals
so that: a) the rule does not cover examples of the non-target class, b) the rule
covers more than minimal support level of target class examples, and c) the rule
has maximal possible weight

∑
1/c(e). Algorithm 1 with included Procedure 1

is used in experiments presented in Section 3. Computational complexity of the
exhaustive search in Procedure 1 is hight what restricts its applicability to pro-
blems of with up to few hundred examples. Procedure 1 needs as its inputs the
complete training set E, the appropriate literal set L, and c(e) values imported
from Algorithm 1 for all positive training examples. The procedure additionally
requires that the parameter min support is defined which restricts the space
of acceptable confirmation rules. In case when internal variable best weight is
greater than zero then procedure output is the best acceptable confirmation rule
that could be constructed with available literals. If the procedure could not find
any acceptable solution then best weight = 0.
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Procedure 1: CONFIRMATION RULE CONSTRUCTION
Input: E = P ∪N (E training set, P positive or target class examples,

N negative or non-target class examples).
L (set of literals, l ∈ L covers a positive example e ∈ P if l is true for e,

l covers a negative example e ∈ N if l is false for e).
c(e) values imported from Algorithm 1.

Parameter: min support (minimal support level for rule acceptance with
default value equal to the second root of |P |)

Output: selected confirmation rule in best solution if best weight > 0
(1) set best weight = 0, loop level pointer V = 0
(2) repeat literal selection loop
(3) if a literal from the literal set at level V covering an uncovered negative

example exists then
(4) include this literal into the present solution at level V
(5) compute coverage of positive and negative examples at level V
(6) compute weight =

∑
1/c(e), e ∈ P and covered at level V

(7) if weight ≤ best weight or total number of covered positive
examples < min support then forget this literal at level V
and continue the loop at level V

(8) if all negative examples are covered at level V then copy the
present solution into the best solution, best weight = weight,
forget this literal at level V , and continue the loop at level V

(9) continue the loop at level V + 1
(10) else
(11) if level V = 0 then exit the loop
(12) else continue the loop at level V = V − 1
(13) end repeat

3 Summary of Confirmation Rule Sets Application on a
Medical Domain

Application characteristics of confirmation rule sets are illustrated in this sec-
tion with a summary of measured prediction results for the coronary artery
disease diagnosis dataset, collected at the University Medical Center, Ljubljana,
Slovenia. Details about the domain and some other machine learning results can
be found in [8,6]. Independently, in [7] the same domain was used to test our
noise handling algorithm (the so-called consensus saturation filter). The results
were good because the system detected in total 15 noisy examples (out of 327
patient records) out of which the medical doctor who collected the data reco-
gnized 14 as being real outliers, either being errors or possibly noisy examples
with coronary angiography tests very close to the borderline between the two
classes. In accordance with the standard 10-fold cross-validation procedure, for
every training set, 5 confirmation rules were generated for the class positive and
5 for the class negative. Such experimental setting enabled the testing of ge-
nerated confirmation rules sets with different acceptance levels. The prediction
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Table 1. Results of 10-fold cross-validation presenting the percentage of correct pre-
dictions, measured error rate, measured relative error rate and real relative error rate
for a) without and b) with noise elimination in preprocessing. For each fold with
about 294 training examples and 33 test examples, 5 confirmation rules for the class
positive and 5 confirmation rules for the class negative were generated. Results
are presented for acceptance levels 1–3, where level 3 means that the example must
satisfy at least 3 out of 5 rules for decisive prediction. The percentage of correct pre-
dictions represents the total number of correct predictions divided by the total number
of predictions (327), while the measured error rate is the total number of erroneous
predictions divided by the total number of all predictions. The measured relative error
rate is equal to the ratio of the number of erroneous predictions and the number of
decisive predictions. The real relative error rate is computed so that the number of
erroneous predictions is, at first, reduced so that it does not include expert-evaluated
domain outliers, and then it is divided by the number of decisive predictions.

accept. correct measured meas. relative real relative
level predictions error rate error rate error rate

a) without noise elimination in preprocessing
1 72.48% 7.65% 9.54% 4.2%
2 47.71% 2.75% 5.45% 1.8%
3 28.44% 1.22% 4.12% 1.0%

b) with noise elimination in preprocessing
1 76.15% 5.81% 7.09% 3.2%
2 60.86% 3.06% 4.78% 2.0%
3 47.40% 1.83% 3.73% 0.6%

is correct (successful) if the example is classified into a single class, which has
to be the same as the expert classification. The prediction is erroneous if the
example is classified into a single class which is different from the expert classi-
fication. Experimental results are presented in Table 1. The table has two parts:
the first presents results obtained without and the second with noise elimina-
tion in preprocessing. In both cases results for three different acceptance levels
are reported. The first column of every row is the acceptance level, follows the
percentage of correct predictions and the percentage of erroneous predictions.
Difference between the numbers is the percentage of indecisive predictions in the
corresponding experiment. In the fourth column is the measured relative error
computed as the ratio of the number of erroneous predictions and the number
of decisive predictions. The numbers in this column are greater than those in
the third column because decisive predictions are only a part of all predictions.
In this sense values in column four are more realistic from the users point of
view. But values in column four (and column three) include noisy cases already
detected and evaluated by domain expert in [7]. Misprediction of these cases are
not actual errors but expected result of good rules. In order to estimate the real
relative error rate, such cases (14 of them for the domain) were eliminated from
the measured error sets in which they occur and then the real relative error rate
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was computed. The values are presented in the last column of Table 1. Mea-
sured error rates in this domain are between 3.7% and 9.5% (column 4) while
estimated real error rates are about 0.6% – 4.2% (column 5) what are better
results than those obtained both by other machine learning algorithms and me-
dical experts [8]. It must be noted that the elimination of the ’expected’ domain
noise was extremely conservative, based on the consensus of the saturation filter
preprocessor and the domain expert, potentially resulting in overestimation of
the real error rate. The least estimated real error rate is detected with accep-
tance level 3 and noise detection in preprocessing. In this case the number of
indecisive predictions is about 50% with only one really wrong prediction in ab-
out 150 decisive classifications. This result proves high reliability of the induced
confirmation rules. Results in Table 1 demonstrate the differences in prediction
quality of various acceptance levels. As expected, the increased acceptance le-
vel reduces the number of correct predictions but it also significantly reduces
the number of erroneous predictions, especially the real predictive errors. The
observation holds with and without noise elimination in preprocessing. Noise
elimination itself is very useful. The comparison of the number of correct pre-
dictions for confirmation rules generated without and with noise detection and
elimination in preprocessing demonstrates the importance of the use of this (or
a similar) noise handling mechanism for effective confirmation rule induction.
For example, for acceptance level 3 the increase is from 28% to 47%.

4 Conclusion

This work stresses the importance of reliable decision making and for this pur-
pose the paper elaborates the concept of confirmation rule sets. It is shown that
in critical applications where decision errors need to be minimized, confirma-
tion rule sets provide a simple, useful and reliable decision model. The proposed
confirmation rule sets framework is general because it enables the incorpora-
tion of results of different machine learning algorithms, as well as the existing
expert knowledge. The induced structure of an unordered list of simple rules
and the possibility of providing predictions of increased reliability are its main
advantages. The main disadvantage of the approach are indecisive answers. In
presented experiments the number of indecisive predictions has been high, always
greater than 20% with a maximum greater than 70%. In the case of indecisive
predictions, a probabilistic classification could be proposed, e.g., using a sim-
ple Bayesian classifier scheme. In our system this approach has not yet been
implemented and tested. This is planned in further work.
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