
Goal-Independent Suspension Analysis for Logic
Programs with Dynamic Scheduling

Samir Genaim� and Andy King

1 Ben-Gurion University of the Negev, PoB 653, Beer-Sheva, 84105 Israel.
2 University of Kent, Canterbury, CT2 7NF, UK.

Abstract. A goal-independent suspension analysis is presented that in-
fers a class of goals for which a logic program with delays can be executed
without suspension. The crucial point is that the analysis does not verify
that an (abstract) goal does not lead to suspension but rather it infers
(abstract) goals which do not lead to suspension.

1 Introduction

A logic program can be considered as consisting of a logic component and a
control component [15]. Although the meaning of the program is largely defined
by its logical specification, choosing the right control is crucial in obtaining a
correct and efficient program. In recent years, one of the most popular ways of
defining control is by suspension mechanisms which delay the selection of a sub-
goal until some condition is satisfied [2]. Delays have proved to be invaluable
for handling negation, delaying non-linear constraints, enforcing termination,
improving search and modelling concurrency. However, reasoning about logic
programs with delays is notoriously difficult and one reoccurring problem for
the programmer is that of determining whether a given program and goal can
reduce to a state which possesses a sub-goal that suspends indefinitely. A num-
ber of abstract interpretation schemes [3,5,8] have therefore been proposed for
verifying that a program and goal cannot suspend in this fashion. These analyses
essentially simulate the operational semantics tracing the execution of the pro-
gram with collections of abstract states, and are thus said to be goal-dependent.
This paper presents a suspension analysis that is performed in a goal-independent
way. Specifically, rather than verifying that a particular goal will not lead to a
suspension, the analysis infers a class of goals that will not lead to suspension.
This new approach has the computational advantage that the programmer need
not rerun the analysis for different (abstract) queries.

The analysis also tackles suspension analysis from another new perspective
– it verifies whether a logic program with delays can be scheduled with a lo-
cal selection rule [20]. Under local selection, the selected atom is completely
resolved, that is, those atoms it directly and indirectly introduces are also re-
solved, before any other atom is selected. Leftmost selection is one example of
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local selection. Knowledge about suspension within the context of local selection
is useful within it own right [8,14] but it turns out that local selection also fits
elegantly with backward reasoning. Moreover, any program that can be shown
to be suspension-free under local selection is clearly suspension-free with a more
general selection rule (though the converse does not follow). Our analysis draws
together a number of strands in program analysis and therefore, for clarity, we
summarise our contribution:

– The analysis performs goal-independent suspension analysis.
– The analysis, though technical, reduces to two simple bottom-up fixpoint

computations – a lfp and a gfp – which, like the backward analysis of [13],
makes it simple to implement. The rôle of the lfp is simply to calculate
success patterns that are used within the gfp calculation to model the way
the sub-goals of a compound goal can bind variables.

– The analysis is straightforward like the simple but successful suspension
framework of Debray et al [8] that infers suspension-freeness under leftmost
selection. The analysis in this paper additionally considers all local selection
rules and therefore strikes a good balance between tractability and precision.

– The analysis is unique in that it exploits the property that Heyting closed
domains [11] possess a pseudo-complement for two effects. First, the pseudo-
complement which enables information flow to be reversed to obtain a goal-
independent analysis (this idea is not new [13]). Second, pseudo-complement
is used to model synchronisation. The crucial correctness result exploits a
(reordering) relationship between monotonic and positive Boolean functions
and Boolean implication.

The paper is structured as follows: Section 2 presents an example that illustrates
the ideas behind the analysis. Section 3 introduces the necessary preliminaries.
Section 4 details local selection. Section 5 explains the rôle of Boolean func-
tions in analysis. Section 6 details the analysis itself and Section 7 presents an
experimental evaluation. Section 8 reviews related work and Section 9 concludes.

2 Worked Example

Consider the Prolog program listed in the left-hand column of Figure 1. Declar-
atively, the program defines the relation that the second argument (a list) is an
in-order traversal of the first argument (a tree). Operationally, the declaration
:- block app(-,?,-) delays (blocks) app goals until their arguments are suffi-
ciently instantiated. The dashes in the first and third argument positions specify
that a call to app is to be delayed until either its first or third argument are bound
to non-variable terms. Thus app goals can be executed in one of two modes. The
problem is to compute input modes which are sufficient to guarantee that any
inorder query which satisfies the modes will not lead to a suspension under local
selection. This problem can be solved with backward analysis. Backward anal-
ysis infers requirements on the input which ensure that certain properties hold
at (later) program points [13]. The analysis reduces to three steps: a program
abstraction step; least fixpoint (lfp) and a greatest fixpoint (gfp) computation.
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inorder(nil,[]).
inorder(tree(L,V,R),I) :-

app(LI,[V|RI],I),
inorder(L,LI),
inorder(R,RI).

:- block app(-, ?, -).
app([], X, X).
app([X|Xs], Ys, [X|Zs]) :-

app(Xs,Ys,Zs).

inorder(T, I) :-
true :
T = nil, I = [] : true.

inorder(T, I) :-
true :
T = tree(L,V,R),
A = [V|RI] :
app(LI,A,I),
inorder(L,LI),
inorder(R,RI).

app(L, Ys, A) :-
nonvar(L) ∨ nonvar(A):
L = [], A = Ys : true.

app(L, Ys, A) :-
nonvar(L) ∨ nonvar(A):
L = [X|Xs], A = [X|Zs] :
app(Xs,Ys,Zs).

inorder(T, I) :-
true : T ∧ I : true

inorder(T, I) :-
true :
T↔ (L ∧V ∧ R),
A↔ (V ∧ RI) :
app(LI,A,I),
inorder(L,LI),
inorder(R,RI).

app(L, Ys, A) :-
L ∨A :
L ∧ (A↔ Ys) : true.

app(L, Ys, A) :-
L ∨A :
L↔ (X ∧Xs),
A↔ (X ∧ Zs) :
app(Xs,Ys,Zs).

Fig. 1. inorder program in Prolog, in ccp and as a Pos abstraction

2.1 Program Abstraction

Abstraction in turn reduces to two transformations: one from a Prolog with de-
lay program to a concurrent constraint programming (ccp) program and another
from the ccp program to a Pos abstraction. The Prolog program is re-written to
a ccp program to make blocking requirements explicit in the program as ask con-
straints. More exactly, a clause of a ccp program takes the form h :− c′ : c′′ : g
where h is an atom, g is a conjunction of body atoms and c′ and c′′ are the ask
and tell constraints. The asks are guards that inspect the store and specify syn-
chronisation behaviour whereas the tells are single-assignment writes that update
the store. Empty conjunctions of atoms are denoted by true. The nonvar(x) con-
straint states the requirement that x is bound to a non-variable term. The second
transform abstracts the ask and tell constraints with Boolean functions which
capture instantiation dependencies. The ask constraints are abstracted from be-
low whereas the tell constraints are abstracted from above. More exactly, an ask
abstraction is stronger than the ask constraint – whenever the abstraction holds
then the ask constraint is satisfied; whereas an tell abstraction is weaker than
the tell constraint – whenever the tell constraint holds then so does its abstrac-
tion. For example, the function L ∨ A describes states where either L or A is
ground [1] which, in turn, ensure that the ask constraint nonvar(L) ∨ nonvar(A)
holds. On the other hand, once the tell A = [V|RI] holds, then the grounding
behaviour of the state (and all subsequent states) is described by A↔ (V∧RI).

2.2 Least Fixpoint Calculation

The second step of the analysis approximates the success patterns of the ccp
program (and thus the Prolog with delays program) by computing a lfp of the
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abstract Pos program. A success pattern is an atom with distinct variables for
arguments paired with a Pos formula over those variables. A success pattern
summarises the behaviour of an atom by describing the bindings it can make.
The lfp of the Pos program can be computed TP -style [10] in a finite number
of iterates. Each iterate is a set of success patterns: at most one pair for each
predicate in the program. This gives the following lfp:

F =
{〈inorder(x1, x2), x1 ↔ x2〉
〈app(x1, x2, x3), (x1 ∧ x2)↔ x3〉

}

Observe that F faithfully describes the grounding behaviour of inorder and app.

2.3 Greatest Fixpoint Calculation

A gfp is computed to characterise the safe call patterns of the program. A call
pattern has the same form as a success pattern. Iteration commences with

D0 =
{〈inorder(x1, x2), true〉
〈app(x1, x2, x3), true〉

}

and incrementally strengthens the call pattern formulae until they are safe, that
is, they describe queries which are guaranteed not to violate the ask constraints.
The iterate Di+1 is computed by putting Di+1 = Di and then revising Di+1 by
considering each p(x) :- d : f : p1(x1), . . . , pn(xn) in the abstract program and
calculating a (monotonic) formula that describes input modes (if any) under
which the atoms in the clause can be scheduled without suspension under local
selection. A monotonic formula over set of variables X is any formula of the
form ∨ni=1(∧Yi) where Yi ⊆ X [7]. Let di denote a monotonic formula that
describes the call pattern requirement for pi(xi) in Di and let fi denote the
success pattern formula for pi(xi) in the lfp (that is not necessarily monotonic).
A new call pattern for p(x) is computed using the following algorithm:

– Calculate e = ∧ni=1(di → fi) that describes the grounding behaviour of
the compound goal p1(x1), . . . , pn(xn). The intuition is that pi(xi) can be
described by di → fi since if the input requirements hold (di) then pi(xi)
can be executed without suspension, hence the output must also hold (fi).

– Compute e′ = ∧ni=1di which describes a groundness property sufficient for
scheduling all of the goals in the compound goal without suspension. Then
e → e′ describes a grounding property which, if satisfied, when the com-
pound goal is called ensures the goal can be scheduled by local selection
without suspension (this relies on an unusual reordering property of mono-
tonic functions that is explained in Section 5.3).

– Calculate g = d∧ (f → (e→ e′)) that describes a grounding property which
is strong enough to ensure that both the ask is satisfied and the body atoms
can be scheduled by local selection without suspension.

– Eliminate those variables not present in p(x), Y say, by computing
g′ = ∀Y (g) where ∀{y1...yn}(g) = ∀y1(. . .∀yn(g)). A single variable can be
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eliminated by ∀x(f) = f ′ if f ′ ∈ Pos otherwise ∀x(f) = 0 where f ′ = f [x 
→
0] ∧ f [x 
→ 1]. Hence ∀x(f) entails f and g′ entails g, so that a safe calling
mode for this particular clause is then given by g′.

– Compute a monotonic function g′′ that entails g′. Since g′′ is stronger than
g′ it follows that g′′ is sufficient for scheduling the compound goal by local
selection without suspension. The function g′ needs to be approximated by
a monotonic function since the e→ e′ step relies on di being monotonic.

– Replace the pattern 〈p(x), g′′′〉 in Di+1 with 〈p(x), g′′ ∧ g′′′〉.
This procedure generates the following Di sequence:

D1 =
{〈inorder(x1, x2), true〉
〈app(x1, x2, x3), x1 ∨ x3〉

}
D2 =

{〈inorder(x1, x2), x1 ∨ x2〉
〈app(x1, x2, x3), x1 ∨ x3〉

}

The gfp is reached and checked in three iterations. The result asserts that a
local selection rule exists for which inorder will not suspend if either its first
or second arguments are ground. Indeed, observe that if the first argument is
ground then body atoms of the second inorder clause can be scheduled as follows
inorder(L,LI), then inorder(R,RI), and then app(LI,A,I) whereas if the second
argument is ground, then the reverse ordering is sufficient for non-suspension.

3 Preliminaries

Let ℘+(S) (S∗) denote the set of multisets (sequences) whose elements are drawn
from S. Let ε denote the empty sequence, let . denote sequence concatenation
and let ‖s‖ denote the length of a sequence s. If s is a sequence, let Π(s) denote
the set of permutations of s. Let [l, u] = {n ∈ Z | l ≤ n ≤ u}. Transitive closure
of a binary relation � is denoted ��.

3.1 Terms, Substitutions, and Equations

Let Term denote the set of (possibly infinite) terms over an alphabet of functor
symbols Func and a (denumerable) universe of variables V ar where Func ∩
V ar = ∅. Let var(t) denote the set of variables occurring in the term t.

A substitution is a (total) map θ : V ar → Term such that dom(θ) =
{u ∈ V ar | θ(u) �= u} is finite. Let rng(θ) = ∪{var(θ(u)) | u ∈ dom(θ)} and
let var(θ) = dom(θ) ∪ rng(θ). A substitution θ is idempotent iff θ ◦ θ = θ, or
equivalently, iff dom(θ)∩ rng(θ) = ∅. Let Sub denote the set of idempotent sub-
stitutions and let id denote the empty substitution. Let θ(t) denote the term
obtained by simultaneously replacing each occurrence of a variable x ∈ dom(θ)
in t with θ(x). An equation e is a pair (s = t) where s, t ∈ Term. A finite set of
equations is denoted E and Eqn denotes the set of finite sets of equations. Also
define θ(E) = {θ(s) = θ(t) | (s = t) ∈ E}. The map eqn : Sub→ Eqn is defined
eqn(θ) = {x = θ(x) | x ∈ dom(θ)}. Composition θ ◦ ψ of two substitutions is
defined so that (θ ◦ ψ)(u) = θ(ψ(u)) for all u ∈ V . Composition induces the
(more general than) relation ≤ defined by θ ≤ ψ iff there exists δ ∈ Sub such
that ψ = δ◦θ which, in turn, defines the equivalence relation (variance) θ ≈ ψ iff
θ ≤ ψ and ψ ≤ θ. Let Ren denote the set of invertible substitutions (renamings).
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3.2 Most General Unifiers

The set of unifiers of E is defined by: unify(E) = {θ ∈ Sub | ∀(s = t) ∈ E.θ(s) =
θ(t)}. The set of most general unifiers (mgus) and the set of idempotent mgus
(imgus) are defined: mgu(E) = {θ ∈ unify(E) | ∀ψ ∈ unify(E).θ ≤ ψ} and
imgu(E) = {θ ∈ mgu(E) | dom(θ) ∩ rng(θ) = ∅}. Note that imgu(E) �= ∅ iff
mgu(E) �= ∅ [16].

3.3 Logic Programs

Let Pred denote a (finite) set of predicate symbols, let Atom denote the set
of (flat) atoms over Pred with distinct arguments drawn from V ar, and let
Goal = ℘∗(Atom). A logic program P (with dynamic scheduling assertions)
is a finite set of clauses w of the form w = h :−D : E : b where h ∈ Atom,
D ∈ ℘(Eqn) (the ask is a set of equations), E ∈ Eqn (the tell is a single
equation) and b ∈ Goal. An operational semantics (that ignores each D and
therefore synchronisation) is defined in terms of the standard transition system:
Definition 1 (standard transition system). Given a logic program P ,
�P⊆ (Goal × Sub)2 is the least relation such that: s = 〈g, θ〉�P 〈b.g′, δ ◦ θ〉 if

– there exists p(x) ∈ g
– and there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and
w = p(y) :−D : E : b

– and δ ∈ imgu({θ(x) = y} ∪ E) and g′ = g \ {p(x)}
Note that . denotes concatenation. The operational semantics is the transi-
tive closure of the relation on (atomic) goals, that is, O(P ) = {θ(p(x)) |
〈p(x), id〉 ��

P 〈ε, θ〉}. The following lemmas are useful in establishing the main
result, theorem 1, and follow from the switching lemma [17, lemma 9.1].
Lemma 1. Let 〈a.g, θ〉 �i

P 〈ε, θ′〉. Then 〈a, θ〉 �j
P 〈ε, ψ〉 and 〈g, ψ〉 �k

P 〈ε, ψ′〉
where i = j + k and θ′ ≈ ψ′.
Lemma 2. Suppose 〈g1, θ1〉 ��

P 〈g2, θ2〉 and θ1 ≈ ψ1. Then 〈g1, ψ1〉 ��
P

〈g2, ψ2〉 where θ2 ≈ ψ2.
A fixpoint semantics of P (that again ignores synchronisation) can be defined

in terms of an immediate consequences operator FP . Let Base = {θ(a) | a ∈
Atom ∧ θ ∈ Sub} and Int = {I ⊆ Base | ∀a ∈ I.∀θ ∈ Sub.θ(a) ∈ I}. Then
〈Int,⊆,∪,∩, Base, ∅〉 is a complete lattice.
Definition 2. Given a logic program P , the operator FP : Int→ Int is defined:

FP (I) =
{
θ(h)

∣∣∣∣ h :−D : E : a1, . . . , am ∈ P ∧
θ ∈ unify(E) ∧ θ(ai) ∈ I

}

The operator FP is continuous and hence the fixpoint semantics for a program
P can be defined as F(P ) = lfp(FP ). The relationship between the operational
and fixpoint semantics is stated below.
Theorem 1 (Partial correctness). O(P ) ⊆ F(P ).
Although the fixpoint semantics is only partially correct – it does not consider
synchronisation – it still provides a useful foundation for analysis since any safe
(superset) abstraction of F(P ) is also a safe approximation of O(P ).
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4 Local Selection

This section formalises the analysis problem, and in particular local selection, by
introducing an operational semantics for logic programs which combines delay
with local selection. A transition system is defined in terms of an augmented
notion of state, that is, State = {susp} ∪Goal × Sub ∪Goal ×Goal × Sub.
Definition 3 (transition system for local selection with delay). Given a
logic program P , �P⊆ State2 is the least relation such that:

– s = 〈p(x).g, θ〉�P 〈b, g′, δ ◦ θ〉 if
• there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and
w = p(y) :−D : E : b
• and there exists E′ ∈ D and µ ∈ unify(E′) such that µ(p(y)) = θ(p(x))
• and δ ∈ imgu({θ(x) = y} ∪ E) and g′ = g \ {p(x)};

– s = 〈p(y).g, θ〉�P susp if
• there exists ρ ∈ Ren and w ∈ ρ(P ) such that var(w) ∩ var(s) = ∅ and
w = p(y) :−D : E : b
• and µ(p(y)) �= θ(p(x)) for all E′ ∈ D and for all µ ∈ unify(E′);

– 〈b, g, θ〉�P 〈b′.g, θ〉 if b′ ∈ Π(b).

Recall that . is concatenation and Π(b) is the set of goals obtained by permuting
of the sequence of body atoms b. These permuted body atoms ensure that the
transition system considers each local selection rule rather than a particular local
selection rule. The analysis problem can now be stated precisely: it is to infer
a sub-class of states of the form s = 〈p(x), θ〉 such that if s ��

P 〈ε, ψ〉 then
s ��

P 〈ε, χ〉 where ψ ≈ χ. Put another way, if the standard transition system
produces a computed answer then a local selection rule exists that will produce
a variant of that answer. The problem is non-trivial because local selection can
bar derivations from occurring that arise in the standard transition system. The
following proposition is an immediate consequence of this.

Proposition 1. O(P ) ⊇ {θ(p(x)) | 〈p(x), id〉��
P 〈ε, θ〉}.

5 Boolean Functions

This section reviews Boolean functions and their rôle in analysis, before moving
to introduce new properties of Boolean functions that are particularly pertinent
to suspension analysis. A Boolean function is a function f : Booln → Bool where
n ≥ 0 and Bool = {0, 1}. A Boolean function can be represented by a proposi-
tional formula over X ⊆ V ar where |X| = n. The set of propositional formulae
over X is denoted by BoolX . Boolean functions and propositional formulae are
used interchangeably without worrying about the distinction. The convention of
identifying a truth assignment with the set of variables M that it maps to 1 is
also followed. Specifically, a map ψX(M) : ℘(X)→ BoolX is introduced defined
by: ψX(M) = (∧M) ∧ ¬(∨(X\M)). Henceforth suppose X is finite.
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Fig. 2. Hasse diagrams for MonX , Def X and PosX for the dyadic case X = {x, y}

Definition 4. The map modelX : BoolX → ℘(℘(X)) is defined by: modelX(f)
= {M ⊆ X | ψX(M) |= f}.
Example 1. If X = {x, y}, then the function {〈1, 1〉 
→ 1, 〈1, 0〉 
→ 0, 〈0, 1〉 
→ 0,
〈0, 0〉 
→ 0} can be represented by the formula x ∧ y. Moreover, modelX(x ∧
y) = {{x, y}}, modelX(x ∨ y) = {{x}, {y}, {x, y}}, modelX(false) = ∅ and
modelX(true) = ℘(℘(X)) = {∅, {x}, {y}, {x, y}}.

5.1 Classes of Boolean Functions

The suspension analysis is formulated with three classes of Boolean function.

Definition 5. A Boolean function f is positive iff X ∈ modelX(f); f is definite
iff M ∩M ′ ∈ modelX(f) for all M,M ′ ∈ modelX(f); f is monotonic iff M ′ ∈
modelX(f) whenever M ∈ modelX(f) and M ⊆M ′ ⊆ X.

Let PosX denote the set of positive Boolean functions (augmented with 0); Def X
denote the set of positive functions over X that are definite (augmented with 0);
and MonX denote the set of monotonic Boolean functions over X (that includes
0). Observe MonX ⊆ PosX and Def X ⊆ PosX . One useful representational
property of Def X is that if f ∈ Def X and f �= 0, then f = ∧mi=1(yi ← ∧Yi)
for some yi ∈ X and Yi ⊆ X [7]. Moreover, if f ∈ MonX and f �= 0, then
f = ∨mi=1(∧Yi) where Yi ⊆ X [6, Proposition 2.1]

The 4-tuple 〈PosX , |=,∧,∨〉 is a finite lattice and MonX is a sub-lattice
(whereas Def X is not a sub-lattice as witnessed by the join of x and y in
Figure 2). Existential quantification for PosX is defined by Schröder elimina-
tion, that is, ∃x.f = f [x 
→ 1] ∨ f [x 
→ 0]. Universal projection is defined
∀x(f) = f ′ if f ′ ∈ PosX otherwise ∀x(f) = 0 where f ′ = f [x 
→ 0] ∧ f [x 
→ 1].
Note that ∃x.(∃y.f) = ∃y.(∃x.f) and ∀x.(∀y.f) = ∀y.(∀x.f) for all x, y ∈ X.
Thus let ∃{y1, . . . , yn}.f = fn+1 where f1 = f and fi+1 = ∃yi.fi and define
∀{y1, . . . , yn}.f analogously. Finally let ∃Y.f = ∃(X\Y ).f and ∀Y.f = ∀(X\Y ).f .

5.2 Abstracting the Fixpoint Semantics Using Boolean Functions

Boolean functions are used to describe (grounding) properties of the program.
The construction is to formalise the connection between functions and data (syn-
tactic equations) and then extend it to semantic objects such as interpretations.
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Definition 6. The abstraction αPos : ℘(Eqn) → Pos and concretisation
γPos : Pos→ ℘(Eqn) maps are defined:

αPos(D) = ∨{αDef (θ) | θ ∈ imgu(E) ∧ E ∈ D} γPos(f) = {E | αPos({E}) |= f}
where αDef (θ) = ∧{x↔ var(t) | x 
→ t ∈ θ}.

The lifting of αPos and γPos to interpretations is engineered so as to simplify the
statement of the gfp operator, though it also suffices for defining the lfp operator.
The construction starts with BasePos = {〈a, f〉 | a ∈ Atom∧ f ∈ Posvar(a)}. To
order these pairs, let x ↔ y = ∧ni=1(xi ↔ yi) where x = 〈x1, . . . , xn〉 and y =
〈y1, . . . , yn〉. The entailment order on Pos can be extended to b1, b2 ∈ BasePos

where bi = 〈p(xi), fi〉, var(x) ∩ var(xi) = ∅ and f ′i = ∃var(xi).((x ↔ xi) ∧ fi)
by defining b1 |= b2 iff f ′1 |= f ′2. Observe that 〈BasePos , |=〉 is a pre-order since
|= is not reflexive. Equivalence on BasePos is thus defined b1 ≡ b2 iff b1 |= b2
and b2 |= b1. Let I1, I2 ⊆ BasePos/≡. Then entailment lifts to ℘(BasePos/≡)
by I1 |= I2 iff for all [b1]≡ ∈ I1 there exists [b2]≡ ∈ I2 such that b1 |= b2.

Let IntPos denote the set of subsets I of BasePos/≡ such that there exists
a unique [〈p(x), f〉]≡ ∈ I for each p ∈ Pred. Since IntPos ⊆ ℘(BasePos/ ≡),
IntPos is also ordered by |=. Note, however, that |= is the point-wise ordering
on IntPos and that the lattice 〈IntPos , |=,∨,∧〉 is equipped with simple ∨ and
∧ operations. Specifically ∨j∈JIj = {[〈p(x),∨j∈Jfj〉]≡ | [〈p(x), fj〉]≡ ∈ Ij} and
∧j∈JIj is analogously defined. The following definition extends αPos and γPos

to interpretations and thereby completes the domain construction.
Definition 7. The concretisation map γPos : IntPos → Int is defined:

γPos(J) = {θ(a) | [〈a, f〉]≡ ∈ J ∧ eqn(θ) ∈ γPos(f)}
whereas αPos : Int→IntPos is defined: αPos(I) = ∧{J ∈ IntPos |I ⊆ γPos(J)}.
An operator that abstracts the standard fixpoint operator FP is given below.
Definition 8. Given a logic program P , the fixpoint operator FPos

P : IntPos →
IntPos is defined by: FPos

P (I) = ∧{J ∈ IntPos | K |= J} where

K =


[〈h, f〉]≡

∣∣∣∣∣∣
h :−D : E : a1, . . . , am ∈ P ∧

[〈ai, fi〉]≡ ∈ I ∧
f = ∃var(h).(αPos({E}) ∧ ∧mi=1fi)




The operator FPos
P is continuous, hence an abstract fixpoint semantics is defined

FPos(P ) = lfp(FP ). The following correctness result is (almost) standard.
Theorem 2. F(P ) ⊆ γPos(FPos(P )).

5.3 Monotonic Boolean Functions

One idea behind the analysis is to use implication to encode synchronisation. The
intuition is that if di expresses the required input and fi the generated output
for pi(xi), then di → fi represents the behaviour of pi(xi). One subtlety is that
∧ni=1(di → fi) does not always correctly describe the behaviour of a compound
goal p1(x1), . . . , pn(xn) if di �∈ MonX . This is illustrated below.
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Example 2. Consider the compound goal p1(x, y, z), p2(x, y, z) for a two clause
program p1(x, y, z) :−D : z = c : true and p2(x, y, z) :−nonvar(x) : y = b : true
where D is a (bizarre) ask constraint that is satisfied if y is ground whenever
x is ground. Thus if d1 = (x → y) and d2 = x hold then D and nonvar(x)
are satisfied whereas z = c and y = b ensure that f1 = z and f2 = y hold.
Neither p1(x, y, z) can be scheduled before p2(x, y, z) or vice versa to bind z, yet
∧2
i=1(di → fi) |= z. The problem stems from the implication in d1. Ensuring

that di ∈ MonX avoids this problem as is formally asserted below.

Proposition 2. Let f, fi ∈ Def X and di ∈ MonX for all i ∈ [1,m] and suppose
f |= (∧mi=1(di → fi)) → (∧mi=1di). Then an injective map π : [1,m] → [1,m]
exists such that f ∧ ∧j<ij=1fπ(j) |= dπ(i) for all i ∈ [1,m].

The force of the result is that it states that the compound goal can be reordered
as pπ(1)(xπ(1)), . . . , pπ(n)(xπ(n)) so that the input requirement of goal pπ(i)(xπ(i))
(dπ(i)) is satisfied by an initial binding (f) combined with those bindings out-
put by the previous goals (∧j<ij=1fπ(j)). The following definitions explain how to
(minimally) strengthen a positive function so as to obtain a monotonic function.
The specification for this operation is captured in ↓.
Definition 9. The map ↓: PosX → MonX is defined ↓ f = ∨{f ′ ∈ MonX |
f ′ |= f}.
The operation ↓ arises during analysis and to construct a method for computing
↓, let ρ : X → X ′ be a bijective map where X ′ ⊆ V ar and X ∩ X ′ = ∅. The
proposition explains how � can be iteratively applied to finitely compute ↓.
Definition 10. The map �: PosX → PosX is defined � f = ∀X ′.f ′ where
f ′ = (∧ni=1xi → ρ(xi))→ ρ(f).

Proposition 3. Let f ∈ PosX . Then ↓f = ∧i≥1fi where fi ∈ PosX is the
decreasing chain given by: f1 = f and fi+1 =�fi.

Example 3. Consider computing ↓f where X = {x, y} and f = (x→ y). Suppose
ρ(x) = x′ and ρ(y) = y′. Then f ′ = ((x → x′) ∧ (y → y′)) → (x′ → y′),
f ′[x′ 
→ 1] = (y → y′)→ y′ = y ∨ y′ and f ′[x′ 
→ 0] = 1 so that ∀x′.f ′ = y ∨ y′.
Put f ′′ = y ∨ y′. Then f ′′[y′ 
→ 1] = 1 and f ′′[y′ 
→ 0] = y so that � f =
∀y′.∀x′.f ′ = ∀y′.f ′′ = y. In fact �y = y so that ↓f = y. Observe that y |= f .

6 Suspension Analysis

This section draws together the previous sections to define the suspension anal-
ysis in terms of a backward fixpoint operator. To construct this operator, and
specifically model asks, it is necessary to introduce a map αPos

low : ℘(Eqn)→ Pos
that returns a lower approximation to a set of equations D. Recall that αPos

yields an upper approximation in that if E ∈ D, then αPos({E}) entails αPos(D).
Conversely αPos

low , which is defined below, delivers a lower approximation with the
property that if αPos({E}) entails αPos

low (D), then E ∈ D.
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Definition 11. The (lower) abstraction map αPos
low : ℘(Eqn) → Pos is defined

by: αPos
low (D) = ∨{f ∈ Pos | γPos(f) ⊆ D}.

Example 4. Let nonvar(x) and ground(y) denote the equation sets {E ∈ Eqn |
θ ∈ imgu(E) ∧ θ(x) �∈ V ar} and {E ∈ Eqn | θ ∈ imgu(E) ∧ var(θ(y)) = ∅}.
Then αPos

low (Eqn) = 1, αPos
low (nonvar(x)) = x, αPos

low (nonvar(x)∪ground(y)) = x∨y
and αPos

low ({x = f(a)}) = αPos
low ({x = y}) = 0.

Suspension analysis can now be formalised with an abstract fixpoint operator:

Definition 12. Given a logic program P , the operator BP : IntPos → IntPos

is defined: BP (I) = ∨{J ∈ IntPos | ∀[b1]≡ ∈ K.∃[b2]≡ ∈ J.b2 |= b1} where

K =




[〈h, d′′〉]≡

∣∣∣∣∣∣∣∣∣∣

h :−D : E : a1, . . . , am ∈ P ∧
[〈ai, fi〉]≡ ∈ FPos(P ) ∧ [〈ai, di〉]≡ ∈ I ∧
d = αPos

low (D) ∧ e = αPos({E}) ∧
d′ = (∧mi=1(di → fi))→ (∧mi=1di) ∧
d′′ = ↓(∀var(h).(d ∧ (e→ d′)))




Recall that ∧mi=1(di → fi) captures the grounding behaviour of the goal
a1, . . . , am whereas ∧mi=1di describes a state with variables sufficiently bound
to enable each ai to be scheduled with local selection without suspension. The
function d′ is a grounding property that, if satisfied when a1, . . . , am is called,
guarantees that a1, . . . , am can be reordered so that each ai can be scheduled by
local selection without suspension. The function d′′ is monotonic, defined only
over those variables in h, and is sufficient to ensure that both the ask is satisfied
and that a1, . . . , am can be scheduled by local selection without suspension. If
P contains a predicate p defined over n clauses, then {[p(x, fi)]≡}ni=1 ⊆ K so in
general K �∈ IntPos . However, BP (I) contains a unique element [p(x, f)]≡ such
that f = ∧ni=1fi. In effect, related elements of K are merged with meet.
BP is co-continuous and since IntPos is a finite lattice, it follows that gfp(BP )

exists. The value of gfp(BP ) is explained by the following theorem (or rather its
corollary). It states that gfp(BP ) characterises a set of initial states for which
if the standard transition system leads to a computed answer (in k steps) then
local selection with delay leads to a variant of that computed answer (in k steps).

Theorem 3. Suppose θ(p(x)) ∈ γPos(BkP (�)), s1 = 〈p(x), θ〉, s1 �k
P 〈ε, ψ〉.

Then s1 �k
P 〈ε, χ〉 where ψ ≈ χ.

Corollary 1. Suppose θ(p(x)) ∈ γPos(gfp(BP )), s1 = 〈p(x), θ〉, s1 �k
P 〈ε, ψ〉.

Then s1 �k
P 〈ε, χ〉 where ψ ≈ χ.

To emphasise the significance of gfp(BP ), the abstract backward semantics for
P is defined B(P ) = gfp(BP ). Co-continuity enables B(P ) to be computed by
lower Kleene iteration, that is, as the limit of �, BP (�), B2

P (�), . . . where
� = {[〈p(x), 1〉]≡ | p ∈ Pred}. The example illustrates how to handle builtins.

Example 5. Consider the temperature conversion program in the left column of
Fig. 3 which converts Celsius to Fahrenheit and vice versa. The block declara-
tion equates to the equation set D = (nonvar(X) ∩ nonvar(Y )) ∪ (nonvar(X) ∩



Goal-Independent Suspension Analysis 95

cf(C, F) :- mul(C, 1.8, S), add(S, 32, F).

:- block add(-, -, ?), add(-, ?, -), add(?, -, -).
add(X, Y, Z) :- ground(X+Y), Z is X+Y.
add(X, Y, Z) :- ground(Z-X), Y is Z-X.
add(X, Y, Z) :- ground(Z-Y), X is Z-Y.

:- block mul(-, -, ?), mul(-, ?, -), mul(?, -, -).
mul(X, Y, Z) :- ground(X*Y), Z is X*Y.
mul(X, Y, Z) :- ground(Z/X), Y is Z/X.
mul(X, Y, Z) :- ground(Z/Y), X is Z/Y.

cf(C, F) :- true : T1 ∧ T2 :
mul(C, T1, S), add(S, T2, F).

add(X, Y, Z) :- f : T↔ (X ∧Y) :
ground(T), is(Z, T).

add(X, Y, Z) :- f : T↔ (X ∧ Z) :
ground(T), is(Y, T).

add(X, Y, Z) :- f : T↔ (Y ∧ Z) :
ground(T), is(X, T).

mul(X, Y, Z) :- . . .

ground(X) :- true : X : true.
is(X, Y) :- true : X ∧Y : true.

Fig. 3. conv program in Prolog and in Pos where f = (X ∧Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

nonvar(Z)) ∪ (nonvar(Y ) ∩ nonvar(Z)) and αPos
low (D) = f (see Fig. 3). Note how

the builtins ground and is are modelled in the abstract version of conv listed in
the right column. For brevity, let y = 〈x1, x2〉 and z = 〈x1, x2, x3〉. Then

FPos(conv) =




[〈cf(y), x1 ∧ x2〉]≡
[〈add(z), x1 ∧ x2 ∧ x3〉]≡
[〈mul(z), x1 ∧ x2 ∧ x3〉]≡

[〈ground(x1), x1〉]≡
[〈is(y), x1 ∧ x2〉]≡




K =




[〈cf(y), 1〉]≡
[〈add(z), f〉]≡
[〈mul(z), f〉]≡

[〈ground(x1), 1〉]≡
[〈is(y), 1〉]≡




where f = (x1∧x2)∨ (x1∧x3)∨ (x2∧x3). Hence Bconv(�) = K. Then B2
conv(�)

differs from Bconv(�) only in [〈cf(y), x1 ∨ x2〉]≡. In fact B(conv) = B2
conv(�).

7 Experimental Evaluation

To assess the value of the analysis it has been implemented in SICStus Prolog
using the BDD package of Armstrong and Schachte [1]. The implementation
consists of two meta-interpreters – one for each fixpoint. Each abstract clause
h :− d : f : b1, . . . , bn is represented as two facts: my clause(h,[idf , b1, . . . , bn])
and assertion(h,idd) where idf and idd are identifiers for the BDDs of f and
d. Facts of the form fact(gr,p(x),idf ) and fact(ba,p(x),idg) are added and
removed from the database to record the status of the lfp and then the gfp.
Both fixpoint engines are realised as semi-naive meta-interpreters.

The analyser has been applied to a number of programs: bestpath, entails,
fact, hamming, inorder, isotrees, pascal, mm, hanoi, msort, qsort, queens, sieve,
most of which derive from the Super Monaco benchmark suite. All programs were
analysed in less than 1 second on a 500MHZ, 512MB Pentium III running RedHat
Linux 7.2 with Kernel 2.4.7-10. The Super Monaco programs are coded in kl1 –
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an early ccp language – and therefore for analysis these programs were manually
translated into SICStus Prolog with blocks. It was for these programs that the
analysis occasionally produced unexpected results (modes) and close inspection
revealed errors in the hand translation. Some errors were straightforward (block
declarations of the wrong arity) and other were subtle, but none came to light
in the testing, presumably because of the particular interleaving adopted by the
SICStus scheduler. These results suggest that the analysis has a rôle in bug
detection. The analysis also inferred non-trivial modes for all predicates except
for 6 mutually recursive predicates in bestpath for which false was returned. It
is not yet clear whether a local selection rule exists for these predicates that
avoids suspension – the synchronisation is subtle and may even be buggy. What
is clear, however, is that local selection is sufficient to infer useful modes for the
vast majority of the predicates that were analysed. An experimental analyser
can be found at http://www.cs.bgu.ac.il/cgi-bin/genaim/susweb.cgi and
the benchmarks are available from the home page of the second author.

8 Related Work

One of the most closely related works comes surprisingly from the compiling con-
trol literature and in particular the problem of generating a local selection rule
under which a program universally terminates [12]. The technique of [12] builds
on the termination inference method of [19] which infers initial modes for a query
that, if satisfied, ensure that a logic program left-terminates. The chief advance
in [12] over [19] is that it additionally infers how goals can be statically reordered
so as to improve termination behaviour. This is performed by augmenting each
clause with body atoms a1, . . . , an with n(n − 1)/2 Boolean variables bi,j with
the interpretation that bi,j = 1 if ai precedes aj in the reordered goal and bi,j = 0
otherwise. The analysis of [19] is then adapted to include consistency constraints
among the bi,j , for instance, bj,k ∧ ¬bi,k ⇒ ¬bi,j . In addition, the bi,j are used
to determine whether the post-conditions of ai contribute to the pre-conditions
of aj . Although motivated differently and realised differently (in terms of the
Boolean µ-calculus) this work also uses Boolean functions to finesse the prob-
lem of enumerating the goal reorderings. This work complements our own since
termination is a related but orthogonal requirement to non-suspension.

King and Lu [13] show how to apply backward analysis to the problem of
figuring how to query a logic program with fixed selection rule. The analysis
traces control-flow of the program (backward) right-to-left to infer the modes
in which a predicate must be called under the leftmost selection rule. Although
this analysis can be reinterpreted as a suspension analysis it cannot reason about
local selection accurately since it only considers leftmost selection.

The early work of [5] presents an and-or tree framework that applies local
reexecution to simulate the dataflow under different interleavings. A more di-
rect approach is to abstract each state in the transition system with an abstract
state to obtain an abstract transition system [3]. Finiteness is enforced through
a widening known as star-abstraction [3]. This approach achieves a degree of
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conceptual simplicity though the abstract states themselves can be unwieldy.
The work of [8] is unusual in that it attempts to detect suspension-freeness for
goals under leftmost selection. Although this approach only considers one local
selection rule, it is surprising effective because of the way data often flows left-
to-right. A particularly elegant approach to suspension analysis follows from a
confluence semantics that approximates the standard semantics in the sense that
suspension implies suspension in the confluent semantics [4]. The crucial point is
that because of confluence, an analysis based on the confluence semantics need
only consider one scheduling rule. None of these analyses, however, can infer ini-
tial queries that guarantee non-suspension – all check for non-suspension. Other
works have proposed generic abstract interpretation frameworks for dynamic
scheduling [9,18] but none of these are for goal-independent analysis.

9 Concluding Discussion

This paper has shown how suspension analysis can be tackled for a new perspec-
tive – that of goal-independence. It shows how an analysis for non-suspension
under local selection can be formulated as two simple bottom-up fixpoint compu-
tations. The analysis strikes a good balance between tractability and precision.
It avoids the complexity of goal interleaving by exploiting reordering properties
of monotonic and positive Boolean functions.

For reasons of presentation, the analysis proposed in this paper has been
specified for logic programs. To further simplify the presentation, the analysis
was formulated in terms of simple groundness dependencies. The first constraint
can be relaxed by following a standard constraint formulation [10]. The second
can be relaxed by lifting the analysis to rigidity (type) dependencies using term
extractor maps [3,10]. Another direction for future work will be to generalise the
analysis to other abstract domains that possess a pseudo-complement.
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9. M. Garćıa de la Banda, K. Marriott, and P. J. Stuckey. Efficient Analysis of
Logic Programs with Dynamic Scheduling. In International Symposium on Logic
Programming, pages 417–431. MIT Press, 1995.

10. R. Giacobazzi, S. Debray, and G. Levi. Generalized Semantics and Abstract In-
terpretation for Constraint Logic Programs. The Journal of Logic Programming,
25(3):191–248, 1995.

11. R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract Domains.
Transactions on Programming Languages and Systems, 20(5):1067–1109, 1998.

12. S. Hoarau and F. Mesnard. Inferring and Compiling Termination for Constraint
Logic Programs. In Logic-based Program Synthesis and Transformation, volume
1559 of Lecture Notes in Computer Science, pages 240–254. Springer-Verlag, 1999.

13. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs. Theory
and Practice of Logic Programming, 2(4–5):517–547, 2002.

14. A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In Joint
International Conference and Symposium on Logic Programming, pages 478–492.
MIT Press, 1992.

15. R. Kowalski. Algorithm = Logic + Control. Communications of the ACM,
22(7):424–436, 1979.

16. J.-L. Lassez, M. Maher, and K. Marriott. Unification Revisited. In Foundations
of Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.

17. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1993.
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