Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 607))

  • 569 Accesses

Abstract

Synoptic information on a global scale, necessary for general circulation models and climate researches, can be obtained only with passive remote sensing from space. The most relevant part of the information on atmosphere and oceans is retrieved from the radiometric measurements of the radiation emitted by the atmosphere and the surface, i.e., the Earth radiation. This chapter gives an overview of the information that can be obtained from passive infrared and microwave data, and presents some of the algorithms used to retrieve the necessary physical parameters. The parameters examined are: sea surface temperature, surface winds, surface emittance, atmospheric water vapor content, liquid water content, vertical temperature profile, and water vapor profile. The derivation of the radiative transfer equation presented is very simple, according with the objectives of the course, even if it is applicable only for the remote sensing of radiation emerging from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chahine, M. (1970). Inverse problems in radiative transfer: Determination of atmospheric parameters. J. Atmos. Sci., 27, 960.

    Article  Google Scholar 

  2. Chang, A. T. C., and Milman, A. S. (1982). Retrieval of ocean surface and atmospheric parameters from multichannel microwave radiometric measurements. IEEE Trans. Geosci. Electron., GE-20, 217.

    Google Scholar 

  3. Chang, A.T.C., and Wilheit T.T. (1979). Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from Nimbus 5 satellite. Radio Science, vol. 14, 793–802.

    Article  Google Scholar 

  4. Chesters, D., Uccellini, L.W., and Robinson, W. D. (1983). Low-level water vapor field from the VISSR atmospheric sounder (VAS) split window channels. J. Climate appl. Met., 22, 725.

    Article  Google Scholar 

  5. Conrath, B. J. (1969). On the estimation of relative humidity profiles from medium-resolution infrared spectra obtained from a satellite. J. geophys. Res., 74, 3347.

    Article  Google Scholar 

  6. Dalu, G., Prabhakara, C., and Lo, R.C. (1981). Improved accuracy of the remote sensing of sea surface temperature. Proc. COSPAR/SCOR/IUCRM Symp.: Oceanography from Space, Edited by J.F.R. Gower, Plenum Press, 109–114.

    Google Scholar 

  7. Dalu, G. (1985). Emittance effect on the remotely sensed sea surface temperature. Int. J. of Remote Sensing, 6, 733.

    Article  Google Scholar 

  8. Dalu, G., Viola, A., and Marullo, S. (1985). Sea surface temperature from AVHRR-2 data. Nuovo Cim., 8 C, 6, 793.

    Article  Google Scholar 

  9. Dalu, G., 1986: Satellite remote sensing of atmospheric water vapour. Int. J. of Remote Sensing, 7, 1089.

    Google Scholar 

  10. Gloersen, P., and Hardis, L. (1978). Scanning multichannel microwave radiometer (SMMR) experiment. Nimbus 7 Users’ Guide, C.R. Madrid, Ed., NASA/Goddard Space Flight Center, Greenbelt, 213–245.

    Google Scholar 

  11. Hanel, R.A., Conrath, B.G., Kunde, V.G., Prabhakara, C., Revah, I., Salomonson, V.V., and Wolford, G. (1972). The Nimbus 4 Infrared Spectroscopy Experiment, 1. Calibrated thermal emission spectra. J. geophys. Res., 77, 2629.

    Article  Google Scholar 

  12. McClain, E.P. (1981). Multiple atmospheric-window techniques for satellite sea surface temperatures. Proc. COSPAR/SCOR/IUCRMSymp.: Oceanography from Space, edited by J.F.R. Gower, Plenum Press, 73–85.

    Google Scholar 

  13. McMillin, L.M., and Crosby, D.S. (1984). Theory and validation of the multiple window sea surface temperature technique. J. geophys. Res., 89, 3655.

    Google Scholar 

  14. Nieman, R.A. (1977). A comparison of radiosonde temperature and humidity profile data bases. CSC/TM77/6133, Contract NAS 5-11999, Computer Sciences Corporation, pp. 48.

    Google Scholar 

  15. Peixoto, P.J., and Oort, A.H. (1992). Physics of Climate. American Institute of Physics, New York, p. 355.

    Google Scholar 

  16. Phillips, D. L. (1962). A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84.

    Google Scholar 

  17. Prabhakara, C., and Dalu, G. (1980). Passive remote sensing of the water vapor in the troposphere and its meteorological significance. In Atmospheric Water Vapor, edited by A. Deepak (New York: Academic Press), p. 355.

    Google Scholar 

  18. Prabhakara, C., Dalu, G., and Kunde, V.G. (1974). Estimation of sea surface temperature from remote sensing in the 11 to 13 μm window region. J. geophys. Res., 79, 5039.

    Article  Google Scholar 

  19. Prabhakara, C., Dalu, G., Lo, R.C., and Nath, N.R. (1979). Remote sensing of seasonal distribution of precipitable water vapor over the oceans and the inference of boundary-layer structure. Mon. Weath. Rev., 107, 1388.

    Article  Google Scholar 

  20. Smith, W. L. (1970). Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. Appl. Opt. 9, 1993.

    Google Scholar 

  21. Twomey, S. (1963). On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97–101.

    Google Scholar 

  22. Waters, J. W., Kunzi, K.F., Pettyjohn, R. L., Poon, R. K. L., and Staelin, D. H. (1975). Remote sensing of atmospheric temperature profiles with the Nimbus 5 microwave spectrometer. J. Atmos. Sci., 32, 1953.

    Article  Google Scholar 

  23. Wilheit, T. T., Chang, A. T. C., and Milman, A. S. (1980). Atmospheric corrections to passive microwave observations of the ocean. Bound. Layer Meteorol., 18, 65.

    Article  Google Scholar 

  24. Wilheit, T.T., and Chang, A.T.C. (1980). An algorithm for retrieval of ocean surface and atmospheric parameters from the observation of the Scanning Multichannel Microwave Radiometer (SMMR). Radio Science, 15, 525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalu, G. (2003). The Earth Radiation. In: Guzzi, R. (eds) Exploring the Atmosphere by Remote Sensing Techniques. Lecture Notes in Physics, vol 607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36536-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36536-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00709-8

  • Online ISBN: 978-3-540-36536-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics