Skip to main content

DNA-Tract Curvature Profile Reconstruction: A Fragment Flipping Algorithm

  • Conference paper
  • First Online:
Discovery Science (DS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2534))

Included in the following conference series:

  • 948 Accesses

Abstract

At nanometric level of resolution DNA molecules can be idealized with one dimensional curved line. The curvature value along this line is composed by static and dynamic contributions. The first ones constitute the intrinsic curvature, vectorial function of the sequence of DNA nucletides, while the second ones, caused by thermal energy, constitute the flexibility. The analysis of intrinsic curvature are a central focus in several biochemical DNA researches. Unfortunately observing this sequence-driven chain curvature, is a difficult task, because the shape of the molecule is largely affected by the thermal energy, i.e. the flexibility.A recent approach to this problem shows a possible methodology to map the intrinsic curvature along the DNA chain, observing an Atomic Force Microscopy image of a population of the DNA molecule under study. Reconstructing the intrinsic curvature profile needs a computing method to exclude the entropic contributions from the imaged profiles of molecules and to detect fragment orientation on image. The heuristic-search algorithm we propose can be a solution for these two tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bustamante, C., Keller, D.J.: Scanning Force microscopy in biolog Physics Today 48 (1995) 32–38

    Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity Pergamon Press, Oxford, NY (1986)

    Google Scholar 

  3. Zuccheri, G., Scipioni, A., Cavaliere, V., Gargiulo, G., De Santis, P., Samori, B.: Mapping the intrinsic curvature and flexibility along the DNA chain PNAS 98 (2001) 3074–3079

    Google Scholar 

  4. Hagerman, P. J.: Annu. Rev. Biochem. 58 (1990) 755–781

    Article  Google Scholar 

  5. Wu, H. M., Crothers, D.M.: Nature 308 (1984) 509–513

    Article  Google Scholar 

  6. BolsHoy, A., McNamara, P.T., Harrington, R. E., Trifonov, E. N.: Proc. Natl. Acad. Sci. 88 (1991) 2312–2316

    Article  Google Scholar 

  7. De Santis, P., Palleschi, A., Savino, M., Scipioni, A.: Biochemistry 29 (1990) 9269–9273

    Article  Google Scholar 

  8. Dlakic, M., Park, K., Griffith, J. D., Harvey, S. C., Harrington, R. E.: J. Biol. Chem. 271 (1996) 17911–17919

    Article  Google Scholar 

  9. Harvey, S.C., Dlakic, M., Griffith, J. D., Harrington, R. E., Park, K., Sprous, D., Zacharias, W.: J. Biomol. Struct. Dynam 13 (1995) 301–307

    Google Scholar 

  10. Rivetti, C., Walker, C., Bustamante, C.: J. Mol Biol. 280 (1998) 41–59

    Article  Google Scholar 

  11. Grove, A., Galeone, A., Mayol, L., Geiduschek, E. P.: J. Mol Biol. 260 (1996) 120–125

    Article  Google Scholar 

  12. Kahn, J. D., Yun, E., Crothers, D. M.: Nature (London) 368 (1994) 163–166

    Article  Google Scholar 

  13. Roychoudhury, M., Sitlani, A., Lapham, J., Crothers, D. M.: Proc. Natl. Acad. Sci. USA Vol. 97 (2000) 13608–13613

    Article  Google Scholar 

  14. Flory, P.J.: Statistical Machanics of Chain Molecules Interscience Publishers, New York (1969)

    Google Scholar 

  15. Schellman, J.A.: Flexibility of DNA Biopolymers 13 (1974) 217–226

    Article  Google Scholar 

  16. Young, Mark, Rivetti, Claudio:ALEX Software Processor-tool forAFM image in MATLAB (MathWorks, Natick, MA) (http://www.mathworks.com/)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masotti, D. (2002). DNA-Tract Curvature Profile Reconstruction: A Fragment Flipping Algorithm. In: Lange, S., Satoh, K., Smith, C.H. (eds) Discovery Science. DS 2002. Lecture Notes in Computer Science, vol 2534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36182-0_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36182-0_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00188-1

  • Online ISBN: 978-3-540-36182-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics