
Computing and Drawing Isomorphic Subgraphs

Sabine Bachl1 and Franz-Josef Brandenburg2

1 sd&m AG, Thomas Dehler Str. 27, 81737 München, Germany
sabine.bachl@sdm.de

2 University of Passau, 94030 Passau, Germany
brandenb@informatik.uni-passau.de

Abstract. The isomorphic subgraph problem is finding two disjoint sub-
graphs of a graph which coincide on at least k edges. Then the graph
partitions into a large subgraph, its copy and a remainder. The prob-
lem resembles the NP-hard largest common subgraph problem. In [1,2]
it has been shown that the isomorphic subgraph problem is NP-hard,
even for restricted instances. In this paper we present a greedy heuris-
tic for the approximation of large isomorphic subgraphs and introduce
a spring algorithm which preserves isomorphic subgraphs and displays
them as copies of each other. The heuristic has been tested extensively on
four independent test suites. The drawing algorithm yields nice drawings
which cannot be obtained by standard spring algorithms.

1 Introduction

Graph drawing is concerned with the problem of displaying graphs nicely. There
is a wide spectrum of approaches and algorithms [4]. Nice drawings help in un-
derstanding the structural relation modelled by the graph. Bad drawings are mis-
leading. This has been evaluated by HCI experiments [25,26], which have shown
that symmetry is an important factor in the understanding of graph drawings
and the underlying relational structure. Drawings of graphs in textbooks [27]
and also the winners of the annual Graph Drawing Competitions and the logos
of the symposia on Graph Drawing are often symmetric. In [5] symmetry is used
for nice drawings without defining nice.

Symmetry has two directions: geometric and graph theoretic. A graph has a
geometric symmetry, if it has a drawing with a rotational or a reflectional invari-
ant. This has first been studied by Manning [22,23], and is NP-hard for general
graphs. For some subclasses of planar graphs there are polynomial time solutions
[18,22]. As a pre-requisite such graphs need a non-trivial automorphism. This is
the graph theoretic access to symmetry. It is less restrictive than the geometric
symmetry, and is isomorphism complete. However, almost all graphs from ap-
plications have only a trivial automorphism. Hence, more flexibility is needed,
and the notions of geometric symmetry and automorphism must be relaxed and
generalized. This is achieved by restricting symmetry to subgraphs only. From
another viewpoint there is the cut© operation, which first selects a portion
of a graph, then creates a new copy thereof, attaches it to the original graph,

M.T. Goodrich and S.G. Kobourov (Eds.): GD 2002, LNCS 2528, pp. 74–85, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Computing and Drawing Isomorphic Subgraphs 75

and connects the copy and the remainder by some edges. The reverse operation
leads to the notion of isomorphic subgraphs, which has been investigated in [1,2].
The isomorphic subgraph problem is finding two large disjoint subgraphs of a
given graph, such that one subgraph is a copy of the other.

The generalization from graph automorphism to isomorphic subgraphs par-
allels the generalization from graph isomorphism to largest common subgraph.
The difference between these problems lies in the number of input graphs. The
coincidence or similarity of the subgraphs is measured in the number of common
edges, which must be 100% for the automorphism and isomorphism problems,
and which may be less for the more flexible generalizations. A related approach
on symmetry by Chen et al. [7] reduces a given graph to a subgraph with a
geometric symmetry by node and edge deletions and by edge contractions.

The isomorphic subgraph problem and the largest common subgraph problem
are NP-hard, even when restricted to forests, connected outerplanar graphs and
2-connected planar graphs [1,2,16]. Both problems are tractable, if the graphs
have tree-width k and the graphs and the isomorphic subgraphs are k-connected
[6]. In particular, isomorphic subtrees [1,2] and the largest common subtree of two
rooted trees can be computed in linear time. For arbitrary graphs the isomorphic
subgraph problem seems harder than the largest common subgraph problem. For
the largest common subgraph problem we must find a matching between pairs of
nodes which induce an isomorphism. For the isomorphic subgraph problem we
must first partition the graph into two subgraphs and a remainder and then find
the isomorphism preserving matching between the subgraphs. Recall that the
graph isomorphism problem can be solved in linear time for almost all graphs
[3]. The algorithm uses the degree of the nodes as an invariant and distinguishes
nodes by their degree sequences. For subgraph isomorphism Ullmann’s algorithm
[31] is well-known and is often used in computational biology for the search of
molecular structures. Another method uses Levi’s transformation into a clique
problem, which is also used for the largest common subgraph problem [19,20].

Our approach to the computation of large isomorphic subgraphs is a greedy
heuristic. In fact, there is a collection of algorithms with different weighting
parameters. So we capture both, the partition and the isomorphism problems.
Our experiments are directed towards the appropriateness of the approach and
the effectiveness of the chosen parameters. The measurements are based on more
than 100.000 computations conducted by Bachl for her dissertation [2].

As a second step and an application we present a spring algorithm which
preserves isomorphic subgraphs and displays them as copies of each other. The
algorithm is an extension of the Fruchterman and Reingold approach [15]. Each
node and its copy are treated identically by averaging the forces and moves.
An additional force is used to separate the two copies of the subgraphs. With a
proper setting of the parameters of the forces this gives rather pleasing pictures.

76 Sabine Bachl and Franz-Josef Brandenburg

2 Isomorphic Subgraphs

We consider undirected graphs G = (V,E) with a set of nodes V and a set of
edges E. Edges are denoted by pairs e = (u, v). The set of neighbours of a node
v is denoted by N(v). For convenience, we exclude self-loops and multiple edges.
In applications graphs are generally attributed graphs with labels at the vertices
and at the edges. This is discarded here, although labels may be a great help
in the selection and association of nodes and edges for the isomorphic subgraph
problem.

Definition 1 (node- and edge-induced subgraphs). Let G = (V,E) be a
graph and let V ′ ⊆ V and E′ ⊆ E be subsets of nodes and edges. The node-
induced subgraph G[V ′] = (V ′, E′′) consists of the nodes of V ′ and the edges of
E between nodes of V ′ such that E′′ = E ∩ V ′ × V ′. The edge-induced subgraph
G[E′] = (V ′′, E′) consists of the edges of E′ and the incident nodes V ′′ such that
V ′′ = {u, v ∈ V |(u, v) ∈ E′}.

An isomorphism between two graphs is a bijection on the sets of nodes that
preserves adjacency. A common subgraph of two graphs G1 and G2 is a graph H
that is isomorphic to G1[E1] and G2[E2]. More precisely, H is an edge-induced
common subgraph of size k, where k = |E1| is the number of edges. Accordingly,
one may consider large node-induced common subgraphs.

Definition 2 (isomorphic node-induced subgraph, INS).
Instance: A graph G = (V,E) and an integer k.
Question: Does G contain two disjoint node-induced common subgraphs H1 and
H2 with at least k edges?

Definition 3 (isomorphic edge-induced subgraph, IES).
Instance: A graph G = (V,E) and an integer k.
Question: Does G contain two disjoint edge-induced common subgraphs H1 and
H2 with at least k edges?

For INS and IES the graph G partitions into H1, H2, and a remainder R. Let
V, V1, V2 and VR denote the sets of nodes of G,H1, H2 and R, respectively. Then
V1 ∩ V2 = ∅ and VR contains all nodes from V \ (V1 ∪ V2). In the node-induced
case, INS, the remainder contains all edges between the nodes of H1 and H2
and the edges with at least one endnode in R. In the edge-induced case, IES, R
may also contain some edges between nodes from V1 or from V2. IES is our most
flexible version.

Notice that also in the node-induced case the size of the common subgraphs
must be measured in terms of the common edges. Otherwise, the problem may
become meaningless. As an example consider an n × m grid graph with n,m
even. If V1 consists of all even nodes in the odd rows and of all odd nodes in the
even rows, and V2 = V \ V1, then V1 and V2 have maximal size. However, their
induced subgraphs are discrete with the empty set of edges.

Computing and Drawing Isomorphic Subgraphs 77

The isomorphic subgraph problems INS and IES have been investigated by
Bachl [1,2]. These problems are NP-hard, in general. This has been shown by a
directed reduction of 3-PARTITION. At present, there are no direct reductions
between the isomorphic subgraph and the largest common subgraph problems,
although these problems look similar.

When restricted to trees, the isomorphic subtree problem is solvable in linear
time. However, the isomorphic subtree problem requires trees as common sub-
graphs of a tree. This is not the restriction of the isomorphic subgraph problem
to a tree. If the isomorphic subgraphs of a tree may be disconnected, then these
instances of INS and IES become NP-hard. These results are summarized in
Theorem 1. In [7] there are quite similar results for a related problem.

Theorem 1. The isomorphic subgraph problems INS and IES are NP-hard.
These problems remain NP-hard, if the graph G is

– a tree and the subgraphs are forests [6]
– outerplanar and the subgraphs are connected [1,2]
– 2-connected outerplanar and the subgraphs are not 2-connected [6].

3 Computing Isomorphic Subgraphs

The isomorphic subgraph problem is NP-hard almost everywhere. The size of the
largest isomorphic subgraphs can be regarded as a measure for the self-similarity
of a graph in the same way as the size of the largest common subgraph is regarded
as a measure for the similarity of two graphs.

The isomorphic subgraph problem is different from the isomorphism, sub-
graph isomorphism and largest common subgraph problems. There is only a
single graph, and it is a major task to locate and separate the two isomorphic
subgraphs. Moreover, graph invariants such as the degree and adjacencies of
isomorphic nodes are not necessarily preserved, since edges may end in the re-
mainder or in the other subgraph or may be discarded, if they belong to only
one of the edge-induced isomorphic subgraphs.

Our approach is a greedy algorithm. The core are weighted graph parameters.
If the algorithm has identified a pair of nodes as a copy of each other it finds
new pairs among their neighbours. The correspondence between the neighbours
is computed by a weighted bipartite matching. Let G = (V,E) be the given
graph, and suppose that the subgraphs H1 and H2 have been computed as
copies of each other. Consider a pair of nodes (v1, v2) which are copies of each
other. For each pair the following graph parameters are taken into account:

– w1 = degree(v1) + degree(v2)
– w2 = |degree(v1)− degree(v2)|
– w3 = the number of common neighbours
– w4 = the number of new neighbours of v1 and v2 which are not in H1 ∪H2
– w5 = the graph-theoretical distance between v1 and v2
– w6 = the number of new isomorphic edges in (H1 ∪ v1, H2 ∪ v2).

78 Sabine Bachl and Franz-Josef Brandenburg

initialize(P);
while (P not empty) do

(v1, v2) = next(P); delete (v1, v2) from P ;
N1 = new neighbours of v1;
N2 = new neighbours of v2;
M = optimal weighted bipartite matching over N1 and N2;
forall edges(u1, u2) of M) do

if (G[V1 ∪ {u1}] is isomorphic to G[V2 ∪ {u2}]) then
P = P ∪ {(u1, u2)};
V1 = V1 ∪ {u1}; V2 = V2 ∪ {u2};

Fig. 1. Heuristic for isomorphic node-induced subgraphs.

These parameters can be combined arbitrarily to a weight W (v1, v2). The
weights w2 and w3 are taken negative. Let w0 =

∑
wi.

The algorithm iteratively selects a pair of nodes (v1, v2) at random, which
are identified by the isomorphism, and then matches their new neighbours in the
bipartite graph with the sets of nodes N(v1) and N(v2). For each pair of neigh-
bours (u1, u2) let W (u1, u2) be the weight of the edge (u1, u2). Then compute an
optimal weighted bipartite matching. The pairs of matched nodes are new pairs
of identified nodes in V1 and V2, provided that they pass the isomorphism test.
The optimal weighted bipartite matching is computed by the Kuhn-Munkres
algorithm (Hungarian method) [8], with a running time of O(n2m) in our im-
plementation. This can be improved, but it does not really matter, since these
graphs are generally small.

Figure 1 shows the algorithm for the computation of node-induced subgraphs.
P consists of the pairs of nodes which have already been identified by the isomor-
phism. The isomorphism test is only local, since each time only one new node
is appended to each subgraph. The matching edges are sorted by decreasing
weights and are checked in this order. In the node-induced case, a matched pair
of neighbours (w1, w2) is skipped, if their addition to the intermediate subgraphs
does not yield isomorphic subgraphs. In the case of edge-induced isomorphic sub-
graphs, the isomorphism test adds all pairs of matched nodes and all common
edges. For each pair of starting nodes the algorithm runs in linear time except for
the Kuhn-Munkres algorithm, which is used as a subroutine on bipartite graphs,
whose nodes are neighbours of single nodes.

In our experiments a single parameter wi or the sum w0 is taken as a weight.
The unnormalized sum worked out because the parameters had similar values.

The initialization of the algorithm is a critical point. What is the best pair
of nodes to start with? We ran our experiments with three cases:

– repeatedly for all O(n2) pairs of nodes
– with the best pair of nodes according to the weighting function and
– repeatedly for all pairs of nodes, whose weighting function is at least 90% of

the weight of the best pair.

Computing and Drawing Isomorphic Subgraphs 79

With repetitions the largest subgraphs are kept. Clearly, the all pairs version
has a O(n2) higher running time than the single pair version. The 90% best
weighted pairs is a good compromise between the ellapsed time and the size of
the computed subgraphs.
The experiments were performed on four independent test suites [24].

– 2215 random graphs with a maximum of 10 nodes and 14 edges
– 243 graphs generated by hand and
– 1464 graphs selected from the Roma graph library [28]
– 740 dense graphs.

These graphs where chosen by the following reasoning. For each graph from
the first test suite the optimal result has been computed by an exhaustive search
algorithm. This is doable only for small graphs.

The graphs from the second test suite were constructed by taking a single
graph from the Roma library, making a copy and adding some nodes and edges
at random. The threshold is the size of the original graph. It is a good bound
for the size of the edge-induced isomorphic subgraphs. The goal is to detect
and reconstruct the original graph. For INS, the threshold is a weaker estimate
because the few added edges may destroy node-induced subgraph isomorphism.

Next, 1464 graphs from the Roma graph library were selected and inspected
for isomorphic subgraphs with 10 to 60 nodes. These graphs are sparse with
|E| ∼ 1.3|V |.

The experiments of the first three test suites give a uniform picture. The
heuristic finds the optimal subgraphs in the first test suite. In the second test
suite the original graphs and their copies are detected almost completely when
starting from the 90% best weighted pairs of nodes, see Figure 2.

The weights w2, w3 and w6 produce the best results. The total running time
is in proportion to the number of pairs of starting nodes. For the 90% best
weighted pairs of nodes it is less than two seconds for the largest graphs with
100 nodes and w0, w1, w4 and w5, 30 seconds for w2 and 100 seconds for w3
and w6, since in the latter cases the algorithm iterates over many to almost all
pairs of starting nodes. In summary, the difference of degree w2 gives the best
performance.

For the third test suite the heuristic detects very large isomorphic subgraphs.
Almost all nodes are contained in one of the node- or edge-induced isomorphic
subgraphs which are almost trees. This surprising result is due to the sparsity
of the test graphs. Again weight w2 performs best. [2] has the complete list of
test results with more than 100 diagrams.

Finally, we ran the heuristic on dense graphs with the 90% best weighted
pairs of starting nodes. The dense graphs were generated at random. They have
10, 15, . . . , 50 nodes and 25, 50, . . . , 0.4 · n2 edges.

For IES the heuristic finds isomorphic subgraphs which together contain
almost all nodes and more than 1/3 of the edges. For INS each subgraph contains
about 1/4 of the nodes and 1/20 of the edges, see Figure 3.

80 Sabine Bachl and Franz-Josef Brandenburg

10

20

30

40

50

20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

od
es

 in
 e

ve
ry

 s
ub

gr
ap

h

number of nodes in the graph

threshold
all weights (w0)

degree (w1)
difference of degree (w2)
common neighbours (w3)

new neighbours (w4)
distance (w5)

isomorphic edges (w6)

Fig. 2. Isomorphic edge-induced subgraphs of the second test suite for the 90% best
weighted pairs of starting nodes.

These results are plausible, since for IES the heuristic adds pairs of matching
nodes and ignores only isomorphism violating edges. For INS the isomorphic
subgraphs turn out to be sparse.

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 n

od
es

 in
 e

ve
ry

 s
ub

gr
ap

h

number of nodes in the graph

all weights (w0)
degree (w1)

difference of degree (w2)
common neighbours (w3)

new neighbours (w4)
distance (w5)

isomorphic edges (w6)

Fig. 3. Isomorphic node-induced subgraphs of dense graphs

Computing and Drawing Isomorphic Subgraphs 81

The running time of one subgraph isomorphism detection from a single pair
of nodes takes less than one second for our largest graphs. The total running
time multiplies with the number of pairs of starting nodes, and is between two
and 100 seconds for the largest graphs.

4 Drawing Isomorphic Subgraphs

In this section, we consider graphs with a pair of isomorphic subgraphs and
their drawings. Sometimes, classical graph drawing algorithms preserve isomor-
phic subgraphs and display them symmetrically. The Reingold and Tilford algo-
rithm [4,29] computes the tree drawing bottom-up, and so preserves isomorphic
subtrees rooted at distinct nodes. It is readily seen that this is no more true
for arbitrary subtrees. To stress this point, Supowit and Reingold [30] have in-
troduced the notion of eumorphous tree drawings. However, eumorphous tree
drawings of minimal width and integral coordinates are NP-hard. Also radial
tree of ordered or embedded trees draw isomorphic rooted subtrees the same.
The radial tree algorithm of Eades [10] squeezes a subtree into a sector with a
wedge in proportion to the number of the leaves of the subtree. Hence, isomor-
phic subtrees get the same wedge and are drawn identically up to translation
and rotation.

It is well-known that spring algorithms tend to display symmetric struc-
tures. This comes from the nature of spring methods, and has been emphasized
by Eades and Lin [12]. For special classes of planar graphs there are efficient
algorithms for the detection and display of symmetries of the whole graphs [18].
For hierarchical graphs (DAGs) symmetry preserving drawing algorithms are
unknown.

This can be resolved by a three-phase method, which is generally applicable
in this framework. If a graph G is partitioned into two node-induced isomorphic
subgraphs H1 and H2 and a remainder R, first construct a drawing of H1 and
take a copy as a drawing of H2. Then H1 and H2 are replaced by two large nodes
and the remainder together with the two large nodes is drawn by some algorithm
in phase two. This algorithm must take the area of the large nodes into account.
And it should take care of the edges entering the graphs H1 and H2. Finally,
the drawings of H1 and H2 are inserted at the large nodes and the edges to the
nodes of H1 and H2 are locally routed on the area of the large nodes.

The drawback of this approach is the third phase, and the difficulties in
routing edges to the nodes of H1 and H2. This may lead to bad drawings with
node-edge crossings, parallel edges, and the destruction of symmetry.

The alternative to the three-phase method is an integrated approach. Here
the preservation of isomorphic subgraphs is built into the drawing algorithms.
As said before, this goes automatically for some tree drawing algorithms, and
is solved here for a spring embedder. Spring algorithms have been introduced
to graph drawing by Eades [11]. Fruchterman and Reingold [15] have simplifed
the forces to improve the running time, which is a critical factor for spring
algorithms. Our algorithm is based on the advanced USE algorithm [13], which

82 Sabine Bachl and Franz-Josef Brandenburg

is included in the Graphlet system and is an extension of GEM [14]. In particular,
USE supports individual distance parameters between any pair of nodes. Other
spring algorithms allow only a uniform distance.

Our goal are identical drawings of isomorphic subgraphs. The input is an
undirected graph G and two isomorphic subgraphs H1 and H2 of G together
with the isomorphism φ from the nodes of H1 to the nodes of H2. If v2 = φ(v1)
then v2 is the copy of v1.

In the initial phase, the nodes of H1 and H2 are placed identically on grid
points (up to a translation). Thereafter the spring algorithm averages the forces
imposed on each node and its copy and moves both simultaneously by the same
vector. This guarantees that H1 and H2 are drawn identically.

Large isomorphic subgraph should be emphasized. They should be separated
from each other and distinguished from the remainder. The distinction can be
achieved by a node colouring. This does not help, if there is no geometric separa-
tion between H1 and H2, which can be enforced by imposing a stronger repelling
force between the nodes of H1 and H2. We use three distance parameters, k1 for
the inner subgraph distance, k2 between H1 and H2, and k3 otherwise, which
k1 < k3 < k2. Additionaly, H1 and H2 are moved by move subgraph(H, f). The
force f is the sum of the forces acting on the subgraph H and an extra repelling
force between the barycenters of H1 and H2.

In a round, all nodes of G are selected in random order and are moved
according to the emanating forces. The algorithm stops, if a certain termination
criterion is accomplished. This is a complex formula with a cooling schedule
given by the USE algorithm, see [13,14]. The extra effort for the computation of
forces between nodes and their copies leads to a slow down of the USE algorithm
by a factor of about 1.5, if the symmetry of isomorphic subgraphs is enforced.

Input: a graph G and its partition into two isomorphic subgraphs H1 and H2,
and a remainder R, and the isomorphism φ : H1 → H2

Initial placement(H1, H2)
while (termination is not yet accomplished) {

forall nodes at random (v, V (G)) {
f = force(v);
if (v ∈ V (H1) ∪ V (H2)) then

f ′ = force(φ(v));
f = f+f ′

2 ;
move node(φ[v], f);

move node(v, f);
}
move subgraph(H1, f1); move subgraph(H2, f2);

}

Fig. 4. Isomorphism keeping spring embedder.

Computing and Drawing Isomorphic Subgraphs 83

Fig. 5. 4 × 4-grid. Fig. 6. Complete graph with 10 nodes.

Figure 4 describes the main steps of the isomorphism preserving spring al-
gorithm. For each node v, force(v) is the sum of the forces acting on v and
move node applies the computed forces to a single node.

The examples shown below are computed by the heuristic and drawn by the
spring algorithm. The most exciting drawings of graphs come from the second

Fig. 7. Graph of test suite 2. The original graph with 30 vertices and 35 edges was
copied and then 2 nodes and 4 edges were added. Our algorithm has re-computed the
isomorphic edge-induced subgraphs. The open nodes belong to the remainder.

84 Sabine Bachl and Franz-Josef Brandenburg

Fig. 8. Graph (number 06549 in [28]) of test suite 3 with 45 nodes, and the computed
isomorphic edge-induced subgraphs.

and third test suites, see Figures 7 and 8. Many more drawings can be found in
[2] or by using the algorithm in Graphlet.

The algorithm produces many nice drawings. However there is space for im-
provements. In Figure 5, for example, if the left subgraph were reflected the grid
were unfolded. The isomorphic subgraphs must therefore be drawn identically
up to translation and reflection. This is an extension of isomorphic subgraphs.

References

1. S. Bachl. Isomorphic subgraphs. Proc. Graph Drawing’99, LNCS 1731 (1999), 286-
296.

2. S. Bachl. Erkennung isomorpher Subgraphen und deren Anwendung beim Zeich-
nen von Graphen. Dissertation, University of Passau, (2001), http://elib.ub.uni-
passau.de/index.html.

3. L. Babai and L.Kucera. Canonical labelling of graphs in average linear time. Proc.
20th IEEE FOCS (1979), 39–46.

4. G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, (1999).

5. T. Biedl, J. Marks, K. Ryall, and S. Whitesides. Graph multidrawing: Finding
nice drawings without defining nice. Proc. Graph Drawing’98, LNCS 1547 (1998),
347-355.

6. F.J. Brandenburg. Pattern matching problems in graphs. Unpublished manuscript,
(2000).

7. H.-L. Chen, H.-I. Lu and H.-C. Yen. On maximum symmetric subgraphs. Proc.
Graph Drawing’00, LNCS 1984 (2001), 372–383.

8. J. Clark and D. Holton. Graphentheorie - Grundlagen und Anwendungen. Spek-
trum Akademischer Verlag, (1991).

9. D. Corneil and D. Kirkpatrick. A theoretical analysis of various heuristics for the
graph isomorphism problem. SIAM J. Comput. 9, (1980), 281–297.

10. P. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics and its
Applications 5, (1992), 10–36.

Computing and Drawing Isomorphic Subgraphs 85

11. P. Eades. A heuristic for graph drawing. Cong. Numer. 42, (1984), 149–160.
12. P. Eades and X. Lin. Spring algorithms and symmetry. Theoret. Comput. Sci. 240

(2000), 379–405.
13. M. Forster. Zeichnen ungerichteter Graphen mit gegebenen Knotengrößen durch

ein Springembedder-Verfahren. Diplomarbeit, Universität Passau, (1999).
14. A. Frick, A. Ludwig and H. Mehldau. A fast adaptive layout algorithm for undi-

rected graphs. Proc. Graph Drawing’94, LNCS 894 (1995), 388–403.
15. T. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement.

Software – Practice and Experience 21, (1991), 1129–1164.
16. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, San Francisco, (1979).
17. A. Gupta and N. Nishimura. The complexity of subgraph isomorphism for classes

of partial k-trees. Theoret. Comput. Sci. 164, (1996), 287–298.
18. S.-H. Hong, B. McKay and P. Eades. Symmetric drawings of triconnected planar

graphs. Proc. 13 ACM-SIAM Symposium on Discrete Algorithms (2002), 356–365.
19. I. Koch. Enumerating all connected maximal common subgraphs in two graphs.

Theoret. Comput. Sci. 250, (2001), 1–30.
20. G. Levi. A note on the derivation of maximal common subgraphs of two directed

or undirected graphs. Calcolo 9, (1972), 341–352.
21. A. Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM J.

Comput. 10, (1981), 11–21.
22. J. Manning. Geometric symmetry in graphs. Ph.D. thesis, Purdue Univ., (1990).
23. J. Manning. Computational complexity of geometric symmetry detection in graphs.

LNCS 507, (1990), 1–7.
24. Passau Test Suite. http://www.infosun.uni-passau.de/br/isosubgraph.
25. H. Purchase, R. Cohen and M. James. Validating graph drawing aesthetics. Proc.

Graph Drawing’95, LNCS 1027 (1996), 435–446.
26. H. Purchase. Which aesthetic has the greatest effect on human understanding.

Proc. Graph Drawing’97, LNCS 1353 (1997), 248–261.
27. R.C. Read and R.J. Wilson An Atlas of Graphs. Clarendon Press Oxford (1998)
28. Roma Graph Library. http://www.inf.uniroma3.it/people/gdb/wp12/LOG.html.
29. E.M. Reingold and J.S. Tilford. Tidier drawings of trees. IEEE Trans. SE 7, (1981),

223-228.
30. K.J. Supowit and E.M. Reingold. The complexity of drawing trees nicely. Acta

Informatica 18, (1983), 377-392.
31. J.R. Ullmann. An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach.

16, (1970), 31–42.

http://www.infosun.uni-passau.de/br/isosubgraph
http://www.inf.uniroma3.it/people/gdb/wp12/LOG.html

	Computing and Drawing Isomorphic Subgraphs
	1 Introduction
	2 Isomorphic Subgraphs
	3 Computing Isomorphic Subgraphs
	4 Drawing Isomorphic Subgraphs
	References

