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Abstract. We show that graph-theoretic thickness and geometric thick-
ness are not asymptotically equivalent: for every t, there exists a graph
with thickness three and geometric thickness ≥ t.

1 Introduction

The graph-theoretic property of thickness and its variants formalize the concept
of layered graph drawing, in which a graph must be drawn in multiple layers
(or with multiple colors) so that each edge belongs to a single layer and no two
edges in the same layer cross. The vertices of the graph should be represented
as points and should exist in the same positions in each layer. There are three
important variants of thickness:

– The thickness of a graph G, denoted θ(G), is the minimum number of layers
for which a drawing of G exists, without restriction on the number of bends
per edge [11].

– The geometric thickness of a graph G, denoted θ̄(G), also known as real
linear thickness, is the minimum number of layers for which a drawing exists
without any bends in the edges: each edge must be represented as a straight
line segment [5, 11].

– The book thickness of a graph G, denoted bt(G), is the minimum number of
layers for which a drawing exists without any bends in the edges and with
all vertices placed in convex position [4].

Since each variant imposes additional constraints on the previous one, these
parameters are always ordered: θ(G) ≤ θ̄(G) ≤ bt(G), and it is of interest to
determine how tight these inequalities are. Due to Fáry’s theorem [7], the graphs
with thickness one and geometric thickness one coincide (both are just the planar
graphs), and are a strict superset of the graphs with book thickness one (the
outerplanar graphs). Thickness and geometric thickness were known to differ
for infinitely many graphs: in particular, complete graphs on n vertices have
thickness n/6 +O(1) [1, 2, 3, 13, 14] but have geometric thickness ≥ n/5.646 [5].
In previous work [6] we showed that book thickness can not be bounded by any
function of the geometric thickness: for any t there exists a graph with geometric
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Fig. 1. Graph Gz (8) drawn with geometric thickness two. 

thickness two and book thickness > t .  Therefore, one can not hope to find near- 
optimal bend-free layered drawings by placing all vertices in convex position. 

In this paper, we prove a similar separation between thickness and geometric 
thickness: for any t there exists a graph with thickness three and geometric 
thickness > t .  This implies that known strategies for approximating thickness 
(layered drawing with bends) will not lead to good approximation algorithms 
for layered drawing without bends. 

2 Proof Outline 

The overall outline of our proof is very similar to our previous result, separating 
geometric thickness from book thickness, so as a warmup we review that result. 

Theorem 1 (Eppstein [6]). For every t ,  a graph exists ,with geometric thick- 
ness two and book thickness > t .  

Proof. For any 7% > 0, define a graph G2(n) having as its n + (;) vertices the 
singleton and doubleton subsets of an n-element set, with an edge between two 
subsets when one is contained in the other. G2(n) can be drawn with geometric 
thicksless two using a construction related to a one-bend drawing algorithm of 
Wood [15]; a two-layer drawing of G2 (8) is shown in Figure 1. However, G2 (5) 
is nonplanar (it is formed by subdividing each edge of the nonplanar complete 
graph K5) so it has book thickness greater than two. 

By Ramsey theory (Lemma I ) ,  there exists an no such that, if the edges 
of G2(no) are given t - 1 colors, one can find a two-colored G2(5) subgraph. 
If the (t - 1)-coloring is determined by a book embedding with t - 1 layers, 
the subgraph would have a twelayer book embedding. Since no such two-layer 
embedding exists, G2(no) does not have a (t - 1)-layer book embedding. 
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Fig. 2. Graph G3(5). The circular vertices represent singleton subsets, and the trian-
gular vertices represent tripleton subsets.

Our main result is the following theorem.

Theorem 2. For every t, a graph exists with thickness three and geometric
thickness ≥ t.
Proof. For any n > 0, define a graph G3(n) having as its n +

(
n
3

)
vertices the

singleton and tripleton subsets of an n-element set, with an edge between two
subsets when one is contained in the other. G3(4) forms the vertices and edges
of a cube; G3(5) is depicted in Figure 2. If we assign the edges of G3(n) to three
layers, in such a way that the three edges incident to each tripleton are assigned
to different layers, then each layer will form a forest of stars, which is a planar
graph, so G3(n) has thickness at most three. We show that there exists an n1
such that G3(n1) has geometric thickness more than three (Lemma 19).

By Ramsey theory (Lemma 1), there exists n2 such that, if the edges of
G3(n2) are given t − 1 colors, it has a three-colored G3(n1) subgraph. If the
(t − 1)-coloring is determined by a (t − 1)-layer geometric embedding, the sub-
graph would have a three-layer geometric embedding. Since no such three-layer
embedding exists, G3(n2) does not have a (t−1)-layer geometric embedding. ��

The difficult part of our proof is Lemma 19, showing that some G3(n) has
geometric thickness greater than three. The proof involves a complicated case
analysis, with Ramsey theory used again at several stages in order to show that,
if a thickness-three drawing existed, one could find a drawing with a simplified
form that can be shown not to exist.

3 Ramsey Theory

We use the following classical result from Ramsey theory [?, Theorem 2]:

Lemma 1. For every three positive integers c, e, and � there is an integer
Re(�; c) with the following property: if |S| ≥ Re(�; c) and the e-element subsets
of S are partitioned into c classes, then there exists a set T ⊂ S with |T | ≥ � so
that all e-element subsets of T belong to the same class.
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For instance, in the proof of Theorem 1, we choose c =
(
t−1
2

)
+ t− 1, e = 2,

and � = 5. The set S is the set of singletons in G2(n0), and the doubletons in
G2(n0) are partitioned into c classes by the colors of their two incident edges.
The Lemma tells us that we can find a two-colored G2(5) subgraph of G2(n0).
Similarly, in Theorem 2 we can find a three-colored G3(n1) subgraph of G3(n2).

We also use another well-known Ramsey-theoretic result [?, pp. 24–25]:

Lemma 2. For every integer k there is an integer N(k) with the following prop-
erty: if N(k) points are placed in the plane with no three points colinear, then
some subset of k points form the vertices of a convex polygon.

4 Coherent Drawings

Define a convex drawing of G3(n) to be a drawing with geometric thickness three
in which all singletons are in convex position. We do not restrict the positions
of the tripletons.

Lemma 3. If every graph G3(n) has geometric thickness three, then every G3(n)
has a convex drawing.

Proof. Small perturbations of the vertex locations in a layered drawing will not
create or remove crossings, so we can assume no three vertices are colinear. To
form a convex drawing of G3(n), apply Lemma 2 to the singletons of G3(N(n)),
and form a G3(n) subgraph from the resulting convex set of n singletons and
their adjacent tripletons. ��

We number the singleton vertices of a convex drawing in clockwise order from
0 to n − 1, starting from an arbitrarily chosen vertex. Using this numbering,
we can partition the edges of G3(n) into three classes: a low edge connects
a tripleton to the adjacent singleton with the smallest number, a high edge
connects a tripleton to the adjacent singleton with the largest number, and a
middle edge connects a tripleton to the remaining adjacent singleton. Define a
coherent drawing of G3(n) to be a convex drawing in which these three classes
form the three layers of the drawing.

Lemma 4. If every graph G3(n) has geometric thickness three, then every G3(n)
has a coherent drawing.

Proof. By Lemma 3 we can assume G3(n) has a convex drawing. Partition the
tripletons of such a drawing into 27 classes according to the layers to which the
incident low, middle, and high edges belong. By Lemma 1 with c = 27 and e = 3,
we can find a drawing in which each of the three sets of edges belongs to a single
layer. If this results in more than one set belonging to the same layer, we can
move sets to distinct layers without introducing any crossings. ��

In a coherent drawing, we will denote tripletons by triples of symbols abc,
where each letter denotes the position of an adjacent singleton in the clockwise
ordering of the drawing, and a < b < c according to the clockwise ordering.
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Fig. 3. Five tripletons crossing each other convexly (left) or concavely (right), from 
Lemma 6. 

5 Restriction to  Outer Drawings 

Define an inner drawing of G3(n) to be a coherent drawing such that some 
strictly convex curve C passes through all singletons and contains all tripletons. 
Similarly, define an outer drawing to be a coherent drawing such that some 
strictly convex curve C passes through all singletons and contains no tripletons. 
A drawing can be both inner and outer, for instance if all vertices are in convex 
position. In an inner drawing, all edges are contained in C; however an edge in 
an outer drawing may have portions inside C and portions outside C .  

Lemma 5. Suppose two tripletons abc and def  are part of a n  inner drawing, 
with a < d < c < f .  Then  either the low edge of abc crosses the high edge of 
de f ,  or the high edge of abc crosses the low edge of de f . However, both types of 
crossing can not occur simultaneously. 

Proof. Consider the two paths formed by the low and high edges of each triple- 
ton. These paths cross C and each path separates the endpoints of the other 
path; therefore the paths cross an odd number of times. However, each pair of 
edges can cross only once, and the only types of crossing permitted are those 
described in the lemma, so exactly one of these crossings occurs. 

We say that the two tripletons cross convexly if the low edge of abc crosses 
the high edge of de f ,  and that they cross concavely in the other case of Lemma 5. 

Lemma 6. There exists a n  n3 such that G3(n3) does not  have a n  inner drawing. 

Proof. Let n be sufficiently large, and assume for convenience that n = 2 
(mod 4). Consider the sequence of tripletons 2i, n/2, n/2 + 2i + 2 for 0 < i < 
n/2 - 2; each pair of tripletons meets the conditions of Lemma 5. By applying 
Lemma 1 with c = 2, e = 2, and t = 5, for sufficiently large n,  we can obtain a 
set of five such triples that all cross convexly or all cross concavely. As Figure 3 
shows, in either case, the low and high edges of these crossing triples form a grid 
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Fig. 4. Forced crossings in an inner drawing, from Lemma 6.

graph, containing a complete 2×2 subgrid. (The quadrilaterals of this grid need
not always be convex, but this does not affect our argument.)

Because we chose tripletons using only every other singleton from the order-
ing, it is now possible to find singletons a and b that lie between the three low
edges forming the 2 × 2 subgrid, and e and f that lie between the three high
edges forming the subgrid (Figure 4). Therefore, any tripleton with a low edge
to a or b and a high edge to e or f must be forced to lie within a particular
square of the subgrid.

Extend the two middle line segments of the subgrid into lines across curve C
(the thin dotted lines of the figure), partitioning C into three curves: the curve
clockwise of both extended lines, the curve counterclockwise of the extended
lines, and the curve between the two lines. The four points n/2−2, n/2−1, n/2,
n/2 + 1 lie between b and e, and by the pigeonhole principle we can find two of
these points c < d that are both within the same one of these three curves.

If c and d are both in the center curve of the three curves (shown in the left
side of the figure) then tripletons ace and bdf must have crossing middle edges.
If c and d are both in the counterclockwise curve (shown on the right side of the
figure), then tripletons adf and bce must have crossing middle edges; the case
in which c and d belong to the clockwise curve is symmetric. Thus, in all cases
two tripletons have crossing middle edges, contradicting the assumption that we
have a three-layer drawing with no crossings. ��

Lemma 7. If every graph G3(n) has geometric thickness three, then every G3(n)
has an outer drawing.

Proof. Assume without loss of generality that n is sufficiently large that, by
Lemma 6, no inner drawing of G3(n) exists. Let r = R3(n; 2), as shown to exist
in Lemma 1. By Lemma 4, we can assume G3(r) has a coherent drawing. Let C
be the convex hull of the singletons of this drawing, and perturb C if necessary
so that it remains convex and does not pass through any tripletons. Partition
the tripletons of the drawing into two classes according to whether they are
inside or outside C, and apply Lemma 1 with c = 2 and e = 3 to find a drawing
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Fig. 5. Left: Forced crossing in an outer drawing of type 201, from Lemma 9. Right:
Sharp angles in an outer drawing of type 021, from Lemma 10.

of G3(n) in which all triples are inside C or all triples are outside C. Since no
inner drawing exists, all triples are outside C, and we have an outer drawing of
G3(n). ��

6 Classification of Outer Drawings

In an outer drawing, the three angles formed by the three edges incident to a
tripleton must include an angle greater than 180◦, and we can order the three
edges clockwise starting at this large angle. Define the type of a tripleton to be
a symbol xyz, where x, y, and z form a permutation of 0, 1, and 2, and where
the positions of the low, middle, and high number in the symbol are the same
as the positions of the low, middle, and high edge in the clockwise ordering at
the tripleton. There are six possible types: 012, 021, 102, 120, 201, and 210. If
all tripletons in a drawing have the same type xyz, we say that the drawing is
of type xyz.

Lemma 8. If every graph G3(n) has geometric thickness three, then every G3(n)
has an outer drawing in which all tripletons have the same type.

Proof. By the previous lemma, we can assume that we have an outer drawing
with sufficiently many vertices, to which we can apply Lemma 1 with c = 6 and
e = 3. ��

We now successively analyze each type of outer drawing and show that, for
sufficiently large n, each type must lead to a crossing.

Lemma 9. For n ≥ 4, G3(n) has no outer drawing of type 201 or 120.

Proof. In a drawing of type 201, each low edge of a tripleton must cross the
convex curve C between the middle and high sigletons adjacent to the tripleton.
Therefore, in a drawing of G3(4), the low edge from tripleton 012 would cross
the low edge from tripleton 123, as shown in Figure 5. Type 120 is equivalent
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to type 201 under mirror reversal of the drawing and reversal of the clockwise
ordering of the singletons. ��

Lemma 10. In any outer drawing of G3(4) of type 021, let θi denote the angle
at singleton i on the convex hull of the singletons. Then θ1 + θ2 < 180◦.

Proof. In order to be of type 021, tripleton 012 must lie in a wedge outside C
bounded by lines 02 and 12 (the shaded area on the upper right of Figure 5).
The low edge e0 from 0 to 012 crosses line 12 on the boundary of this wedge.
Similarly, the low edge e1 from 1 to tripleton 123 crosses line 23. In order for
e1 to reach this line without crossing e0, tripleton 123 must be clockwise from
singleton 0 as viewed from singleton 1, so angle 123-1-2 must be greater than
θ1. But in order for the crossing of e1 with line 23 to be on the boundary of
the wedge containing 123 (shown as the lower shaded area in the figure), angle
123-1-2 must be less than 180◦ − θ2. Combining these two inequalities gives the
result. ��

Lemma 11. For n ≥ 6, G3(n) has no outer drawing of type 021 or 102.

Proof. By applying Lemma 10 twice, θ1 + θ2 + θ3 + θ4 < 360◦, but this is not
possible in a convex polygon. Type 102 is equivalent to type 021 under mirror
reversal. ��

Lemma 12. In an outer drawing of G3(n) of type 012, the middle edges adjacent
to singletons 2, 3, . . ., n− 3 all pass across line segment 0-(n− 1).

Proof. By the assumption that the drawing is of type 012, the middle edges of
the tripletons 0i(n−1) all pass across this segment (Figure 6, left). In any other
singleton abc, the middle edge must pass from b across line segment ac within
the convex curve C. Unless b = 1 or b = n− 2, this crossing with ac must occur
within a strip bounded by two of the middle edges of tripletons 0i(n − 1), and
the only way for the middle edge from b to exit C is at the end of this strip,
where it meets segment 0-(n− 1). ��

Lemma 13. Suppose we have an outer drawing of G3(n) of type 012, in which
all middle edges cross segment 0-(n − 1). Draw a tangent line to convex curve
C parallel to line 0-(n − 1), on the opposite side of C from that line, and let h
be a point where the tangent line touches C. Then, for every tripleton ijk where
i is clockwise from h, the low edge from i to ijk crosses C either at a point
counterclockwise from h or between singletons 0 and n− 1.

Proof. By the assumption of the drawing type, all low edges must cross line 0-
n−1 to the left of the crossing point of the middle edge, which is between points
0 and n− 1. If the low edge’s crossing is not also between points 0 and n− 1, it
must be to the left of point 0. But, within the strip between line 0-(n− 1) and
the parallel tangent line, the portion of C between 0 and h separates the rest of
C (containing i) from the points left of point 0 (as shown in Figure 6, right), so
the low edge most cross C before it reaches its crossing with line 0-(n− 1). ��
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Fig. 6. Analysis of outer drawings of type 012. Left, the middle edges of the triple-
tons 0i(n − 1) form tracks that force the remaining middle edges to cross segment
0-(n − 1) (Lemma 12). Right, low edges from clockwise of the tangent point h cross C
counterclockwise of the tangent point (Lemma 13).

Symmetrically, the high edges from counterclockwise of h must cross C clock-
wise of h.

Lemma 14. For sufficiently large n, G3(n) has no outer drawing of type 012.

Proof. Start with an outer drawing of type 012, and remove singletons 1 and
n−2 if necessary so that (by Lemma 12) all middle edges cross segment 0-(n−1).
Form the tangent point h described in Lemma 13, and assume without loss of
generality that at least half of the remaining singletons lie clockwise of h on
convex curve C. (The case that at least half the singletons lie counterclockwise
of h is symmetric.) Remove from the drawing all points counterclockwise of h.
The result is an outer drawing of type 012 of a graph G3(m), with at least
m ≥ (n − 2)/2 singletons, in which all low and middle edges cross segment 0-
(m− 1). We can now apply the same reasoning as in Lemma 6: by choosing an
appropriate set of tripletons, we can find a set of low and middle edges forming
a grid that contains a complete 2 × 2 subgrid, and use the subgrid to constrain
the locations of two more tripletons, forcing two high edges to cross. ��

Lemma 15. In an outer drawing of G3(n) of type 210, each middle edge is
completely exterior to convex curve C.

Proof. Suppose to the contrary that a middle edge for tripleton ijk crosses C at
point x. If x is clockwise of j, an edge from ijk to C clockwise of the middle edge
can only reach singletons in the range from j to x, contradicting the requirement
(from the assumption of the drawing type) that the low edge i-ijk must be
clockwise of the middle edge. Symmetrically, if x is counterclockwise of j, an
edge counterclockwise of the middle edge can only reach singletons in the range
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Fig. 7. In an outer drawing of type 210, low edges from singletons 0 and 1 cross disjoint
ranges of the convex curve C (Lemma 17).

from x to j, contradicting the requirement that the high edge must be clockwise
of the middle edge. ��

The same reasoning as above also proves the following lemma:

Lemma 16. In an outer drawing of G3(n) of type 210, suppose that the low edge
of tripleton ijk crosses the convex curve C. Then the crossing point is clockwise
of singleton i.

Lemma 17. Suppose that G3(n) has a convex drawing of type 210, and let n =
2k − 2 Then we can select a subset S of the singletons, with |S| = k, such that
no member of S is incident to a low edge that crosses the convex hull of S.

Proof. We use induction on k. As a base case, for k = n = 2, G3(2) has no
edges. Otherwise, consider the sets of low edges incident to singletons 0 and
1 that cross convex curve C. Since these two sets of low edges do not cross
each other (Figure 7), we can partition the portion of C clockwise of 1 into
two parts, where the clockwise part of C is crossed only by low edges from 0
and the counterclockwise part of C is crossed only by low edges from 1. One
of these two parts contains at least (n − 2)/2 singletons. If the clockwise part
contains many singletons, we apply the induction hypothesis to these singletons,
and form S by adding singleton 1 to the resulting set. On the other hand, if the
counterclockwise part contains many singletons, we add singleton 0 to the set
formed by applying the induction hypothesis to the singletons in this part.

In either case, we get a set S of (k − 1) + 1 = k singletons. The low edges
from 0 or 1 (whichever was included in the set) can not cross the hull, because
of how we chose which part of C to apply the induction hypothesis to. The low
edges from the remaining members of S can not cross the hull between 0 or 1
and the rest of S, by Lemma 16, and they can not cross the hull elsewhere by
induction. Therefore S fulfills the conditions of the lemma. ��

Lemma 18. Not every graph G3(n) has an outer drawing of type 210.

Proof. By Lemma 17, if G3(n) has such a drawing, then we can find a set of k
singletons, and a convex curve C (the hull of this set), forming an outer drawing
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Fig. 8. Schematic view of drawing of G3(8) with geometric thickness three.

of G3(k) in which all low and middle edges avoid the interior of convex curve
C; here k = 	log2(n+ 2)
. We can now apply the same reasoning as in Lemmas
6 and 14: by choosing an appropriate set of tripletons, we can find a set of low
and middle edges forming a grid that contains a complete 2×2 subgrid, and use
the subgrid to constrain the locations of two more tripletons, forcing two high
edges to cross. ��

7 Completion of the Proof

Lemma 19. Not every graph G3(n) has geometric thickness at most three.

Proof. This follows from Lemma 8 (showing that we can restrict our attention
to outer drawings of fixed type) and Lemmas 9, 11, 14, and 18 (showing that
each fixed type leads to a forced crossing). ��

The largest n for which G3(n) has no thickness-three drawing must be at
least nine, as G3(8) has geometric thickness at most three: draw four singleton
subsets in a large square, with the remaining four singletons and all tripletons
clustered near the center of the square. The edges incident to the inner four
singletons form a planar graph, consisting of a cube G3(4), 24 two-edge paths
across the faces of the cube, and 24 tripletons with only a single edge to one of
the inner singletons. By choosing an appropriate Fáry embedding of this planar
graph, we can draw it in a single layer, and use an additional layer for the edges
incident to each pair of opposite outer singletons. Figure 8 shows this drawing in
a schematic view, with the outer four vertices and inner cube visible but omitting
the remaining tripletons.

8 Conclusions

We have shown that thickness and geometric thickness are not asymptotically
equivalent. Some interesting open questions remain:
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– What can be said about two-layer drawings? It is known that there exist
graphs, for instance K6,8, for which θ(G) = 2 and θ̄(G) > 2 [12,5]. Can θ̄(G)
be unbounded when θ(G) = 2?

– Four-regular graphs have thickness at most two. Do random four-regular
graphs have bounded expected geometric thickness? More generally, can one
bound the geometric thickness of a graph as some function of its degree?

– Due to our use of Ramsey theory, our lower bounds on geometric thickness
grow only very slowly as a function of the number of vertices. Can we find
good upper bounds for geometric thickness as a combination of the graph-
theoretic thickness and a slowly growing function of the graph size?

– What is the complexity of computing θ̄(G) for a given graph G [5]?
– Thickness is NP-hard [12] but not difficult to approximate to within a con-

stant factor; e.g., it is within a factor of three of the graph’s arboricity. Our
new results imply that these approximations do not directly extend to geo-
metric thickness. Is there an efficient algorithm for layered drawing of graphs
without bends, using a number of layers within a constant factor of optimal?

Acknowledgements

This work was supported in part by NSF grant CCR-9912338.

References
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7. I. Fáry. On straight line representation of planar graphs. Acta Sci. Math. Szeged.
11:229–233, 1948.

8. R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. Wiley, 1980.
9. N. Hartsfield and G. Ringel. Pearls in Graph Theory. Academic Press, Boston,

MA, 1990.
10. B. Jackson and G. Ringel. Plane constructions for graphs, networks, and maps:

Measurements of planarity. Selected Topics in Operations Research and Mathemati-
cal Economics: Proc. 8th Symp. Operations Research, pp. 315–324. Springer-Verlag,
Lecture Notes in Economics and Mathematical Systems 226, August 1983.

11. P. C. Kainen. Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg
39:88–95, 1973.



162 David Eppstein

12. A. Mansfield. Determining the thickness of a graph is NP-hard. Math. Proc.
Cambridge Philos. Soc. 93(9):9–23, 1983.

13. J. Mayer. Decomposition de K16 en trois graphes planaires. J. Comb. Th., Ser. B
13:71, 1972.

14. J. Vasak. The thickness of the complete graph having 6m+4 points. Manuscript,
cited in [9] and [10].

15. D. R. Wood. Geometric thickness in a grid of linear area. Proc. Eu-
roconf. Combinatorics, Graph Theory, and Applications, pp. 310–315. Univ.
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http://www.cs.usyd.edu.au/∼davidw/papers/Wood-COMB01.ps.

http://www.cs.usyd.edu.au/~davidw/papers/Wood-COMB01.ps

	Separating Thickness from Geometric Thickness
	1 Introduction
	3 Ramsey Theory
	4 Coherent Drawings
	6 Classification of Outer Drawings
	7 Completion of the Proof
	8 Conclusions
	Acknowledgements
	References




