Skip to main content

On the Comparison-Addition Complexity of All-Pairs Shortest Paths

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2518))

Abstract

We present an all-pairs shortest path algorithm for arbitrary graphs that performs O(mn log α) comparison and addition operations, where m and n are the number of edges and vertices, resp., and α = α(m, n) is Tarjan’s inverse-Ackermann function. Our algorithm eliminates the sorting bottleneck inherent in approaches based on Dijkstra’s algorithm, and for graphs with O(n) edges our algorithm is within a tiny O(log α) factor of optimal. The algorithm can be implemented to run in polynomial time (though it is not a pleasing polynomial). We leave open the problem of providing an efficient implementation.

This work was supported by Texas Advanced Research Program Grant 003658-0029-1999, NSF Grant CCR-9988160, and an MCD Graduate Fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 2001.

    Google Scholar 

  2. E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5 (1976), no. 1, 83–89.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. In JACM 34 (1987), 596–615.

    Article  MathSciNet  Google Scholar 

  5. H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In 26th Ann. Symp. on Foundations of Computer Science (FOCS 1985), 90–99.

    Google Scholar 

  6. T. Hagerup. Improved shortest paths on the word RAM. In Proceedings 27th Int’l Colloq. on Automata, Languages and Programming (ICALP 2000), LNCS volume 1853, 61–72.

    Chapter  Google Scholar 

  7. D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. JACM 24 (1977), 1–13.

    Article  MATH  Google Scholar 

  8. D. R. Karger, D. Koller, S. J. Phillips. Finding the hidden path: time bounds for all-pairs shortest paths. SIAM J. on Comput. 22 (1993), no. 6, 1199–1217.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse graphs. Proceedings 29th Int’l Colloq. on Automata, Languages and Programming (ICALP 2002), LNCS 2380, 85–97.

    Chapter  Google Scholar 

  10. S. Pettie. On the comparison-addition complexity of all-pairs shortest paths. UTCS Technical Report TR-02-21, May 2002.

    Google Scholar 

  11. S. Pettie, V. Ramachandran. Computing shortest paths with comparisons and additions (extended abstract). Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, 267–276.

    Google Scholar 

  12. S. Pettie, V. Ramachandran, S. Sridhar. Experimental evaluation of a new shortest path algorithm. 4th Workshop on Algorithm, Engineering and Experiments (ALENEX), 2002.

    Google Scholar 

  13. G. Ramalingam, T. Reps. An incremental algorithm for a generalization of the shortest path problem. J. Algorithms 21 (1996), 267–305.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Takaoka. A new upper bound on the complexity of the all pairs shortest path problem. Inform. Process. Lett. 43 (1992), no. 4, 195–199.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Thorup. Undirected single source shortest paths with positive integer weights in linear time. JACM 46 (1999), no. 3, 362–394.

    Article  MATH  MathSciNet  Google Scholar 

  16. U. Zwick. Exact and approximate distances in graphs — A survey. Updated version at http://www.cs.tau.ac.il/zwick/ Proc. of 9th ESA (2001), 33–48.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pettie, S. (2002). On the Comparison-Addition Complexity of All-Pairs Shortest Paths. In: Bose, P., Morin, P. (eds) Algorithms and Computation. ISAAC 2002. Lecture Notes in Computer Science, vol 2518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36136-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36136-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00142-3

  • Online ISBN: 978-3-540-36136-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics