Skip to main content

Contacting Individual Molecules Using Mechanically Controllable Break Junctions

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

Among the experimental techniques employed in contacting individual molecules Mechanically Controllable Break Junctions are being frequently used. Some of the advantages are (1) straight-forward preparation of clean surfaces for anchoring the molecule; (2) the possibility to produce many different single-molecule junctions in one experiment, allowing obtaining statistical averages; (3) adapting the electrode gap to the molecules’ length; (4) control over the mechanical stress of the molecule. We briefly review results obtained on organic molecules anchored to gold electrodes by thiol groups, both at room temperature and at cryogenic temperatures, and experiments on simple molecules chemisorbed to platinum electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Joachim, J.K. Gimzewski, R.R. Schlitter, C. Chavy: Electronic transparence of a single C60 molecule, Phys. Rev. Lett. 74, 2102–2105 (1995)

    Article  ADS  Google Scholar 

  2. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay: Reproducible measurement of singlemolecule conductivity, Science 294, 571–574 (2001)

    Article  ADS  Google Scholar 

  3. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L.M. Euen: Fabrication of metallic electrodes with nanometer separation by electromigration, Appl. Phys. Lett. 75, 301–303 (1999)

    Article  ADS  Google Scholar 

  4. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.L. Brédas, N. Stuhr-Hansen, P. Hedegård, T. Bjørnholm: Single-electron transistor of a single organic molecule with access to several redox states, Nature (London) 425, 698–701 (2003)

    Article  ADS  Google Scholar 

  5. Y.V. Kervennic, J.M. Thijssen, D. Vanmaekelbergh, R. Dabirian, C.A. van Walree, L.W. Jenneskens, H.S.J. van der Zant: “Orbital transport in a molecular transistor”, unpublished

    Google Scholar 

  6. A.Y. Kasumov, D. Klinov, P.E. Roche, S. Gueron, H. Bouchiat: Thickness and low-temperature conductivity of DNA molecules, Appl. Phys. Lett. 84, 1007–1009 (2004)

    Article  ADS  Google Scholar 

  7. T. Heim, D. Deresmes, D. Vuillaume: Conductivity of DNA probed by conducting-atomic force microscopy: effects of contact electrode, DNA structure, and surface interactions., J. Appl. Phys. 96, 2927–2936 (2004)

    Article  ADS  Google Scholar 

  8. M. Morgenstern, J. Kljn, C. Meyer, D. Haude, R. Wiesendanger: Visualizing the influence of interactions on the nanoscale: simple electron systems, American Institute of Physics Conference Proceedings pp. 11–19 (2003)

    Google Scholar 

  9. R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, F. Besenbacher: Oxygen-mediated diffusion of oxygen vacancies on the TiO2/(110) surface, Science 299, 377–379 (2003)

    Article  ADS  Google Scholar 

  10. L. Kuipers, M. Hoogeman, J. Frenken, H. van Beijeren: Step and kink dynamics on Au (110) and Pb (111) studied with a high-speed stm., Phys. Rev. B 52, 11387–11397 (1995)

    Article  ADS  Google Scholar 

  11. D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope., Nature 344, 524–526 (1990)

    Article  ADS  Google Scholar 

  12. M. Herz, F.J. Giessibl, J. Mannhart: Probing the shape of atoms in real space, Phys. Rev. B 68, 045–301 (2003)

    Google Scholar 

  13. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler: Molecule cascades, Science 298, 1381–1387 (2002)

    Article  ADS  Google Scholar 

  14. A.F. Morpurgo, C.M. Marcus, D.B. Robinson: Controlled fabrication of metallic electrodes with atomic separation, Phys. Rev. Lett. 74, 2084–2086 (1999)

    Google Scholar 

  15. N.B. Zhitenev, A. Erbe, Z. Bao: Single- and multigrain nanojunctions with a self-assembled monolayer of conjugated molecules, Phys. Rev. Lett. 92, 186 805/1–4 (2004)

    Article  ADS  Google Scholar 

  16. A.R. Champagne, A.N. Pasupathy, D.C. Ralph: “Mechanically-adjustable and electrically-gated single-molecule transistors”, preprint, cond-mat/0409134

    Google Scholar 

  17. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J. M.Tour: Conductance of a molecular junction, Science 278, 252–254 (1997)

    Article  Google Scholar 

  18. J. Moreland, J.W. Ekin: Electron tunneling experiments using Nb-Sn ‘break’ junctions, J. Appl. Phys. 58, 3888–3895 (1985)

    Article  ADS  Google Scholar 

  19. C.J. Muller, J.M. van Ruitenbeek, L.J. de Jongh: Experimental observation of the transition from weak link to tunnel junction, Physica C 191, 485–492 (1992)

    Article  ADS  Google Scholar 

  20. J.M. van Ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez, M.H. Devoret, D. Esteve, C. Urbina: Adjustable nanofabricated atomic size contacts, Rev. Sci. Instrum. 67, 108–111 (1996)

    Article  ADS  Google Scholar 

  21. C. Kergueris, J.P. Bourgoin, S. Palacin, D. Esteve, U. Urbina, M. Magoga, C. Joachim: Electron transport through a metal-molecule-metal junction, Phys. Rev. B 59, 12 505–12 513 (1999)

    Article  ADS  Google Scholar 

  22. J. Reichert, R. Ochs, D. Beckmann, H. Weber, M. Mayor, H. v. Löhneysen: Driving current through single organic molecules, Phys. Rev. Lett. 88, 176 804/1–4 (2002)

    ADS  Google Scholar 

  23. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek: Measurement of a conductance of a hydrogen molecule, Nature 419, 906–908 (2002)

    Article  ADS  Google Scholar 

  24. T. Böhler, J. Grebing, A. Mayer-Gindner, H. v. Löhneysen, E. Scheer: Mechanically controllable breakjunctions for use as electrodes for molecular electronics, Nanotechnology 15, 465–471 (2004)

    Article  Google Scholar 

  25. N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek: Quantum properties of atomicsized conductors, Phys. Rep. 377, 81–279 (2003)

    Article  ADS  Google Scholar 

  26. C. Zhou, C.J. Muller, M.R. Deshpande, J.W. Sleight, M.A. Reed: Microfabrication of a mechanically controllable break junction in silicon, Appl. Phys. Lett. 67, 1160–1162 (1995)

    Article  ADS  Google Scholar 

  27. J. Reichert, H.B. Weber, M. Mayor, H. von Löhneysen: Low-temperature conductance measurements on single molecules, Appl. Phys. Lett. 82, 4137–4139 (2003)

    Article  ADS  Google Scholar 

  28. D. Djukic, K.S. Thygesen, C. Untiedt, R.H.M. Smit, K.W. Jacobsen, J. van Ruitenbeek: “Stretching dependence of the vibration modes of a single-molecule Pt-H2-Pt bridge”, preprint, cond-mat/0409640

    Google Scholar 

  29. K.S. Thygesen, K.W. Jacobsen: Conduction mechanism in a molecular hydrogen contact, Phys. Rev. Lett. 94, 036 807/1–4 (2005)

    ADS  Google Scholar 

  30. S. Csonka, A. Halbritter, G. Mihály, O.I. Shklyarevskii, S. Speller, H. van Kempen: Conductance of Pd-H nanojunctions, Phys. Rev. Lett. 93, 016 802/1–4 (2004)

    Google Scholar 

  31. Y. García, J.J. Palacios, E. SanFabián, J.A. Vergés, A.J. Pérez- Jiménez, E. Louis: Electronic transport and vibrational modes in a small molecular bridge: H2 in Pt nanocontacts, Phys. Rev. B 69, 041 402/1–4 (2004)

    Article  ADS  Google Scholar 

  32. J.C. Cuevas, J. Heurich, F. Pauly, W. Wenzel, G. Schön: Theoretical description of a electrical conduction in atomic and molecular junctions, Nanotechnology 14, R29–R38 (2003)

    Article  ADS  Google Scholar 

  33. C. Untiedt, D.M.T. Dekker, D. Djukic, J.M. van Ruitenbeek: Phys. Rev. B 69, 081 401(R)/1–4

    Google Scholar 

  34. D. Djukic, J.M. van Ruitenbeek: Unpublished

    Google Scholar 

  35. H. Park, J. Park, A.K.L. Kim, P.L.M.E. E. H. Anderson A. P. Alivisatos: Nanomechanical oscillations in a single C60 transistor, Nature 407, 57–59 (2000)

    Article  ADS  Google Scholar 

  36. T. Böhler, J. Grebing, E. Scheer: “Electronic transport through indidvidual fullerene molecules”, unpublished

    Google Scholar 

  37. B. Xu, N.J. Tao: Measurement of single-molecule resistance by repeated formation of molecular junctions, Science 302, 1221–1223 (2003)

    Article  ADS  Google Scholar 

  38. M. Krueger, M. Buitelaar, T. Nussbaumer, L. Forro, C. Schönenberger: Electrochemical carbon nanotube field-effect transistor, Appl. Phys. Lett. 78, 1291–1293 (2001)

    Article  ADS  Google Scholar 

  39. L. Grüter, M.T. González, R. Huber, M. Calame, C. Schönenberger: “Conductance of atomic contacts in liquid environment”, preprint, cond-mat/0401666

    Google Scholar 

  40. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H.E. Gaub: How strong is a covalent bond?, Science 283, 1727–1729 (1999)

    Article  ADS  Google Scholar 

  41. D. Krüger, H. Fuchs, R. Rousseau, D. Marx, M. Parinello: Pulling monatomic gold wires with single molecules: An ab initio simulation, Phys. Rev. Lett. 89, 186 402/1–4 (2002)

    ADS  Google Scholar 

  42. P. Tamarat, A. Maali, B. Lounis, M. Orrit: Ten years of single-molecule spectroscopy, J. Phys. Chem. A 104, 1 (2000)

    Article  Google Scholar 

  43. H.B. Weber, J. Reichert, F. Weigend, R. Ochs, D. Beckmann, M. Mayor, R. Ahlrichs, H. v. Löhneysen: Electronic transport through single conjugated molecules, Chem. Phys. 281, 113 (2002)

    Article  Google Scholar 

  44. F. Evers, F. Weigend, M. Köntopp: Conductance of molecular wires and transport calculations based on density-functional theory, Phys. Rev. B 69, 235411 (2004)

    Article  ADS  Google Scholar 

  45. M. Mayor, H.B. Weber, J. Reichert, M. Elbing, C. v. Hänisch, D. Beckmann, M. Fischer: Electric current through a molecular rod - relevance of the anchor group position, Angewandte Chemie Int. Ed. 42, 5834 (2003)

    Article  Google Scholar 

  46. M. Mayor, C. v. Hänisch, H.B. Weber, J. Reichert, D. Beckmann, M. Fischer: A trans-Pt(ii) als single-molecule insulator, Angewandte Chemie Int. Ed. 41, 1183 (2002)

    Article  Google Scholar 

  47. D. Dulić, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees: One-way optoelectronic switching of photochromic molecules on gold, Phys. Rev. Lett. 91, 207402/1–4 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

van Ruitenbeek, J., Scheer, E., Weber, H.B. (2006). Contacting Individual Molecules Using Mechanically Controllable Break Junctions. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_10

Download citation

Publish with us

Policies and ethics