Skip to main content

Characterization and Modeling of Growth and Remodeling in Tendon and Soft Tissue Constructs

  • Chapter
Mechanics of Biological Tissue
  • 2876 Accesses

5 Conclusions

Separate theories of growth and remodeling have been outlined to illustrate that remodeling may occur at constant mass and is a configurational change whereas growth involves a change in the concentration of species. Engineered tendon constructs were generated for growth and remodeling studies. The constructs demonstrate mechanically responsive cells, grow and remain viable in culture for several weeks. They are excellent in vitro models for growth studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrick, J. J., Mundy, K., Calve, S. C., Arruda, E. M., and Baar, K. (2005). Uniaxial stretch results in increased collagen in fibrin-based 3D engineered tendon. J. Appl. Physiol. submitted.

    Google Scholar 

  • Arruda, E. M., Mundy, K., Calve, S. C., and Baar, K. (2005). Denervation decreases tendon extensibility and increases tendon stiffness. J. Physiol. submitted.

    Google Scholar 

  • Bischoff, J. E., Arruda, E. M., and Grosh, K. (2002a). A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69:570–579.

    Article  Google Scholar 

  • Bischoff, J. E., Arruda, E. M., and Grosh, K. (2002b). Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. Tissue Eng. 10:755–761.

    Google Scholar 

  • Calve, S. C., Dennis, R. G., Kosnik II, P. E., Baar, K., and Arruda, E. M. (2004). Engineering of functional tendon. J. Appl. Mech. 69:199–201.

    Google Scholar 

  • Epstein, M., and Maugin, G. A. (2000). Thermomechanics of volumetric growth in uniform bodies. Int. J. Plasticity 16:951–978.

    Article  Google Scholar 

  • Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S. C. (2004). A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics. J. Mech. Phys. Solids 52:1595–1625.

    Article  MathSciNet  Google Scholar 

  • Garikipati, K., Narayanan, H., Arruda, E. M., Grosh, K., and Calve, S. C. (2005). Material forces in the context of biotissue remodelling. In Steinmann, P., and Maugin, G. A., eds., Mechanics of Material Forces. Dordrecht: Kluwer Academic Publishers. E-print available at http://arXiv.org/abs/q-bio.QM/0312002.

    Google Scholar 

  • Humphrey, J. D., and Rajagopal, K. R. (2002). A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Meth. Appl. Sci. 12:407–430.

    Article  MathSciNet  Google Scholar 

  • Klisch, S. M., Van Dyke, T. J., and Hoger, A. (2001). A theory of volumetric growth for compressible elastic biological materials. Math. Mech. Solids 6:551–575.

    Google Scholar 

  • Kuhl, E., and Steinmann, P. (2002). Geometrically nonlinear functional adaptation of biological microstructures. In Mang, H. A., Rammerstorfer, F. G., and Eberhardsteiner, J., eds., Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), 1–21. Vienna, Austria: International Association for Computational Mechanics.

    Google Scholar 

  • Nordin, M., Lorenz, T., and Campello, M. (2001). Biomechanics of tendons and ligaments. In Nordin, M., and Frankel, V. H., eds., Basic Biomechanics of the Musculoskeletal System. New York: Lippincott Williams and Wilkins. 102–125.

    Google Scholar 

  • Sengers, B. G., Oomens, C. W. J., and Baaijens, F. P. T. (2004). An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J. Biomech. Eng. 126:82–91.

    Article  Google Scholar 

  • Taber, L. A., and Humphrey, J. D. (2001). Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123:528–535.

    Article  Google Scholar 

  • Woessner, J. F. (1961). The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arruda, E.M., Calve, S.C., Garikipati, K., Grosh, K., Narayanan, H. (2006). Characterization and Modeling of Growth and Remodeling in Tendon and Soft Tissue Constructs. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics