Skip to main content

High Relaxivity Contrast Agents for MRI and Molecular Imaging

  • Conference paper
Molecular Imaging

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 49))

6.5 Concluding Remarks

Gd(III) chelates have played an important role in the development of clinical applications of MRI technique by adding relevant physiological information to the superb anatomical resolution attainable with this imaging modality.

More is still expected with the currently available contrast agents, especially in the field of dynamic contrast enhancement protocols reporting on changes of the vascular permeability associated with the staging and therapeutic follow-up of important pathologies. However, the major challenges are in the emerging field of molecular imaging where the competition with other imaging modalities can be very tight. Targeting of thrombi and atherosclerotic plaques by peptides functionalized with Gd(III) chelates appears to be the next goal for industrial research. The possibility of identifying and characterizing vulnerable plaques will certainly represent an important task. Clearly, there is a need for new ideas for enhancing the attainable relaxivity at higher fields as the 3-T indication for clinical imagers seems to be quite established. Moreover, it will be necessary to improve the efficiency of the available delivery systems and, possibly, to exploit suitable amplification procedures in order to reach the sensitivity required for the visualization of target molecules present at low concentrations.

The results herein surveyed show that there are several routes for cell entrapment of paramagnetic Gd-agents at concentrations sufficient for MRI visualization. The huge work carried out in a number of laboratories in the last two decades for the development of Gd-based MRI contrast agents provides an excellent platform for designing a new generation of probes for molecular imaging applications. Though one should not underestimate the difficulties that will arise when going from in vitro experiments to in vivo animal studies, we think that the available results suggest that Gd-chelates will have an important role in the armory of imaging probes for cellular and molecular imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aime S, Botta M, Ermondi G (1992) Nmr-study of solution structures and dynamics of lanthanide(III) complexes of dota. Inorg Chem 31:4291–4299

    Article  CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Geninatti Crich S, Terreno E (1996a) Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. J Biol Inorg Chem 1:312–319

    Article  CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Terreno E, Kinchesh P, Calabi L, Paleari L (1996b) A new ytterbium chelate as contrast agent in chemical shift imaging and temperature sensitive probe for MR spectroscopy. Magn Res Med 35:648–651

    Article  CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Terreno E (1998) Lanthanide(III) chelates for NMR biomedical applications. Chem Soc Rev 27:19–29

    Article  CAS  Google Scholar 

  • Aime S, Barge A, Bruce J, Botta M, Howard JAK, Moloney JM, Parker D, de Sousa AS, Woods M (1999a) NMR, relaxometric, and structural studies of the hydration and exchange dynamics of cationic lanthanide complexes of macrocyclic tetraamide ligands. J Am Chem Soc 121:5762–5771

    Article  CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Terreno E (1999b) Prototropic and water-exchange processes in aqueous solutions of Gd(III) chelates. Acc Chem Res 32:941–949

    Article  CAS  Google Scholar 

  • Aime S, Chiaussa M, Digilio G, Gianolio E, Terreno E (1999 c) Contrast agents for magnetic resonance angiographic applications: H-l and O-17 NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin. J Biol Inorg Chem 4:766–774

    Article  PubMed  CAS  Google Scholar 

  • Aime S, Fasano M, Terreno E, Botta M (2001) In: Merbach AE, Tóth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester, pp 193–241

    Google Scholar 

  • Aime S, Cabella C, Colombatto S, Crich SG, Gianolio E, Maggioni F (2002 a) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16:394–406

    Article  PubMed  Google Scholar 

  • Aime S, Frullano L, Geninatti Crich S (2002 b) Compartmentalization of a gadolinium complex in the apoferritin cavity: A route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chemie Int Ed 41:1017–1019

    Article  CAS  Google Scholar 

  • Allen MJ, Meade TJ (2003) Synthesis and visualization of a membrane-permeable MRI contrast agent. J Biol Inorg Chem 8:746–750

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Luchinat C (1991) Nuclear and electronic relaxation. VCH, Weinheim, pp 91–122

    Google Scholar 

  • Bhorade R, Weissleder R, Nakakoshi T, Moore A, Tung CH (2000) Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjugate Chem 11:301–305

    Article  CAS  Google Scholar 

  • Bhujwalla ZM, Artemov D, Mori N, Ravi R (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727

    PubMed  Google Scholar 

  • Botta M (2000) Second coordination sphere water molecules and relaxivity of gadolinium(III) complexes: implications for MRI contrast agents. Eur J Inorg Chem 3:399–407

    Article  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  PubMed  CAS  Google Scholar 

  • Carter D, Ho JX (1994) Structure of serum-albumin. Adv Prot Chem 45: 153–203

    Article  CAS  Google Scholar 

  • Di Bari L, Pintacuda G, Salvadori P (2000) Solution equilibria in YbDOT-MA, a chiral analogue of one of the most successful contrast agents for MRI, GdDOTA. Eur J Inorg Chem 75–82

    Google Scholar 

  • Dwek RA (1973) Nuclear magnetic resonance in biochemistry, applications to enzyme systems, Clarendon Press, Oxford, pp 174–283

    Google Scholar 

  • Heckl S, Pipkorn R, Waldeck W, Spring H, Jenne J, von der Lieth CW, Corban-Wilhelm H, Debus J, Braun K (2003) Intracellular visualization of prostate cancer using magnetic resonance imaging. Cancer Res 63:4766–4772

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2:1–10

    Article  PubMed  CAS  Google Scholar 

  • Merbach AE, Tóth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

    Google Scholar 

  • Osterloh K, Aisen P (1989) Pathways in the binding and uptake of ferritin by hepatocytes. Biochem Biophys Acta 1011:40–45

    Article  PubMed  CAS  Google Scholar 

  • Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Res 16:407–422

    Article  Google Scholar 

  • Powell DH, Ni Dhubhghaill OM, Pubanz D, Helm L, Lebedev HS, Schlaep-fer W, Merbach AE (1996) Structural and dynamic parameters obtained from O-17 NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: an integrated and theoretically self consistent approach. J Am Chem Soc 118:9333–9346

    Article  CAS  Google Scholar 

  • Rinck PA (2003) Magnetic resonance in medicine. ABW Wissenschaftsverlag, Berlin

    Google Scholar 

  • Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KCP (1998) Detection of tumor angiogenesis in vivo by alpha(v)beta(3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  • Weissleder R, Bogdanov A, Matuszewski L, Bremer C, Petrovski A (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imag 1:16–23

    Article  Google Scholar 

  • Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O (1997) Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 32:748–754

    Article  PubMed  CAS  Google Scholar 

  • Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang HY, Robertson JD, Wickline SA, Lanza GM (2003) Molecular imaging of angiogenesis in nascent vx-2 rabbit tumors using a novel alpha(v)beta(3)-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63:5838–5843

    PubMed  CAS  Google Scholar 

  • Young IR (2000) Methods in biomedical magnetic resonance imaging and spectroscopy. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aime, S., Barge, A., Gianolio, E., Pagliarin, R., Silengo, L., Tei, L. (2005). High Relaxivity Contrast Agents for MRI and Molecular Imaging. In: Bogdanov, A.A., Licha, K. (eds) Molecular Imaging. Ernst Schering Research Foundation Workshop, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26809-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26809-X_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21021-4

  • Online ISBN: 978-3-540-26809-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics