Skip to main content

Optimal Scaling Methodologies and Transistor Performance

  • Chapter
High Dielectric Constant Materials

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 16))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Denard et al., IEEE J. SSC, pp. 256–268, Sept. 1974

    Google Scholar 

  2. ITRS (International Technology Roadmap for Semiconductors), 1999 Edition

    Google Scholar 

  3. ITRS (International Technology Roadmap for Semiconductors), 2001 Edition

    Google Scholar 

  4. T. Skotnicki et al., A New Analog/Digital CAD model for Sub-Halfmicron MOSFETs, 1994 IEDM Tech. Digest, pp. 165–168

    Google Scholar 

  5. T. Skotnicki, Rep. French Acad. of Science Tom 1, Series IV, pp. 885–909, Paris 2000

    Google Scholar 

  6. T. Skotnicki, Heading for decananometer CMOS — Is navigation among icebergs still a viable strategy? Proceedings of ESSDERC 2000, pp. 19–33

    Google Scholar 

  7. T. Skotnicki, Transistor MOS et sa technologie de fabrication (in French), Encyclopedia Techniques de l'Ingénieur, Traité Electronique, E2 430, Paris 2000

    Google Scholar 

  8. K. Chen et al., The Impact of Device Scaling and Power Supply Change on CMOS Gate Performance, IEEE Elec. Dev. Lett., pp. 202–204, May 1996

    Google Scholar 

  9. S. Takagi et al., On the universality of inversion-layer mobility in n-and p-channel MOSFETs, IEDM'88, Tech. Digest, pp. 398–401

    Google Scholar 

  10. S. Thompson, IEDM'99, Short course

    Google Scholar 

  11. T. Skotnicki et al., The Voltage-Doping Transformation: A New Approach to the Modeling of MOSFET Short-Channel Effects, Elec. Dev. Lett. 9, No. 3, 1988

    Google Scholar 

  12. T. Skotnicki et al., A New Punch-through Model based on the Voltage Doping Transformation, IEEE Trans. Elec. Dev, pp. 1067–1086, 1988

    Google Scholar 

  13. T. Skotnicki et al., Analytical Study of Punchthrough in Buried Channel p-MOSFETs, IEEE Trans. Elec. Dev 36, No. 4, 1989

    Google Scholar 

  14. D. Bazley and S. Jones, HUNT, EU IST project

    Google Scholar 

  15. E. Josse et al., Polysilicon Gate with Depletion-or-Metallic Gate with buried Channel: what evil worse ? IEDM'99, Tech. Digest, pp. 661–664

    Google Scholar 

  16. C-Y. Wu et al., Quantization effects in inversion layers of PMOSFETs on Si (100) substrates, IEEE Elec. Dev. Lett. 17, No. 6, June 1996, pp. 276–278

    Google Scholar 

  17. Osborn et al., Gate leakage simulations with UQANT, NCSU, ITRS Working Group

    Google Scholar 

  18. Y. Taur and E.J. Nowak, 1997 IEDM, Tech. Digest, pp. 215–218

    Google Scholar 

  19. D. Lenoble, Proc. Int. Workshop on Junction Technology, pp. 29–34, Tokyo 2001

    Google Scholar 

  20. S.J. Chang et al., High-Performance and High-Reliability 80-nm gate-length DTMOS with Indium Super Steep Retrograde Channel, Trans. Elec. Dev. Lett. 47, No. 12, pp. 2379–2384 (2000)

    Google Scholar 

  21. S-F. Huang et al., Carrier mobility enhancement in strained Si-on-insulator fabricated by wafer bonding, Proceedings of 2001 Symp. VLSI Technology, pp. 107–108

    Google Scholar 

  22. T. Skotnicki, Proceedings Short Course Nanoscale Technologies, ESSDERC 2000

    Google Scholar 

  23. A. Ono et al, A 70nm Gate Length CMOS Technology with 1.0V Operation, Proceedings of 2000 Symp. VLSI Technology, pp. 14–15

    Google Scholar 

  24. S. Verdonckt-Vanderbroek et al., SiGe Channel Heterojunction p-MOSFET's, IEEE, Trans. Elec. Dev. 41, No. 8, 1994, pp. 92–101

    Google Scholar 

  25. V.P. Kesan et al., High performance 0.25 µm p-MOSFETs with silicon-germanium channels for 300K and 77K operation, IEDM'91, Tech. Digest, pp. 25–28

    Google Scholar 

  26. P. Bouillon et al., Search for the optimal channel architecture for 0.18/0.12µm bulk CMOS Experimental study, IEDM 1996, Tech. Digest, pp. 559–562

    Google Scholar 

  27. J. Alieu et al., Optimisation of Si0.7Ge0.3 Channel Heterostructures for 0.15/0.18 µm CMOS Process, Proceedings of ESSDERC'98, pp. 144–147

    Google Scholar 

  28. J. Alieu et al., Multiple SiGe well: A new channel architecture for improving both NMOS and PMOS performances, Proceedings of 2000 Symp. VLSI Technology, pp. 130–131

    Google Scholar 

  29. H. Shang et al., High Mobility p-channel Germanium MOSFETs with a thin Ge Oxynitride Gate Dielectric, IEDM 2002, Tech. Digest, pp. 441–444

    Google Scholar 

  30. S. Thompson et al., A 90 nm Logic Technology Featuring 50nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 µm2 SRAM Cell, IEDM 2002, Tech. Digest, pp. 61–62

    Google Scholar 

  31. K. Rim et al., Transconductance enhancement in deep submicron strained Si n-MOSFETs, IEDM'98, Tech. Digest, pp. 707–710

    Google Scholar 

  32. M. Jurczak et al., Study on enhanced performance in NMOSFETs on strained Silicon, Proceedings of ESSDERC'99, pp. 304–307

    Google Scholar 

  33. K. Rim et al., Strained Si NMOSFETs for high performance CMOS technology, Proceedings of 2001 Symp. VLSI Technology, pp. 59–60

    Google Scholar 

  34. A. Toriumi, FED J. Vol. 3,Suppl. 2, 1993

    Google Scholar 

  35. R. Oberhuber et al., Mobility enhancement of two-dimensional holes in strained Si/SiGe MOSFETs, Proceedings of ESSDERC '98, pp. 525–527 (1998)

    Google Scholar 

  36. Q. Lu et al., Dual Metal Gate Technology for Deep-Submicron CMOS Transistors, Proceedings of 2000 Symp. VLSI Technology, pp. 72–73

    Google Scholar 

  37. M. Jurczak et al., Silicon-On-Nothing (SON), an Innovative Process for Advanced CMOS, SON, IEEE TED 47, No. 11, 2000, pp. 2179–2187

    Google Scholar 

  38. S. Monfray et al., 50nm Gate-All-Around (GAA) — Silicon On Nothing (SON) — Devices: A simple way to co-integration of GAA transistors within bulk process, Proceedings of 2002 Symp. VLSI Technology, pp 108–109

    Google Scholar 

  39. Y.K. Choi et al., Sub-20nm CMOS FinFET Technologies, IEDM 2001, Tech. Digest, pp. 421–424

    Google Scholar 

  40. F.L. Yang et al., 25nm CMOS Omega FETs, IEDM 2002, Tech. Digest, pp. 255–262

    Google Scholar 

  41. R. Chau et al., Proceedings of SSDM'02, pp. 68–69

    Google Scholar 

  42. J.M. Hergenrother et al., The vertical replacement gate (VRG) MOSFET: A 50-nm vertical MOSFET with lithography-independent gate length, IEDM 1999, Tech. Digest, p. 75

    Google Scholar 

  43. D. Hisamoto et al., A fully Depleted Lean-Channel Transistor (DELTA) — A Novel vertical ultra thin SOI MOSFET, IEDM 1989, Tech. Digest, pp. 833–836

    Google Scholar 

  44. H. Takato, High performance CMOS Surrounding Gate (SGT) for Ultra High Density LSIs, IEDM 1988, Tech. Digest, pp. 222–225

    Google Scholar 

  45. D. Antoniadis, MOSFET Scalability Limites and “new frontier” devices, Proceedings of 2002 Symp. VLSI Technology, pp. 2–3

    Google Scholar 

  46. F. Ballestra et al., Double Gate Silicon on insulator transistor with volume inversion: A new device with greatly enhanced performances, IEEE, Elec. Dev. Lett. 8, pp. 410–412, 1987

    Google Scholar 

  47. F. Boeuf et al., 16nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization, IEDM 2001, Tech. Digest, pp. 637–640

    Google Scholar 

  48. S. Monfray et al., SON p-MOSFET with totally silicided (CoSi2) polysilicon on 5 nm-thick Si-films: The simplest way to integration of Metal Gates on thin FD channels, Tech. Digest, IEDM'02, pp. 263–266

    Google Scholar 

  49. S. Monfray et al., Self consistent Optimization and Performance Analysis of Double Gate MOS Transistor, Proceeding of ESSDERC 2000, pp. 337–339

    Google Scholar 

  50. K. Uchida et al., Experimental Study on Carrier Transport Mechanism in Ultrathin-Body SOI n-and p-MOSFETs With SOI Thickness less than 5 nm, IEDM 2002, Tech. Digest, pp. 47–50

    Google Scholar 

  51. D. Esseni et al., Study of Low Field transport in Ultra-Thin Single and Double gate SOI MOSFETs, IEDM 2002, Tech. Digest, pp. 719–722

    Google Scholar 

  52. A. Asenov et al., Modelling End-of-the-Roadmap Transistors, Proc. ECS Paris 2003, volume 2003-06, pp. 306–321

    Google Scholar 

  53. R.K Cavin et al., Semiconductor Research Corp., Limit to Binary Logic Switch Scaling — A Gedanken Model, to be published

    Google Scholar 

  54. S. Harrison et al., Highly performant double gate MOSFET realized with SON process, IEDM 2003 Techn. Digest, pp. 449–452

    Google Scholar 

  55. T. Park et al., Static noise margin of the full DG-CMOS SRAM Cell using bulk FinFETs (Omega MOSFETs), IEDM 2003 Techn. Digest, pp. 27–30

    Google Scholar 

  56. K. Uchida et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n-and p-MOSFETs with SOI thickness less than 5 nm, IEDM 2002 Techn. Digest, pp. 47–50

    Google Scholar 

  57. K. Uchida et al., Experimental study on carrier transport mechanism in double-and single-gate ultrathin-body MOSFETs — Coulomb scattering, volume inversion, and δTsoi-induced scattering, IEDM 2003 Techn. Digest, pp. 805–808

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skotnicki, T., Boeuf, F. (2005). Optimal Scaling Methodologies and Transistor Performance. In: Huff, H., Gilmer, D. (eds) High Dielectric Constant Materials. Springer Series in Advanced Microelectronics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26462-0_6

Download citation

Publish with us

Policies and ethics