Skip to main content

Parvovirus Variation for Disease: A Difference with RNA Viruses?

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 299))

Abstract

The Parvoviridae, a family of viruses with single-stranded DNA genomes widely spread from invertebrates to mammal and human hosts, display a remarkable evolutionary capacity uncommon in DNA genomes. Parvovirus populations show high genetic heterogeneity and large population sizes resembling the quasispecies found in RNA viruses. These viruses multiply in proliferating cells, causing acute, persistent or latent infections relying in the immunocompetence and developmental stage of the hosts. Some parvovirus populations in natural settings, such as carnivore autonomous parvoviruses or primate adeno associated virus, show a high degree of genetic heterogeneity. However, other parvoviruses such as the pathogenic B19 human erythrovirus or the porcine parvovirus, show little genetic variation, indicating different virus-host relationships. The Parvoviridae evolutionary potential in mammal infections has been modeled in the experimental system formed by the immunodeficient scid mouse infected by the minute virus of mice (MVM) under distinct immune and adaptive pressures. The sequence of viral genomes (close to 105 nucleotides) in emerging MVM pathogenic populations present in the organs of 26 mice showed consensus sequences not representing the complex distribution of viral clones and a high genetic heterogeneity (average mutation frequency 8.3 × 10−4 substitutions/nt accumulated over 2–3 months). Specific amino acid changes, selected at a rate up to 1% in the capsid and in the NS2 nonstructural protein, endowed these viruses with new tropism and increased fitness. Further molecular analysis supported the notion that, in addition to immune pressures, the affinity of molecular interactions with cellular targets, as the Crm1 nuclear export receptor or the primary capsid receptor, as well as the adaptation to tissues enriched in proliferating cells, are major selective factors in the rapid parvovirus evolutionary dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agbandje-McKenna M, Llamas-Saiz A, Wang F, Tattersall P, Rossmann MG (1998) Functional implications of the structure of the murine parvovirus minute virus of mice. Structure 6:1369–1381

    CAS  PubMed  Google Scholar 

  • Alexandersen S, Larsen S, Cohn A, Uttenthal A, Race RE, Aasted B, Hansen M, Bloom ME (1989) Passive transfer of antiviral antibodies restricts replication of Aleutian mink disease parvovirus in vivo. Virol J 63:9–17

    CAS  Google Scholar 

  • Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ (2002) Evolutionary dynamics of viral attenuation. Virol J 76:10524–10529

    CAS  Google Scholar 

  • Ball-Goodrich LJ, Tattersall P (1992) Two amino acid substitutions within the capsid are coordinately required for acquisition of fibrotropism by the lymphotropic strain of minute virus of mice. Virol J 66:3415–3423

    CAS  Google Scholar 

  • Bashir T, Hörlein R, Rommelaere J, Willwand K (2000) Cyclin A activates the DNA polymerase delta-dependent elongation machinery in vitro: A parvovirus DNA replication model. Proc Natl Acad Sci U S A 97:5522–5527

    Article  CAS  PubMed  Google Scholar 

  • Berns, KI (1996) Parvoviridae: the viruses and their replication, In: Fields BN, Knipe DM, Howley PM (eds) Virology, 3rd edn. Lippincott-Raven Press, New York, pp 2173–2197

    Google Scholar 

  • Berns KI, Bergoin M, Bloom M, Lederman M, Muzyczka N, Siegl G, Tal J, Tattersall P (2000) Parvoviridae, p. 311–323. In: MHV van Rgenmortel, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, Mc Geoch DJ, Pringle CR, Wickner RB (ed.), Virus taxonomy. Academic Press, Inc., San Diego, Calif

    Google Scholar 

  • Biagini P (2004) Human circoviruses. Vet Microbiol 98:95–101

    Article  CAS  PubMed  Google Scholar 

  • Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, Mcenna RK, Agbandje-McKenna M (2001) Identification of Aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 75:11116–11127

    Article  CAS  PubMed  Google Scholar 

  • Bodendorf U, Cziepluch C, Jauniaux J-C, Rommelaere J, Salomé N (1999) Nuclear export factor CRM1 interacts with nonstructural proteins NS2 from parvovirus minute virus of mice. J Virol 73:7769–7779

    CAS  PubMed  Google Scholar 

  • Bonnard GD, Manders EK, Campbell DA, Herberman RB, Collins MJ (1976) Immunosuppressive activity of a subline of the mouse EL-4 lymphoma. Exp J Med 143:187–205

    CAS  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  • Brownstein DG, Smith AL, Jacoby RO, Johnson EA, Hansen G, Tattersall P (1991) Pathogenesis of infection with a virulent allotropic variant of minute virus of mice and regulation by host genotype. Lab Invest 65:357–363

    CAS  PubMed  Google Scholar 

  • Carreira A, Menéndez M, Reguera J, Almendral JM, Mateu MG (2004) In vitro disassembly of a parvovirus capsid and effect on capsid stability of heterologous peptide insertions in surface loops. Biol J Chem 279:6517–6525

    CAS  Google Scholar 

  • Choi E, Burger L, Newman AE, Pintel DJ (2004) Alternative splicing of the large intron from P4-generated RNAs produced by the autonomous parvovirus minute virus of mice (mvm) is controlled at multiple levels and determines production of progeny single strand Xth DNA Parvovirus Workshop, Florida

    Google Scholar 

  • Christensen J, Tattersall P (2002) Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J Virol 76:6518–6531

    Article  CAS  PubMed  Google Scholar 

  • Clemens KE, Pintel DJ (1988) The two transcription units of the autonomous parvovirus minute virus of mice are transcribed in a temporal order. J Virol 62:1448–1451

    CAS  PubMed  Google Scholar 

  • Clipman PR, Agbandje McKenna M, Kajigaya S, Brown KE, SN Young, Baker TS, Rossmann MG (1996) Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor. Proc Natl Acad Sci U S A 93:7502–7506

    Google Scholar 

  • Cotmore SF, Tattersall P (1987) The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91–173

    CAS  PubMed  Google Scholar 

  • Cotmore SF, Tattersall P (1988) High-mobility group 1/2 proteins are essential for initiating rolling-circle type DNA replication at a parvovirus hairpin origin. J Virol 72:8477–8484

    Google Scholar 

  • Cotmore SF Tattersall P (1992) In vivo resolution of circular plasmids containing concatemer junction fragments from minute virus of mice DNA and their subsequent replication as linear molecules. J Virol 66:420–431

    CAS  PubMed  Google Scholar 

  • Cotmore SF, Tattersall P (1996) Parvovirus DNA replication. In: De Pamphilis M (ed) DNA replication in eukaryotic cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 799–813

    Google Scholar 

  • Cotmore, SF, Abramo JD, Carbonell LF, Bratton J, Tattersall P (1997) The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology 231:267–280

    Article  CAS  PubMed  Google Scholar 

  • Crawford LV (1966) A minute virus of mice. Virology 29:605–612

    Article  CAS  PubMed  Google Scholar 

  • D’Abramo A, Ali AA, Wang F, Tattersall P (2004) Mutations within a splicing control element coordinate with changes at a single capsid amino acid residue to switch mvmi host range. Xth Parvovirus Workshop, Florida

    Google Scholar 

  • Domingo E, Biebricher CK, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Biosciences, Georgetown, TX

    Google Scholar 

  • Domingo E, Menéndez-Arias L, Quiñones-Mateu ME, Holguín A, Gutiérrez-Rivas M, Martínez MA, Quer J, Novella IS, Holland JJ, (1997) Viral quasispecies and the problem of vaccine escape and drug-resistant mutants. Prog Drug Res 48:99–128

    CAS  PubMed  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutations in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164

    CAS  PubMed  Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutations among RNA viruses. Proc Natl Acad Sci U S A 90:4171–4175

    CAS  PubMed  Google Scholar 

  • Echols H, Goodman MF (1991) Fidelity mechanisms in DNA replication. Annu Rev Biochem 60:477–511

    Article  CAS  PubMed  Google Scholar 

  • Erdman DD, Durigon EL, Wang QY, Anderson LJ (1996) Genetic diversity of human parvovirus B19: sequence analysis of the VP1/VP2 gene from multiple isolates. J Gen Virol 77:2767–2774

    CAS  PubMed  Google Scholar 

  • Etingov I, Naus A, Mincberg M, Tal S, Danzinger V, Tal J (2004) Adaptation of MVM to growth in rat fibroblasts involves mutations in the P38 Sp1 binding site and in the capsid VP2 reading frame. Xth Parvovirus Workshop, Florida

    Google Scholar 

  • Flint SJ, Enquist LW, Krug RM, Racaniello VR, Skalka AM (eds) (2000) Principles of virology. Molecular biology, pathogenesis and control. ASM press, Washington, DC, pp 323–324

    Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) Crm1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Fox JM, Bloom ME (1999) Identification of a cell surface protein from Crandell feline kidney cells that specifically binds Aleutian mink disease parvovirus. J Virol 73:3835–3842

    CAS  PubMed  Google Scholar 

  • Gallian P, Biagini P, Attoui H, Cantaloube J-F, Dussol B, Berland Y, de Micco P, de Lamballerie X (2002) High genetic diversity revealed by the study of TLMV infection in French hemodialysis patients. Med J Virol 67:630–635

    Google Scholar 

  • Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100:6081–6086

    CAS  PubMed  Google Scholar 

  • Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388

    CAS  PubMed  Google Scholar 

  • Gottschalck E, Alexandersen S, Cohn A, Poulsen LA, Bloom ME, Aasted B (1991) Nucleotide sequence analysis of Aleutian mink disease parvovirus shows that multiple virus types are present in infected mink. J Virol 65:4378–4386

    CAS  PubMed  Google Scholar 

  • Gottschalck E, Alexandersen S, Storgaard T, Bloom ME, Aasted B (1994) Sequence comparison in the nonstructural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch Virol 138:213–231

    Article  CAS  PubMed  Google Scholar 

  • Hemauer A, von Poblotzki A, Gigler A, Cassinotti P, Siegl G, Wolf H, Modrow S (1996) Sequence variability among different parvovirus B19 isolates. J Gen Virol 77:1781–1785

    CAS  PubMed  Google Scholar 

  • Hokynar K, Soderlund-Venermo M, Pesonen M, Ranki A, Kiviluoto O, Partio EK, Hedman K (2002) A new parvovirus genotype persisten in human skin. Virology 302:224–228

    Article  CAS  PubMed  Google Scholar 

  • Hueffer K, Parrish CR (2003) Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol 6:392–398

    Article  CAS  PubMed  Google Scholar 

  • Hueffer K, Parker JSL, Weichert WS, Geisel RE, Sgro J-Y, Parrish CR (2003) The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J Virol 77:1718–1726

    CAS  PubMed  Google Scholar 

  • Hwang YT, Zuccola HJ, Lu Q, Hwang CBC (2004) A point mutation within conserved region VI of herpes simplex virus type 1 DNA polymerase confers altered drug sensitivity and enhances replication fidelity. J Virol 78:650–657

    Article  CAS  PubMed  Google Scholar 

  • Isnard M, Granier M, Frutos R, Reynaud B, Peterschmitt M (1998) Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol 79:3091–3099

    CAS  PubMed  Google Scholar 

  • Itah R, Tal J, Davis C (2004) Host cell specificity of minute virus of mice in the developing mouse embryo. J Virol 78:9474–9486

    Article  CAS  PubMed  Google Scholar 

  • Jacoby RO, Ball-Goodrich LJ, Besselsen DG, McKisic MD, Riley LK, Smith AL (1996) Rodent parvovirus infections. Lab Anim Sci 46:370–380

    CAS  PubMed  Google Scholar 

  • Kaufmann B, Simpson AA, Rossmann MG (2004) The structure of human parvovirus B19. Proc Nat Acad Sci U S A 101:11628–11633

    CAS  Google Scholar 

  • Keller MA, Stiehm ER (2000) Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13:602–614

    Article  CAS  PubMed  Google Scholar 

  • Kern A, Schmidt K, Ledeer C, Muller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King JA, Kleinschmidt JA (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman GJ, Ozawa K, Cohen B, Hanson G, Oseas R, Young NS (1987) Chronic bone marrow failure due to persistent B19 parvovirus infection. New Engl J Med 317:287–294

    CAS  PubMed  Google Scholar 

  • Langeveld JPM, Casal JI, Vela C, Dalsgaard K, Smale SH, Puijk WC, Meloen RH (1993) B-cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface. J Virol 67:765–772

    CAS  PubMed  Google Scholar 

  • Legg JP, Fauquet CM (2004) Cassava mosaic geminivirus in Africa. Plant Mol Biol 56:585–599

    Article  CAS  PubMed  Google Scholar 

  • Livingston RS, Besselsen DG, Steffen EK, Besch-Williford CL, Franklin CL, Riley LK (2002) Serodiagnosis of mice minute virus and mouse parvovirus infections in mice by enzyme-linked immunosorbent assay with baculovirus-expressed recombinant VP2 proteins. Clin Diagn Lab Immunol 9:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Lombardo, E, J Ramírez C, García J, Almendral JM (2002) Complementary roles of multiple nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice during assembly and onset of infection. J Virol 76:7049–7059

    Article  CAS  PubMed  Google Scholar 

  • López-Bueno A, Mateu M, Almendral JM (2003) High mutant frequency in populations of a DNA virus allows evasion from antibody therapy in an immunodeficient host. J Virol 77:2701–2708

    PubMed  Google Scholar 

  • López-Bueno A, Valle N, Gallego JM, Pérez J, Almendral JM (2004) Enhanced cytoplasmic sequestration of the nuclear export receptor CRM1 by NS2 mutations developed in the host regulates parvovirus fitness. J Virol 78:7049–7059

    Google Scholar 

  • López-Bueno A, Rubio M-P, Bryant N, McKenna R, Agbandje-McKenna M, Almendral JM (2006) Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulates cell binding affinity and determine virulence. J Virol (in press)

    Google Scholar 

  • Lukashov V, Goudsmit J (2001) Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J Virol 75:2729–2740

    Article  CAS  PubMed  Google Scholar 

  • Maroto B, Valle N, Saffrich R, Almendral JM (2004) Nuclear export of the nonenveloped parvovirus virion is directed by an unordered protein signal exposed on the capsid surface. J Virol 78:10685–10694

    Article  CAS  PubMed  Google Scholar 

  • Muzyczka N, Berns KI (2001) Parvoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Naeger LK, Cater J, Pintel DJ (1990) The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infectious virus production in a cell-type specific manner. J Virol 64:6166–6175

    CAS  PubMed  Google Scholar 

  • Naeger LK, Salomé N, Pintel DJ (1993) NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells. J Virol 67:1034–1043

    CAS  PubMed  Google Scholar 

  • Nüesch JPF, Cotmore SF, Tattersall P (1995) Sequence motifs in the replicator protein of parvovirus MVM essential for nicking and covalent attachment to the viral origin: identification of the linking tyrosine. Virology 209:122–135

    Article  PubMed  Google Scholar 

  • Olofsson A, Mittelholzer C, Treiberg Berndtsson L, Lind L, Mejerland T, Belak S (1999) Unusual, high genetic diversity of Aleutian mink disease virus. Clin J Microbiol 37:4145–4149

    CAS  Google Scholar 

  • Parker JSL, Murphy WJ, Wang D, O’Brien SJ, Parrish CR (2001) Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 75:3896–3902

    CAS  PubMed  Google Scholar 

  • Parren PWHI, Burton DR (2001) The antiviral activity of antibodies in vitro and in vivo. Adv Immunol 77:195–253

    CAS  PubMed  Google Scholar 

  • Parrish CR (1990) Emergence, natural history, and variation of canine, mink, and feline parvoviruses. Adv Virus Res 38:403–450

    CAS  PubMed  Google Scholar 

  • Parrish CR, Aquadro CF, Strassheim ML, Evermann JF, Sgro J-Y, Mohammed HO (1991) Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J Virol 65:6544–6552

    CAS  PubMed  Google Scholar 

  • Poignard P, Sabbe R, Picchio GR, Wang M, Gulizia RJ, Katinger H, Parren PWHI, Mosier DE, Burton DR (1999) Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10:431–438

    Article  CAS  PubMed  Google Scholar 

  • Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nature Med 5:17–77

    Google Scholar 

  • Raney LR, Delongchamp RR, Valentine CR (2004) Spontaneous mutant frequency and mutation spectrum for gene A of Fx174 grown in E coli. Env Mol Mutag 44:119–127

    CAS  Google Scholar 

  • Roekring S, Nielsen L, Owens L, Pattanakitsakul SN, Malasit P, Flegel TW (2002) Comparison of penaeid shrimp and insect parvoviruses suggests that viral transfer may occur between two distantly related arthropod groups. Virus Res 87:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Tal J (1985) Coevolution of cells and virus as a mechanism for the persistence of lymphotropic minute virus of mice in L-cells. J Virol 55:424–430

    CAS  PubMed  Google Scholar 

  • Ron D, Tattersall P, Tal J (1984) Formation of a host range mutant of the lymphotropic strain of minute virus of mice during persistent infection in mouse L cells. J Virol 52:63–69

    CAS  PubMed  Google Scholar 

  • Rubio M-P, López-Bueno A, Almendral JM (2005) Virulent variants emerging in mice infected by the apathogenic prototype strain of the parvovirus MVM exhibit a capsid of low avidity for a primary receptor. J Virol 79:11280–11290

    Article  CAS  PubMed  Google Scholar 

  • Sanz AI, Fraile A, Gallego JM, Malpica JM, García-Arenal F (1999) Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. Mol J Evol 49:672–681

    CAS  Google Scholar 

  • Sato H, Hirata J, Furukawa M, Kuroda N, Shiraki H, Maeda I, Okochi K (1991) Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19. J Virol 65:1667–1672

    CAS  PubMed  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RasMol: biomolecular graphics for all. Trends Biochem Sci 20:374–376

    Article  CAS  PubMed  Google Scholar 

  • Segovia JC, Real A, Bueren JA, Almendral JM (1991) In vitro myelosuppressive effects of the parvovirus minute virus of mice (MVMi) on hematopoietic stem and committed progenitor cells. Blood 77:980–998

    CAS  PubMed  Google Scholar 

  • Segovia JC, J Gallego M, Bueren JA, Almendral JM (1999) Severe leukopenia and dysregulated erythropoiesis in SCID mice persistently infected with the parvovirus minute virus of mice. J Virol 73:1774–1784

    CAS  PubMed  Google Scholar 

  • Servant A, Laperche S, Lallemand F, Marinho V, Maur Gde S, Meritet JF, Garbarg-Chenon A (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76:9124–9134

    Article  CAS  PubMed  Google Scholar 

  • Shackelton LA, Parrish CR, Truyen U, Holmes EC (2005) High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci U S A 102:379–384

    Article  CAS  PubMed  Google Scholar 

  • Siegl G, Bates RC, Berns KI, Carter BJ, Kelly DC, Kurstak E, Tattersall P (1985) Characteristics and taxonomy of Parvoviridae. Intervirology 23:61–73

    CAS  PubMed  Google Scholar 

  • Singleton GR, Smith AL, Krebs CJ (2000) The prevalence of viral antibodies during a large population fluctuation of house mice in Australia. Epidemiol Infect 125:719–727

    Article  CAS  PubMed  Google Scholar 

  • Soares RM, Cortez A, Heinemann MB, Sakamoto SM, Martins VG, Bacci M, de Campos FM, Richtzenhain LJ (2003) Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. J Gen Virol 84:1505–1515

    CAS  Google Scholar 

  • Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    CAS  PubMed  Google Scholar 

  • Summerford C, Bartlett JS, Samulski RJ (1999) αVβ5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nature Med 5:78–8

    CAS  PubMed  Google Scholar 

  • Taboga O, Tami C, Carrillo E, Núñez JI, Rodríguez A, Saiz JC, Blanco E, Valero ML, Roig X, Camarero J, Andreu D, Mateu MG, Giralt E, Domingo E, Sobrino F, Palma EL (1997) A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J Virol 71:2606–2614

    CAS  PubMed  Google Scholar 

  • Tattersall P (1972) Replication of parvovirus minute virus of mice. Dependence of virus multiplication and plaque formation on cell growth. J Virol 10:586–590

    CAS  PubMed  Google Scholar 

  • Tattersall P, Ward DC (1976) Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature 263(5573):106–109

    Article  CAS  PubMed  Google Scholar 

  • Tennant RW, Laymant KR, Hand RE Jr (1969) Effect of cell physiological state on infection by rat virus. J Virol 4:872–878

    CAS  Google Scholar 

  • Truyen U, Gruemberg A, Chang S-F, Obermaier B, Veijalainen P, Parrish R (1995) Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol 69:4702–4710

    CAS  PubMed  Google Scholar 

  • Tsao J, Chapman MS, Agbandje M, Keller W, Smith K, Wu H, Luo M, Smith TJ, Rossmann MG, Compans RW, Parrish CR (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464

    CAS  PubMed  Google Scholar 

  • Vihinen-Ranta M, Suikkanen S, Parrish CP (2004) Pathways of cell infection by parvoviruses and adeno-associated viruses. J Virol 78:6709–6714

    Article  CAS  PubMed  Google Scholar 

  • Villarreal LP, De Filippis VR (2001) Virus evolution. In: Knipe DM, Howley PM (eds) Fields virology, Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Villarreal LP, De Filippis VR, Gottlied KA (2000) Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 72:1–6

    Google Scholar 

  • Walters RW, Yi SM, Keshavjee S, Brown KE, Welsh MJ, Chiorini JA, Zabner J (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem (2001) 276:20610–20616

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Bu W, Bhatia S, Hare J, Somasundar Tam, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Nat Acad Sci U S A 99:10405–10410

    CAS  Google Scholar 

  • Yan Z, Zhang Y, Duan D, Engelhardt JF (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA 97:6716–6721

    CAS  PubMed  Google Scholar 

  • Young NS, Brown KE (2005) Parvovirus B19. N Engl J Med 350:586–597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

López-Bueno, A., Villarreal, L.P., Almendral, J.M. (2006). Parvovirus Variation for Disease: A Difference with RNA Viruses?. In: Domingo, E. (eds) Quasispecies: Concept and Implications for Virology. Current Topics in Microbiology and Immunology, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26397-7_13

Download citation

Publish with us

Policies and ethics