
A METRIC CHARACTERIZATION OF FAIR COMPUTATIONS IN CCS *

Gerardo COSTA

Istituto di Matematica - Universit~ di Genova

Via L.B. Alberti 4 - I 16132 Genova - Italy

ABSTRACT. We address the problem of characterizing fair (infinite) behaviours of con-

current systems as limits of finite approximations. The framework chosen is Milner's

~alculus of Communicating S_ystems. The results can be summarized as follows. On the

set FD of all finite derivations in the calculus we define three distances: da, dw, ds.

Then the metric completion of (FD,da) yields the space of all derivations, while the

completion of (FD,dw), resp. (FD,ds), yields the space of all finite derivations to-

gether with all - and only - the weakly, resp. strongly, fair computations (i.e. non-

extendable derivations). The results concerning da and dw are a reformulation of pre-

viously known ones, while that concerning ds is -we believe = new.

INTRODUCTION

One of the most challanging problems in modelling fairness properties of concurrent

systems is to reconcile infinite fair behaviours with our ideas and wishes about approxi

mations and limits. We would like a framework in which we have some notions of finite-

ness, approximation and limit such that infinite behaviours are fully determined, via

"countable limits", by the sets of their finite approximants. Now, fair infinite be-

haviours do not seem to fit into this pattern.

In [Pal] Park provides a fixpoint relational semantics for data-flow networks with

a fair merge operator. In doing so he has to consider limits (lub's and inf's) of trans-

finite chains. The denotational semantics for a while language with a fair parallel

operator in [PI] also appeals to transfinite chains. More recently, De Bakker and

Zucker have proposed metric spaces of processes where they can interpret fair parallel

operators using the standard notion of limit of (countable) sequences [BZ]. Here, how-

ever, the finiteness of the approximants is in question as fairness is achieved using

the equivalent of random assignment. We see the same problem in the use of oracles

i n [Pa3].
Apparently, if there is a way out it is well concealed. A customary solution in

such cases is to settle for less. Going in this direction, one realizes that the dif-

ficulties are not entirely due to the interaction of fairness on one side and our re-

quirements, countable limits and finite approximations, on the other: our notion of

behaviour plays its part. Some of the features that we see as most desirable become

stumbling blocks. The most obvious one is abstraction: we are particularly keen to re-

move information which would allow us to capture fairness more easily. But there is

another feature which, though desirable in general, becomes an impediment here: we want

to consider global behaviours and handle them as a whole. For instance, in [Pall the

behaviour of a network is its input-output relation; that of a program in IPll is the

= ~ = = = = =

* This research was carried out while the author was at the Dept. of Computer Science

of the University of Edinburgh.

240

set of its (possible) results. It is such a global entity that one tries to obtain

through the limiting process.

In a recent paper, Degano and Montanari consider a notion of behaviour closely con-

nected to the operational notion of step-wise evolution of a system IDM 1 . Then they can

characterize some liveness properties, including fairness, of the individual entities

which constitute the global behaviour of systems in terms of convergence properties in

appropriate metric spaces. We omit the details of their approach as here we proceed

along the same lines, though in a slightly different setting: that provided by Milner's

CCS. Indeed, the starting point for the present work has been to find an analogue of

the results in IDMI which concern fairness within the framework proposed in ICS21.

We consider the kind of concurrent systems that are represented by (closed) expres-

sions in CCS without value-passing. These are systems in which components evolve asyn-

chronously and can interact by exchanging signals on which they synchronize. We shall

call them processes in the sequel. We take as behaviour of a process the set of its

computations, i.e. non-extendable derivation sequences as defined by the rules of the

calculus. As the bare derivation sequences (without mention of how each step is infer-

red) do not contain enough information, we add labels to the calculus. They allow us

to see if a subprocess remains unduly idle in the course of a computation. The setting

is rich enough to allow weak and strong fairness IPa2,PI I to be distinguished. On the

set of all derivations we define three distances: da, dw,ds. Then, infinite computations

- taken individually - are fully determined as limits w.r.t, da of (countable) sequences

of finite derivations (which play the role of finite approximants). The same result is

obtained for infinite computations which are weakly, resp. strongly, fair using dw,

resp. ds.

The first two results are not new and are presented for completeness sake and as a

stepping stone towards the third. The one concerning infinite computations, without

regard to their fairness, is a straightforward adaptation of well known results (see e.

g. IANI). The result concerning weak fairness is a reformulation of one in IDMI. It

is the result about strong fairness which is new, or, at least, an improvement on pre-

vious ones. Indeed, the characterization of strong fairness given by Degano and Monta-

nari is weaker than ours.

It should be clear that we do not regard our results as a real breakthrough towards

a solution of the initial problem. Forfeiting both abstraction and "globality" in the

notion of behaviour is, perhaps, too much. On the other hand, the present work adds to

our confidence in the framework for handling fairness developed jointly with Colin

Stirling ICSI,CS21 . The approach in those papers is operational; the problem addressed

is that of giving a finite set of rules for generating fair computations in CCS, without

resorting to random assignment. In ICS21 two calculi are presented, one for weak and

the other for strong fairness. A starting point is the notion of "fairness at i" (see

Sect. 2) which yields, at least in the weak case, a more local characterization of

fairness. Here, this same notion provides the basis for defining the distances dw and

ds mentioned above.

In Section i we give a concise account of Milner's CCS and of the labelled calculus

we use. In Section 2 we formalize the notion of fairness in the context of CCS and give

a more local characterization of it. Most of the material in this two sections is borrow

ed from ICS21. Section 3 provides the basic tools used in defining our distances. The

metric characterization of infinite (fair) computation~is in Section 4. The final sec-

tion is devoted to concluding remarks and the Appendix to an example. Proofs are omit-

ted; they appear in the extended version of this paper IcI.

we assume the reader familiar with the elementary notions of the theory of metric

spaces.

241

i. CCS

We give here a concise account of CCS without value-passing (hence communication

is reduced to pure synchronization) and renaming. These features have been omitted for

simplicity sake; they can be accomodated within the framework we develop here. For a

detailed account of CCS see IMII. Then we introduce the labelled CCS we shall actually

use. Finally, we define the notions of derivation and computation. The example at the

end of the paper provides an illustration of the labelled calculus and, by suppressing

labels, of standard CCS.

Let AA be a set of atomic actions and AA be a set of co-action~ disjoint from AA

and in bijection with it. The bijection is - : a stands for the co-action of a and

= a. The calculus allows for synchronization of co-actions; this is represented by

3, a silent or internal action not in AA u AA. Let Act = AA U AA and Move =

Act u {~} and a,b,c,.., range over Act, m over Move and X over a suitable set of vari-

ables. The syntax of CCS expressions is:

E ::= X I NIL I mE I E+E I EIE I fixX.E I Eka .

NIL is the process which does nothing; + represents nondeterministic choice; I concur-

rency; fix recursion; \a restriction (prevention) of a and a actions. We assume that

in fixX.E X is guarded in E: every free occurrence of X in E is within a subexpression

of the form mG. The rules of the calculus are (where E-m~ G means E becomes G by

performing the move m and E[G/X] denotes substitution of G for X in E):

E-m-> E ' G-m-~ G' E [fixX. E/X]-m~ E'
mE-m~ E

E+G-m-p E ' E+G-m~ G' fixX.E-m~ E '

E-m->E' G-m-~G' E-awE' G-a~ G' E-m~E' m ~ {a,a}

EIC--m~E'IG EIG-m~EIG' EIG-T~E'IG' E%a-m~E'\a

Three points are worth mentioning. Sometimes the + rules do not allow choice:

(aE+bG)%b can only become E by performing 'a'. The rules for I do not compel synchron-

ization: aEIaG can perform a or a as well as • -on the other hand, (aEIaG)ka can

only perform T because of the restriction. Finally, the number of concurrent subpro-

cesses may increase as moves are performed; for instance, if E = fixX.aXlbX , then

E-a-~EIbE.

In discussing fairness we shall need to know "who is doing what". One way of

achieving this is to introduce labels into the calculus. The full definition of the

labelled calculus appears in ICS2I (and a similar calculus is in ICSII). The precise

details are needed only in the proofs of the results in the following section (for them

242

see ICS21). We think it suffices here to point out the essential features of this cal-

culus.

Labels are strings in {1,2}* , with typical elements u,v,w,.., and E denoting the

null string. They are assigned systematically following the structure of expressions.

Due to recursion the labelling is in part dynamic: the rule for fix generates new la-

bels. The syntax of expressions is unchanged. However, variabIes, NIL, symbols in

Move and the operators +, I, \a, fixX are labelled. Each label occurs at most once

in an expression; we call this property unicit~ of labels. An example is

(alINILIII +i bI2NILI21) I 21 211 u u (fixX)2.a X . In (fixX) .E we assume that (fixX)

binds any (free) labelled X within E. Similarly, in E(\a) all labelled a and
u

are restricted. Moreover, a and a are assumed to be complementary, irrespective of
u v

u and v. The rules of the calculus are just the ones in standard CCS where we allow

expressions to carry labels; moves remain unlabelled. Examples are:

E-m-~E' E-m~E' m ~ {a,a}
m E-m~ E ; and

u E I G - m - ~ E' I G E(ka) -m-> E ' (\ a)
U U U U

The only real change is in the rule for fix: standard substitution, [-/-] , is replaced

by a substitution operation which also changes the labels in the substituted expression

by prefixing them with the label(s) of the variable occurrence(s) it replaces. The net

result is that, for instance, under the labelling fixX.aX is "equivalent" to the in-

finite expression a a ...a ... where each u occurs only once.
uu u 1
12 i

If E-m~G, then the labels in G are determined by those in E and unicity of labels

is preserved. If a label occurs both in E and G it will be attached to the same symbol

(and this will indicate that the move has not affected this symbol) or to a variable,

say X, in E and to a fixX in G. Once a label is lost via a move, then it is never re-

gained. Finally, if r(-) corresponds to the operation of removing labels: if E-m~ G,

then r(E)-m~r(G) in standard CCS; if E'-m~ G' in standard CCS, then for any E s.t.

r(E)=E' there exists G s.t. r(G)=G' and E-m~G.

From now on we assume that we are working within the labelled calculus. However,

whenever possible, we leave labels implicit.

A derivation is any finite or infinite sequence of the form Eo-m l@ El-m2~E 2 ...

A computation is just a non-extendable derivation: if it is finite its last term is un-

able to make a move; on the other hand any infinite derivation is a computation. It is

useful to have a more precise definition and an alternative representation for deriva-

tions. If we know that the initial term is EO, then the sequence above can be represent

ed as a sequence of pairs: (ml,E1)(m2,E2)... This can be formalized as follows, where

243

+
[i k] denotes the set {i, l~i~k}, k~O, and N denotes the set of positive natural num-

bers. A finite derivation of len~ht k from EO, k~O, is a sequence Y=(ml,El)...(mk,Ek)

s.t. (~) below holds, where Dom(Y);[l k]. An infinite derivation from E is an infinite
0

sequence Y=(ml,El)...(mk,Ek)... s.t. (~) below holds, where Dom(Y)=N +.

(~) ~ i & Dom(Y) . El_ 1 -mi-> E i

The following notation will also be convenient: DomO(Y) = Dom(Y) U {0} .

In the sequel, we shall use both representations for derivations, according to

which is more appropriate.

2. FAIRNESS IN CCS

Fairness imposes the constraint that each concurrent subprocess always eventually

proceeds, unless it is deadlocked or has terminated. In CCS, however, subcomponents

may not be able to proceed autonomously, hence weak and strong fairness are distinguis h

able [Pa2,Pl]. The weak fairness constraint states that if a subcomponent can almost

always proceed then eventually it must do so, while the strong fairness contraint states

that if a subeomponent can proceed infinitely often then it must proceed infinitely

often. Consider Y = E-a~G-c~ E-a-)G-c-~... E-a-;G-c~E ..., where E=(FIbNIL)\b ,

F= fixX. a(cX+bNIL) and G= ((cF+bNIL) IbNIL)\b. The subcomponent bNIL is blocked in E

(as \b prevents it from moving autonomously and it cannot synchronize with F, whose

only action is a) while it can synchronize with bNIL in G. Hence Y is not strongly

fair: bNIL can move infinitely often and never does. On the other hand, all subeompo-

nents which are almost always able to move do so; hence Y is weakly fair.

We stress the fact that we regard fairness as an issue concerning concurrent sub-

components only. For instance, if H = fixX. aX+bX, then the sequence H-a~ H-a9 H-a~ ...

is fair. (Indeed, at each step in the above sequence there is a choice between a and b;

if a is chosen - performed - then b is discarded. At each step ther is a "new" choice,

with "new ~' a and b, independent from the previous - and future - ones.) So, from now

on subproeess, subcomponent, component will mean concurrent subprocess, subcomponent,

component.

Now we formalize the two fairness constraints and then give an alternative, more

local, characterization for them. The reader can find more details in ICS21.

We need to define the notion of (top-level) live sub~rocess of a process E: a (con-

current) subcomponent that can contribute to the performance of a move of E.

First, we let P(E) be the set of (top-level) subprocesses of E irrespective of

244

liveness. This set is defined inductively, letting labels represent processes.

P(X) = @ ; P(NIL) = P(m E) = {u} ; P(fixX.E) = P(E\a) = P(E) ;
u u

P(EIG) = P(E) u P(G) ; P(E + G) = if P(E) U P(G) = ~ then @ else {u} o
u

Note that the notion of subcomponent is dynamic: if E = a a NILIb NIL and E performs
u v w

'a' then the resulting subcomponents do not include u. A simpler, static, notion of

subprocess is inadequate here because the number of subcomponents may grow under deri-

vation.

We now define Act(E), the set of unlabelled actions in E (excluding ~) which can

happen autonomously:

Act(X) = Act(NIL) = Act(rE) = ~ ; Act(aE) = {a} ; Act(fixX.E) = Act(E) ;

Act(E\a) = Act(E) - {a,a} ; Act(E+G) = Act(EIG) = Act(E) u Act(G) .

A simple consequence of this definition is: a~Act(E) iff @ G . E-a-~G.

Next, we define LP(E,A) to stand for the set of live subprocesses of E when the

environment prevents the actions in A, a subset of Act. Clearly, LP(E,A) is a subset of

P(E). If Act(E) denotes {a : a g Act(E)} ; then:

LP(X,A) = LP(NIL,A) = @ ; LP(fixX.E ,A) = LP(E,A) ;

LP(m E,A) = if m ~A then {u} else ~ ;
u

LP(E + G, A) = if LP(E,A) U LP(G,A) = ~ then ~ else {u} ;
u

LP(E%a ,A) = LP(E , A u {a,a}) ;

LP(EIG , A) = LP(E , A - Act(G)) u LP(G, A - Act(E)) .

The set of live subprocesses in E is defined as LP(E,¢) which we abbreviate to LP(E).

Looking at our running example (in Appendix) one sees that the labels in P(E) and
1

LP(E) are the expected ones: the following lemma provides a formal justification for
1

the definitions just given. (Recall that if a subcomponent contributes to a move, then

afterwards it no longer exists.)

Lemma 2.1

i.

2.

3.

if u ~ P(E) - LP(E) and E-m-)G then u G P(G) ;

u E LP(E) then B G, m . E-m-)G and u ~ P(G) ; if

if E-m-)G then B u G LP(E) . u ~ P(G) .

The set P(E) has a "persistency" property - not shared with LP(E) - which will be

very useful in dealing with strong fairness.

Fact 2.2 If Eo-ml-)El-m2-~...-mkgE k and uGP(Eo)~P(E k) then u6P(Ei), l~i<k.

Given these definitions, we can now define admissibility under the two fairness

constraints. (Intuitively, E below should be closed -and the reader is free to assume
0

it is so - formally we do not need this condition.)

245

Definition 2.3. Let Y = Eo-ml~ El-m2~ ... be a computation.

i. Y is weakly fair iff ~ u.~i ~ n~i . u ~ LP(E n) ;

2. Y is strongly fair iff ~ u ~ i ~n>i . u ~ LP(E) .
- n

Quantification over i and n is implicitly restricted to DomO(Y).

A computation is weakly fair iff no subcomponent becomes live and then remains live

throughout. It is strongly fair iff no subcomponent is live infinitely often. Notice

that a component cannot be live infinitely often and proceed infinitely often because of

the labelling: as soon as a component contributes to a move then it "disappears".

Clearly, if a computation is strongly fair it is also weakly fair; also, any finite

computation is strongly fair (its final term will have no live subcomponents).

Our next step is to try and express fairness as a local property and not just as

a property of complete computations. This attempt proves successful for weak fairness,

through the notion of"w-fairness at i". Not surprisingly, it fails for strong fairness:

if Y is "s-fair at i" this can only be known, in general,by inspecting the complete tail

of Y after i. Let Y = Eo-ml@ El-m2~ ... be a derivation (not necessarily a computa-

tion).

Definition 2.4

i. Y is w-fair at i

2. Y is s-fair at i

iff ~ k>i . ~{LP(E.), i~j~k} = ~ ;
-- 3

iff ~ k>i- ~ n>k- " P(EI) ~LP(En) = @ "

Quantification over k and n is implicitly restricted to DomO(Y). Any k satisfying the

r.h.s, in 1 (rasp. 2) will be called a w-witness (rasp. an s-witness) for i.

The following fact is straigthforward when x=w. In the case x=s, it relies on

fact 2.2; it would be false if LP(E) replaced P(E) in Def. 2.4.2.
1 l

Fact 2.5 Let x ~{w,s}. If Y is x-fair at i, then Y is x-fair at j for all j<i,

any x-witness for i being also an x-witness for j.

Borrowing the terminology from [M2] we can say that any u in P(E) represents an
1

expectatio~ of E . This expectation is immediate when ueLP(E.) - i.e. there is a
l l

move from E which involves u, fulfilling the expectation, see Lemma 2.1.2 - otherwise
i

it is quiescent. Then, using Fact 2.5, we can read the definition of w-fairness at i

as follows. Upon reaching E k we know that each of the immediate expectations of E ,
J

O~j~i, has disappeared completely, or it has become quiescent at least in one of the

terms Ej+],...,E k. A similar explanation - but taking into account the differences

already pointed out - can be given of s-fairness at i. We thus have the intuitive

justification for the next result.

Theorem 2.6 If Y is a computation then it is weakly (rasp. strongly) fair iff

Y is w-fair (rasp. s-fair) at i for all i in DomO(Y).

246

3. THE BASIC TOOLS

Here we introduce some notation and lw, is, LS: the basic tools we use in defining

our distances for weak and strong fairness. We have found it convenient to concentrate

on a fixed initial term. So we assume E 0 to be fixed throughout this and the next sec-

tion. Later (at the end of Sect. 4), we shall outline how to remove this restriction.

In what follows, derivation, computation, abreviate derivation from EO, computa-

, D~(E O) tion from EO,... ; similarly, FD, D D below abbreviate FD(Eo), , D(E O)

Then: FD is the set of finite derivations; D is the set of infinite derivations;

~W ~ W ~W
D is the set of infinite weakly fair derivations; D = D u FD; D = FD U D

~s s
D and D are defined in a similam way.

If Y is in D and i in Dom(Y), then: Y(i) is the i-th element of Y - i.e. (m ,E.) -
l l

and Y[i] is the initial segment of Y of lenght i - i.e. Y(1)...Y(i). By convention,

Y[O] = E i.e. the null string.

= Eo-ml~ ...-mn~En.. be in D. Let Y El-m2~ .

Definition 3.1. For k in DomO(Y), Iw(Y,k) =lub {i : O<i<k and LP(E)f~.,,~LP(E k) =@ }.
1

The intuitive idea behind this definition is to take the one for w-fairness at i

and read it backwards. The lub is taken in N -the set of natural numbers. We use lub

instead of max just to handle the empty set: lub @ = O. For an example see Appendix.

From this definition we obtain immediately fact 3.2. Lemma 3.3 provides yet another

characterization of infinite weakly fair computations. Its proof is straightforward

given theor. 2.6 and fact 3.2.1.

Fact 3.2. I. lw(Y,n)~i , for some n~i, iff Y is w-fair at i;

2. if m<_n then lw(Y,m) ~ lw(Y,n).

Lemma 3.3. If Y is in D , then Y is weakly fair iff lim {lw(Y,n), n~O} = +~ .

We now define an appropriate correlate of s-fairness at i. Clearly, the difference

between s- and w-fairness at i will come forward. A definition which mimics that of lw

will only provide us with a convenient notation: ls. The true correlate of s-fairness

at i is LS, whose definition involves looking ahead in the derivation.

Definition 3.4. If k is in DomO(Y), then:

ls(Y,k) = lub { i : O<i<k_ _ and P(E)~1 LP(Ek) = ~ } ;

LS(Y,k) = lub { i : O<i<k and V n~k, n in DomO(Y) . P(E)~ LP(E) = @} .
- - l n

Clearly: 0 ~ LS(Y,k) ~ is(Y,k) ~ lw(Y,k) ~ k .

We now state the analogue of fact 3.2 for LS; its prDof ~ immediate. Notice that

neither part 1 nor part 2 hold of Is. This can be seen using the example given in the

247

Appendix (for part i, consider the derivation Y[6] : is(Y[6] , 5)=4 but Y[6] is not s-

fair at 4). The link between is and LS is established by lemma 3.6.

Fact 3.5. i. LS(Y,n) ~ i , for some n~i, iff Y is s-fair at i;

2. if m < n then LS(Y,m) < LS(Y,n).

Lemma 3.6. LS(Y,k) = min { is(Y,n) , n>k and n is in DomO(Y) }.

As expected, LS provides an alternative characterization of strong fairness. But

this is also true of is: taking the limit we overcome the "weaknesses" of is. Once more

the proof is straightforward.

Lemma 3.7. If Y is in D , then Y is strongly fair iff

lim { is(Y,n) , n>O }= + ~ iff lim { LS(Y,n) , n>O }= + ~

w s
4. A METRIC CHARACTERIZATION OF D , D AND D

Here we introduce our distances: da,dw,ds. The first allows us to characterize

all infinite computations as limits of sequences of finite derivations. The analogue

for infinite weakly (resp. strongly) fair computations is achieved using dw (resp. ds).

These characterization results are stated in theorem 4.6.

The distance da is essentially a well known distance on strings; also well known

is the relative result (see e.g. [AN]). The other two distances are derived from lw

and LS, hence from the notions of w- and s-fairness at i. However, an analogue of the

result concerning dw can be found in [DM]: the characterization of "globally fair" com-

putations as limits of "histories" w.r.t, d . What is new is the result concerning
2

strong fairness; indeed the one by Degano and Montanari is ... weaker. (We shall come

back to this point in the concluding section.)

Recall that here we assume that derivations have a fixed initial term, E O. At the

end of this section we outline how to remove this restriction.

Let Y and Z be two (finite or infinite) derivations s.t. Y ~Z and let P be their

longest common prefix - as sequences - which is finite even if Y and Z are not. The

lenght of P provides a natural basis for a distance between Y and Z without regard to

fairness; hence the definition of ~a and da below. The intuition behind lw End lemma

3.3 suggest that lw(P,lenght(P)) can play the same role w.r.t, a distance between Y and

Z which takes weak fairness into account. This motivates the definition of ~w - notice

that if k~lenght(P), then lw(P,k) = lw(Y,k) = lw(Z,k) . Then dw is obtained from 6w

in the same way as da is obtained from 6a. Lemma 4.4 states that da and dw are indeed

248

distances (actually, ultra-distances) and that dw is more "stringent" than da.

Definition 4.1. If Y and Z are in D and Y ~ Z then:

6a(Y,Z) = max {i : Y[i] = Z[i]} ; 6w(Y,Z) = lw(Y , 6a(Y,Z)) .

Definition 4.2. If Y and Z are in D , Y ~ Z and x=a,w , then:

dx(Y,Y) = 0 ; dx(Y,Z) : [~x(Y,Z) + I]-i.

Our distance for strong fairness is defined directly from LS (but, probably, by

refining the basic idea one could define some ~s, hence derive ds in the same way as

dw is). A more fundamental difference with dw is however the one inherited from the

difference between LS and lw (and is). While lw(Y,n) depends entirely upon the initial

segment of Y, LS(Y,n) depends also on its tail. So if ga(Y,Z) =n the distance dw uses

lw to explore the common prefix of Y and Z while ds needs to know both LS(Y,n) and

LS(Z,n). For examples concerning ds see Appendix.

Definition 4.3. If Y and Z are in D and Y~ Z and n= ~a(Y,Z) then:

ds(Y,Y) = 0 ; ds(Y,Z) = [LS(Y,n) + i] -I + [LS(Z,n) + I] -I.

Lemma 4.4. da , dw and ds are distances on D. Moreover, for any Y and Z:

da(Y,Z) ~ dw(Y,Z) ~ ~ds(Y,Z) .

The only non-trivial part in the proof of this lemma is to show that the triangular

inequality holds for dw and ds.

We can now state the promised results. Theorem 4.5 says that the infinite compu-

tations are fully determined by the finite derivations and the distance da. Any compu-

tation in D can be obtained as limit of a sequence of finite derivations; conversely,

any sequence of derivations which is a Cauchy sequence w.r.t, da has a limit in D.

The analog is true of infinite weakly/strongly fair computations and dw/ds. In other

words, when completing FD w.r.t, dw/ds, we add all and only the infinite computations

which are weakly/strongly fair. Notice that if Y is infinite~ then, rather

trivially, Y is the limit w.r.t, da of {Y[n] , n~O } - and of infinitely many other

sequences. The "value" of dw/ds is in the following fact:

{Y[n] , n~O} converges w.r.t, dw/ds if and only if Y is weakly/strongly fair (and

then the limit is Y).

Notation. If D' is a subset of D and d is a distance on D, the restriction of d to D'

(which is a distance on D') will also be denoted by d. If x = a,w,s, lim denotes
x

a limit w.r.t, dx; limits are taken in D.

w s
Theorem 4.5. The spaces (D,da) , (D ,dw) , (D ,ds) are (isomorphic to) the metric

completion of (FD,da) , (FD,dw) , (FD,ds) , respectively.

249

The proof of the result concerning da is well known - and, anyway, straightforward.

The proof of the other two results relies on the previous one and on lemmas 4.6 and 4.7

below; given these it is straightforward. Part 1 of lemma 4.6 is immediate from lemma

4.4, while lemma 4.7 essentially follows from lemmas 3.3 and 3.7. The crucial proof

is that of part 2 in lemma 4.6; not surprisingly, the case x=s is harder than the other.

Lemma 4.6, If x=w,s and S is a Cauchy sequence in (D,dx), then:

i. S is also a Cauchy sequence in (D,da);

2. lim S exists and coincides with lim S.
x a

x
Lemma 4.7, If x=w,s and S is a sequence in FD and lim S=Y, then Y is in D .

X

(The non-trivial case is when Y is infinite; then it is fair.)

Let us now outline how to extend the results above to all derivations. Recall that

FD, D, .., have been used so far as explicit abbreviations for FD(Eo), D(Eo),

Implicitly, also dx has been an abbreviation for dx(E O) , x=a,w,s. Now we redefine FD,

D and dx. If @ denotes disjoint union and EXP denotes the set of (labelled) CCS

expressions, thenwe let:

FD = @ { FD(E) : E in EXP } ; D = @ {D(E) : E in EXP} ; and so on.

Therefore, an element of D can be represented as a pair: <E,Y> , with Y in D(E).

Now, on D we can define, for x=a,w,s :

dx(<E,Y> , <E,Z>) = dx(E)(<Y,Z>) ; dx(<E,Y> , <G,Z>) = 2 , when E~G.

It is immediate to check that dx is a distance on D (notice that the diameter of

D(E) w.r.t, dx(E) is at most 1). Moreover, {<E ,Y> , n>O} is a Cauchy sequence in
n n

(D,dx) iff ~ k_>O ~E s.t. ~n>k . E =E and {<E,Y > , n>k} is a Cauchy sequence
- n n -

in (D(E),dx(E)).

It is clear then that theorem 4.5 and the auxiliary lemmas hold also when FD,

D, ..., da, dw and ds are those just defined.

CONCLUDING REMARKS

The final "bringing everything together" should not mislead the reader. What we

have shown here is that fair computations, taken individually, can be characterized as

limits of finite derivations. We do not know whether our setting allows a similar char

acterization ot the fairness of global behaviours keeping approximants finite.

The other question is whether we really need all the information we carry around:

labels, intermediate steps in derivations (the E 's) and so on. In IDMI, Degano and
1

250

Montanari characterize weakly fair computations as limits of finite "histories", which

are more abstract than our derivations. On the other hand, the information contained

in these histories seems insufficient to obtain the analogous result for strong fairness

("local fairness" in IDMI). The distance proposed in IDMI, d3, seems the most stringent

that can be defined in that framework, nevertheless it does not give the wanted results.

If we translate d 3 in our framework we obtain a distance on finite derivations only;

let us call it d~. If (FD,d~) denotes the completionof (FD,d~), then FD is in bijeot

w
ion with D (but d~ is not equivalent to dw). In other words, the completion contains

also the infinite computations which are weakly fair but fail to be strongly fair.

The infinite strongly fair computations can only be characterized through "canonical"

Cauchy sequences (of finite derivations). We do not see an immediate analogue of our

distance ds within the framework in [DMI: histories lack the information we use in de-

fining ds. Our feeling is that (part of) this additional information is actually need-

ed. If one could make this conjecture precise and prove it, this result would be -

in our opinion - much more interesting than those presented here.

On the positive side, we can say that, as pointed out by M. Hennessy IHI, the pre-

sent work is not confined to CCS. Our characterization is based on the sets LP(-) and

P(-) and more precisely on their properties, rather than their explicit definition.

Therefore, everything could be "lifted up" to the more abstract setting of (general

labelled) transition systems, axiomatizing the notion of subprooess and "live" sub-

process.

ACKNOWLEDGEMENTS.

I would like to thank Pierpaolo Degano and Ugo Montanari for discussions concerning

their paper and Edmund Robinson for suggesting a better presentation of some of the re-

sults. Robin Milner and Gordon Plotkin should be thanked for their encouragement.

Finally, I have relied heavily on the work on fairness done together with Colin Stirling;

he has also made useful comments on an earlier version of this paper.

REFERENCES

251

AN A. ARNOLD, M. NIyAT. Metric interpretations, of infinite trees and semantics

of non-deterministic recursive procedures. T.C.S. ii (1980) 181-205.

BZ J.W. DE BAKKER, J.I. ZUCKER. Processes and a fair semantics for the ADA

rendez-vous. ICALP'83, LNCS 154 (1983) 52-66.

C G. COSTA. A metric characterization of fair computations in CCS. Technical

Rep. CSR-169-84, Dept. Comput. Sci. Univ. Edinburgh (1984).

CSI G. COSTA, C. STIRLING. A fair calculus of communicating systems. To appear

in Acta Informatica; shortened version: FCT'83, LNCS 158 (1983) 94-105.

CS2 G. COSTA, C. STIRLING. Weak and strong fairness in CCS. Technical Rep. CSR-

167-84, Dept. Comput. Sci. Univ. Edinburgh (1984); shortened version: MFCS'84,

LNCS 176 (1984) 245-254.

DM P. DEGANO, U. MONTANARI. Liveness properties as convergence in metric spaces.

Proc. 16th ACM STOC (1984).

H M. HENNESSY. Private communication.

M1 R. MILNER. A calculus of communicati~ng systems. LNCS 92 (1980).

M2 R. MILNER. A finite delay operator in synchronous CCS. Technical Rep. CSR-

116-82 Dept. Comput. Sci. Univ. Edinburgh (1982).

Pal D. PARK. On the semantics of fair parallelism. LNCS 86 (1980) 504-526.

Pa2 D. PARK. A predicate transformer for weak fair iteration. Proc. 6th IBM

Symp. on Mathematical Foundat. of Comput. Sci. , Hakone, Japan (1981).

Pa3 D. PARK. The "fairness" problem and nondeterministic computing networks.

Foundat. of Comput. Sci. IV, De Bakker - Van Leuven edit. Amsterdam (1982).

P1 G. PLOTKIN. A powerdomain for countable nondeterminism. ICALP'82, LNCS

140 (1982) 418-482.

(~) LNCS n stands for Lecture Notes in Computer Science Vol.n, Springer.

252

APPENDIX : AN EXAMPLE

We use the following abbreviations: n denotes the string composed of n l's;

when u is a label, E u denotes the term obtained by prefixing all labels in E with u.

Now let:

F ~ (fixX) e. a2b3X 4 +l c12X121 ; H = (fixX) . c X ; E 0 = (F ~ I 1Hl2)(\c) e 1 ii

According to the definitions above,we have, say, 321 = 11121 and

2 - and H 12 (fixX)12 c121XI211 F- = (fixX) 2. a4b5X 6 +3 c32X321 = "

Then, a derivation from E 0 in the labelled calculus is

Y = Eo-a~ El-b~ E2-a~ E3-b-~E4-a-~E5-b-~E6-~ ~ E7--a~E 8 .

The express&ons for E. (suppressing some of the labels) are given in the table
1

below, where u = 1521 and v = 121. The table also shows the sets LP(E) and P(E.)
-- i 1

and the values of lw(Y,i), is(Y,i) and LS(Y,i), for 0<i<8.

i

I
0 (F -2

1 (b 5 F -6

2 (- - F 6

3 (b 9 F lO

4 (-F I-°

5 (bl3F 14

6 (--F 14

u
7 (F

8 (bu3F u4_

E

H 12 } }

H 12 } }

H 12 } }

H 12

] P(Ei) LP(E i) lw(Y,i) i is(Y,i) i LS(Y,i)

)\c { 3 ,v { 3 ,v 0 0 0

) \ c { 5 , v { 5 0 0 0

)~c { 7 ,v { 7 ,v 1 0 0

)\c { 9 ,v } { 9 } 2 2 0

H 12)~c { l_!l,v } { ll,v } 3 0 0

H 12)\c { 1~3,v } { !__33 } 4 4 0

H 12)%c { 15,v } { 15,v } 5 0 0

H vl)~e { ul,v2 } { ul,v2 } 6 6 6

H vl)\c { u_3,v_2 } { u_3 } 7 v 7

Moreover, recalling that

L S (Y [5] , i) = 0 , 0< i<4 ; L S (Y [5] , 5) : 4 ;

ds (Y3 ,Y 4) = [LS (Y3 ,3) + 1] -1 + [LS (Y4 ,3) + 1] -1

= [I s (Y 3 , 3) + 1] -1 + [I s (Y 4 , 4) + 1] -1

ds(Y3,Yi) = 1/3 + 1 , i=5,6,7,8 ;

dS(YT,Y 8) : [1S(YT,7) + 1] -1 + [i s (Y 8 , 7) + 1] -1

Y[i] = Eo-a~...-.~E i , we have, for instance:

LS(Y[6],i) = 0 , 0<i<6 .

= 1/3+ 1 ;

= 1 / (6~1) + 17 (6+1) ,

