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Abstract 

Rule splitting is a phenomenon, most clearly exhibited by attribute grammars 

and affix grammars, in which the syntactic structure of a phrase is 

constrained by its attributes. In this paper, rule splitting is illustrated 

by examples taken from real programming languages, and two varieties of rule 

splitting are identified and formalized. Implementations of rule splitting 

(attribute-directed parsing) are demonstrated for top-down and bottom-up 

parsers, both one-pass and multi-pass. Finally, the problems of exploiting 

rule splitting in a compiler writing system based on attribute grammars are 

explored. 
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1. Introduction 

Attribute grammars and affix grammars are currently the most promising tools 

available in the design of compiler writing systems. This is because these 

grammars are clean extensions of context-free grammars~ capable of specifying 

the (context-sensitive) syntax and semantics of programming languages, in a 

way which allows the existing body of context-free parsing techniques to 

continue to be exploited. 

In a conventional compiler constructed from an attribute grammar, 

(context-free) parsing and attribute propagation are distinct phases, with no 

feedback from the second to the first. 

A number of papers [Bochmann 76, Watt 74b, Watt & Madsen 79] have observed 

that the phrase structure of some programming language contructs is 

constrained by certain attributes, a phenomenom known as rule splitting. A 

natural consequence of this, in the compiler, is to allow these attributes to 

influence the behaviour of the parser, i.e. to allow limited feedback from the 

attribute propagation phase, a technique known as attribute-directed parsing. 

None of the papers mentioned, however, attempts a systematic study of rule 

splitting and attribute-directed parsing. Such is the purpose of this paper. 

~. Attribute grammars, notation, terminology and conventions 

2.1. Summary of attribute grammars 

An attribute grammar [Knuth 68] or affix grammar [Koster 71a] (AG) is a 

context-free grammar (CFG) in which each terminal and nonterminal symbol is 

augmented by a fixed number of attributes, with fixed domains. Different 

instances of the same symbol in a syntax tree may have different attributes. 

and the attributes are able to contain information obtained from other nodes 
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of the syntax tree. 

A distinction is made between inherited and synthe§ize d attributes. 

Consider a symbol S and a phrase p derived from S. Each inherited attribute 

of S is supposed to convey information about the context of p. Each 

synthesized attribute of S is supposed to convey information about the phrase 

p itself in the given context. 

The attributes can be used to specify context-sensitive constraints on a 

language with a context-free phrase structure. Each AG rule is basically a CF 

production rule augmented by 

(a) a constraint, or a predicate which must be satisfied by certain attributes 

in each application of this rule, and 

(D) an evaluation rule, specifying the evaluation of certain attributes in 

terms of others. 

2.2. Notation and terminology 

Let the tuple of inherited attributes of a symbol S be denoted by inh(S), and 

let the tuple of synthesized attributes of S be Qenoted by syn(S). It is 

convenient also to extend inh and syn to sequences of symbols: 

* ) = (inh(S I) .... ,inh(S )) inh (S1..°S n n 

syn*(S1...S n) = (syn(S1),...,syn(Sn)) 

Then the constraint and evaluation rule associated with the production rule 

N -~ w are functions as follows: 

constraint: inh(N) x syn*(w) -9 Boolean 

evaluation rule: inh(N) x syn*(w) -9 inh*(w) x syn(N) 

inh(N) and syn*(w) are called defined attributes, inh*(w) and syn(N) are 

called applied attributes. Thus the constraint is a predicate on the defined 

attributes, and the evaluation rule maps the defined attributes on to the 

applied attributes. The evaluation rule may be a partial function, provided 

it is defined at all points where the constraint evaluates to true. 



366 

We write AG rules using a notation based on BNF, e.g.: 

<assignment ~ ENV> ::= 

<variable ~ ENV1 T TYPEI> ":=" 

<expression ~ ENV2 ~ TYPE2> 

where TYPE1 = TYPE2 

evaluate ENVI <- ENV, ENV2 <- ENV (2.1) 

Each inherited attribute is prefixed by a downward arrow ( ~ ), and each 

synthesized attribute is prefixed by an upward arrow ( T ). ENV, ENVI, ENV2, 

TYPEI, TYPE2 are attribute variables and they stand for the various attribute 

occurrences in this AG rule. The evaluation rule is introduced by "evaluate" 

and the constraint by "where"; both are expressea in terms of the attribute 

variables. 

When an applied attribute is a simple copy of a defined attribute, we 

abbreviate by simply using the same attribute variable for both. In (2.1) 

ENV1 and ENV2 are simple copies of ENV, so we abbreviate the AG rule by 

replacing each by ENV: 

<assignment ~ ENV> ::= 

<variable ~ ENV T TYPEI> ":=" 

<expression ~ ENV T TYPE2> 

where TYPEI=TYPE2 (2.2) 

2.3. Predicate projection 

Definition 2.1. Let P(Xl,...,x n) be a predicate dependent on variables x I, 

..., x n. Then we define p'(xi,xj,...) to be the strongest predicate dependent 

only on the variables xi, xj, ... but implied by P(Xl,...,Xn). 

For example: 



i f  

then 

p(x,yoZ) ~ x=O and y<z 

p'(x) " x=O 

p'(y) - true 

p'(z) - true 

p'(y,z) - y<z 
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2.4. Discriminated unions 

The d e f i n i t i o n  of AGs places no r e s t r i c t i o n s  on the domains chosen fo r  the 

a t t r i b u t e s .  In a formal d e f i n i t i o n  of the syntax of Pascal by an extended 

a t t r i b u t e  grammar [Watt 79 ] ,  the domains were based on the abs t rac t  data 

s t ruc tu res  of  [Hoare 72] :  Cartesian produc ts ,  d i sc r im ina ted  unions, se ts ,  maps 

and sequences. 

Of these, discriminated unions are particularly useful, indeed they may be 

viewed as the most fundamental domain type [Madsen 80]. They are also 

particularly important in the context of rule splitting, so a definition here 

follows. 

Definition 2.2. 

anQ gl" "''" gn are distinct names, then 

U = ( gl(T1 ) ..... I gn(Tn ) ) 

is a discriminated unlon with selectors gl" .... gn" 

we aPbreviate gi(T i) to gi" 

For every i=l,...,n, and for every a i in T i. gi(ai) is in U. 

the composition functions for the discriminated union U. 

For each i=I ..... n, we also define a predicate, is-gi, 
-1 

inverse function, gi , as follows: 

If T 1 ..... T n are domains (or Cartesian products of domains) 

If any T i is void, then 

These gi are 

and a partial 



is-gi(x) - 

-I 
gi (x) - 
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there exists y such that x = gi(y) 

if there exists y such that x = gi(y) 

then y 

else undefined 

2.5. Conventions 

We use the following conventions throughout: 

(a) M and N (possibly subscripted) stand for nonterminals; 

(b) u, v, w, x and y (possibly subscripted) stand 

nonterminals and terminals; 

(c) p and q (possibly subscripted) stand for predicates. 

for sequences of 

3. Examples of rule splitting 

All the examples quoted here are taken from real programming languages, but 

simplified to remove unnecessary detail. Nearly all the nonterminals involved 

have an inherited attribute (their "environment") which is a map from names to 

modes. 

Example 1. 

<actual parameter ~ ENV ~ PARM> ::= 

<expression ~ ENV T TYPE> 

where is-value(PARM) and 

.... TYPE=value-l(PARM) 

I <variable ~ ENV ~ TYPE> 

where is-result(PARM) and 

TYPE=result-l(PARM) 

(3.1a) 

(3 .lb) 
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<expression ~ ENV T TYPE> ::= 

<variable ~ ENV T TYPE> (3.1c) 

Here the second attributes of <expression> and <variable> both Lie in some 

domain Type, and the second attribute of <actual parameter> lies in the 

discriminated union domain 

Parameter = (value(Type) i result(Type) ) 

The latter attribute defines the parameter mechanism and the type of the 

corresponding formal parameter; the attribute is therefore inherited. If the 

formal parameter is a value-parameter, the actual parameter may be any 

expression of the same type; if the formal parameter is a result-parameter, 

the actual parameter must be a variable of the same type. 

This is perhaps the example pa r excellence of rule splitting; the value of 

the attribute constrains the phrase structure of the actual parameter; and the 

underlying CFG is actually ambiguous: 

<actua l  parameter> =~ <express ion> 

=~ <va r i ab le>  

<actual parameter> =m <variable> 

The AG is unambiguous, however, because, for any given value of the second 

attribute of <actual parameter>p only one of the constraints in (3.1a) and 

(3.1b) can be satisfied, and therefore only one of these alternative 

derivations is possible. 

Example 2. 

<pr imary ~ ENV T TYPE> : :=  

< v a r i a b l e  ~ ENV T TYPE> 

I <constant ~ ENV ~ TYPE> 

I sm.~t..m.m.m~,®~.~.j.mo....m 

(3.2a) 

(3.2b) 
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<variable ~ ENV ~ TYPE> ::= 

<identifier ~ ENV ~ MODE> 

where is-var(MODE) 
-I 

evaluate TYPE ~- var (MODE) 

I m,.~.m,,,BDow,le~eo.,.m.i.~..~.~.Qo~o,.. 

(3.2c) 

<constant ~ ENV ~ TYPE> ::= 

<identifier ~ ENV ~ MODE> 

where is-const(MODE) 

evaluate TYPE ~- const-l(MODE) 

I ,o......Pom.Pp~,u,~ti..~e.oeBo,i. Btl..i 

(3.2d) 

Here <identifier> has a synthesized attribute in the domain 

Mode = (const(Type) I vat(Type) I proc(Plan) I ....... ) 

which specifies whether the identifier is a constant-identifier, a variable- 

identifier, a procedure-identifier, etc. Here again, the underlying CFG is 

ambiguous: 

<primary> =9 <variable> 

--~ <identifier> 

<primary> =9 <constant> 

=2 <identifier> 

The synthesized attribute of <identifier>, however, can be used to eliminate 

one or other of these derivations. 

Example 3. 

<statement ~ ENV> ::= 

<variable ~ ENV ~ TYPE> ":=" 

<source ~ ENV f TYPE> 

I <identifier ~ ENV ~ MODE> 

"(" <parameter ~ ENV ~ PARAMETER> ")" 

where is-proc(MODE) 

evaluate PARAMETER ~- proc-l(MODE) 

(3.3a) 

(3.3b) 
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<parameter ~ ENV ~ PARAMETER> ::= 

<source ~ ENV f TYPE> 

where is-value(PARAMETER) 

evaluate TYPE <- value-I(PARAMETER) 

i .......o.~..om~....,,..,~w.°mowl...lll.n.I. 

(3.3c) 

<variable # ENV 

<identi 

I <identi 

TYPE> ::= 

fier ~ ENV T MODE> 

where is-scalar(MODE) 

evaluate TYPE <- scalar-1(MODE) 

fier ~ ENV ~ MODE> 

<source ~ ENV # SUBTYPE> ")" 

where is-array(MODE) 

evaluate TYPE <- array-1(MODE), 

SUBTYPE <- int 

(3.3d) 

(3.3e) 

Here the second attribute of <identifier> is in the domain 

where 

Mode = (scalar(Type) I array(Type) I 

proc(Parameter) ! ........... ) 

Parameter = (value(Type) I ............ ) 

In this more complicated example there is no ambiguity but there are LL and LR 

parsing conflicts: 

<statement> =2 <variable> := <source> 

=2 <identifier> := <source> 

<statement> =2 <variable> := <source> 

=2 <identifier> ( <source> ) := <source> 

<statement> =2 <identifier> ( <parameter> ) 

=2 <identifier> ( <source> ) 

(A similar example involving function-designators would, however, be 

ambiguous.) If known at parse-time, the synthesized attribute of <identifier> 

can be used to resolve the conflicts. 
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Example 4. 

<factor f ENV ~ TYPE> ::= 

<primary ~ ENV ~ TYPEI> 

"**" <primary ~ ENV ~ TYPE2> 

where is-int(TYPE1) and 

is-int(TYPE2) 

evaluate TYPE 4- int (3.4a) 

I <primary ~ ENV ~ TYPEI> 

"**" <primary ~ ENV ~ TYPE2> 

where is-real(TYPE1) and 

is-int(TYPE2) 

evaluate TYPE 4- real (3.4D) 

I <primary ~ ENV ~ TYPEI> 

"**" <primary ~ ENV ~ TYPE2> 

where is-real(TYPE1) and 

is-real(TYPE2) 

evaluate TYPE 4- real (3.4c) 

Here the synthesized attributes of <factor> and <primary> are in the domain 

Type = ( int I real I ..... ) 

This example is complicated in a different sense. There are three different 

derivations 

+ 
<factor> =~ <primary> ** <primary> 

The correct choice is based on examining the synthesized 

instances of <primary>. 

attributes of both 

Example 5. 

<factor ~ ENV ~ TYPE> ::= 

<primary ~ ENV ~ TYPEI> 

"**" <primary ~ ENV ~ TYPE2> 

<where compatible ~ TYPEI ~ TYPE2 ~ TYPE> (3.5a) 
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<where compatible ~ TYPEI ~ TYPE2 ~ TYPE> ::= 

<empty> 

I <empty> 

I <empty> 

where is-int(TYPE1) and 

is-int(TYPE2) 

evaluate TYPE ~- int 

where is-real(TYPE1) and 

is-int(TYPE2) 

evaluate TYPE ~- real 

where is-real(TYPE1) and 

is-real(TYPE2) 

evaluate TYPE ~- real 

(3.5b) 

(3.5c) 

(3.5d) 

This example enforces the same type compatibility as Example 4, but it is 

factored out of (3.5a) By means of a grammatically defined predicate 

<where compatible>, which derives only the empty string and which exists only 

to enforce certain relationships among its attributes. This it does by rule 

splitting (3.5b-d), based on its two inherited attributes. 

4. Characterization of rule splitting 

The examples in the previous section have certain features in common which 

help us to characterize more formally what exactly rule splitting is. The 

most salient common feature is that, in each case, it was possible to 

eliminate all but one of several alternative derivations by inspection of 

either the inherited attributes of the common symbol on the Left side of a 

rule group or the synthesized attributes of a common sequence of symbols of 

the right sides of several rules. This observation leads us to characterize 

two forms of rule splitting. 

Since evaluation rules play no part in rule splitting, they are ignored in 

the following. The key role is played by the constraints and their 
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projections (Definition 2.1). 

Definition 4.1. Inherited rule splitting is exhibited by a group of rules 

N -9 w I where Pl(inh(N),syn (Wl)) 

N -9 w 2 where p2(inh(N)~syn*(w2)) 

• w m m , n m  m . J P D  . i I o . o , , m . , w .  I o a m .  

(being all the rules with N on the left side) if 

pi'(inh(N)) implies (not pj'(inh(N))) for all j#i (4.1) 

i.eo if p1°(inh(N)), p2'(inh(N)), o.. are all mutually exclusive. 

Inherited rule splitting is illustrated by Examples 1 and 5. In Example I 

it is exhibited by rules (3.1aob): 

N = <actual parameter> 

w I = <expression> 

w 2 = <variable> 

pl'(ENV,PARM) - is-value(PARM) 

p2'(ENV,PARM) - is-result(PARM) 

is-value(PARM) implies (not is-result(PARM)) 

In Example 5 inherited rule splitting is exhibited by rules (3.5D-d): 

N = <where compatiDle> 

w I = <empty> 

w 2 = <empty> 

w 3 = <empty> 

p1~(TYPE1,TYPE2) m is-int(TYPE1) and is-int(TYPE2) 

p2'(TYPEI,TYPE2) ~ is-real(TYPE1) and is-int(TYPE2) 

p3'(TYPEI,TYPE2) - is-real(TYPE1) and is-real(TYPE2) 

Definition 4.2. Synthesized rule splitting is exhibited by the rules 



N I -~ VlWX I where 

N 2 -~ v2wx 2 ~h~[~ 

i . w a a m J ~ m l m  i , m m n  
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P1(inh(N1).syn*(vlWXl)) 

P2(inh(N2),syn*(v2wx2)) 

o , l m ~ t o w . o . e m l . e t o ~ w  

(where NI, N2, ... are not necessarily the same nonterminal) if there exist M, 

u1" u2" "''' YI" Y2" "'" such that 

uivi,= ujvj for all i,j=1,2,... 

and M =2 u.N y. =2 uiviwxiY i for all i=Io2 .... 

and pi'(syn~(w)~ implies (not pj'(syn*(w))) for all j~i (4.2) 

Synthesized rule splitting is illustrated by Examples 2, 3 and 4. 

Example 2 it is exhibited by rules (3.2c,d): 

In 

w = <identifier> 

N 1 = <variable>, v I = x I = <empty> 

N 2 = <constant>, v 2 = x 2 = <empty> 

pI'(MODE) - is-vat(MODE) 

p2.(MODE) i is-const(MODE) 

M = <primary> 

Ul = Yl = <empty> 

u2 = Y2 = <empty> 

In Example 3 synthesized rule splitting is exhibited by rules (3.3b,d,e): 

w = <identifier> 

N 1 = <statement>, v I = <empty>, 

N 2 = <variable>, v 2 = <empty>, 

N 3 = <variable>, v 3 = <empty>, 

pI'(MODE) - is-proc(MODE) 

P2'(MODE) - is-scalar(MODE) 

P3'(MODE) - is-array(MODE) 

M = <statement> 

u I = <empty>, Yl = <empty> 

u 2 = <empty>, Y2 = := <source> 

u 3 = <empty>, Y3 = := <source> 

x I = ( <parameter> ) 

x 2 = <empty> 

x 3 = ( <source> ) 

In Example 4 synthesized rule splitting is exhibited by rules (3.4a-c): 
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w = <primary> ** <primary> 

N 1 = <factor>, v I = x I = <empty> 

N 2 = <factor>, v 2 = x 2 = <empty> 

N 3 = <factor>. v 3 = x 3 = <empty> 

pl'(TYPEI,TYPE2) - is-int(TYPE1) and is-int(TYPE2) 

p2~(TYPE1,TYPE2) - is-real(TYPE1) and is-int(TYPE2) 

p3'(TYPEI,TYPE2) - is-real(TYPE1) and is-real(TYPE2) 

M = <factor> 

Ul = Yl = <empty> 

u2 = Y2 = <empty> 

u3 = Y3 = <empty> 

5. Attribute-directed parsing 

In a compiler constructed from an AG, analysis of an input string classically 

proceeds in two distinct phases: 

(I) a conventional CF parser is used to construct a syntax tree from the input 

string; 

(2) the nodes of the syntax tree are "decorated" by attributes in accordance 

with the evaluation rules of the AG. and any constraints on the attributes are 

tested. 

If the AG is L-attributed [Bochmann 76, Lewis et al 74~, phase 2 may be 

performed in a single left-to-right pass over the syntax tree. For a larger 

class of AGs, phase 2 may be performed in a fixed number of passes over the 

syntax tree, the set of attributes to be evaluated during each pass being 

determined at compiler-construction-time [Bochmann 76, Jazayeri & Walter 75, 

etc.]. 

{For still larger classes of AGs, a decision on the order of evaluation of 

the attributes can be delayed until phase 2 itself. The system DELTA [Lorho 

75] handles all AGs containing no circularities in the evaluation rules. The 
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system NEATS [Jespersen et al 79, Nadsen 803 even relaxes this restriction. 

These techniques are neglected here since they normally preclude the kind of 

attribute-directed parsing we are about to describe. However, some hybrid 

system is conceivable in which a subset of the attributes are evaluated during 

phase 1.} 

For a large subclass of the L-attributed AGs [Watt Z7], phases I and 2 can 

be merged in time. A variety of one-pass parsing methods for L-attributed AGs 

have been proposed or implemented; these methods include top-down [Bochmann & 

Ward 75, Koster 71a~ Koster 71b], bounded-context [Crowe 72], precedence 

[Lecarme & Bochmann 743, and LR [Watt 74b3. 

All these methods are essentially CF parsing methods augmented by some 

mechanism for evaluating, testing and distributing the attributes. The 

attributes do not in any way influence the flow of control in the parser. 

Rule splitting, however, makes it feasible for the attributes concerned to 

influence the behaviour of the parser. A choice among several alternative 

parsing actions may be made by testing these attributes, without having to 

invoke the usual look-ahead techniques of CF parsing. This can resolve CF 

parsing conflicts and even ambiguities. Thus, for example, the underlying CFG 

need not necessarily be LL(1) for the recursive-descent parsing method to be 

adopted. This enhancement of CF parsing is called attribute-directed parsing. 

In this section we first demonstrate the implementation of one-pass 

attribute-directed parsing in a recursive-descent parser and in an LR parser, 

assuming that the AG is L-attributea. Then we generalize to the multi-pass 

case. 

5.1. Attribute-directed recursive-descent parsing 

A CF recursive-descent parser consists of one parameterless procedure, N, for 

each nonterminal N of the CFG. The job of procedure N is to parse a phrase 

which can be derived from the nonterminal N. The body of procedure N is 

obtained by transcription of the N-rules of the CFG. 

In a one-pass recursive-descent parser for an L-attributed AG, each 

procedure N is augmented by parameters which convey the attributes of the 
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nonterminal N: an input-parameter for each inherited attribute and an output- 

parameter for each synthesized attribute. The body of procedure N is 

augmented Dy the evaluation rules and constraints associated with the N-rules 

of the AG. [Bochmann & Ward 75, Koster 71a, Koster 71b] 

Such a parser can easily be made to exploit inherited rule splitting. 

(Refer to Definition 4.1.) The rule group 

N -~ w 1 

N -~ w 2 

where Pl(inh(N),syn (Wl)) 

where P2(inh(N),syn (w2)) 

is transcribed to the procedure 

procedure N ( in inh(N); 

out syn(N) ); 

begin 

if pl'(inh(N)) then 

parse w I 

else if p2'(inh(N)) then 

parse w 2 

m m , . . m u m  

else {this escape clause may be unnecessary} 

context sensitive error 

end 

In Example I, rules (3.1a,b) would be transcribed as follows: 
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procedure actual parameter ( in ENV : Environment; 

in PARM : Parameter ); 

var TYPE : Type; 

begin 

if is-value(PARM) then 

begin 

expression (ENV, TYPE); 

ensure (TYPE=value-I(PARM)) 
end 

else if is-result(PARM) then 

begin 

variable (ENV. TYPE); 

ensure (TYPE=result-I(PARM)) 
end 

end 

In Example 5. rules (3.5b-d) would be transcribed as follows: 

procedure wherecompatible ( in TYPE1, TYPE2 : Type; 

out TYPE : Type ); 

begin 

if is-int(TYPE1) and is-int(TYPE2) then 

TYPE := int 

else if is-real(TYPE1) and is-int(TYPE2) then 

TYPE := real 

else if is-real(TYPE1) and is-real(TYPE2) then 

TYPE := real 

else 

context sensitive error 

end 

Grammatically defined predicates such as <where compatible> are extremely 

useful in language definitions, e.g. [Watt 79]. The latter example 

demonstrates that they are easily implemented without any special techniques 

other than attribute-directed parsing. 

A general implementation of synthesized rule splitting is not possible in a 

top-down parser. But consider the special case where all the N-rules are of 

the form: 
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N -~ wx I where P1(inh(N),syn (WXl)) 

N -~ ~x 2 where P2(inh(N),syn (wx2)) 

a l e . m , . m  . e m o ,  . o m . , I i , m l . m m . . m o . i  

such that 
pi'(syn*(w)) implies (not pj'(syn*(w))) for all j#i 

This rule group can be transcribed as follows: 

procedure N ( in inh(N); 

out syn(N) ); 

begin 

parse w, and thereby deduce syn*(w); 

if pl'(syn*(w)) then 
parse x I 

else if p2'(syn*(w)) then 

parse x 2 

. a o . l . i .  

else {this escape clause may be unnecessary} 

context sensitive error 

end 

In Example 4. rules (3.4a-c) would be transcribed as follows: 

(5.1) 
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procedure factor ( in ENV : Environment; 

out TYPE : Type ); 

var TYPEI, TYPE2 : Type; 

begin 

primary (ENV, TYPEI); 

accept ("**"); 

primary (ENV, TYPE2); 

if is-int(TYPE1) and is-int(TYPE2) then 

TYPE := int 

else if is-real(TYPE1) and is-int(TYPE2) then 

TYPE := real 

else if is-real(TYPE1) and is-real(TYPE2) then 

TYPE := real 

else 

context sensitive error 

end 

5.2. Attribute-directed LR parsing 

In a CFG G, if Z =2 vNx =2 vwx (where Z is the distinguished nonterminal of 

G, N-~w is a production rule of G, and x is a string of terminals), and if 

#(N-~w) is a special symbol uniquely associated with the production rule N-~w, 

then vw#(N-~w) is a characteristic string of vwx. The LR parsing machine of G 

is the deterministic finite-state machine which accepts only the 

characteristic strings of G. The LR parsing machine has terminal-transitions, 

nonterminal-transitions, and reduce-transitions (those labelled by the special 

#-symbols). The LR parsing machine is used in conjunction with a stack on 

which are stored (state, symbol) pairs. [DeRemer 71] 

A one-pass LR parser for an L-attributed AG uses a second stack, the 

attribute stack. Immediately prior to parsing a symbol, its inherited 

attributes are placed at the top of the attribute stack; and parsing the 

symbol has the effect of stacking its synthesized attributes immediately above 

its inherited attributes. The LR parsing machine is augmented by special 

transitions which specify either the copying of attributes to the top of the 

attribute stack, or the application of an evaluation rule, or the testing of a 

constraint. [Watt 74a, Watt 74b] 
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These special actions in general may introduce parsing conflicts even when 

the underlying CFG is LR(k). Such a conflict arises if any special transition 

leads out of a state from which there also leads a terminal-transition, a 

reduce-transition, or another special transition (unless the conflict can be 

resolved by the usual look-ahead). 

Rule splitting, however, gives rise to a state from which there lead 

several special transitions which specify the testing of mutually exclusive 

constraints (and no other special transitions, no terminal-transitions and no 

reduce-transitions). This type of state has been called a multi--predicate 

state [Watt 74a]. The action taken by the parser in a multi-predicate state 

is simply to test each of the constraints (in any order or in parallel), and 

traverse the transition corresponding to the one constraint which is 

satisfied. 

Inherited rule splitting gives rise to the situation illustrated in Figure 

1(a), provided the constraints on the inherited attributes of the common 

left-side nonterminal, N, are tested before parsing the right side of an N- 

rule. Figures l(b) and 1(c) illustrate Examples 1 and 5 respectively. 

Synthesized rule splitting gives rise to the situation illustrated in 

Figure 2(a), provided the constraints on the synthesized attributes of the 

common right-side sequence of symbols, w, are tested immediately after parsing 

w. Figures 2(b), 2(c) and 2(d) illustrate Examples 2, 3 and 4 respectively. 

When we use an LR parser, we can generalize the definition of synthesized 

rule splitting, by changing the first part of (4.2) to read: 

uiv i and ujvj access the same state in the LR parsing machine, 

for all i,j=1,2,... 

In each case, the effect of rule splitting is a multi-predicate state which 

directs the parser to one of several different states depending on the values 

of the attributes concerned (inh(N), or syn*(w), respectively). The multi- 

predicate state in the LR parser performs the same role as the cascade of 

tests in the procedure of the recursive-descent parser. 
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~.~. Th_._~e multi-pass case 

If the AG is such that all the attributes can be evaluated and tested in n>1 

passes over the syntax tree, then the value of n, and the set of attributes 

which can be evaluated and tested during each pass, can be determined from the 

AG [e.g. Bochmann 763. Only the first-pass attributes can be evaluated and 

tested during parsing. Thus attribute-directed parsing can use only these 

first-pass attributes. 

Let inh (S) and syn.(S) be those inherited and synthesized attributes of a 
I ] 

symbol (or sequence of symbols) S which are determined during the i'th pass. 

{Thus inhl(S) , .... , inhn(S) form a partition of inh(S); and syn1(S) , .... , 

Synn(S) form a partition of syn(S).} 

Then inherited rule splitting can be exploited only if (refer to Definition 

4.1): 

pi'(inhl(N)) implies (not pj~(inhl(N))) for all j~i (5.2) 

This condition is stronger than (4.1). 

Synthesized rule splitting can be exploited only if (refer to Definition 

4.2): 

and 

and 

ulvl,. = ujvj for all i,j=1,2,... 

M =2 u.N~y~ =2 uiviwxiY i for all i=1,2,... 
1 t /  / . . t 

p~'(syn~ (w)) Implles (not p='(syn I (w))) for all j~i 
J i j 

(5.3) 

The third part of (5.3) is stronger than the third part of (4.2). 

The implementations of attribute-directed parsing in the multi-pass case 

are similar to those for the single-pass case (sections 5.1 and 5.2), except 

for the substitutions of inh I and syn I for inh and syn respectively. 
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6. Implications for a compiler writing system 

The following problems will be encountered in attempting to detect and exploit 

rule splitting in a compiler writing system (CWS): 

(1) detecting potential cases of synthesized rule splitting (this should be 

trivial for inherited rule splitting); 

(2) determining a predicate projection p' (Definition 2.1) from a constraint p 

associated with an AG rule; 

(3) determining whether given predicates PI" p ' "'" 2 " are mutually exclusive. 

These problems are, in general, unsolvable, but we offer partial solutions 

which should be satisfactory in practice; at least these solutions are 

adequate for handling all the examples of rule splitting in section 3. We 

also suggest an interactive CWS which could seek human assistance in 

occasional situations where the partial solutions are inadequate. 

~.~. Detecting ~otential cases of rule splitting 

If a nonterminal N has at least one inherited attribute, and if each of the 

N-rules has a constraint which depends on that attribute, then we have a 

potential case of inherited rule splitting. 

We can similarly detect a potential case of synthesized rule splitting of 

the restricted sort (5.1) which can be handled by a top-down parser. 

Because the general definition of synthesized rule splitting is more 

complicated (4.2), and since it can be handled only by a bottom-up parser 

anyway, it is best to detect potential cases by actually constructing an LR 

parser and seeing whether multi-predicate states appear. It is necessary to 

adopt some consistent strategy as to when constraints are tested. The 

simplest strategy is to test each constraint as soon as all the attributes on 

which it depends are known. 
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~.~. Determining predicate projections 

Suppose we are given a predicate p defined as the conjunction of a set of 

simpler predicates: 

P(Xl,...,x n) - q1(xls°..,Xn) and ...... and qm(Xl,...,Xn ) (6.1) 

where each qi actually depends on only some of the variables Xl, ..~, Xn~ 

Suppose that we wish to determine p'(xi~x j .... ). 

Let q(xi,xj,...) be the conjunction of those predicates ql~ ...p qm which 

actually depend on the variables xi, xj, ...; then p(x I ..... x n) implies 

q(xi,xj,...), q is less strong than p', but otherwise q satisfies the 

requirements of Definition 2.1. Thus q may serve as an approximate solution 

to p' 

Constraints associated with AG rules are quite likely to be presented in 

the form (6.1). This is indeed the case in all the examples of section 3, and 

this partial solution is in fact accurate in all these examples. In Example 

1, rule (3.1a): 

p(ENV,PARM,TYPE) - is-value(PARM) and TYPE=value-I(PARM) 

q(PARM) - is-value(PARM) 

p'(PARM) - is-value(PARM) 

~.~. Determining whether given predicates are exclusive 

In general, knowledge of the properties of the attribute domains over which 

the given predicates are defined is needed to determine whether the predicates 

are exclusive. 

For example, we know from the properties of the discriminated union 

U = ( gl(T I) I ..... I gn(Tn ) ) 

(Definition 2.2) that the predicates is-g1, .... is-g n are mutually exclusive. 

This is sufficient to establish the mutual exclusiveness of the relevant 
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predicate projections in all the examples of section 3. 

6.4. An interactive CWS 

If the partial solutions outlined above are found to be inadequate, the CWS 

could be made interactive, seeking human assistance in unclear situations. 

The compiler writer would supply an AG defining the language to be 

implemented; the CWS would look for potential cases of rule splitting, deal 

with the clear cases itself as outlined above, and refer unclear cases back to 

the compiler writer for a decision as to whether rule splitting is actually 

present and whether it should be exploited. 

This leads to a point we have ignored up to now. Even where rule splitting 

is present, it is unnecessary to exploit it in the absence of any CF parsing 

conflict or ambiguity. Indeed. it may then even be undesirable to exploit it 

since it may adversely influence syntactic error reporting and recovery. This 

is another reason why an interactive CWS may be a good way of dealing with 

rule splitting. 

7. Conclusions 

This paper has attempted a systematic study of the phenomenon of rule 

splitting and the associated implementation technique of attribute-directed 

parsing. A number of realistic examples of rule splitting were given. Two 

kinds of rule splitting, "inherited" and "synthesized". were formalized. 

Their implementations in top-down and bottom-up attribute-directed parsers 

were demonstrated, for both the single-pass case and the multi-pass case. 

Finally, the implications of all this for compiler writing systems were 

discussed, pointing out some problems which are, in general, unsolvable and 

require either a pragmatic or an interactive approach. 

Attribute grammars have been used as a medium for our discussion because 
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they facilitate our definitions of rule splitting and our descriptions of the 

corresponding implementation techniques. We conclude by referring readers to 

the "extended attribute grammars" of [Watt & Madsen 79], which allow instances 

of rule splitting to be exhibited rather clearly. Several examples of rule 

splitting in the context of a complete grammar may be found in [Watt 79~. 
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i~i N _1--i 
l/..LI 1 -,__t 

i I g 

I I i 

• m a 

m J 

I M 

O I 

I D B l I I D i  

B D O I D O I g  

Figure 1(a). Effect of inherited rule splitting in an LR parser. 
(Refer to Definition 4.1.) 
The multi-predicate state is shaded. 

iT~I <actual parameter> ~i--I 
I/_/ -r i 

is-value J--I <expression>~I--I evaluation rule -- 

| - 
<variable> I--I #(3.1c) - I_r 

#(3.1a) 

Li s-resultU--I <variable> _I--I 
-I__I -I I 

evaluation rule~l--~._.~ #(3.1b) 

Figure l(b). Inherited rule splitting: Example 1. 

1771 <where compatible> J--I 
I/_/i | - t I 

I is-int&is-int ~--I evaluation rule~l--I 
__I .... l__~ ''~" 

I is-real&is-int ~I--I evaluation rule_~--I 
- I__I "i_r"-" 

luis-real&is-real l--I evaluation rule ~l--I 

Figure 1(c). Inheritea rule splitting: Example 5. 

#(3.5b) 

#(3.5c) 

#(3.5d) 
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I--I M _ I--I 
i 11 -I I 
-- I 

I iv  

L u 2 - - -  °l i -i I 
- -  i v  2 1 - -  
. .  | | s .  

l | 

" "  ! I " "  

. . m .  . 4  

#(N1-~VlWX I ) 

#(N2-~v2wx 2) 

Figure 2(a). Effect of synthesized rule splitting in an LR parser. 
(Refer to Definition 4.2.) 
The multi-predicate state is shaded. 

1--I 
t__t 

<primary> _J--J 
-I_I 

~variable> J-- ~-,.,,-!~ #(3.2a) 

<constant> J~ # ~i_~_.  ~ ~3.2b) 

L<identifier> _1771_ is-vat J-- 
"q//I l 

i s - c o n s t  - - J  
"q I 

evaluation rule ~.I]~#(3.2c) 

evaluation rule ~Jj--~#(3.2d) 

Figure 2(b). Synthesized rule splitting: Example 3. 
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ill. <statement> ~]I 

I <variable> I--I := I-- <source> i--I #(3.3a) 
L ~I_I ~,_] ~,_~"-P 

1771 is-proc -- ( J--I ~l--i ) J--i ~ #(3.3b) <identi fi er> ~I//I i -I ~--"~ ~" -- -- -~ ~------~ ~---Ip 

I 
Lis,scalar , - evaluation rule .I-- _ #(3.3d) 
I 7 1 "I I 
|is-array ~'--I ( J--I J--I ) J--I ~#(3.3e) 

7 F--"I T---7_r'--~_l " 

~igure 2!c). Synthesized rule splitting: Example 3. 
(Some details omitted for space reasons.) 

-- . <factor> I--I 
I I I ~i I 

m <primary> ,--, **,--, <primary> 77 i s-int&is-int J--~--~#(3.4a) 

i s-real&i s-i nt ~,--~]~.~p # (3.4b) 

Figure 2(d). Synthesized rule splitting: Example 4. 


