A Consiructive Approach to Compiler Correctness *

Peter Mosses

Computer Science Department
Aarhus University
Ny Munkegade
DK -8000 Aarhus C, Denmark

Abstract

it is suggested that denotational semantic definitions of programming
languages should be based on a small number of abstract data types,
each embodying a fundamenta! concept of computation., Once these
fundamental abstract data types are Implemented in a particular target
language {e.g. stack-machine code), it is a simple matier to construct
a correct compiler for any socurce language from its denotational
semantic definition. The approach is illustrated by constructing a
compiler equivalent to the one which was proved correct by Thatcher,
Wagner & Wright {1979},

1. Introduction

There have been several attacks on the compller-correctness problem:
by McCarthy & Painter (1967), Burstall & Landin {1969), F.L. Morris
(1973) and, more recently, by Thatcher, Wagner & Wright, of the

ADJ group {1979). The essence of the approach advocated in those papers
can be summarised as follows: One is given a source language L, a
target language T, and their respective semantics in the form of models
M and U. Given also a compiler to be proved correct, one constructs an

encoder: M - U (or a decoder: U - M) such that this diagram commutes:

compiie
[-~ T
semantics semantics
encode
M = u.
decode

* A revised version of this paper is io appear in the Proceedings of the 7th

International Colloquium on Automata, l.anguages and Programming, 1980,

190

ADJ {1979} suggested that this is most easily done by making M, Uand T
into G-algebras, where G is the grammar (signature, abstract syntax)

of L.. The two semantic functions and the compiler are defined as homo-
morphisms, so the initiality of L gives the commutativity of the diagram,
once encode is shown to be a homomorphism. ADJ illustrated their
approach for a simple language L, including assignment, loops, expres-
sions with side-effects and simple declarations. T was a language
corresponding to flow charts with instructions for assignment and stacking.
Their semantic definitions of L. and T can be regarded as "'standard!
denotational semantics in the spirit (though not the notationl} of Scott

and Strachey (1970). The simplicity of their definition of an encoder was,
however, rather outweighed by the tediousness of their proof that it was

a homomorphism.

We shall take a different approach in this paper. The semantics of the

source language L. will be given in terms of an absiract data type S,

rather than a particular model, The target language T will also be

taken as an abstract data type. Then the correct implementation of S

by T will enable us to construct a correct compiler {(from L to T)

from the semantic definition of L. The compliler to be consiructed is
actually the composition of the semantics and the implementation, as shown

by the following diagram:

semantics compile

implement

- S

A crucial point is that the implementation of S by T is proved correct
independently of making S and T into the G-algebras implied by the
diagram. This allows us to generate correct compilers for a whole
family of source languages - languages which are similar to L, in
that their denotational semantics can be given in terms of S - without
repeating (or even modifying) the proof that the implementation of S

by T is correct.

191

Note the use of the word "implements! above. We are considering the
implemeniation of one abstract data type by another abstract data type,
rather than by a particular algebra (Yconcrete!' data type}. L.et us

refer to the latter situation as modelling.

The main concern of this paper is with the compiler-correctness
problem. However, it is hoped that the example presented below will
also serve as an illustiration of on-going work on making denotational

semantics !'less concrete!! and "more modular!, It is claimed that there
are abstract data types corresponding to all our fundamental concepts

of computation - and that any programming language can be analyzed

in terms of a suitable combination of these, {("RBad! features of pro-
gramming languages are shown up by the need for a complicated analysis -
s0 long as the fundamental concepts are chosen appropriately.) Of course,
only a few of the fundamental concepts are needed for semantics of the
simple example language L. {they include the sequential execution of
actions, the computation and use of semantic values, and dynamic asso-
ciations). An ordinary denotational semantics for L would make use of

these concepts implicitly - the approach here is to be explicit.

The use of absiract data types in this approach encourages a greater
modularity in semantic definitions, making them - hopefully - easier to
read, write and modify. [t seems that Burstall & Goguen's (1977) work

on 'putting theories together! forms a suitable formal basis for expres-
sing the modularity. However, this aspect of the approach is not exploited

here,

It should be mentioned that the early paper by McCarthy & Painter {1967)
already made use of abstract data types: the relation between storing
and accessing values in variables was specified axiomatically, ADJ
(1979) used an abstract data type, but only for the operators on the in-

tegers and truth-values.

The approach presented here has been inspired by much of the early
work on abstract data types, such as that of ADJ (1975, 1976}, Guttag
(1975), wand {1977) and Zilles {1974). Also influential has been Wand's
{1976) description of the application of abstract data types to language
definition, although he was more concerned with definitional interpreters
than with denotational semantics. Goguen's (1978} work on Hdistributed-
fix" operators has contributed by liberating algebra from the bonds of

prefix notation.

192

However, it is also the case that the proposed approach builds to a
large extent on the work of the Scott-Strachey ""'school" of semantics,
as described by Scoit & Strachey (1971), Tennent (1976), Milne &
Strachey (1976), Stoy (1977) and Gordon {1979). Also, the success
of Milner {1979} in describing concurrency algebraically has provided

some valuable guidelines.

The rest of this paper is organized as follows., After the explanation
of some notational conventions, the abstract syntax of the ADJ (1979)
source language L is given. A Y'standard" semantic abstract data type
S is described, possible models discussed, and the standard semantics
of L. given. The next section presents a !'stack! abstract data type T,
which needs extending before the implementation of S can be expressed
homomorphically. The proof of the correciness of the implementation

is sketched, and a compiler - corresponding closely to ADJls - is con-
structed, Finally, the application of the approach to more realistic

examples is discussed.

It is assumed that the reader will be familiar with many-soried algebras,

equational specifications and ~ to a lesser extent - denotational semantics.

2. Standard Semantics

The notation used in this paper differs significantly from that recom-
mended by ADJ (1979), by remaining close to the notation of the Scott—
Strachey school, This is not just a matter of following tradition
(although the familiarity of the notation might be a help to some readers

of this paper). There are two main points of contention:

{i) The use of the semantic function explicitly in semantic equations,
Although technically unnecessary, from an algebraic point of view,
this allows us to regard the semantic function as just another
equationally-defined operator in an abstract data type, and to forget
about the machinery of homomorphisms and initial algebras (albeit
temporarilyl).

(*)

Mixfix notation is a generalization of prefix, infix and postfix notation:

{ii) The use of mixfix notation for the operators of the absiract syntax.

operator symbols can be distributed freely around and between operands,

(*) called "distributed-fix" by Goguen (1978).

193

e.g. if-then-eise. ADJ used infix and mixfix notation (fo g, [f,g,h])
freely in their semantic notation, but stuck to postfix notation {{x)f} for
the syntactic algebra. This made the correspondence beiween the
abstract syntax and the "usual' concrete syntax for their language rather
strained. Whilst not disastrous for such a simple and well-known lan-
guage as their example, the exira burden on the reader would be exces-
sive for more realistic languages, Also, their claim of better readability

does not seem to be justified,

Notationa! Conventions

The names of sorts are writien starting with a capital, thus: A, Cmd,
Algebraic varlables over a particular sort are represented by the sort
name, usually decorated with subscripts or primes: A, A1, Al

Operator symbols are written with lower-case letters and non-aiphabetic

characters: tt, even()}, +, if then eise. Families of operators are in-

dicated by letting a part of the operator vary over a set, e.g.
id := (id € 1d) is a family of prefix operators indexed by elements of id.

It is also convenient to allow families of soris indexed by (sequences

of} domain names from a set A - fower case Greek letters (6, o, T}

are used for the indices.

The arity and co-arity of an operator in a signature are indicated by

the notation

S <= f(SP”"sn)

- here, the arity of f is S1 e Sn’ the co-arity is S, Mixfix notation
can be used here for the operator symbol, giving a pleasing similarity
to BNF, e.g.

Cmd <= if BExp then Cmd else Cmd.
The term 'theory!! is used synonymously with "absiract data type',
i.e. it is basically a signature together with some laws. So much for

notation.

Abstract Syntax {L)

The abstract syntax of the source language L. is given in Table 1, |t

may be compared directly with that of ADJ (1979}, although, as explained
above, we shall not restrict ourselves to postiix notation for syntactic
operators here, Id is taken to be a set, rather than a sort, following
ADJ - in effect, this gives a parameterised abstract data iype, and we

need not be concerned about the details of Id.

194

Table 1, Abstract Syntax of L

sorts Cmd commands
AExp arithmetic expressions
BExp Boolean expressions
id unspecified set of identifiers
operalors

Cmd <= continue

id := AExp id € 1d
if BExp then Cmd else Cmd
Cmd; Cmd
while BExp do Cmd
AExp <= aconst aconst € {0, 1}
id id € id
aop1 AExp aop! € {-,pr, su}
AExp aop2 AExp aop2 € {+, -, x

if BExp then AEXxp else AExp
Cmd result AExp

let id be AExp in AExp id € Id

BExp <= bconst bconst € i tt, Ff}
prop AExp prop € jeven
AExp rel AExp rel €1<, 2, eq
bop1 BExp bopl € -.f
BExp bop2 BExp bop2 € {A, V}

Standard Semantic Theory (S}

The standard semantic theory presented in Table 2 may seem a bit
daunting at first. Actually, the operators themselves {left-hand column}
are quite simple, but the "book-keeping! concerned with the indices

(6, o, 7) of the sorts is somewhat cumbersome.

Table 2 could be regarded as a theory schema, or as an Instantiation
of a parameterised theory, where A is a formal parameter {as is Id).
Whichever way one looks at it, the use of A gives a hint of modularity,

as well as avoiding undue repetition in the specification.

The following informal description of S may help the reader.

195

Table 2, Semantic Theory S

sorts {indices: 6 € Ay 0,7 € A*, where A = {T,2})
A - actions, with source gA and target TA
Y - variables over actions, with source oY and target 7Y
V - values, with domain 6V
X ~ variables over values, with domain §X
operators {indices: id € 1d; n€ {0,1,...})
actions A source gA target TA
A <= skip {) ()
A! ; AH O-A!.O-AH TA‘“ TA“
\! () v
X.A! SXe g Al TA!
AI>_AI| O'A" sil t"TA”
n where gAl =d1---dn-s", and TA‘—'=d1---dnct'
tt 7 AN /7 AY] ToA! TAL
where gAl = gAl, and TAD = T A!
fix Y. A! I oY | vy
where gA! = gV and TA' = 1Y
hd LAY TY
updatei z {)
contentS, | () z
action variables Y source gY target 7Y
Y <= a {) ()
a () ()
values V domain 8V conditions
Vo <= X Ox
aconst 4
aopt V! z bVl =2
V! aop2 V! z SV =BVt = 2
bconst T
prop V! T vl =2
VIrel VM T SVl = v =2z
value variabies X domain §X
X <= z z
Zn Z

196

Table 2 contd.

egquations

1. skip; A=A

2. A skip=A

3. (Al;AZ);A3=A1;(A2;A3)

4, V= (X, A) = A { XV

5. (V5 AN (X Ay = A=, (A, X V)
tl > (1?2 A, /7 Ayl = Ay

SO (T AL /A = A,

fixY. A = AlYefixy. Al
i . - .ot
(VI >~ updateid) ; contents, (V> updateid) 3.V

So®No

i .
(Vi > updateid) 3 comtentsid,

= contents,,, ; (VI > updateid)
for id # id!

11, A3 vl = Vi A for 7A = ()

12, X, A = X', A{Xe X} for X' not free in A

13 (117 A, /FZ AL 5 Ay = 12 (A5 AL /7 (Ay 5 A

14 AL (182 A, /T2 AJ) = 17 (A5 Ay /7 (A5 Ay

15, {X. A]) 3 Ay = X (A3 Ag) for X not free in A,

6. Aj (X. AZ) = X (A AZ) for X not free in A, and O‘A]=()

17. Vi (A1>—><. A2)=A1>—-><. (vi; A for X not free in V

2) and T{A1) = (d)

The basic concept is that of actions {A). Actions not only have an
neffect!, but may also consume and/or produce sequences of values {V).
These values can be thought of as belonging to the Y"semantic domains!
in A. i.e. T and 2. The book-keeping referred to above mainly con-
sists of keeping track of the number and sorts of values consumed

{o, for source) and produced (r, for target). Note that a raised dot {*]
stands for concatenation of sequences in A¥ and {) is the empty

sequence.

Variables (X) are used to nhame compuied values, and to indicate de-
pendency on these values (by actions and other computed values).

VVariables over actions (Y} allow the easy expression of recursion and

iteration.

We consider the value operators first. They are taken straight from the
Hunderlying! data type of ADJ {1979). It is assumed that bconst, prop,
etc. vary over the same sets as in Table 1, thus giving families of
operators. The Boolean operators {—, Ay, V} are not needed in giving the
semantics of L, and have been omitted from S (as have variables over

truth values).

197

There is a domain name 6 € A associated with each value of V; also,
the domain name Z is associated with the variabies used to name values
in the sort Z. (This would be of more importance if we were to include
variables naming T-values as well - the idea is just to make sure that

a sort-preserving substitution can be defined,)

The action operators are perhaps less familiar. A <= skip is the null

action, it is an identity for the sequencing operator A <= A!'; A, Note

that sequencing is additive in the sources and targets.

The most basic action operator producing a value is A <=\V! . The con~
sumption of a value is effected by A <= X, A', and X is bound to the
value in A!'. To indicate that n values produced by one action are consumed
by another, we have the operator A <= Al>~ All, and it is the ficst n
values produced by A! which get consumed by Alt, (A <= A! >6~ Al s
equivalent to A <= A} All, >ﬁ' may be written simply as >~ when the value

of n can be deduced from the context.)

A<= 1tt? A' / ff? Al is a choice operator: it consumes a truth value
(tt or ff) and reduces to A! or A'', The sources and targets of A! and Al

must be identical.

A <=fix Y. A' binds Y in A" and, together with A €= Y, allows the ex-
pression of recursively-defined actions. Acutally, it is used here (in
describing L.} only in a very limited form, corresponding to iteration:
A<=fix a, A" >~ 117 All; a / ff? skip, where A! produces a truth-value,

and the action variable, a, does not occur free in A! or AL,

Finally, there are two families of operators for storing and accessing

computed values: A <= upda’ceI and A <= contents for id € Id. Only

d id?
integer values may be stored,

Now for the equations of Table 2, specifying the laws which the operators
of S are to satisfy. ADJ {1979) gave equations for the value operators ~
they are much as one might expect, and are not repeated here, The

novelty of S lies in its action operators.

To avoid getting bogged down in irreievant details, the equations for
the binding operators of S (A <= X, A! and A <= fix Y. A!) are given with
the help of notation for syntactic substitution: for any action term A

of S, AlX « v} is the term with all free occurrences of X replaced by

108

the value term V {(and with uniform changes of bound variabies in A
to avoid Ycapturing! free variables in V). Similarly for AiY « A,
This syntactic substitution could have been added as an operator 0S5,

and specified equationally.

The equations shouid now be seif-expianatory. What might not be obvious
is that they are the "right'" equations, and are neither inconsistent nor
incomplete. It would delay us too much to go into all the details here,

but the idea is to use a Scott-model for S to show consistency, and a

so-called canonical term algebra to prove completeness.

The Yobvious! Scott-model for S (corresponding to the M of ADJ (1979))
‘e =gl ces d!

1 dm and TA d1 dn

(di’ d!€ {T,2}), the domain of continuous functions

has as carrier for sort A, withgA =d

»e . ! sae 1
[Envxd,x xd -+ Envxdfx xdl T,

where Env = Id 4 Z, {Of course, one could also take a continuations—

based model, or one with static environments, if one preferred.)

The reader may have noticed that S has binding operators, and that
terms can have '"free! {semantic) variables. This raises the guestion
of whether a modelling function from $ to a Scott-model could be ex~
pressed as a homomorphism, or whether one must aliow the function
to take an environment (giving the values of the semantic variables,
not of the program variables). Robin Milner has suggested that one can
regard a binding operator as a notational means for representing a
family, indexed by the values which may be substituted for the bound
variables. E.g. X.A representis the family <A{ X « Vi}vEﬁx’ and in
VI > (X,A)}, the second operand of > is a family. This enables the
modeiling function to be given as a homomorphism., One might wonder
whether the introduction of operators acting on {in general) infinite
families undermines the whole algebraic framework, but Reynolds
(1977) shows that this is not the case. Anyway, modelling is not our

main concern in this paper, so let us leave the topic there.

Standard Semantics

The ''standard!' denotational semantics of LL in terms of the absiract
data type S is given in Table 3. The use of the ""semantic equations!"
notation, with the explicit definition of the semantic function, is
defended at the beginning of this section. To allow the omission of
parentheses, it is assumed that the operator !'.! binds as far to the

right as possible (as in A-notation).

198

Note that sem[T can be considered either as an operator in an extension
of the theories L and S, or eise as a homomorphism from L to a derived
theory of S. Under the latter view, the composition of sem with the
modelling function {from S to the Scott-model mentioned above} yields
the semantics which AD.J (1879) gave for L..

Table 3. Standard Semantics for L using S

operators A <= sem[Cmd] oA ={(), ()
A <= sem[AExp] oA =(), TA=2Z

-‘
>
I

A <= sem[BExp]| cA=(), TA=T
sem[[Cmd] equations {id € 1d)
sem[continue]] = skip

sem[[id := AExp]] = sem[AExp] > update,
sem[[if BExp then Cmd, else Cmd,] =
sem[BExpT > tt? sem[Cde} /57 sem[[Cde]]
sem[[Cmd, ; Cmd,[] = sem[[Cmd,] ; sem[Cmd,]
sem{[while BExp do Cmd] =
fix a, sem[BExp] > tt? sem[Cmd | ; a / ff? skip

d

sem[AExp]] equations

sem{aconst] = aconst !
seml[id] = contents, 4
sem[laop! AExp] = sem[[AExp] > z. (aop1 z) !
sem[[AExp, aop2 AExpzﬂ =

sem[AExp T > z,. semﬂiAEszﬂ >z, (zy30p2 z,) !
sem[] if BExp then AExp, else AExpz]} =

sem[BExp] > tt? sem[AExpd] / 7 sem[AExp,]
sem[Cmd result AExp] = sem[Cmd] ; sem[AExp]
sem[[let id be AExp, in AExpzﬂ =

contents, 4 > z,. (sem[AExp?] . updateid);
sem[AExp T >~ zy. (zy ! > update, \); z, !

sem{[BExp] equations

sem[bconst]] = bconst |
sem[[prop AExp] = sem[AExp] > z. {prop z) !
ses’n[[AExp1 rel AExpzﬂ

sem[AEpr]] > z,. semﬂAEszﬂ >~ z,. (zy rel zy) !
sem[- BExp] = sem[BExp] > tt? ff! / {2 ti!
sem[BExp; A BExp,]] sem[BExp] > tt? sem[BExp,] / ff? ff!
sem[[BL—':xp1 v BExp,]] sem[BExpT:ﬂ >e tt2 ttl / fF2 semﬂ:BExpzﬂ

it

]

200

3. Stack implementation

We now take a look at the target language T for our compiler. Like the
target fanguage taken by ADJ {1979}, T represents flow-charts over

stack-machine instructions. The abstract syntax of T is given in Table 4.

A comparison of Tables 2 and 4 shows that T is rather similar to S.
However, this should not be too surprising: the same fundamental con-
cepts of computation are being used, e.g. sequencing of actions, storing
of values, Note that A <= A! 2 Al in T corresponds to A <= A! > Al in
S, but it is the last n values produced by A' which get consumed (in
reversed order), by A in T. Also, the value terms V in T are resiricted
to be constants, and A <= V! represents pushing V onto the stack. The
value operators (prop, rei, aopl, aop2) of S have become actions
operating on the stack in T. A <= switch interchanges the top two values
on the stack, Finally, there are no value variables X in T - and hence

no A <= X, A! either,

However, T is to be more than just a language: it is to be an abstract
data type! There are equations, similar to those for S, which the
operators of T must satisfy. {(The equations are not listed here, although

a couple of them are given {indirectly)by Table 5.}

So the problem is now to implement one abstract data type (S) by another
(T}, and show that the implementation is correct. If imp: S =+ T, then

imp is said to be a correct implementation of S by T if it is an injective

homomorphism. In other words, imp respects the equations of S: for
any s,s! in S, imp[s] = imp [st] iff s = s!'. Having found such an imp,

the composite imp e sem: L # T is a correct compiier from L. to T.

Unfortunately, it is actually impossible to implement S by the T of

Table 4! To see why, consider a term of S with free {(value-) variables,
such as z! . What could imp give in T as the implementation of this

term? If one tries to answer this question, one discovers that free
variables in S correspond to values at an unknown depth on the stack

in T -~ and that there is no way of representing such values, (Considering
binding operators as a means for representing families of terms without

free variables doesn't help, as there is no means of representing a family

in T.)

201

This is annoying, because one can easily implement the closed terms of

S by T: one knows the positions of all the values on the stack. Moreover,

only closed terms were used In giving the semantics of L.. One could

argue that we could make do with an implementation of only the closed

terms of S, and proceed with our compiler construction. However, to

show that the implementation {and hence the compiler) is correct, we

need it to be a homomorphism - and that means considering all the terms

of S, including those with free variables.

Table 4, Stack Theory T
sorts (indices: 8 € A; 0,7 € A¥, where A= {T,2})
A - actions, with source gA and target TA
Y - variables over actions, with source g% and target 7Y
V - values, with domain 8§V
operators (indices: id € Id; n€ {0,1,...})
actions A source gA target A
A <= skip {) ()
Al Al gA' + gAll TA! « TA!
2 () 6v
Al - Al gAl .+ si! tt e AN
n where gA" =d _+«.ed .« s, andTA‘:t'od-.-d’
tt TAl /fF2 AN ! n n
where gA'! = gAl and TA! = TAY
fix Y.A! a¥Y vy
where gAl! =gY and TA' =71Y
Y oV Y
update, z ()
conten d () z
switch Ze Z z2+ Z
prop Z T
rel zZs- Z T
aop1 Z z
aop2 zZ- Z z
action variables Y source gY target 7Y
Y <= a () (1)
a_ () ()
values V domain 6V
VvV <= aconst z
bconst T

202

Thus we are forced to extend T, before we can use it o give a homomor-~
phic implementation of S, The most natural extension to take seems to
be Tx, given in Table 5, The action A <= X.A' can be thought of as re-

moving the top item from the stack and binding it to X in A,

Now we are able to give a homomorphic implementation of S by Tx, and
prove it correct. But how does that help us in constructing a compifer
from L. to T {rather than to Tx)? Recall that only closed terms of S

are used in the semantics of L -~ and they are implemented by closed
terms in Tx. It just so happens that any closed term of Tx is equivalent
to a term of T, I,e. one without any value variables at alll This ensures

that our compiler from L. to Tx can be converted io one from L to T.

Actually, that is not quite true. We need io add a few derived operators
to Tx: generalizations of A <= switch, for permuting the top values on
the stack. {This is analogous to adding the combinators {S, K, etc.) to
the A-calculus, in using them to eliminate A -abstractions.) The extra
operators, extending Tx to Tx!, are given in Table 6. It turns out that
they do not occur in the compiler we construct for L., because of the

lack of exploitation of the generality of S in giving the semantics of L.

Table 5. Extension of T to Tx
soris X - variables over values, with domain 6V
operators
actions A source gA target TA
A <= X, Al 8% « gA! TA!
values V domain 6V
Vo <= X (1324
value variables X domain 6X
X <= t T
t T
4 Z
z A
n
equations similar to those of S, except fof:
1. VI = ({X.A) = A{X e Vi
. 1 =
2. (A3 V1) 2 (XA = A —= (A, {x« Vi)
H = 1. 1
3. switch zy. Zye (zz. H 21.)

203

Table 6 also gives the {derived} equations which are used in converting
closed terms in Tx' to ones without value variables. Note that these
equations simplify considerably when the sources or targets of actions

are empty: up?) and down?) have no effect, and may be removed.

At last we can implement S, by Tx!., The implementation function,
imp: S 2 Tx!, is defined in Table 7, using the same notation as was
used for defining the semantics of L., S-operators now occur inside

[T (in contrast to Table 2). As one can see, the implementation

Tabie 6, Extension of Tx to Tx!

operators (indices: d, d; £ A)
actions A source gA target TA
A <= pop d ()
copy d ded
Upg e dre-d-d dyreed +d
}d n
downy ded ++ed, ded e dp
1 n
flip"
d'l'”dm d_-e-d, dn+1'“dm'dn'”d1
equations where x(i) = t(i)’ if d(g) =T
Z(i)’ it d“) = Z
1. = x.ski
popd X. skip
copy, = x. (x! 5 x!)
up ceed = X e X X (xqd 5 vens xo!3 x!)
= [1 . . 1
4, downdlu_dn Ko Kowe Xy (x! 3 Xphy e xn.)
.. n - [~ . 1 . 1 . . 1
5. flip cend Ko+ s X (xn_H. R I T N IR Xi‘)
1 m
6, X. (X! +A) = A when X not free in A
0x
7. Xt A = X! -&downéA + A
o &
. i = t
8. A, X! Xl -)downéA + A 9 uP, A

g, X! = (X! 2A) = X! = copyéx-vA

10. A, = (X! -0A2) = X! =2 down6><

(D24
1 S A *A}-bupTA1-tA

1 2

11, it 7 (X! -vA1) /7 (X! 4A2} = X! 4down§_x4 (tt? A.' /72 Az)
. . X
i = X1
12, fix Y., {Xi{ + A) X o=+ {fix V. COPYga A) = Up, A ™ POPg

13. A = X! » (p0p5>< 3 A)

204

itself is really quite trivial: most of the operators go straight over from
S to Tx!. The exceptions are value itransfers A <= Al > AY, which cause
some shuffiing!! on the stack; and the production of compound values
A <= V!, which get sequentialized.

The rest of this seciion sketches the proof of the correctness of imp,
and justifies the ciaim that vaiue variables can be eliminated from
closed terms of Tx!. The next section goes on to construct a correct

compiler from L to T.

Table 7. Implementation of S by Tx!

A <= imp[A'] oA =gAl, TA=TA!
vy <= imp[Y'] oY =gY!, 7Y =71Y!
A <= imp[V] oA=()}, rA=06V
X <= imp[X']] &X =o8X!

ouer‘ator‘s

imp[A] equations

imp[[skip] = skip
imp A, 3 Al = imp[A,T 3 imp[A,T]

imp[Vvi] = imp[V]
imp[X.A] = imp[X]. imp[A]
imp[A > ATl = imp[A] -vflip:Al 4 imp[[A,]

imp[tt? A, /2 A] = 1? imp[[A,T /2 imp[A,]
imp[fix Y. AT = fix imp[Y]. imp[A]

imp[Y] = implY] {the Y on the left is an action)
imp[updateid}} = update,
imp[[contentsidj} = contents,

imp[[V] equations

imp[X] = Xt

impJaconst] = aconst!

implacptVv] = implV] 3 aop!

imp[[\/1 aop2 VZ] = (imp[Vv,]; imp[V,[) 2 aop2
imp[[bconst] = bconst!

imp[prop V] = imp{V] 1 prop

imp[V, rel V]I = (impV,T impV,]) 3 rel

{(imp[XT}, impl YT are identities— equations omitted)

205

The proof of the correciness of imp: S =+ Tx! is quite routine, but un-
fortunately no shorter than that of ADJ (1979). Recall that we are to
prove that for terms s,s! In S, imp[[s]] = imp[[s'] if and only if s = s!,
The Ui part is the simpler: it is sufficient to show that for all equations
s = s! in the specification of S, imp[[s] = imp[[s'] can be obtained from

the equations of TxI,

The Yonly if!! part says that imp is injective. The easiest way to prove
this seems to be to define an inverse for imp, abs: Tx! + S, This is
just as simple as defining imp, and only the few non~trivial cases of

the definition are given in Table 8. Using the equations of S, one can
show that abs ° imp[[s:[] =g for all terms s in S. Furthermore, it can
be shown that for ali terms 1, t' in Tx!, abs[t]] = abs[[t'] ift = t' -

this is just like the "if!! part already proved for imp. But then, taking
t= imp[[%] and t' = imp[s'], it follows that s = s' if imp[[s] = imp[s'],

which is the desired result.

As for the elimination of value variables from closed terms of Tx!,
there is an algorithm, resembling the standard one for converting A~

calculus expressions to combinators, The algorithm proceeds as follows.

Table 8. Abstraction from Tx! t0 S

operators A <= abs [A!'] oA =gA!, TA = TA!
Y <= abs [Y'] oY =oY/, TY =71Y!
VvV <= abs [Vi] &v =06V
X <= aps [X'] 8% =§x!

abs [A]] equations (examptes)

e

abs[[A, 2 Al = abs[A,] >“ﬂ°p:A1 > abs[A,]]

LIS S0 S !
n® ? "m0 ’xn+1')

where ﬂopgf"d = X e X (x,! P oees 3 X
abs[[V!] = abs[v] !
abs[[aop1])
absf[aop2] = Zy. Z, (21 aop z
absf[prop] = z. (prop z}!

abs{rel] = 21. 250 (zyrel z,) !

It

z. (aop1 z) !

R

206

lL.et A be a closed action term of Tx!. If A does not contain any
occurrences of X, Al, then it cannot contain any occurrences of X

{by closedness) and we are done. Otherwise, consider an innermost
occurrence of X, A' in A. If X does not occur free in A!, then X, Al
can be replaced by popﬁx; A!', by the equations in Table 6, and so
this occurrence of X. A! has been eliminated. On the other hand, if

X does occur free in A!, it must be as an action: X! . The equations
of Table 6, interpreted as left-to~right replacement rules, allow Al
to be transformed to the form X! + A, where X does not occur in All,
But then X, A! can be replaced by AY, and again the occurrence of
X.A! has been eliminated. As no extra occurrences have been intro-
duced in the process (thanks to the use of the Ycombinators! pop, copy,
up and down) the iteration of this process removes all occurrences of

X. Al from A.

4, Compiler Construction

We are now able to construct a correct compiler from L to T - or for
any other source language whose semantics is given in terms of S,

All we need to do is to take comp: L » Tx' as imp ¢ sem, and, using the
fact that imp: $ » Tx' is a homomorphism, combine the definitions of
imp and sem to a definition of comp. The correciness of comp comes
from the correctness of imp. This correctness is preserved under
transforming the terms in Tx! in the definition, to terms of T, using the
algorithm of the previous section. The finished product is shown in

Table 9,

The process of transformation is not as painful as the equations of

Table 6 (used as repiacement rules} might suggest. This is because

the only action sorts used in giving the semantics of L have an

empty source, and an empty or singleton target. Moreover, Al > Al

is only used for n=1, It can be shown from the equations of Tx! that

ﬂip; can be omitted from the definition of imp, and that downd) and up?)
are unnhecessary in the equations in Table 6. In addition, up’, is equivaient
to switch. These simplifications make the transformation from Tx' to T
quite straightforward, and the only extra step necessary 1o obtain Table 9

is the removal of a couple of occurrences of swiich; switch.

207

Table 8, Compiler frombL to T

operators A <= comp[Cmd] oA =(), 1A =()
A <= comp[[AExp]] oA =(), rA=2Z
A <= compBExp] ocA={(), 7A=T

comp[Cmd] equations

compf continue] = skip
comp[[id := AExp] = comp[AExp] = update,
compl If BExp then Cmd, else Cmd2] =
comp[BExp]| + tt? comp[Cmd] / #f? comp[[Cmd,]
comp[(:md1 ; Cmd,]| = c:omp[[Cmd]] ; comp[[Cmdz:ﬂ
comp[while BExpdo Cmd] =
fix a. comp[BExp] = t1? comp[Cmd] ; a / if? skip

d

comp AExpT equations

comp[[aconst] = aconsi!
comp[id] = contents.
compllaop1 AExp] = comp[AExp] =+ aop1
compﬁAExp1 aop2 AExpzﬂ = comp{[Aexpd] - comp[AExpz]] «z#ac»pz
comp[[if BExp then AExp, else AExp,] =

comp[[BExp] =+ tt? comp[[AExpljﬂ J 2 comp[AEpo]
comp[[Cmd result AExp]] = comp[[Cmd] ; comp[AExp]
compl let id be AExp, in AExpzﬂ =

contehtsid -+ comp[AEpr] = update, ;
comp[AExpsz, 3 switch = update,

comp[BExp] equations

comp[[bcenst] = bconst!

comp[[prop AExp] = comp[AExp] = prop

comp[[AExp1 rel ARxp,] = comp[AExpﬂ - comp[[AExpz]] -Z»rel
comp[[1 BExp]] = comp[BExp] = tt? fft / #f7 it

cc:tmp[[BExp1 A BEpo] = comp[BEpr] S 187 comp[[BEpoI] / fF 2 ffl
comp[BEXp.' v BExpz]] = comp[[BExpﬂ] 2 tt? tt! /7 comp[[BExpz]]

208

Conclusion

By using a form of denotational semantics based on abstract data types,
we have seen how to construct correct compilers for a whole family of

source languages directly from their semantic definitions.

For realistic source languages (such as Pascal, Clu, Ada), the
feasibility of the approach presented here depends on the exient to whict
their denotational semantics can be given in terms of a small number of
fundamental abstract data types. On the other hand, going to more
realistic target languages should not present any major problems -
except that it might prove rather difficult to exploit the "richness't of

some machine codes!

Finally, whydid our constructed compiler turn out to be so similar to
the one proved correct by ADJ (1979) 7 One might suspect that our
construction was !'rigged! to deal! with just this example — but that is
not the case. Another possibility is that ADJ themselves constructed
their compiler systematically ~ albeit informally - from their semantic
definition. 1t may also be that there is essentially only one correct
compiler from L to T! In any case, for realistic source languages, it
seems safe to conjecture that compilers proved correct using the
approach of ADJ {1979) will refiect the struciure of the semantic de-
finition of the source language, and in general be constructible by the

method outlined here!l

209

References
ADJ (c | J.A. Goguen, J.W. Thatcher, E.A. Wagner, J.B. Wright |)

(1975) Minitial algebra semantics and continuous algebras',
IBM Res. Rep. RC-5701, 1975. JACM 24 (1977) 68-95.

(1976) "An initial algebra approach to the specification,
correctness, and implementation of abstract data types'l,
IBM Res. Rep. RC-6487, 1876. Current Trends in Pro-
gramming Methodology IV {R. Yeh, ed.}, Prentice Hall,
1979.
(1979) "More on advice on structuring compilers and proving
them correct!, IBM Res., Rep. 7588, 1979,
Proc. Sixth int. Coli. on Automata, L anguages and
Programming, Graz, 1979.
Burstall. R.M. & Goguen, J,A.
(1977) "Puiting theories together to make specifications',
Proc. Fifth. Int. Joint Conf. on Artificial Intelligence,
Boston, 1977.
Burstall, R.M. & Landin, P, J.

{1969) "Programs and their proofs: an algebraic approach!,
Machine Intelligence 4, 1969.

Goguen, J.A.
(1978) "Order sorted algebras: exceptions and error sorts,
coercions and overloaded operators!, Semantics and
Theory of Comp. Rep. 14, UCLA, 1978,
Gordon, M, J.C.

{1979) The Denotational Description of Programming Languages,
Springer-Veriag, 1979.

Guttag, J.V.
(1975) 'The specification and application to programming of
abstract data types', Tech. Rep. CSRG-59,
Toronto University, 1975.
McCarthy, J. & Painter, J.

(1967) "Correcthess of a compiler for arithmetic expressions',
Proc. Symp. in Applied Math. 19 {1967) 33-41.

Milne, R.E. & Strachey, C.

(1976) A Theory of Programming L anguage Semantics,
Chapman & Hall {UK]}, John Wiley (USA), 1976.

Milner, R,

(1979) Algebraic Concurrency, unpublished lecture notes,

210

Reynolds, J.C.

(1977)

"Semantics of the domain of flow diagrams',
JACM 24 (1977} 484~503.

Scott, D.S. & Strachey, C.

{1971)

Stoy, J.E.
(1977)
Tennent, R, D.

{19786)

Wand, M.

{1976)

{1977)

Zilles, S.N.

(1974)

"Toward a mathematical semantics for computer languages',
Tech. Mono. PRG-6, Oxford University, 1971,

Denotational Semantics, MIT Press, 1977.

"The denotational semantics of programming languages",
CACM 19 (1976) 437-453,

"First order identities as a defining language!,
Tech. Rep. 29, Indiana University, 1976 (revised: 1977).

"Final algebra semantics and data type extensions",
Tech. Rep. 65, indiana University, 1977. JCSS 19
(1979) 27-44,

HAlgebraic specification of data types', Computation
Structures Group Memo 119, MIT, 1974,

