Skip to main content

Applications of linear fracture mechanics

  • Conference paper
  • First Online:
Failure in Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 27))

Abstract

The development of linear elastic fracture mechanics is given with a special emphasis on its application to the testing of polymers. The modelling of crazes and plastic zones is discussed and then developed to describe time-dependent crack and craze growth, including crack stability phenomena.

These results are then applied to particular problems, such as environmental stress cracking, fatigue and impact testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

Craze pore area

a :

Crack length

B :

Plate thickness

B c :

Crack width (for grooved specimens)

b :

Craze thickness; position of point load

C :

Compliance (Δ/P); constant for craze growth; creep compliance function

c :

Specific heat

D :

Depth of specimen

d 0 :

Craze parameter

E :

Young's modulus

e :

Strain

G :

Strain energy release rate

G IC :

Energy per unit area of crack in mode I

H :

Activation energy

K :

Stress intensity factor (SIF)

K I :

SIF in mode I

K II :

SIF in mode II

K IC :

SIF in mode I at fracture

K c1 :

Plane strain K IC

Kc2 :

Plane stress K IC

k :

Thermal conductivity

L :

Half span

l 0 :

Craze parameter

m :

Constant; mass of specimen

N :

Number of cycles

n :

Constant; (d ln e)/(d ln t) in creep

P :

Load

R :

Stress rate; gas constant

r :

Coordinate

r p :

Plastic zone size or craze length

r c :

π/8K 2IC /σ 2c

S :

Surface length

T :

Temperature — absolute degrees

t :

Time

U :

Energy

u :

Displacement or velocity in x direction

V :

Velocity

v :

Displacement or velocity in y direction

W :

Strain energy density

X :

a−ξ

x :

Coordinate or a/D

Y :

Finite width correction factor

y :

Coordinate

α :

Constant; viscoelastic transition

β :

Viscoelastic transition

γ :

Viscoelastic transition; surface work

Δ :

Deflection

δ :

Displacement in craze

δ * :

Displacement in craze at crack tip

δ * c :

Critical value of δ * at fracture

κ :

3 − 4 ν for plane strain 3−ν/1+ν for plane stress

λ:

Constant

μ :

Shear modulus; viscosity

ν :

Poisson's ratio

ξ :

Working variable — length

ρ :

Density

σ :

Stress

σ c :

Craze or cohesive stress

σ y :

Yield stress

τ :

Working variable — time

φ :

Stress function; axisymmetric parameter; calibration function

9. References

  1. Knauss, W. G.: Applied Mechanics Reviews 26, 1 (1973)

    Google Scholar 

  2. Gurney, C., Hunt, J.: Proc. R. Soc. A299 (1967)

    Google Scholar 

  3. Griffith, A. A.: Phil. Trans. R. Soc. A221, 163 (1920)

    Google Scholar 

  4. Rice, J. R., in: Fracture — an advanced treatise. Liebowitz, H. (ed.). New York/London: Academic Press 1963, Vol. II, Chapter 3

    Google Scholar 

  5. Williams, M. L.: J. Appl. Mech. 24, (1) (1957)

    Google Scholar 

  6. Sih, G. C. (ed.): Methods of analysis and solutions of crack problems. Leyden: Nordhoff International Publishing 1973, Vol. 1

    Google Scholar 

  7. Williams, J. G.: Stress analysis of polymers. London: Longmans 1973

    Google Scholar 

  8. Marshall, G. P., Coutts, L. H., Williams, J. G.: J. Mat. Sci. 9, 1409 (1974)

    Google Scholar 

  9. Tada, H., Paris, P. C., Irwin, G. R.: Stress analysis of cracks handbook. Del Research Corporation 1973

    Google Scholar 

  10. Brown, W. F., Srawley, J. F.: ASTM, STP 410 (1966)

    Google Scholar 

  11. Rooke, D. P., Cartwright, D. J.: Stress intensity factors. London: HMSO 1976

    Google Scholar 

  12. Dugdale, D. S.: J. Mech. Phys. Solids 8, 100 (1960)

    Google Scholar 

  13. Barenblatt, G. I.: Adv. Appl. Mechs. 7, 56 (1962)

    Google Scholar 

  14. Morgan, G. P., Ward, I. M.: Polymer 18, 87 (1977)

    Google Scholar 

  15. Ferguson, R. J., Marshall, G. P., Williams, J. G.: Polymer 14, 451 (1973)

    Google Scholar 

  16. Irwin, G. R., Kies, J. A., Smith, H. L.: Proc. ASTM 58, 640 (1958)

    Google Scholar 

  17. Parvin, M., Williams, J. G.: Int. J. Fracture 11, (6), 963 (1975)

    Google Scholar 

  18. Kambour, R. P., Miller, S.: General Electric Company, CRD Report No. 77 CRD 009, March (1977)

    Google Scholar 

  19. Knauss, W. G.: Int. J. Fract. Mech. 6, 7 (1970)

    Google Scholar 

  20. Wnuk, M. P., Knauss, W. G.: Int. J. Solids Structures 6, 995 (1970)

    Google Scholar 

  21. Kostrov, B. V., Nikitin, L. V.: Archiwum Mechaniki Stosowanej 22, English Version (1970), p. 749

    Google Scholar 

  22. Schapery, R. A.: Int. J. Fracture 11, 141 (1975)

    Google Scholar 

  23. Schapery, R. A.: Int. J. Fracture 11, 369 (1975)

    Google Scholar 

  24. Schapery, R. A.: Int. J. Fracture 11, 549 (1975)

    Google Scholar 

  25. Williams, J. G.: Int. J. Fract. Mech. 8, (4), 393 (1972)

    Google Scholar 

  26. Gledhill, R. A., Kinloch, A. J.: Polymer 17, 727 (1976)

    Google Scholar 

  27. Parvin, M., Williams, J. G.: J. Mat. Sci. 10, 1883 (1975)

    Google Scholar 

  28. Mai, Y. M., Atkins, A. G.: J. Mat. Sci. 11, 677 (1976)

    Google Scholar 

  29. Broutman, L. J., McGarry, F. J.: J. Appl. Polym. Sci. 9, 589 (1965)

    Google Scholar 

  30. Williams, D. P., Evans, A. G.: J. Testing & Evaluation 1, (4), 264 (1973)

    Google Scholar 

  31. Mindess, S., Nadeau, J. S., Barrett, J. D.: Wood Sci. 8, (1), 389 (1975)

    Google Scholar 

  32. Williams, J. G., Marshall, G. P.: Proc. R. Soc. A342, 55 (1975)

    Google Scholar 

  33. McCrum, N. G., Read, B. E., Williams, G.: Anelastic and dielectric effects in polymeric solids. New York: Wiley and Sons 1967

    Google Scholar 

  34. Carslaw, H. S., Jaeger, J. G.: Conduction of heat in solids. 2nd edit. Oxford University Press 1959

    Google Scholar 

  35. Andrews, E. H., Levy, G. M., Willis, J.: J. Mat. Sci. 8, 1000 (1973)

    Google Scholar 

  36. Marshall, G. P., Culver, L. E., Williams, J. G.: Proc. R. Soc. A319, 165 (1970)

    Google Scholar 

  37. El-Hakeem, H. M.: Ph. D. Thesis, University of London 1975

    Google Scholar 

  38. Graham, I. D., Williams, J. G., Zichy, E. L.: Polymer 17, 439 (1976)

    Google Scholar 

  39. Arad, S., Radon, J. C., Culver, L. E.: Polym. Eng. Sci. 12, 193 (1972)

    Google Scholar 

  40. Hertzberg, R. W., Nordberg, H., Manson, J. A.: J. Mat. Sci. 5, 521 (1970)

    Google Scholar 

  41. Mukherjee, B., Burns, D. J.: Exp. Mechs. 11, 433 (1971)

    Google Scholar 

  42. Manson, J. A., Hertzberg, R. W.: Fatigue failure in polymers. CRC Critical Reviews in Macromolecular Science, August 1973

    Google Scholar 

  43. Williams, J. G.: J. Mat. Sci., 12, 2525 (1977)

    Google Scholar 

  44. Marshall, G. P., Turner, C. E., Williams, J. G.: J. Mat. Sci. 8, 949 (1973)

    Google Scholar 

  45. Brown, H. R.: J. Mat. Sci. 8, 941 (1973)

    Google Scholar 

  46. Plati, E., Williams, J. G.: Polym. Eng. Sci. 15, (6), 470 (1975)

    Google Scholar 

  47. Williams, J. G., Birch, M. W.: Proc. 4th Int. Conf. on Fracture, University of Waterloo, Canada, 1, Part IV, 501 (1977)

    Google Scholar 

  48. Newmann, L. V., Williams, J. G.: To be published (1977)

    Google Scholar 

  49. Plati, E., Williams, J. G.: Polymer 16, 915 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Williams, J.G. (1978). Applications of linear fracture mechanics. In: Failure in Polymers. Advances in Polymer Science, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08829-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-08829-6_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08829-5

  • Online ISBN: 978-3-540-35823-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics