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Abstract. Many of the previous methods for composing Web processes
utilize either classical planning techniques such as hierarchical task net-
works (HTNs), or decision-theoretic planners such as Markov decision
processes (MDPs). While offering a way to automatically compose a de-
sired Web process, these techniques do not scale to large processes. In
addition, classical planners assume away the uncertainties involved in
service invocations such as service failure. In this paper, we present a
hierarchical approach for composing Web processes that may be nested
- some of the components of the process may be Web processes them-
selves. We model the composition problem using a semi-Markov decision
process (SMDP) that generalizes MDPs by allowing actions to be tempo-
rally extended. We use these actions to represent the invocation of lower
level Web processes whose execution times are uncertain and different
from simple service invocations.

1 Introduction

Service-oriented architectures (SOAs) aim to provide a rapid, flexible, and loosely-
coupled way to seamlessly integrate the intra- and inter-enterprise resources into
business processes. As the fundamental building blocks of processes, Web services
(WS) are seen as self-contained, self-describing, and platform-independent appli-
cations which can be published, discovered, and invoked over the Web. We refer
to business processes with WSs as their components as Web processes [1].

Contemporary business processes are composed primarily by human system
designers in a manual and tedious manner. However, SOA offers an opportu-
nity to compose the business processes with varying levels of automation. In
this regard, several preliminary planning based approaches exist [2,3,4] that au-
tomatically compose the Web process given a model of the business problem.
While these methods offer a way to automatically compose the Web process,
many of them do not scale efficiently to large processes. This precludes their
applicability to real-world business processes.

Planning techniques for automatically composing a Web process may be
grouped into classical planning [2] or decision-theoretic planning [3]. Decision-
theoretic planners such as Markov decision processes (MDPs) generalize classical
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planning techniques to nondeterministic environments, where actions outcomes
may be uncertain, and associate a cost to the different plans thereby allowing
the selection of an optimal plan. These techniques are especially relevant in the
context of SOA where services may fail and processes must minimize costs.

In this paper, we adopt a hierarchical approach for composing complex Web
processes. In many cases, a Web process may be seen as nested – a higher level
Web process may be composed of WSs and lower level Web processes – which
induces a natural hierarchy over the process. We provide a method of compo-
sition that exploits the hierarchical decomposition; We model each level of the
hierarchy using a semi-Markov decision process (SMDP) [5] that generalizes a
MDP [5] by allowing temporally extended actions. Specifically, the lowest lev-
els of the hierarchy (leaves) are modeled using a SMDP containing primitive
actions, which are invocations of the WSs. Higher levels of the process are mod-
eled using SMDPs that contain abstract actions, which represent the execution
of lower level Web processes. We represent their invocations as temporally ex-
tended actions in the higher level SMDPs. These are actions whose durations are
probabilistically distributed and an accumulating cost is associated with them
that depends on their duration. Since information about only the individual
WSs is usually available, we provide methods for deriving the model parameters
of the higher level SMDP from the parameters of the lower level ones. Thus,
our approach is applicable to Web processes that are nested to an arbitrary
depth. Also, our experimental results show that our method performs favorably
in terms of cost effectiveness and robustness to uncertainty compared to another
hierarchical composition technique, hierarchical task networks (HTNs) [2].

2 Related Work

There are several approaches proposed to address the automatic Web process
composition problem. McIlraith et al. [6] adapt and extend the Golog language
for representing service constraints. WSs that satisfy the constraint are discov-
ered at runtime and bound to the abstract process. Medjahed et al. [7] present a
technique to generate composite services from high level declarative descriptions
of the individual services. Traverso and Pistore [4] propose a MBP (a model
checking planner) based framework to do automated WS composition, where
WSs are modeled as stateful, nondeterministic and partially observable behav-
iors. Our approach differs from their work in that we take into account scalabil-
ity and optimality of the plan/policy. SHOP2 [8], a classical planner based on
HTNs, is utilized for automatic composition of Web processes in [2]. The final
plan generated by SHOP2 is a sequence of WS invocations, which is not robust
to external events. Recent work on HTN approach [9] tries to deal with this issue
by gathering information during planning, which can decrease the probability of
service failure during execution when information used to generate a plan does
not change much during execution time. In comparison, our approach explicitly
models uncertainty in WS outcomes, and generates a policy which specifies an
optimal action no matter the state of the problem.
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This paper also generalizes our previous work [3] on using MDPs for dynamic
process composition by taking into account scalability. We utilize a hierarchical
structure to address the scalability problem and provide a new method to formu-
late hierarchical SMDPs, whose model parameters are derived from lower level
ones. This allows its application to processes that are nested to an arbitrary depth.

3 Examples of Hierarchical Decompositions

We briefly describe two scenarios that benefit from a nested structure. Our first
example is a typical scenario for handling orders that in a supply chain (Fig. 1).
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Fig. 1. A supply chain scenario in which the services Verify Order and Select Shipper
are Web processes themselves. This problem is singly nested.

An instance of the business process is created when a customer sends in an
order. The order specifics first need to be verified, in that the customer’s pay-
ment needs to be processed. Subsequently, the manufacturer choose one from
three possible supplies to complete the order based on their satisfactory rates
and invocation costs. On receiving the supplies, the manufacturer may ship the
completed order to the customer using ground postal (slow and inexpensive but
with good coverage) or express air (fast and expensive but with limited coverage)
carriers, depending on the customer’s requirement.

The second example (Fig. 2) is a patient transfer clinical pathway. Patients
first check in with the primary care giver followed by the patient’s insurance
verification step. If the primary care giver can give the needed physical care,
patients will stay with the primary care giver and receive the proper care; other-
wise, the patients will be transferred to one of the four possible secondary care
givers based on the vacancy and other factors like distance, cost and reputation.
In this case, the patient must be checked into the secondary care giver and her
insurance validated.

Within a SOA, each step of the scenarios is an invocation of WSs, which in
some cases represent lower level Web processes. For example, in order to verify
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Fig. 2. A patient transfer pathway illustrating a double nesting of Web processes

the customer and her payment, the manufacturer may invoke a Verify Order
WS, which is itself a composite Web process composed of Customer Checker,
Verify Payment, and Charge Money WSs. This nested nature of Web processes
could extend to more levels as the patient transfer scenario shows in Fig. 2.

4 Background: Semi-Markov Decision Processes

A semi-Markov decision process (SMDP) [5] is a temporal generalization of the
MDP. Instead of assuming that the durations of all actions are identical and
therefore ignoring them while planning, a SMDP explicitly models the system
evolution in continuous time and models the time spent in a particular state while
performing an action to follow a pre-specified probability distribution. Solution
to a SMDP produces a policy. A policy assigns to each state of the process
an action that is expected to be optimal over the period of consideration. We
formally define a SMDP below:

Definition 1 (SMDP). A SMDP is defined as a tuple,

SMDP = 〈S, A, T, K, F, C, s0〉 where :

• S = Πn
i=1X

i, where S is the set of all possible states factored into a set, X, of
n variables, X = {X1, X2, . . . , Xn}
• A is the set of all possible actions
• T is the transition function, T : S × A → Δ(S), where Δ(·) specifies a prob-
ability distribution. The transition function captures the uncertain effect of per-
forming an action on particular variables
• K is the lump sum reward, K : A → R. This specifies the reward (or cost)
obtained on performing an action
• F is the sojourn time distribution for each pair of state and action, F : S×A →
Δ(t), where t ∈ [0, tmax], tmax is the maximum time duration of any action.
Given the current state, s, and action, a, the system will remain in the state for
a certain amount of time, t, which follows a density described by f(t|s, a)
• C is the reward accumulating rate, C : S × A → R, which specifies the rate
at which the reward (or cost) is obtained when performing an action from some
state
• s0 ∈ S is the start state of the process
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A state, s, in an SMDP is an assignment of values to the variables in X . Typically,
each action, a, affects a subset of the variables, which we denote by Xa ⊆ X .
Let s[Xa] denote the vector of values or assignments to the variables Xa in the
instantiation s. Furthermore, for each action, a, we define pre(a) ⊆ S to be the
exhaustive set of states such that, y ∈ pre(a) is the precondition for performing
a. Then, y[Xa] denotes the value of the variables Xa in the precondition y.
Analogously, we denote eff(a), as the set of states that forms the effect of a.
Because the action is non-deterministic, there may be more than one state in
eff(a). The lump sum reward, K, and the reward accumulating rate, C, are not
necessarily positive; negative values imply a cost. Finally, we assume that the
sojourn times of all actions follow Gaussian densities with different means and
standard deviations.

When performing an action, a, from a state, s ∈ pre(a), the system will gain
a lump sum reward K(a), and as long as the sojourn time is not over, the system
will accumulate reward at the accumulating rate, C(s, a). The total reward for
a state action pair is:

R(s, a) = K(a) + C(s, a)
∫ Tmax

0
e−αtf(t|s, a)dt (1)

In order to solve the SMDP and compute the policy, we associate a value
function, V : S → R, with each state. This function quantifies the desirability
of a state over the long term.The solution of a SMDP is a policy, π : S → A,
which, for each state of the process, prescribes an action that is expected to be
optimal. If the period of consideration is infinite then:

Vπ(s) = argmax
a∈A

R(s, a) +
∑

s′∈eff(a)

M(s′|s, a)V (s′) (2)

where : M(s′|s, a) =
∫ Tmax

0
e−αtQ(dt, s′|s, a) =

∫ Tmax

0
e−αtT (s′|s, a)F (t|s, a)dt

and R(s, a) is as defined in Eq. 1.
Standard SMDP solution techniques for arriving at the optimal policy involve

repeatedly iterating over Eq. 2 until the function, V , approximately converges.
Another technique for computing the policy requires formulating and solving a
linear program (LP). In this paper, we use the LP method to solve SMDPs.

5 Hierarchical Semi-Markov Decision Processes

We define a framework called hierarchical SMDPs for composing nested Web
processes. For the lowest levels of the process, the framework uses the standard
SMDP, defined in Section 4, to model the composition problem. Let us label
these SMDPs as primitive. In primitive SMDPs, actions are WS invocations,
and sojourn times are the response times of the WSs. We compose the higher
levels of the Web processes using a composite SMDP (C-SMDP). Within a C-
SMDP, the actions are either abstract and represent lower level Web processes,



A Hierarchical Framework for Composing Nested Web Processes 121

which in turn are modeled using either composite or primitive SMDPs, or simple
WS invocations. In this section, we will take the Order Handling scenario as
the example to explain how we extract and derive model parameters for both
primitive SMDPs and composite SMDPs.

5.1 Eliciting the Model of Primitive SMDPs

We briefly describe ways in which the model parameters of the primitive SMDP
may be obtained. The actions, A, are the WS operations that compose the Web
process. The variables constituting the state space, S, of the process are those
that form the preconditions and effects of the component WSs, found in their
OWL-S or WSDL-S descriptions. The probabilities of the different responses
from service invocations that make up transition function, T , may be found in
either the serviceParameter section of the OWL-S description of the WS or in the
SLAparameter section of the WSLA specification [10](see Fig. 3). These prob-
abilities quantify contracted service reliability rates. The parameter, K, which
models the cost of using a service, may also be obtained from the serviceParame-
ter section of the OWL-S description or from the agreement between the service
users and providers. The sojourn time distribution, F , and the cost rate, C, are
typically selected by the system designer from past experience.

<ServiceLevelObjective name="InventoryAvailabilityRate">
<Obligated>InventoryProvider</Obliged>
<Expression>

<Predicate xsi:type="Eual">
<SLAParameter>InventoryAvailability</SLAParameter>
<Value>0.4</Value>

</Predicate>
</Expression>
......

<ServiceLevelObjective>

Fig. 3. A WSLA snippet illustrating the specification of inventory availability rate

5.2 Definition of a Composite SMDP

We formally define a C-SMDP below:

Definition 2 (C-SMDP). A C-SMDP is defined as a tuple,

C-SMDP = 〈Sc, Ac, Tc, Kc, Fc, Cc, s0〉 where :

• Sc = Πn
i=1X

i
c is the set of all possible states factored into a set, Xc, of n

variables, Xc = {X1
c , X2

c , . . . , Xn
c }

• Ac is the set of all possible actions, Ac = A∪Ā, and includes primitive actions,
A, as well as abstract actions, Ā
The remaining parameters are defined analogously to Def. 1 but with the above
mentioned state and action spaces.
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Using the order handling scenario introduced in Section 3, we illustrate the state
and action spaces of the high-level C-SMDP.

Example 1. For the order handling scenario, Xc = {Order Received (OR),
Order Verified (OV), Inventory Availability (IA), Preferred Supplier Availability
(PSA), Spot Market Availability (SMA), Goods Received (GR), Shipper Selected
(SS), and Goods Shipped (GS)}. Each of these variables assumes a value of Y,
N or U, where U signifies an unexpected service operation (e.g. failure), while
Y and N are straightforward. Ac = A ∪ Ā, where A = {Receive Order, Check
Inventory, Check Preferred Supplier, Check Spot Market, Get Goods, Ship Goods}
and Ā = {Verify Order, Select Shipper}. We observe that performing an action
affects the value of the corresponding state variable.

While the model parameters for primitive actions are available, we need meth-
ods to derive those that involve abstract actions from the lower level SMDP
parameters. We describe these methods next.

5.3 C-SMDP Model Parameters for Abstract Actions

A C-SMDP is so far not well-defined because meaningful parameters for the
abstract actions in the model are not given. For example, in the order handling
scenario, the composite WS Verify Order is composed of three primitive WSs:
Check Customer, Verify Payment, and Charge Money. Transition probabilities as-
sociated with the abstract action Verify Order are not available, but instead must
be derived from the transition probabilities associated with the primitive actions.
In particular, we derive the transition probability, Tc, lump sum reward, Kc, so-
journ time distribution, Fc, and accumulating rate, Cc, for abstract actions.

For the sake of simplicity, we focus on deriving the model parameters for
a process that is singly-nested. Our methods generalize to a multiply-nested
process in a straightforward manner. We utilize the correspondence between the
high level abstract actions and the corresponding low-level primitive actions.
Let the abstract action, ā, represent the sequential execution, in some order,
of primitive actions, {a1, a2}, of the underlying primitive SMDP. As per our
notation introduced in Section 4, let pre(ā) = {s̄p} be the precondition state
for performing ā, X ā

c denotes the variables affected by ā, and s̄p[X ā
c ] are the

precondition values of these variables. We use analogous notation for the effect
of ā, eff(ā) = {s̄e}. Then, the precondition values of the state variables affected
by ā (s̄p[X ā

c ]) are a mathematical or logical function of the precondition values
for the primitive actions, and analogously for the effects. In other words,

s̄p[X ā
c ] ≡ Ψp(s1

p[X
a1 ], s2

p[X
a2 ]) and s̄e[X ā

c ] ≡ Ψe(s1
e[X

a1 ], s2
e[X

a2 ]) (3)

where pre(a1) = {s1
p}, pre(a2) = {s2

p} and analogously for effects, and Xa1 and
Xa2 denote the variables affected by the actions a1 and a2, respectively. The
correspondences Ψp and Ψe are constructed using domain knowledge, and we
give an example below.

Example 2. Let us consider the abstract action Verify Order (ā), which corre-
sponds to the primitive actions Check Customer (acc) , Verify Payment (avp) and
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Charge Money (acm) in the lower level SMDP. Let, pre(Verify Order) = {s̄p},
and eff(Verify Order) = {s̄1

e, s̄
2
e, s̄

3
e}, where:

s̄p =(OR=Y, OV =U, IA=U, PSA=U, SMA=U, GR=U, SS=U, GS =U),
s̄1

e =(OR=Y,OV=Y, IA=U, PSA=U, SMA=U, GR=U, SS=U, GS=U),
s̄2

e = (OR = Y,OV = N, IA = U, PSA = U, SMA = U, GR = U, SS =
U, GS = U), and s̄3

e = (OR = Y,OV = U, IA = U, PSA = U, SMA = U, GR =
U, SS = U, GS = U). Then, in the C-SMDP: X ā

c = {OV }, s̄p[X ā
c ] = 〈OV = U〉,

s̄1
e[X ā

c ] = 〈OV = Y 〉, s̄2
e[X ā

c ] = 〈OV = N〉, s̄3
e[X ā

c ] = 〈OV = U〉
In the associated primitive SMDP, let, Xacc = {Customer Verified (CV)},

Xavp = {Payment Valid (PV)}, and Xacm = {Account Charged (AC)}. In the
table below we define the correspondences:

Correspondence Instantiation of the Correspondence
Ψp 〈OV = U〉 ≡ 〈CV = U〉 and 〈PV = U〉 and 〈AC = U〉
Ψ1

e 〈OV = Y 〉 ≡ 〈CV = Y 〉 and 〈PV = Y 〉 and 〈AC = Y 〉
Ψ2

e 〈OV = N〉 ≡ 〈CV = N〉 or 〈PV = N〉 or 〈AC = N〉
Ψ3

e 〈OV = U〉 ≡ 〈CV = U〉 or 〈PV = U〉 or 〈AC = U〉

Based on such associations, we can identify the corresponding low-level states
for the composite states, s̄p, s̄1

e, s̄2
e and s̄3

e. We derive the C-SMDP parameters
in the following way:

Transition probability, Tc(s̄1
e|ā, s̄p): As an example, we focus on computing

Tc(s̄1
e|ā, s̄p), where s̄1

e, s̄p, and ā are as defined before. The approach for comput-
ing the other transition probabilities is analogous. Because the abstract action,
ā, affects only the variable(s), X ā

c , we may rewrite Tc(s̄1
e|ā, s̄p) as,

Tc(s̄1
e|ā, s̄p) = Pr(s̄1

e[X
ā
c ] | ā, s̄p[X ā

c ])
= Pr(Ψe(s1

e[X
a1 ], s2

e[X
a2 ]) | ā, Ψp(s1

p[X
a1 ], s2

p[X
a2 ])) from Eq. 3

Let the state of the primitive SMDP satisfying Ψp(s1
p[X

a1 ], s2
p[X

a2 ]) be sp –
this is the initial state of the lower level Web process – and that containing
Ψe(s1

e[X
a1 ], s2

e[X
a2 ]) be se – this is one of the terminal states. Then, we may

rewrite, Pr(Ψe(s1
e[X

a1], s2
e[X

a2 ]) | ā, Ψp(s1
p[X

a1 ], s2
p[X

a2 ])) = Pr(se|sp), which
is the probability of reaching se from state sp. Because the order in which the
primitive actions a1 and a2 are performed is not known from beforehand, there
may be multiple ways to start from the state sp and reach the state, se. Let sp

a1−→
s1

a2−→ se be one such path, then, T (s1|a1, sp)×T (se|a2, s1) is the probability of
following this path, where T is the transition function of the primitive SMDP.
The required probability Pr(se|sp) is the sum of the probabilities of following
all such paths.

Example 3. We again consider the abstract action Verify Order (ā), its precon-
dition state s̄p and one of the effect states s̄1

e, as in Example 2.

Tc(s̄1
e|ā, s̄p) = Pr(〈OV = Y 〉 | ā, 〈OV = U〉)

= Pr(〈CV = Y, PV = Y, AC = Y 〉 | ā, 〈CV = U, PV = U, AC = U〉)
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We denote (CV = U, PV = U, AC = U) as primitive state sp and (CV =
Y, PV = Y, AC = Y ) as primitive effect state se. Then we have, Tc(s̄1

e|ā, s̄p) =
Pr(se | sp). Given the associated primitive actions, Check Customer (acc) ,
Verify Payment (avp) , and Charge Money (acm) , one of the paths is, sp

acc−→
s1

avp−→ s2
amc−→ se, where s1 = (CV = Y, PV = U, AC = U), s2 = (CV =

Y, PV = Y, AC = U). The probability of following this path is, T (s1|sp, acc) ×
T (s2|s1, apv) × T (se|s2, amc) = 0.95 ∗ 0.95 ∗ 0.90 = 0.81225; we calculate prob-
abilities for other action sequences in the same way. In this example, they are
all 0.81225. The desired transition probability is: Tc(s̄1

e|ā, s̄p) = Pr(se | sp) =∑6
i=1 0.81225 ∗ 1

6 = 0.81225

Lump sum reward, Kc(ā): Because the abstract action represents the execu-
tion of all the primitive actions, the lump sum reward for an abstract action is a
summation of the lump sum rewards of the associated low-level primitive actions
and an overhead which denotes the cost of combining the primitive actions. The
overhead may assume a zero value.

Kc(ā) =
2∑

i=1

K(ai) + κ

where K is the lump sum reward of the primitive SMDP and κ is the overhead.

Sojourn time distribution, Fc(t|s̄p, ā): Let the sojourn time of a1 be distrib-
uted according to the Gaussian, N (t; μ2, σ1), and that of a2 be N (t; μ2, σ2). The
sojourn time distribution of ā is a linear combination of the Gaussian densities
of a1 and a2 This is a Gaussian, N (t; μ, σ), whose mean and deviation is:

μ =
2∑

i=1

μi σ =

√√√√ 2∑
i=1

σ2
i

Accumulating rate, Cc(s̄p, ā): The accumulated reward of an abstract action
is the total accumulated reward of all the corresponding primitive actions. Using
the sojourn time distributions of the primitive actions, we compute the expected
sojourn time of each, and use it to derive the rate:

C(s̄p, ā) =

∑2
i=1 C(si

p, ai) × Eai(F )∑2
i=1 Eai(F )

where, Eai(F ) =
∫ Tmax

0 tF (t|si
p, ai)dt, F is the sojourn distribution of the prim-

itive SMDP.
By providing general methods for deriving the C-SMDP model parameters

from those of the lower level ones, we allow C-SMDPs at any level to be formu-
lated and solved using the standard solution methods.

5.4 Composing and Executing the Nested Web Process

The algorithm for composing the nested Web process takes as input the policy
obtained by solving the top most C-SMDP in the hierarchical framework and
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the start state. Our algorithm is recursive, using the policy prescriptively to
guide the selection of the next WS to invoke. If the policy prescribes an abstract
action, we invoke the algorithm with the policy and start state of the lower level
Web process. We show the algorithm in Fig. 4.

Algorithm for Composing and Executing Nested Web Process
Input: π //Policy, s0 //Initial state

s ← s0
while terminal state not reached

a ← π(s) //the optimal action of current state s
if a is a primitive action then

Invoke WS representing a
Get response of WS and form the next state s′

s ← s′

else //a is an abstract action
sinitial ← initial state of the lower level process //lower level state satisfying Ψ−1

p (s)
π′ ← corresponding policy for abstract action a
(sfinal, afinal) ← recursively call this algorithm with policy π′, sinitial

s ← state satisfying Ψe(sfinal[X
afinal ]) //effect of executing the lower level process

end while
if policy π is not a policy for the top-level SMDP then

return (s, a)
end algorithm

Fig. 4. Algorithm for composing and executing a nested Web process modeled using
the hierarchical SMDP framework

6 Experimental Results

Within our SOA, we provide the policies as input to the algorithm of Fig. 4
implemented as a WS-BPEL Web process. We show the partial WS-BPEL doc-
ument highlighting the various steps of the algorithm when the WS Verify Or-
der is invoked in Fig. 5. We specify each of the lower level Web processes using
WS-BPEL documents of their own, while the external WSs are described using
WSDL. We used IBM’s BPWS4J engine for executing the WS-BPEL files and
Axis 1.2 for deploying individual Web services.

We experimentally evaluate our framework using the two examples mentioned
in Section 3 and use the HTN method as a benchmark for purpose of comparison.
Our methodology for evaluation consisted of running 1000 instances of both
scenarios, while varying the uncertainty of the process environment. We plot the
average total reward in Fig. 6.

For low probabilities of the inventory satisfying the order, the manufacturer’s
Web process chooses to bypass the inventory and instead invokes the preferred
supplier. However, as we increase the probability, at 0.68, the policy changes
and the process first asks the inventory. Since the manufacturer’s own inventory
is less expensive than the preferred supplier, the expected utility of using the
inventory exceeds that of the supplier when the inventory availability is suffi-
ciently high, causing the change in the policy. Because the process tries the less
expensive inventory first, the average reward obtained on running the process
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<while condition="bpws:getVariableData('doneFlag','value') = false()
and bpws:getVariableData('terminalFlag','value') = false()">

<sequence name="whileSequence">

<switch>
<!--State 0, the optimal action is receive Order -->
<case condition ="bpws:getVariableData('doneFlag','value') = false()

and bpws:getVariableData('isOrderReceived','variableValue') = 'Yes'
and bpws:getVariableData('isOrderVerified','variableValue') = 'Unknown'
and bpws:getVariableData('inventoryAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('preferredSupplierAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('spotMarketAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('isGoodsReceived','variableValue') = 'Unknown'
and bpws:getVariableData('isShipperSelected','variableValue') = 'Unknown'
and bpws:getVariableData('isGoodsShipped','variableValue') = 'Unknown' ">

<sequence>
<!-- Invoke a lower-level BPEL to verify order-->
<invoke name="invoke" partnerLink="orderVerifierService"

portType="sqp0:OrderVerifier" operation="verifyOrder"
inputVariable="emptyInput" outputVariable="invocationresponse00"/>

<assign>
<copy>

<from variable="invocationresponse00" part="verifyOrderReturn"/>
<to variable="isOrderVerified" part="variableValue"/>

</copy>
</assign>

</sequence>
</case>

<case condition = ......>
......

</case>

......

......
</switch>

</sequence>
</while>

<!--State 1 -->

Dertermine
the current
state of the
environment

(State 0)

Invoke a
lower-level
BPEL
process

Determine
the current
state and
invoke the
corresponding
WS based on
the policy

Other States

<while
condition="bpws:getVariableData
('doneFlag','value') = false()

and
bpws:getVariableData('terminalFl
ag','value') = false()">

<sequence
name="whileSequence">

..................

..................

..................

</Switch>
</sequence>

</While>

High-level BPEL Low-level BPEL

Fig. 5. A snippet of the WS-BPEL flow for the supply chain process. The verifyOrder
operation is an abstract action whose invocation leads to the execution of a lower level
Web process.
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Fig. 6. Average reward and standard deviations from running processes generated
using H-SMDP approach and HTN approach for the (a) order handling scenario, and
(b) patient transfer pathway. As we increase the probability of inventory availability(the
environment becomes less uncertain),the performance of HTN approaches that of ours.

increases from this point onwards. We observe an analogous behavior for the
patient transfer process.

Because the HTN method does not account for the fact that the inventory
may not always satisfy the order while planning (as with other classical planning
techniques, it assumes that all services are deterministic), the execution of the
HTN generated process stops prematurely when the inventory or the preferred
supplier is unable to satisfy the order. For lower rates of inventory satisfaction,
this happens frequently, and is responsible for the lower average reward of the
process. As the probability increases, this behavior reduces and average reward
increases. An interesting observation is the subsequent catch-up of the HTN
generated process with the one generated using the SMDP framework, when
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Table 1. Run times of generating the compositions for the two scenarios

Problem Hier. SMDP HTN
Supply Chain scenario 16ms 11ms

Patient Transfer scenario 31ms 17ms

the inventory is assumed to satisfy all the orders. This demonstrates the ap-
plicability of classical planning approaches like HTNs: they perform well only
in a deterministic environment. We point out that the improvement in overall
rewards within our framework comes at a computational price. We show the run
times of two approaches in Table 1.

7 Discussion

Existing planning methods for automatically composing Web processes do not
scale well to large and uncertain process environments. Many real world business
processes are amenable to a hierarchical decomposition into lower level processes
and primitive service invocations. We presented a new framework for modeling,
composing, and executing large Web processes by exploiting such a hierarchy.
We model the composition problem using a probabilistic planning technique,
SMDP, that allows an explicit representation of the uncertain reliability and cost
of services. In addition, SMDPs allow temporally extended actions of uncertain
duration, which are used as abstractions for the lower level Web processes. We
introduced the framework of hierarchical SMDPs that is characterized by com-
posite SMDPs for composing high level Web processes, and primitive SMDPs
for the lowest level Web processes. Because, we provide ways for deriving the
parameters of the composite SMDPs from lower level ones, our framework may
be used to compose processes nested to an arbitrary depth. Our experimental
results on the supply chain and patient transfer clinical pathway demonstrate
that the approach performs better in comparison to the other hierarchical plan-
ning technique, HTN, in environments of varying uncertainty. As part of future
work, we will extend our framework to support concurrent actions, which are
common in realistic Web processes.
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