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Abstract. Let m and n be positive integers. For the quantum integer
[n]q = 1 + q + q2 + · · · + qn−1 there is a natural polynomial addition
such that [m]q ⊕q [n]q = [m + n]q and a natural polynomial multipli-
cation such that [m]q ⊗q [n]q = [mn]q . These definitions are motivated
by elementary decompositions of intervals of integers in combinatorics
and additive number theory. This leads to the construction of the ring
of quantum integers and the field of quantum rational numbers.

1 The Quantum Arithmetic Problem

For every positive integer n we have the quantum integer

[n]q = 1 + q + q2 + · · · + qn−1.

Then
F = {[n]q}∞n=1

is a sequence of polynomials in the variable q. This sequence arises frequently in
the study of q-series and of quantum groups (cf. Kassel [1, Chapter IV]). Adding
and multiplying polynomials in the usual way, we observe that

[m]q + [n]q �= [m + n]q

and
[m]q · [n]q �= [mn]q.

This suggests the problem of introducing new operations of addition and mul-
tiplication of the polynomials in a sequence so that addition and multiplication
of quantum integers behave properly. We can state the problem more precisely
as follows. Define “natural” operations of quantum addition, denoted ⊕q, and
quantum multiplication, denoted ⊗q, on the polynomials in an arbitrary sequence
F = {fn(q)}∞n=1 of polynomials such that fm(q) ⊕q fn(q) and fm(q) ⊗q fn(q)
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are polynomials, not necessarily in F . We want to construct these operations
so that, when applied to the polynomial sequence F = {[n]q}∞n=1 of quantum
integers, we have

[m]q ⊕q [n]q = [m + n]q (1)

and
[m]q ⊗q [n]q = [mn]q (2)

for all positive integers m and n. We would like these operations to determine
the quantum integers uniquely.

2 Combinatorial Operations on Intervals of Integers

Let A and B be sets of integers, and let m be an integer. We define the sumset

A + B = {a + b : a ∈ A and b ∈ B},

the translation
m + A = {m + a : a ∈ A},

and the dilation
m ∗ A = {ma : a ∈ A}.

We write A ⊕ B = C if A + B = C and every element of C has a unique
representation as the sum of an element of A and an element of B.

Let [n] = {0, 1, 2, . . . , n − 1} denote the set of the first n − 1 nonnegative
integers. Then

[m + n] = {0, 1, 2, . . . , m + n − 1}
= {0, 1, 2, . . . , m − 1} ∪ {m, m + 1, m + 2, . . . , m + n − 1}
= {0, 1, 2, . . . , m − 1} ∪ m + {0, 1, 2, . . . , n − 1}
= [m] ∪ (m + [n]) ,

and
[m] ∩ (m + [n]) = ∅.

Moreover,

[mn] = {0, 1, 2, . . . , mn − 1}
= {0, 1, 2, . . . , m − 1} ⊕ {0, m, 2m, . . . , m(n − 1)}
= {0, 1, 2, . . . , m − 1} ⊕ m ∗ {0, 1, 2, . . . , n − 1}
= [m] ⊕ (m ∗ [n]) .

If m1, . . . , mr are positive integers, then, by induction, we have the partition

[m1 + m2 + · · · + mr] =
r⋃

j=1

(
j−1∑

i=1

mi + [mj ]

)
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into pairwise disjoint sets, and the direct sum decomposition

[m1m2 · · ·mr] =
r⊕

j=1

(
j−1∏

i=1

mi ∗ [mj ]

)
.

Associated to every set A of integers is the generating function

fA(q) =
∑

a∈A

qa.

This is a formal Laurent series in the variable q. If A and B are finite sets of non-
negative integers and if m is a nonnegative integer, then fA(q) is a polynomial,
and

fm+A = qmfA(q)

and
fm∗A(q) = fA(qm).

If A and B are disjoint, then

fA∪B(q) = fA(q) + fB(q).

If A + B = A ⊕ B, then

fA⊕B(q) = fA(q)fB(q).

The generating function of the interval [n]q is the quantum integer [n]q. Since
[m] ∩ (m + [n]) = ∅, we have

[m + n]q = f[m+n](q)
= f[m]∪(m+[n])(q)
= f[m](q) + fm+[n](q)
= f[m](q) + qmf[n](q)
= [m]q + qm[nq].

Similarly,

[mn]q = f[mn](q)
= f[m]⊕(m∗[n])(q)
= f[m](q)fm∗[n](q)
= f[m](q)f[n](qm)
= [m]q[n]qm .

These identities suggest natural definitions of quantum addition and multi-
plication. If F = {fn(q)}∞n=1 is a sequence of polynomials, we define

fm(q) ⊕q fn(q) = fm(q) + qmfn(q) (3)
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and
fm(q) ⊗q fn(q) = fm(q)fn(qm). (4)

Then
[m]q ⊕q [n]q = [m + n]q

and
[m]q ⊗q [n]q = [mn]q.

More generally, if F = {fn(q)}∞n=1 is any sequence of functions, not necessarily
polynomials, then we can define quantum addition and multiplication by (3)
and (4). We shall prove that the only nonzero sequence F = {fn(q)}∞n=1 of
functions such that

fm(q) ⊕q fn(q) = fm+n(q)

and
fm(q) ⊗q fn(q) = fmn(q)

is the sequence of quantum integers.

3 Uniqueness of Quantum Arithmetic

Let F = {fn(q)}∞n=1 be a sequence of polynomials in the variable q that satisfies
the addition and multiplication rules for quantum integers, that is, F satisfies
the additive functional equation

fm+n(q) = fm(q) + qmfn(q) (5)

and the multiplicative functional equation

fmn(q) = fm(q)fn(qm) (6)

for all positive integers m and n. Nathanson [2] showed that there is a rich
variety of sequences of polynomials that satisfy the multiplicative functional
equation (6), but there is not yet a classification of all solutions of (6). There
is, however, a very simple description of all solutions of the additive functional
equation (5).

Theorem 1. Let F = {fn(q)}∞n=1 be a sequence of functions that satisfies the
additive functional equation (5). Let h(q) = f1(q). Then

fn(q) = h(q)[n]q for all n ∈ N. (7)

Conversely, for any function h(q) the sequence of functions F = {fn(q)}∞n=1

defined by (7) is a solution of (5). In particular, if h(q) is a polynomial in q,
then h(q)[n]q is a polynomial in q for all positive integers n, and all polynomial
solutions of (5) are of this form.
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Proof. Suppose that F = {fn(q)}∞n=1 is a solution of the additive functional
equation (5). Define h(q) = f1(q). Since [1]q = 1 we have

f1(q) = h(q)[1]q.

Let n ≥ 2 and suppose that fn−1(q) = h(q)[n − 1]q. From (5) we have

fn(q) = f1(q) + qfn−1(q)
= h(q)[1]q + qh(q)[n − 1]q
= h(q)([1]q + q[n − 1]q)
= h(q)[n]q.

It follows by induction that fn(q) = h(q)[n]q for all n ∈ N.
Conversely, multiplying (5) by h(q), we obtain

h(q)[m + n]q = h(q)[m]q + qmh(q)[n]q,

and so the sequence {h(q)[n]q}∞n=1 is a solution of the additive functional equa-
tion (5) for any function h(q). This completes the proof.

We can now show that the sequence of quantum integers is the only nonzero
simultaneous solution of the additive and multiplicative functional equations (5)
and (6).

Theorem 2. Let F = {fn(q)}∞n=1 be a sequence of functions that satisfies both
functional equations (5) and (6). Then either fn(q) = 0 for all positive integers
n, or fn(q) = [n]q for all n.

Proof. The multiplicative functional equation implies that f1(q) = f1(q)2, and
so f1(q) = 0 or 1. Since F = {fn(q)}∞n=1 also satisfies the additive functional
equation, it follows from Theorem 1 that there exists a function h(q) such that
fn(q) = h(q)[n]q for all positive integers n, and so h(q) = 0 or 1. It follows
that either fn(q) = 0 for all n or fn(q) = [n]q for all n. This completes the
proof.

4 The Ring of Quantum Integers

We can now construct the ring of quantum integers and the field of quantum
rational numbers. We define the function

[x]q =
1 − qx

1 − q

of two variables x and q. This is called the quantum number [x]q . Then

[0]q = 0,

and for every positive integer n we have

[n]q =
1 − qn

1 − q
= 1 + q + · · · + qn−1,
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which is the usual quantum integer. The negative quantum integers are

[−n]q =
1 − q−n

1 − q
= − 1

qn
[n]q = −

(
1
q

+
1
q2

+ · · · + 1
qn

)
.

Then

[x]q ⊕q [y]q = [x]q + qx[y]q

=
1 − qx

1 − q
+ qx 1 − qy

1 − q

=
1 − qx+y

1 − q

= [x + y]q

and

[x]q ⊗q [y]q = [x]q[y]qx

=
1 − qx

1 − q

1 − qxy

1 − qx

=
1 − qxy

1 − q

= [xy]q.

The identities

[x]q ⊕q [y]q = [x + y]q and [x]q ⊗q [y]q = [xy]q (8)

immediately imply that the set

[Z]q = {[n]q : n ∈ Z}
is a commutative ring with the operations of quantum addition ⊕q and quantum
multiplication ⊗q. The ring [Z]q is called the ring of quantum integers. The map
n 
→ [n]q from Z to [Z]q is a ring isomorphism.

For any rational number m/n, the quantum rational number [m/n]q is

[m/n]q =
1 − qm/n

1 − q
=

1−(q1/n)m

1−q1/n

1−(q1/n)n

1−q1/n

=
[m]q1/n

[n]q1/n

.

Identities (8) imply that addition and multiplication of quantum rational num-
bers are well-defined. We call

[Q]q = {[m/n]q : m/n ∈ Q}
the field of quantum rational numbers.

If we consider [x]q as a function of real variables x and q, then

lim
q→1

[x]q = x

for every real number x.



Additive Number Theory and the Ring of Quantum Integers 511

We can generalize the results in this section as follows:

Theorem 3. Consider the function

[x]q =
1 − qx

1 − q

in the variables x and q. For any ring R, not necessarily commutative, the set

[R]q = {[x]q : x ∈ R}

is a ring with addition defined by

[x]q ⊕q [y]q = [x]q + qx[y]q.

and multiplication by
[x]q ⊗q [y]q = [x]q[y]qx

The map from R to [R]q defined by x 
→ [x]q is a ring isomorphism.

Proof. This is true for an arbitrary ring R because the two identities in (8) are
formal.
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