
Strengthening Digital Signatures Via

Randomized Hashing

Shai Halevi and Hugo Krawczyk

IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
shaih@alum.mit.edu, hugo@ee.technion.ac.il

Abstract. We propose randomized hashing as a mode of operation for
cryptographic hash functions intended for use with standard digital sig-
natures and without necessitating of any changes in the internals of the
underlying hash function (e.g., the SHA family) or in the signature algo-
rithms (e.g., RSA or DSA). The goal is to free practical digital signature
schemes from their current reliance on strong collision resistance by bas-
ing the security of these schemes on significantly weaker properties of the
underlying hash function, thus providing a safety net in case the (current
or future) hash functions in use turn out to be less resilient to collision
search than initially thought.

We design a specific mode of operation that takes into account en-
gineering considerations (such as simplicity, efficiency and compatibility
with existing implementations) as well as analytical soundness. Specif-
ically, the scheme consists of a regular use of the hash function with
randomization applied only to the message before it is input to the
hash function. We formally show the sufficiency of weaker than collision-
resistance assumptions for proving the security of the scheme.

1 Introduction

Recent cryptanalytical advances in the area of collision-resistant hash functions
(CRHF) [8,5,15,6,16,29,30,31,32], especially the attacks against MD5 and SHA-
1, have shaken our confidence in the security of existing hash functions as well as
in our ability to design secure CRHF. These attacks remind us that cryptography
is founded on heuristic constructions whose security may be endangered unex-
pectedly, and highlight the importance of designing mechanisms that require as
little as possible from their basic cryptographic building blocks. In particular,
they indicate that one should move away (to the extent possible) from schemes
whose security fundamentally depends on full collision resistance.

The most prominent example of schemes that are endangered by these attacks
are digital signatures where collisions in the hash function directly translate
into forgeries. The goal of this work is to free existing (standardized) signa-
ture schemes from their dependence on full collision-resistance of the underlying
hash function, while making as small as possible modifications to the signature
and hashing algorithms. Specifically, we propose a randomized mode of opera-
tion for hash functions such that (i) no change to the underlying hash functions

C. Dwork (Ed.): CRYPTO 2006, LNCS 4117, pp. 41–59, 2006.
c© International Association for Cryptologic Research 2006

42 S. Halevi and H. Krawczyk

(e.g., the SHA family), the signature algorithms (e.g., RSA, DSA), or their im-
plementations is required; (ii) changes to the signing process are the minimal
required by any randomization scheme, namely, the choice of a short random
string by the signer and transporting this string as part of, or in addition to, the
existing signature; and (iii) security of the resultant signature scheme does not
depend on the resistance of the hash function to off-line collision attacks.

Armoring signature schemes with this mode of operation provides a safety
net for the security of digital signatures in the case that the collision resistance
of the underlying hash function is broken or weakened. At the same time, by
following important engineering considerations, as in points (i) and (ii) above,
one facilitates the adoption of the resultant schemes into practice. In particular,
treating the hash function as a black box allows to preserve existing implementa-
tions of these functions or their future replacements. Moreover, the many other
applications of hash functions (e.g., MAC, PRFs, commitments, fingerprinting,
etc.) need not be changed or adapted to a new hash design; instead, these ap-
plications may use the hash function, or any “drop-in replacement”, exactly as
they do now.

Collision resistance and the Merkle-Damg̊ard (M-D) construction. Roughly, a
(length-decreasing) function H is collision resistant if given the description of H ,
no feasible attacker can find two messages M, M ′ such that H(M) = H(M ′),
except with insignificant probability.1 Contemporary constructions of (allegedly)
collision-resistant hash functions follow the so called Merkle-Damg̊ard (M-D)
iterated construction [17,9]. Such constructions start with a compression function
h that maps input pairs (c, m) into an output c′ where c and c′ are of fixed
length n (e.g., n = 160) and m is of fixed length b (e.g., b = 512). Given such a
compression function h and a fixed n-bit initial value (IV), denoted c0, a hash
function H on arbitrary-length inputs is defined by iterating h as follows: On
input message M , the message is broken into b-bit blocks M = (m1, m2, . . . , mL),
then one computes ci ← h(ci−1, mi) for i = 1, 2, . . . , L and finally the last n-bit
value cL is output as the result of H(M).

Throughout this paper we typically denote the (iterated) hash function by H
and its compression function by h. For an M-D function H , we also sometimes
write Hc0(M) when we want to explicitly name the initial value c0. To handle
non-suffix-free message spaces, the M-D construction appends the length at the
end of the input and uses some padding rules. We will initially ignore these issues
and assume that the input consists of an integral number of blocks and that it
is taken from a suffix-free set; we will return to the issue of length appending in
Section 5.

Target Collision Resistance. Signature schemes that do not depend on full col-
lision resistance were constructed in the influential work of Naor and Yung [20]
who introduced the notion of universal one-way hash functions, or UOWHF.
Later, Bellare and Rogaway [3] renamed them to the more descriptive (and

1 Formalizing collision resistance requires to consider H as a family of functions rather
than as a single function; we ignore this technicality for the informal discussion here.

Strengthening Digital Signatures Via Randomized Hashing 43

catchy) name of target collision resistant (TCR) hash functions, a term that we
adopt here. Roughly, a family of hash functions {Hr}r∈R (for some set R) is
target collision resistant if no efficient attacker A can win the following game,
except with insignificant probability: A chooses a first message M , then receives
a random value r ∈R R, and it needs to find a second message M ′ �= M such
that Hr(M ′) = Hr(M). The value r is called a hashing key, or a salt. In [3], TCR
families were used to extend signature schemes on short messages into signature
schemes on arbitrary messages: To sign a long message M , the signer chooses a
fresh random salt r and then uses the underlying signature scheme to sign the
pair (r, Hr(M)).

Enhanced target collision resistance. Standard signature schemes such as RSA
and DSA are defined using a deterministic hash function H and designed to
only sign the hash value H(M). When moving to a TCR-based scheme one
replaces H(M) with Hr(M) but also needs to sign the salt r. Unfortunately,
certain signature schemes, such as DSA, do not accommodate the signing of r in
addition to Hr(M). Even in cases, such as RSA, where both r and Hr(M) can be
included under the signed block (RSA moduli are long enough to accommodate
both values) signing r requires changing the message encoding standards (such as
PKCS#1) which may be impractical in some settings. To solve these difficulties,
we propose a strengthened mode of operation, that provides a stronger security
guarantee than TCR. The new notion, that we call enhanced TCR (eTCR), is
sufficiently strong to ensure security of the resultant signatures even if we only
apply the underlying signature to Hr(M) and do not sign the salt r. Specifically,
the TCR attack scenario is modified so that after committing to M and receiving
the salt r, the attacker can supply a second message M ′ and a second salt r′,
and it is considered successful if (r, M) �= (r′, M ′) but Hr(M) = Hr′(M ′).

1.1 Our Randomization Schemes

The main contribution of this work is in presenting simple and efficient random-
ization schemes that use any Merkle-Damg̊ard iterated hash function as-is (i.e., in
a black-box fashion) and have short salts, and which we prove to be TCR and/or
eTCR under weak assumptions on the underlying compression function. Specif-
ically, we relate the security of our schemes to “second-preimage resistance”
properties of the compression function. Recall that a compression function h is
called second preimage resistant (SPR) if given a uniformly random pair (c, m) it
is infeasible to find a second pair (c′, m′) �= (c, m) such that h(c′, m′) = h(c, m).

The first scheme that we consider, denoted Hr, simply XOR’s a random b-bit
block r to each message block before inputting it into the hash function (see
below for a comparison of this scheme to one in [26]). That is,

Hc
r (m1, . . . , mL) def= Hc(m1 ⊕ r, . . . , mL ⊕ r). (1)

We show this scheme to be TCR under SPR-like assumption on the underlying
compression function h (see below). On the other hand, the Hr construction
is clearly not eTCR; in order to obtain an eTCR scheme we modify Hr by

44 S. Halevi and H. Krawczyk

prepending the salt block r to the message (in addition to xor-ing r to every
message block as before), thus computing

H̃c
r (M) def= Hc

r (0|M) = Hc(r, m1 ⊕ r, . . . , mL ⊕ r) (2)

Remarkably, for any M-D iterated hash function H we can prove that H̃r is
enhanced-TCR under the same relaxed conditions on the compression function
that we use to prove that Hr is TCR.

These precise conditions are presented in Section 2. Roughly, we show two
properties of the compression function h that are sufficient for Hr to be TCR
(resp. for H̃r to be eTCR). Both properties are related to the second-preimage
resistance of h. One property, c-SPR, is rather natural but also rather strong,
and is provided mostly as a toy problem for cryptanalysts to sink their teeth in.
The other property, e-SPR, is less natural but is closer to SPR and reflects more
accurately the “real hardness” of the constructions Hr and H̃r. We also note
that c-SPR is related to the “hierarchy of collision resistance” of Mironov [18],
and that e-SPR is a weaker property than the L-order TCR property of Hong
et al. [14].

We stress that ultimately, the question of whether or not a particular compres-
sion function (such as those in the SHA family) is e-SPR can only be addressed
by cryptanalysts trying to attack this property. As we explain in Section 2,
breaking the compression function in the sense of e-SPR is a much harder task
than just finding collisions for it. Moreover, the randomized setting represents
a fundamental shift in the attack scenario relative to the traditional use of de-
terministic hash functions. In the latter case, the attacker can find collisions via
(heavy) off-line computation and later use these collisions in a signature forgery
attack at any time and with any signer. In contrast, in the randomized setting,
a meaningful collision is one that utilizes a random, unpredictable r chosen by
the signer anew with each signature and revealed to the attacker only with the
signature on the message M (in particular, only after the attacker committed to
the message M).

Can the signer cheat? A possible objection to the randomized setting is that
it may allow a signer to find two messages with the same hash value. This,
however, represents no violation of signature security (c.f. the standard definition
of Goldwasser, Micali, and Rivest [12]). Specifically, the potential ability of the
signer to find collisions does not allow any other party to forge signatures thus
protecting the signer against malicious parties. At the same time, recipients of
signatures are also protected since the signer cannot disavow a signature by
presenting a collision; the simple rule is, as in the case of human signatures,
that the signer is liable for any message carrying his valid signature (even if the
signer can show a collision between two messages). It is also worth noting that
our schemes have the property that as long as the underlying hash function is
collision resistant then even the signer cannot find collisions. More generally,
the signature schemes resulting from our randomization modes are never weaker
(or less functional) than the schemes that use a deterministic hash function,

Strengthening Digital Signatures Via Randomized Hashing 45

not even when the underlying hash function is truly collision resistant; and, of
course, our schemes are much more secure once the hash function ceases to be
collision resistant.

Practical Considerations. As seen, our randomized hashing schemes require
no change to the underlying (compression and iterated) hash function. These
schemes can be used, as described before, with algorithms such as RSA and
DSA, to provide for digital signatures that remain secure even in the presence
of collisions for the underlying hash functions. For this, the value H(M) cur-
rently signed by the standard schemes needs to be replaced with Hr(M) or with
H̃r(M). However, while in the case of Hr one needs to also sign the salt r, in the
H̃r case the latter is not needed. In this sense, H̃r provides for a more flexible
and practical scheme and hence it is the one that we suggest for adoption into
practice. In particular, using H̃r, the salt r may be transported by an application
as part of (or in addition to) a message, or r can be included under the signature
itself (under the signed value in RSA or by re-using the random r = gk compo-
nent in DSA). We further discuss these issues in Section 5. A full specification
of the H̃r mode is included in [13].

Related Schemes. Bellare and Rogaway [3] explored the problem of constructing
TCR hashing for long messages from TCR functions that work on short inputs,
and showed that the M-D iteration of a TCR compression function does not
necessarily result in a long-message TCR. Instead, they presented a few other
constructions of long-message TCR hash functions from short-message TCR
compression functions. Shoup [26] continued this line of research and offered the
following elegant scheme that comes close to the original M-D iterated construc-
tion. The salt in Shoup’s scheme consists of one b-bit message block r and a
set S of log L chaining variables s0, s1, . . ., where L is the number of message
blocks. The scheme consists of a regular M-D construction except that (i) every
message block is xor-ed with r before it is input to the compression function
h, and (ii) the intermediate values ci output by each iteration of h are xor-ed
with one of the si’s to form the chaining value input into the following appli-
cation of h. That is, the M-D scheme is modified as follows: for i = 1, 2, . . . , L,
ci ← h(ci−1⊕sji , mi⊕r) where ji chooses one of the elements in the set S. Shoup
proved that if the compression function is SPR then the construction yields a
TCR function on messages of arbitrary length.

Note that our Hr scheme (Eqn. (1)) is similar to Shoup’s in that the input
blocks are xor-ed with the random r. However, the two schemes differ substan-
tially in that: (i) Hr uses the hash function as a black box while Shoup’s scheme
requires the change of the internals of H to accommodate the xor-ing of the si’s
values with the partial results of the compression function; and (ii) in Hr the
amount of randomness is fixed while in Shoup’s it is logarithmic in the length
of the message and hence non-constant; this requires significantly more random
bits and results in longer signatures. In addition, Shoup’s scheme (like Hr) is
not eTCR. For the latter property, we need the modified H̃r scheme (Eqn. (2)).

HMAC. One interesting question is why not take as the randomization mode
a well established construction such as HMAC. It is easy to see that for the

46 S. Halevi and H. Krawczyk

purpose of TCR hashing the HMAC scheme (with the salt used as a random but
known key) is not stronger than just pre-pending a random value to a message,
a measure of limited effect against recent cryptanalysis. Other measures, such
as appending randomness at the end, or even in the middle of a message, are
even worse in that they do not help against collision attacks. In particular, this
shows that the simplicity of our schemes cannot be explained by the näıve view
that “any randomization of the input to the hash function will work.” Yet,
one analogy to the case of HMAC is illustrative here: the fact that the HMAC
design (as a message authentication code) has not been endangered by the latest
collision attacks is due to its deliberate non-reliance on full collision resistance.
We believe that randomized hashing could have a similar significant effect on
the future security of digital signatures.

Relations between various notions. In our presentation we use quite a few no-
tions of security for hash functions, some new and others well known (see [24]).
Articulating the relations between these notions is not the focus of this paper. In
some places we comment about implication or separation between these notions,
but we do not explicitly show separation examples in this extended abstract.
(This will divert attention from what we see as the heart of this work, namely
the analysis of the practical constructions Hr and H̃r.)

Organization. In Section 2 we present and discuss the SPR-like notions that
we use in proving the TCR and eTCR properties of our schemes. These proofs
are presented in Section 3 and Section 4, respectively. In Section 5 we discuss
some practical aspects related to the integration of our schemes with standard
signature schemes. We end with some open problems in Section 6.

2 Variants of Second-Preimage Resistant Hashing

Our goal in this work is to analyze the randomized modes of operation defined
in Equations 1 and 2, finding “as weak as possible SPR-like properties” of h that
suffice to ensure that Hr is TCR and H̃r is eTCR. Below we describe several
“games” representing different forms of second-preimage resistance (SPR) of the
compression function h (recall that h represents a single, unkeyed, function with
two arguments, c and m, and Hc represents the M-D iteration of h with IV= c).
In all cases the goal of the attacker (that we denote by S) is to present pairs
(c, m) and (c′, m′) such that (c, m) �= (c′, m′) and yet h(c, m) = h(c′, m′). The
difference between the games is how the values c, m, c′, m′ are determined and
by whom.

The case where S chooses all four values is known as the “pseudo-collision”
search problem for h and is at the basis of the Merkle-Damg̊ard (M-D) construc-
tion of collision resistance. However, in the games below the adversary’s task
is significantly harder since some of these values are chosen randomly and are
not under the control of S. More specifically, the games are variants of “second-
preimage resistance” of the function h since in all the value m is chosen inde-
pendently at random and c′, m′ are chosen by the attacker at will after seeing m.

Strengthening Digital Signatures Via Randomized Hashing 47

The difference is in the way c is determined: at random in r-SPR, chosen (by
the attacker) in c-SPR, and evaluated (as a function of m) in e-SPR:

r-SPR: S receives random m and c, and it chooses m′, c′.
c-SPR: S receives random m, and it chooses c, c′, m′.
e-SPR: The game is parametrized by an IV c0. S chooses � ≥ 1 values Δi, i =

1, . . . , �, each of length b bits; then S receives a random r ∈ {0, 1}b and c, m
are set to m = r⊕Δ� and c = Hc0(r⊕Δ1, . . . , r⊕Δ�−1). Finally S chooses
c′, m′.2

Clearly, r-SPR corresponds to the standard notion of second-preimage resistance
of h, while c-SPR and e-SPR are variants that we use in the analysis of our
schemes, and we elaborate on them below.

The IV. The game e-SPR can be considered in either the “uniform setting”
where c0 is chosen at random and given to S as input, or the “non-uniform set-
ting” where c0 is a parameter of the game and S may depend on that parameter.
The discussion below applies equally to both settings.

Attack parameters. When discussing the security (or hardness) of different games
we denote by t and L the attacker’s resources (i.e., time and length of messages
used in the attack) and by ε the probability of success by the attacker. In partic-
ular, if G denotes one of the SPR or TCR games discussed in the paper then we
say that a function (either h or the family Hr) is G(ε, L, t) if no attacker with
resources t and L can win the game with probability better than ε. (In some of
the games the parameter L is irrelevant and then omitted.)

2.1 The c-SPR Game

We remark that the game c-SPR is a significantly easier variant (for the attacker)
than the r-SPR and e-SPR games, since the attacker gets to choose c, after seeing
m, in addition to choosing c′ and m′. For example, the c-SPR game is clearly
vulnerable to generic birthday attacks, whereas r-SPR and e-SPR are not.

We observe that for a compression function h(c, m), the c-SPR property is
equivalent to the property that the family hr(m, c) = h(c, m⊕r) is CRn(n+b, n)
as defined by Mironov [18].3 A family of functions {hr}r belongs to CR�(n′, n)
if each hr maps n′ bits to n bits, and in addition no feasible attacker can win
the following game except with insignificant probability:

1. The attacker first commits to n′−� bits of the first message (call this (n′−�)-
bit string M1),

2. Then the attacker is given the salt r,
3. The attacker wins if it can find an �-bit string M2 and a second n′-bit message

M ′ such that for M = M1|M2 it holds that hr(M) = hr(M ′).
2 We choose to define m = r ⊕ Δ� for notational convenience in our proofs; however,

note that the xor with Δ� does not change the fact that the value of m is determined
uniformly at random (and independent of the Δ values).

3 Here we reverse the order of the inputs to hr in order to match Mironov’s formulation.

48 S. Halevi and H. Krawczyk

Now, consider the following equivalent formulation of the c-SPR game: the at-
tacker first commits to a b-bit message m, then it gets the randomness r and it
needs to find c, c′ and m′ such that h(c, m ⊕ r) = h(c′, m′ ⊕ r). Clearly, under
this formulation we see that {hr}r is c-SPR if and only if {hr}r belongs to the
class CRn(n+ b, n). Mironov proved that the existence of CRn(n+ b, n) families
implies the existence of collision-resistant families (from n + 1 to n bits). Hence
c-SPR implies the existence of collision-resistant hashing families (in particular,
this shows that Simon’s [27] separation result applies to black-box constructions
of c-SPR; it does not mean, however, that the M-D iteration of a c-SPR compres-
sion function is necessarily collision resistant). Still, for a particular compression
function h, breaking c-SPR is also significantly harder (for the attacker) than
the traditional pseudo-collision search. For example, although a pseudo-collision
attack on MD5 is known for many years, breaking it in the sense of c-SPR seems
beyond the state of the art in cryptanalysis, and even more so for SHA-1. (Also,
assuming that c-SPR functions exist, it is easy to construct compression func-
tions that are c-SPR but are not resistant to pseudo-collisions.) We believe that
the c-SPR game provides a useful toy-example for cryptanalysts to develop tools
for TCR-type attack models.

2.2 The e-SPR Game

The game e-SPR is significantly harder for the attacker than c-SPR (and in
particular it is not open to generic birthday attacks). It is also closer to r-SPR.
There are, however, two important differences between r-SPR and e-SPR:

– The distribution from which m is chosen is uniform, but c is determined as
a function of m. In particular, the joint distribution of c and m has b bits
of entropy, while the pair (c, m) is (b + n)-bits long. This difference can in
principle make e-SPR either easier or harder than r-SPR, depending on the
underlying hash function.

– The attacker S gets to influence the distribution on c via its choice of the
Δi’s (but note that S must commit to the Δi’s before it gets the random
value r !)

Due to the first point above, e-SPR and r-SPR are formally incomparable, and
it is possible to concoct examples of compression functions where one is easy
and the other is hard (assuming r-SPR/e-SPR functions exist).

Relation of e-SPR to L-order TCR. As noted earlier, the fact that a family
of compression functions is TCR does not necessarily imply that the multi-block
extension of that family obtained via M-D iterations is TCR. Therefore, it is
natural to search for (stronger) properties of compression functions that suffice
to ensure that the M-D extension is TCR. Hong, Preneel and Lee [14] identified
such a property, that they called L-order TCR (we recall it below), and proved
that if a compression family is L-order TCR then the M-D extension is TCR on
inputs of (up to) L blocks. Thus, one way to prove that our Hr construction (Eqn.
(1)) is TCR is to assume that the compression function family {hr}r defined by

Strengthening Digital Signatures Via Randomized Hashing 49

Eqn. (1) (i.e. hr(c, m) = h(c, m⊕ r)) is L-order TCR. While this property may
be a plausible assumption on practical compression functions (and hence can be
used as evidence to support the TCR property of our Hr scheme), it turns out
that our Theorem 1 provides for a stronger result. Indeed, that theorem only
assumes hr to be e-SPR and we show in Proposition 1 below that e-SPR is a
weaker property (i.e., harder to break) of the hr scheme than L-order TCR. (We
note that this relative strength of e-SPR and L-order TCR may not hold for all
families of compression functions but it does hold for our specific scheme).

Hong et al. [14] define a function family {hr}r to be L-order TCR if no feasible
adversary can win the following game, except with insignificant probability: As
in the TCR game, the attacker commits to a message m, then it is shown the
salt r and it needs to find another message m′ such that hr(m) = hr(m′). The
difference is that before committing to the first message m the attacker gets to
learn some information about the salt r by means of L adaptive queries mi to
the hash function for which the attacker gets as a response the corresponding
hash values hr(mi).

Proposition 1. Let h : {0, 1}b+n → {0, 1}b be a compression function. If the
family {hr}r∈{0,1}b defined by hr(c, m) = h(c, m⊕ r) is order-L TCR(ε, t), then
h(·) is e-SPR(ε, L, t−O(L)).

The proof is presented in the full version of the paper.

3 Achieving Target Collision Resistance

Recall the definition of the construction Hr from Eqn. (1),

Hc
r (m1, . . . , mL) def= Hc(m1 ⊕ r, . . . , mL ⊕ r).

Using the games from Section 2 we can establish some relations between the
corresponding SPR flavors of h and the TCR property of Hr. For this we define
the TCR game for a family Hr as follows:

TCR Game: The attacker T knows the fixed IV c0. It chooses a message M of
length L > 0 blocks, receives a random r ∈R {0, 1}b, and outputs a second
message M ′ of length L′. Attacker T wins if M ′ �= M and Hc0

r (M ′) =
Hc0

r (M).

For simplicity of presentation, we first state and prove our results in the case
where the TCR attacker can only provide M, M ′ of length an integer multiple of
the block length, and it is not allowed to output M, M ′ such that one is a suffix of
the other. This restriction on the attacker T is not significant in practice since ac-
tual implementations pads the messages and append the length to the last block,
thus forcing full-block suffix-freeness. (To address the case where such length ap-
pending is not necessarily done one needs an additional “one-wayness assumption”,
as described in Section 3.1. Also, see Section 5 for a discussion on how to handle
partial blocks.) Formally, we consider a modified game (denoted TCR∗) where the
attacker does not win the game if it violates the condition on the messages.

50 S. Halevi and H. Krawczyk

TCR∗ Game: Same as TCR but the attacker wins only if in addition to the reg-
ular TCR conditions it also holds that M, M ′ consists of an integral number
of b-bit blocks and neither of them is suffix of the other.

Theorem 1. (TCR Theorem, suffix-free case)

1. If h is c-SPR(ε, t) then Hr is TCR∗(Lε, L, t−O(L))
2. If h is e-SPR(ε, L, t) then Hr is TCR∗(Lε, L, t−O(L))

This theorem is proven below. We note that these are sufficient conditions for
TCR-ness but not necessary ones. In other words, the failure of a compression
function to one of the above attacks does not necessarily mean that the induced
family Hr is not TCR.

It is also worth commenting on the tightness of the reductions in the above
theorem. In both cases, c-SPR and e-SPR, there is a linear degradation of se-
curity when going from SPR to TCR. Note, however, that there is a significant
difference between the generic security of the two games c-SPR and e-SPR.
Against the former there is a trivial birthday-type generic attack while against
e-SPR generic attacks achieve only linear advantage. Thus, the reduction from
e-SPR shows a worst-case “quadratic degradation” generic TCR attack against
Hr (and not “cubic degradation” as the reduction cost in the c-SPR to TCR
case could indicate). Moreover, TCR attacks with quadratic degradation (i.e.,
with success probability in the order of tL/2n) against Hr are indeed possible
since SPR attacks against H can be translated into TCR attacks against Hr and
we know that such birthday-type SPR attacks against H exist [11,16].

This motivates two questions: Can we have a flavor of SPR for which there
is a tight reduction to TCR? Can this SPR game be defined such that it is only
vulnerable to linear generic attacks? The answer to the first question is YES:
in the full version of this paper we present such a game, called m-SPR (m for
multiple), and its tight reduction to TCR. The answer to the second question
is obviously NO, since as said SPR birthday attacks against Hr do exist. It is
possible, however, to design variants of M-D hash functions (e.g., appending a
sequence number to each block or using the “dithering” technique proposed by
Rivest [23]) for which the best generic attacks achieve linear degradation only.
Thus, the main motivation and usefulness of the game m-SPR and its tight
reduction to TCR is for the analysis of such variants.

3.1 Proof of Theorem 1

In the proof below we assume that the attacker T never outputs M, M ′ where
one is the suffix of the other. We also make the convention that when algorithm A
calls another algorithm B and B aborts then A aborts too.

Lemma 1. If h is c-SPR(ε, t) then Hr is TCR∗(Lε, L, t−O(L)).

Before proving this lemma, we comment that the exact assertion of this lemma
(and thus the proof) depend on whether we view the IV c0 as a random input to
the TCR attacker or a parameter of the TCR game (cf. comment on page 47).

Strengthening Digital Signatures Via Randomized Hashing 51

In the reduction below we suppress c0 with the understanding that if it is a
parameter then the same parameter is used in the reduction, and if it is an
input then S chooses c0 at random and gives it to T .

Proof. Given TCR attacker T we build c-SPR attacker S:

1. S gets input m, invokes T and gets from T the first message M=(m1, . . . , mL).
2. S chooses � ∈R {1, . . . , L}, sets r = m⊕m�, and returns r to T .
3. T outputs the second message M ′ = (m′

1, . . . , m
′
L′) or ⊥.

4. S checks that there exists �′ ∈ {1, . . . , L′} such that (1) either m′
�′ �=

m� or Hr(m′
1, . . . , m

′
�′−1) �= Hr(m1, . . . , m�−1); and (2) Hr(m′

1, . . . , m
′
�′) =

Hr(m1, . . . , m�). If no such �′ exists then S aborts.
5. Otherwise S outputs c = Hr(m1, . . . , m�−1), c′ = Hr(m′

1, . . . , m
′
�′−1) and

m′ = m′
�′ ⊕ r. (If there is more than one index with the properties from

above then S chooses �′ arbitrarily among all these indexes.)

Turning to the analysis of S, we first observe that if T does not abort then there
must exist a pair of indexes i, i′ that satisfy the properties from Step 4, namely
Hr(m′

1, . . . , m
′
i′) = Hr(m1, . . . , mi) and either m′

i′ �= mi or Hr(m′
1, . . . , m

′
i′−1) �=

Hr(m1, . . . , mi−1).
To see that, note that since M, M ′ are suffix-free there exists an integer

j < min(L, L′) such that mL−j �= m′
L′−j . Consider the smallest such j (i.e., the

last block where M, M ′ differ when their ends are aligned). Also, let k be small-
est non-negative integer such that Hr(m′

1, . . . , m
′
L′−j+k) = Hr(m1, . . . , mL−j+k)

(i.e., the first “collision” after these “last differing blocks” in the computation of
Hr(M ′), Hr(M)). Clearly, such k exists since T did not abort and so there must
be some collision because Hr(M ′) = Hr(M).

Now setting i = L−j+k and i′ = L′−j+k we get the pair that we need. This
is because we have Hr(m′

1, . . . , m
′
L′−j+k) = Hr(m1, . . . , mL−j+k) by definition,

and (a) either k = 0 in which case mL−j+k �= m′
L′−j+k, or (b) k > 0 in which

case Hr(m′
1, . . . , m

′
L′−j+k−1) �= Hr(m1, . . . , mL−j+k−1).

Next, we argue that the random choice of � is independent of the transcript
that T sees, and in particular it is independent of the values of any such pair
i, i′ as above. This is easy to see, since the distributions of all the variables in
the execution of S remains unchanged if instead of choosing m at random and
setting r = m� ⊕ m we choose r at random and set m = m� ⊕ r. In the new
game, however, we can postpone the choice of � (and m) until the end, and so
it is clearly independent of M, M ′.

It follows that whenever T does not abort, there exists a pair i, i′ as above,
and in this case the probability that S chooses � = i is (at least) 1/L. If that
happens then there exists �′ as needed (i.e., �′ = i′) so S does not abort. It
remains to show that in this case S wins the c-SPR game. This follows since by
the condition on �, �′ we have:

either c=Hr(m1, . . . , m�−1) �=Hr(m′
1, . . . , m

′
�′−1)=c′ or m′=m′

�′⊕(m�⊕m) �=m

and also (due to m = r ⊕m� and m′ = r ⊕m′
�′):

h(c, m)=h(c, r ⊕ m�)=Hr(m1, . . . , m�)=Hr(m
′
1, . . . , m

′
�′)=h(c′, r ⊕ m′

�′)=h(c′, m′)

52 S. Halevi and H. Krawczyk

The attacker in the proof of Lemma 1 makes little use of the full freedom provided
by the c-SPR game in (adaptively) choosing c. Indeed the value of c used by S is
set as soon as S chooses �, and this choice is independent of m. This motivates
the e-SPR game where, by definition, S can influence c only through the choice
of values Δ to which it commits before seeing r. Thus, e-SPR represents a better
approximation of the TCR game, by giving the attacker in e-SPR less artificial
freedom than in c-SPR, and making it much closer to SPR (in particular, by
disallowing generic birthday attacks against it). This makes the following lemma
much stronger than Lemma 1 though its proof follows the same lines. Note that
we are still paying a linear (in L) degradation of security but this time the
reduction is to a “non-birthday” problem. (See also the discussion about security
degradation preceding Section 3.1.).

Lemma 2. If h is e-SPR(ε, L, t) then Hr is TCR∗(Lε, L, t−O(�)).

Proof. This is a simple adaptation of the proof of Lemma 1. Given TCR attacker
T we build e-SPR attacker S:

1. S invokes T and gets from T the first message M = (m1, . . . , mL).
2. S chooses � ∈R {1, . . . , L} and sets Δi = mi for i = 1, . . . , �.
3. S receives a random r and forward it to T . (The values of c, m are evaluated

as c = Hr(Δ1, . . . , Δ�−1) = Hr(m1, . . . , m�−1) and m = Δ� ⊕ r = m� ⊕ r.)
4. T outputs the second message M ′ = (m′

1, . . . , m
′
L′) or ⊥.

5. S checks that there exists �′ ∈ {1, . . . , L′} such that (1) either m′
�′ �=

m� or Hr(m′
1, . . . , m

′
�′−1) �= Hr(m1, . . . , m�−1); and (2) Hr(m′

1, . . . , m
′
�′) =

Hr(m1, . . . , m�). If no such �′ exists then S aborts.
6. Otherwise S outputs c′ = Hr(m′

1, . . . , m
′
�′−1) and m′ = m′

�′ ⊕ r. (If there
is more than one index with the properties from above then S chooses �′

arbitrarily among all these indexes.)

The analysis of S is nearly identical to the analysis in the proof of Lemma 1.
The only difference is that here it is even easier to argue that the choice of � is
independent of the transcript of T .

Extension to Non-suffix-free Messages. We stated Theorem 1 and its proof
in terms of the TCR∗ game, namely, the TCR game in which the attacker is
restricted to suffix-free pairs M, M ′. For the sake of generality, we extend these
results here to the case where inputs to Hr may not be suffix free. For this
extension we need the following one-wayness assumption.

Assumption 2 (OWH). The assumption OWH for the compression function h
asserts that given a random c, it is hard to find a non-null message M such that
Hc(M) = c.

We use our usual notation OWH(ε, t) to denote the assumption that no t-time
attacker can violate the assumption OWH with probability better than ε.

Some comments are in order here. First, note that this assumption is stated
in the “uniform” setting where the IV c is chosen at random. Its “non-uniform”

Strengthening Digital Signatures Via Randomized Hashing 53

counterpart (with respect to a parameter c0) does not make formal sense, for the
same reason that the assertion “SHA256 as per FIPS-180-2 is collision resistant”
does not make formal sense. This means that formally, Theorem 3 below only
applies to this “uniform” setting.4

Second, the above assumption is clearly implied by the assumption that for a
random c it is hard to find c′, m such that h(c′, m) = c. Furthermore, under a
very mild condition on the structure of h, this last assumption is equivalent to
the standard assumption that h is a one-way function (i.e., for random c, m it is
hard given h(c, m) to find c′, m′ such that h(c′, m′) = h(c, m)). Specifically, the
condition that we need is that for random c, m, the distribution over h(c, m) is
statistically close to (or at least indistinguishable from) the uniform distribution
on {0, 1}n.

It is well known that one-wayness is implied by second-preimage resistance,
and is it easy to verify that the same holds also for our notions of c-SPR and
e-SPR (the latter in its “uniform” interpretation where the IV is random). It
follows that under that mild structural condition, the assumption OWH is im-
plied by the assumptions e-SPR and c-SPR and so is redundant in Theorem 3
below. Still, we prefer to state the theorem with this assumption since (a) it
makes it easier to understand, and (b) it applies also to functions h for which
that structural condition does not hold.

Theorem 3. (TCR Theorem , non-suffix-free case)
1. If h is c-SPR(ε, t) and OWH(ε′, t) then Hr is TCR(ε′ + Lε, L, t−O(L)).
2. If h is e-SPR(ε, L, t) and OWH(ε′, t) then Hr is TCR(ε′ + Lε, L, t−O(L)).

The proof is a small adaptation of the proofs of lemmas 1 and 2. One just
observes that in the case where one of M, M ′ is a proper suffix of the other,
then either the prefix of the longer message violates the one-wayness assumption
(i.e., we have Hc(prefix) = c), or else the same analysis from lemmas 1 and 2
applies. The reason that ε′ is not multiplied by L in the expressions above is
that in the former case we do not care about the value of � that was chosen
at the beginning of the reduction. (See the proof of Theorem 4 for the formal
argument.)

4 Enhanced Target Collision Resistance

Recall the definition of the construction H̃r from Eqn. (2),

H̃c
r (M) def= Hc

r (0|M) = Hc(r, m1 ⊕ r, . . . , mL ⊕ r)

We show that under the same c-SPR and e-SPR assumptions, the construction
H̃r is enhanced TCR (eTCR). We start by defining the eTCR game.

4 However, the reduction that proves Theorem 3 is meaningful also for the case of
fixed IV, showing a constructive transformation from TCR attack to either an SPR
attack or to an attack that violates the one-wayness assumption.

54 S. Halevi and H. Krawczyk

eTCR Game: Attacker T chooses a message M of length L ≥ 0 blocks, receives
a random r ∈R {0, 1}b, and outputs another r′ ∈ {0, 1}b and a message M ′

of length L′ blocks. Attacker T wins if (M ′, r′) �= (M, r) and Hc0
r′ (M ′) =

Hc0
r (M).

Note that the attacker can win this game even when M = M ′, so long as
(M ′, r′) �= (M, r). We remark that as opposed to the case of the construction
Hr and the standard TCR game, here assuming suffix-freeness does not help
us, because the attacker can specify r′ �= r and so even if M, M ′ are suffix free
the messages M ⊕ r, M ′ ⊕ r′ perhaps are not. (However, we can go back to the
suffix-free case by using length padding outside of the randomness, as discussed
in Section 5.) Below we therefore use the OWH assumption as in Theorem 3,
thus getting:

Theorem 4 (eTCR security)

1. If h is c-SPR(ε, t) and OWH(ε′, t) then H̃r is eTCR(ε′+(L+1)ε, L, t−O(L)).
2. If h is e-SPR(ε, L + 1, t) and OWH(ε′, t) then H̃r is eTCR(ε′ + (L + 1)ε, L,

t−O(L)).

Proof. Below we only prove part 2. Part 1 can be obtained as a corollary, since
an e-SPR attacker can be trivially converted to a c-SPR attacker with the same
success probability. The proof is a small adaptation of the proof of Lemma 2.
The idea is that S sets Δ0 = 0 (and the other Δi’s as before) and then uses r′

instead of r to compute c′ and m′. In more details, given an enhanced-TCR
attacker T be build e-SPR attacker S:

1. On input an IV c, S invokes T (c) and gets from T the first message M =
(m1, . . . , mL).

2. S sets m0 = 0, chooses � ∈R {0, . . . , L} and sets Δi = mi for i = 0, . . . , �.
3. S receives a random r and forward it to T . (Also c, m are evaluated as

c = Hc
r(Δ0, Δ1, . . . , Δ�−1) = Hc

r(0, m1, . . . , m�−1) and m = Δ�⊕r = m�⊕r.)
4. T outputs either the second salt r′ and message M ′ = (m′

1, . . . , m
′
L′) or ⊥.

5. S sets m′
0 = 0, and searches for an index �′ ∈ {0, . . . , L′} such that (1) either

m′
�′ ⊕ r′ �= m� ⊕ r or Hc

r′(0, . . . , m′
�′−1) �= Hc

r(0, m1, . . . , m�−1); and (2)
Hc

r′(0, m′
1, . . . , m

′
�′) = Hc

r(0, m1, . . . , m�). If no such �′ exists then S aborts.
6. Otherwise S outputs c′ = Hc

r′(0, m′
1, . . . , m

′
�′−1) and m′ = m′

�′ ⊕ r′. (If there
is more than one index with the properties from above then S chooses �′

arbitrarily among all these indexes.)

To analyze S, let SUFF denote the event in which one of the messages

X = (r, m1 ⊕ r, . . . , mL ⊕ r) and X ′ = (r′, m′
1 ⊕ r′, . . . , m′

L′ ⊕ r′)

in the game above is a suffix of the other, and in addition hashing only the prefix
of the longer message yields back the IV c. In other words, the event SUFF occurs
whenever we have either X ′ = Y |X or X = Y |X ′ with some Y �= Λ for which
Hc(Y) = c.

Strengthening Digital Signatures Via Randomized Hashing 55

Let εsuff be the probability of the event SUFF, and let ε∗ be the probability
of the event in which T succeeds but the event SUFF does not happen. In the
latter case we can apply the same analysis as in Lemma 2, showing that there
must exist a pair of indexes i, i′ that satisfy the conditions in step 5, that with
probability at least 1/(L+1) we have � = i, and if that happens then S succeeds.

The only part of the analysis that is slightly different than in the proof of
Lemma 2 is proving the existence of the indexes i, i′ in the case where one of
X, X ′ is a prefix of the other but Hc(Y) �= c. In this case, denote by X |i the
(i+1)-block prefix of X (i.e., blocks 0 through i), and similarly denote X ′|i. Let j
be the smallest integer such that Hc(X |L−j) �= Hc(X ′|L′−j) (i.e., the last place
where the chaining values do not agree). Since Hc(Y) �= c then there exists such
index j ≤ min(L+1, L′ +1), and on the other hand j > 0 since the success of T
implies that Hc(XL) = Hc(X ′

L′). Then setting i = L− j + 1 and i′ = L′− j + 1
we get the pair of indexes that we need.

We thus conclude that the success probability of S is at least ε∗/(L + 1).
Since (by definition) the success probability of T is at most ε∗ + εsuff , we can
complete the proof by showing a OWH-attacker with success probability εsuff .
Such attacker S′ is obvious: It gets c as input and runs the same execution as
the e-SPR attacker S from above (choosing itself the random r), and at the end
if the event SUFF occurs then it outputs the prefix Y .

5 Using Randomized Hashing in Signatures

The randomized hashing modes presented in this paper are intended to replace
the deterministic hashing used by standardized signature schemes such as RSA
[21] and DSS [10]. As shown throughout the paper, this replacement frees these
schemes from their current essential dependency on full collision resistance by
basing their security on much harder to break properties of the underlying hash
functions. Of the two schemes analyzed here, the H̃r mode (Eqn. (2)) is best
suited for this task as it does not require the explicit signing of the salt r and
hence allows for more implementation flexibility. We present a full specification
of this mode and its use in digital signature in [13]. Here we provide a short (and
partial) discussion of possible approaches.

The two main approaches depend on whether an application can accommodate
the sending of the salt r in addition to the message and signature or whether any
increase on the size of the information is not possible. The first case is simpler
and requires the least changes to standards. Most applications will be able to
send the the extra salt, especially that r needs not be too long, say in the range
of 128-256 bits (see below). Examples of such applications are digital certificates,
code signing, XML signatures, etc. In this case, upon the need to sign a message
M the modified application will: (i) choose a random salt r; (ii) transform the
message M = (m1, . . . , mL) into the message M ′ = (r, m1 ⊕ r, . . . , mL ⊕ r); (iii)
invoke the existing signature operation (including the existing hash operation) on
M ′; (iv) when the message M and its signature are to be transmitted, transmit r,
M and the computed signature (on M ′). The verification side computes M ′ from

56 S. Halevi and H. Krawczyk

the received r and M and applies its existing signature verification operation on
M ′. This approach allows for preserving the existing processing order (including
a one-pass over the signed message) and the possible pre-computation (ahead of
signature generation) of the pair (r, H̃r(M)).

Note that in this case the application can use its existing signature and veri-
fication processing (whether in software, hardware or both) without any change.
In this case, signature standards [21,10] need no change except for adding the
“front end” message randomization (to generate M ′). The details of implemen-
tation of the required changes is application and implementation dependent. The
extra operations may be placed at the application itself or in a “signing mod-
ule” invoked by the application and which will be responsible for the signature
generation as well as for the generation and transmission of r.

Applications where an increase in the size of messages or signatures is im-
practical will need to resort to a different approach: either re-use the existing
randomness (in the case of probabilistic signatures) or encode the salt r “under
the signature”. The former is the case for the probabilistic schemes DSS [10]
and RSA-PSS [21] where the already existing random values r (used internally
by the PSS operation in the case of RSA-PSS and as the signature component
r = gk in the case of DSS) can be re-used as the hashing salt and thus require no
additional transmission. The latter case, i.e., encoding r “under the signature”,
is the case of the traditional deterministic RSA encoding of PKCS#1 v1.5 [21].
In this case, instead of padding the (deterministic) hash value to a full modulus
size as done today, one will pad the concatenation of r and H̃r(M) to a full
modulus size and then apply to it the private RSA operation. In this case, the
salt r can be retrieved by the verifying party using the RSA public operation
and hence no extra transmission is required.

Evaluating the complexity of performing the above changes depends in par-
ticular settings and applications. Clearly, no change to existing applications,
signature modules or standards is “too simple” and one cannot ignore the cost
of engineering the above changes. However, considering that applications that
compute digital signatures will be upgraded in any case to use new hash func-
tions, one should use this opportunity to also upgrade to randomized hashing. In
particular, it is worth noting that many difficult issues for applications such as
preserving backwards compatibility, the signaling/negotiation of algorithms and
capabilities, version rolling, etc. are not made worse by our proposal than what
is already needed to support a simple hash function upgrade [4]. Considering the
simplicity and minimalistic nature of our randomization scheme, we believe that
the extra changes (transmission or re-use of r) are well worth the substantial
security gain they provide to existing and future signature schemes.

5.1 Specification Details

As said, a detailed specification of the H̃r mode is presented in [13]. Here we
mention two elements that we omitted so far and that need to be included in a
practical instantiation.

Strengthening Digital Signatures Via Randomized Hashing 57

Shorter salt. The construction H̃r as defined in Eqn. (2) uses salt of length b, i.e.
one message block. In practical instantiations, we propose to choose a salt string
r′ of length between 128 and b, and create the b-bit salt r by concatenating r′

with itself as needed, possibly with the last r′ repetition being truncated (e.g.,
in the case of b = 512 and a 160-bit r′, one would have r = r′||r′||r′||r′′ where
r′′ represents the first 32 bits of r′). The analysis in this paper applies to this
modified salt, except that now the assumptions c-SPR, e-SPR are stated in terms
of random messages distributed according to the distribution induced by r′. Of
course, the plausibility of these assumptions needs to be evaluated; however,
as long as r′ is not too short, these modified SPR-type assumptions seem very
reasonable (it is even possible that the added “structure” in these repetitions
makes the cryptanalytical problem more difficult).

Last block padding. The Merkle-Damg̊ard construction pads the input message
to an integral number of blocks and includes an encoding of the length of the
original message in the last block (thus ensuring a suffix-free message space). The
analysis in this work assumes that the salt r is xor-ed to the padded message, but
in practice it is likely that the xor will happen first (as part of the randomized
mode-of-operation) and the padding will then be applied to the randomized
message (as part of the underlying hash function). Simply switching the order
and using randomize-then-pad may mean that the last block is only randomized
in its first few bits. A more robust alternative is to use two levels of padding.
Namely, we first use suffix-free padding of the last block to a full block minus
64 bits (i.e., 448 bits), then xor the salt to this padded message, and finally
apply the original hashing scheme (which will include the length of the padded
message in the remaining 64 bits). See [13].

6 Open Problems

In light of the results in this paper, we feel that more focus should be placed
on evaluating current and future hash functions against the c-SPR and e-SPR
attack scenarios. Specifically, we would like to offer the c-SPR scenario as a
“toy example” for developing cryptanalytical tools that may prove useful in
assessing randomized hashing, and then study the e-SPR scenario as a stronger
foundation for our scheme. Other open problems that arise from this work are
briefly discussed next.

A different construction for eTCR. Another natural proposal for obtaining
enhanced-TCR is to define H

c

r(M) = Hc(r|Hc
r (M)). It may be interesting to

study this variant and see what advantages (and disadvantages) it offers vis-a-
vis the construction H̃ from Eqn. (2).

The random-oracle model and weak hash functions. One inherent difficulty in
formally proving the security of TCR and eTCR schemes in the context of DSS
and RSA as specified in the official standards [21,10] is that these schemes do
not have a proof of security (not even in the case that the underlying hash
function is fully collision resistant). The “closest relatives”, namely, the DSA-II

58 S. Halevi and H. Krawczyk

variant of Brickel, Pointcheval, Vaudenay and Yung [7] or the RSA-PSS scheme
of Bellare and Rogaway [2], have a proof of security in the random oracle model.
Interestingly, these proofs use in an essential way the randomization of the hash
function, not unlike the TCR or eTCR constructions. In some sense one can
think, for example, of the use of DSS with a eTCR scheme as an “instantiation”
of DSS-II. The obvious question is: how can we state anything related to random
oracles when we are dealing with relatively weak (at least not CR) hash functions
(clearly, random oracles are “very strong hash functions”). See some results
related to this question in the full version of this paper and in [19].

We also point out that the random-oracle proofs for some of the above (ran-
domized) signature schemes do not essentially use the collision resistance prop-
erty of the random-oracle (as evidenced, for example, by the fact that some of
these proofs, such as those following [22], remain meaningful even when you have
a random-oracle with relatively short output, e.g., 80 bits). This brings up the
interesting question of exhibiting variants of the random-oracle model where one
can argue about functions that “behave randomly but are not collision-resistant”
(e.g., a random oracle H with an associated oracle that outputs random H col-
lisions upon request).

Acknowledgments. We thank Ran Canetti, Orr Dunkelman, Charanjit Jutla,
Burt Kaliski, Tom Shrimpton and Lisa Yin for helpful discussions.

References

1. Mihir Bellare, Ran Canetti, Hugo Krawczyk, “Keying Hash Functions for Message
Authentication”. CRYPTO 1996. 1-15

2. Mihir Bellare and Phillip Rogaway, “The Exact Security of Digital Signatures –
How to Sign with RSA and Rabin”, EUROCRYPT 96.

3. Mihir Bellare and Phillip Rogaway, “Collision-Resistant Hashing: Towards Making
UOWHFs Practical”, CRYPTO 97, LNCS 1294, 1997

4. Steven M. Bellovin and Eric K. Rescorla, “Deploying a New Hash Algorithm”,
NDSS’06. http://www.cs.columbia.edu/~smb/papers/new-hash.pdf

5. Eli Biham and Rafi Chen, “Near-Collisions of SHA-0”, CRYPTO 2004.
6. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet and

William Jalby, “Collisions of SHA-0 and Reduced SHA-1”, EUROCRYPT 2005.
7. Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung, “Design and

Validations for Discrete Logarithm Based Signature Schemes”, PKC’2000.
8. Florent Chabaud and Antoine Joux, “Differential Collisions in SHA-0”,

CRYPTO 98.
9. Ivan Damg̊ard, “A design principle for hash functions”, CRYPTO 1989.

10. Digital Signature Standard (DSS), FIPS 186, May 1994.
11. Richard Drews Dean, “Formal Aspects of Mobile Code Security”, Ph.D Disserta-

tion, Princeton University, January 1999.
12. Shafi Goldwasser, Silvio Micali and Ronald L. Rivest, “A Digital Signature Scheme

Secure Against Adaptive Chosen-Message Attacks”, SIAM J. Comput. 17(2): 281-
308 (1988)

13. Shai Halevi and Hugo Krawczyk, “Randomized Hashing: Specification and Deploy-
ment”, in preparation.

Strengthening Digital Signatures Via Randomized Hashing 59

14. Deukjo Hong, Bart Preneel and Sangjin Lee, “Higher Order Universal One-Way
Hash Functions”, ASIACRYPT 2004.

15. Antoine Joux, “Multicollisions in Iterated Hash Functions. Application to Cas-
caded Constructions”, CRYPTO 2004.

16. John Kelsey and Bruce Schneier, “Second Preimages on n-Bit Hash Functions for
Much Less than 2n Work”, EUROCRYPT 2005.

17. Ralph Merkle, “One way hash functions and DES”, CRYPTO 1989.
18. Ilya Mironov, “Hash Functions: From Merkle-Damg̊ard to Shoup”, EUROCRYPT

2001: 166-181.
19. Ilya Mironov, “Collision-Resistant No More: Hash-and-Sign Paradigm Revisited”,

Public Key Cryptography 2006: 140-156.
20. Moni Naor and Moti Yung, “Universal One-Way Hash Functions and their Cryp-

tographic Applications”, STOC 1989.
21. PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002
22. David Pointcheval and Jacques Stern, “Security Arguments for Digital Signatures

and Blind Signatures”, J.Cryptology (2000) 13:361-396.
23. Ron Rivest, “Abelian square-free dithering for iterated hash functions”, Presented

at ECrypt Hash Function Workshop, June 21, 2005, Cracow.
24. Phillip Rogaway, Thomas Shrimpton, “Cryptographic Hash-Function Basics: Def-

initions, Implications, and Separations for Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance”. FSE 2004, 371-388.

25. John Rompel, “One-way functions are necessary and sufficient for secure signa-
tures”, STOC 1990, pp. 387-394.

26. Victor Shoup, “A Composition Theorem for Universal One-Way Hash Functions”,
EUROCRYPT 2000.

27. Dan Simon, “Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions?”, EUROCRYPT 98, pp. 334-345.

28. Michael Szydlo and Yiqun Lisa Yin, “Collision-Resistant usage of MD5 and SHA-1
via Message Preprocessing”, Cryptology ePrint Archive, Report 2005/248.

29. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu, “Crypt-
analysis of the Hash Functions MD4 and RIPEMD”, EUROCRYPT 2005.

30. Xiaoyun Wang and Hongbo Yu, “How to Break MD5 and Other Hash Functions”,
EUROCRYPT 2005.

31. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin, “Efficient Collision Search At-
tacks on SHA-0”, CRYPTO 2005.

32. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu “Finding Collisions in the Full
SHA-1”, CRYPTO 2005.

	Introduction
	Our Randomization Schemes

	Variants of Second-Preimage Resistant Hashing
	The c-SPR Game
	The e-SPR Game

	Achieving Target Collision Resistance
	Proof of Theorem

	Enhanced Target Collision Resistance
	Using Randomized Hashing in Signatures
	Specification Details

	Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

