Skip to main content

Verification of Engineering Models Based on Bipartite Graph Matching for Inspection Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Abstract

Engineering Inspection (EI) requires automated verification of freeform parts. Currently, parts are verified by using alignment techniques on the inspected part and a CAD model. Applying the alignment on points or meshes is demanding and time-consuming. This work proposes a new alignment method to be applied on segments rather than on mesh elements. First, a discrete curvature analysis is applied on the meshes, and segments are extracted. Then, the inspected and CAD models are represented by segment graphs. Finally, a bipartite graph matching process is applied on the segment graphs, which are combined to be the two sides of a bipartite graph. As a result, a Combinatorial Matching Tree (CMT) is defined, and potential alignments are determined. The feasibility of the proposed segments alignment is demonstrated on real scanned engineering parts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N., Bern, M., Kamvysselis, M.: A New Voronoi-Based Surface Reconstruction Algorithm. Siggraph, 415–421 (1998)

    Google Scholar 

  2. Barhak, J.: Utilizing Computing Power to Simplify the Inspection Process of Complex Shapes. In: Israel-Italy Bi-National Conference, Tel Aviv, Israel (2004)

    Google Scholar 

  3. Bengoetxea, E.: Inexact Graph Matching Using Estimation of Distribution Algorithms. Thèse de Doctorat Spécialité Signal et Images, Ecole Nationale Supérieure des Télécommunications, Paris, France (2002)

    Google Scholar 

  4. Bergevin, R., Laurendeau, D., Poussart, D.: Registering Range Views of Multipart Objects. Computer Vision and Image Understanding 61(1), 1–16 (1995)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A Method for Registration of 3D Shapes. IEEE Transactions on pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Bunke, H.: Graph Matching: Theoretical Foundations, Algorithms, and Applications. In: International Conference on Vision Interface, pp. 82–88 (2000)

    Google Scholar 

  7. Eshera, M.A., Fu, K.S.: A Graph Distance Measure for Image Analysis. IEEE Trans. SMC 14, 398–408 (1984)

    MATH  Google Scholar 

  8. Gopi, M., Krishnan, S.: Fast and Efficient Projection Based Approach for Surface Reconstruction. In: 15th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI (2002)

    Google Scholar 

  9. Higuchi, K., Delingette, H., Hebert, M., Ikeuchi, K.: Merging Multiple Views Using a Spherical Representation. In: Proc. IEEE 2nd CAD-Based Vision Workshop, Champion, PA, pp. 124–131 (1994)

    Google Scholar 

  10. Hugli, H., Schutz, C.: Geometric Matching of 3D Objects: Assessing the Range of Successful Initial Configurations. 3-D Digital Imaging and Modeling (1997)

    Google Scholar 

  11. Johnson, A., Hebert, M.: Surface Registration by Matching Oriented Points. In: Proc. Int. Conf. on Recent Adv. in 3-D Digital Imaging and Modeling, pp. 121–128 (1997)

    Google Scholar 

  12. Katz, S., Tal, A.: Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts. In: SIGGRAPH, ACM Transactions on Graphics, vol. 22, pp. 954–961 (2003)

    Google Scholar 

  13. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2006)

    Google Scholar 

  14. Lavoué, G., Dupont, F., Baskurt, A.: Constant Curvature Region Decomposition of 3D-Meshes by a Mixed Approach Vertex-Triangle. Journal of WSCG 12(1-3) (2004); ISSN 1213-, Plzen, Czech Republic

    Google Scholar 

  15. Levi, G.: A Note on the Derivation of Maximal Common Subgraphs of Two Directed or Undirected Graphs. Calcolo 9, 341–354 (1972)

    Article  MathSciNet  Google Scholar 

  16. Lipschitz, B.: Discrete Curvature Estimation of Scanned Noisy Objects for Verification of Scanned Engineering Parts with CAD Models. Technion – Israel Institute of Technology, Research Thesis (2002)

    Google Scholar 

  17. Liu, R., Hirzinger, G.: Marker-free Automatic Matching of Range Data. In: Reulke, R., Knauer, U. (eds.) Panoramic Photogrammetry Workshop, Proceedings of the ISPRS working group V/5, Berlin (2005)

    Google Scholar 

  18. Mangan, A., Whitaker, R.: Partitioning 3D Surface Meshes using Watershed Segmentation. IEEE Transactions on Visualization and Computer Graphics 5(4), 308–321 (1999)

    Article  Google Scholar 

  19. McGregor, J.: Backtrack Search Algorithms and the Maximal Common Subgraph Problem. Software-Practice and Experience 12, 23–34 (1982)

    Article  MATH  Google Scholar 

  20. Sanfeliu, A., Fu, K.S.: A Distance Measure Between Attributed Relational Graphs for PatternRecognition. IEEE Trans. SMC 13, 353–363 (1983)

    MATH  Google Scholar 

  21. Spanjaard, S., Vergeest, J.S.M.: Comparing Different Fitting Strategies for Matching Two 3D Point Sets using a Multivariable Minimizer. In: Proceedings of Computers and Information in Engineering Conference, DETC 2001/CIE-21242, Pittsburgh, USA, ASME, New York (2001)

    Google Scholar 

  22. Srinivasan, V.: Elements of Computational Metrology. In: Proceedings of the DIMACS Workshop on Computer-Aided Design and Manufacturing. American Mathematical Society (2005)

    Google Scholar 

  23. Taubin, G.: Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation. In: Proc. of fifth international conference on computer vision, pp. 902–907 (1995)

    Google Scholar 

  24. Turk, G., Levoy, M.: Zippered Polygon Meshes from Range Images. In: Computer Graphics Proceedings, Annual Conference Series, Siggraph, pp. 311–318 (1994)

    Google Scholar 

  25. Ullman, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the Association for Computing Machinery 23(1), 31–42 (1976)

    MATH  MathSciNet  Google Scholar 

  26. Várady, T., Martin, R.R., Cox, J.: Reverse Engineering of Geometric Models. An Introduction. Computer-Aided Design 29(4), 255–268 (1997)

    Article  Google Scholar 

  27. Zhang, Y., Paik, J., Koschan, A., Abidi, M.A.: A Simple and Efficient Algorithm for Part Decomposition of 3D Triangulated Models Based on Curvature Analysis. In: Proc. Int. Conf. Image Processing, Rochester, NY, vol. III, pp. 273–276 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fishkel, F., Fischer, A., Ar, S. (2006). Verification of Engineering Models Based on Bipartite Graph Matching for Inspection Applications. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_34

Download citation

  • DOI: https://doi.org/10.1007/11802914_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics