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Preface

These are the proceedings of the 9th European Conference on Computer Vision
(ECCV 2006), the premium European conference on computer vision, held in
Graz, Austria, in May 2006.

In response to our conference call, we received 811 papers, the largest number
of submissions so far. Finally, 41 papers were selected for podium presentation
and 151 for presentation in poster sessions (a 23.67% acceptance rate).

The double-blind reviewing process started by assigning each paper to one
of the 22 area chairs, who then selected 3 reviewers for each paper. After the
reviews were received, the authors were offered the possibility to provide feedback
on the reviews. On the basis of the reviews and the rebuttal of the authors,
the area chairs wrote the initial consolidation report for each paper. Finally,
all the area chairs attended a two-day meeting in Graz, where all decisions on
acceptance/rejection were made. At that meeting, the area chairs responsible for
similar sub-fields thoroughly evaluated the assigned papers and discussed them
in great depth. Again, all decisions were reached without the knowledge of the
authors’ identity. We are fully aware of the fact that reviewing is always also
subjective, and that some good papers might have been overlooked; however, we
tried our best to apply a fair selection process.

The conference preparation went smoothly thanks to several people. We first
wish to thank the ECCV Steering Committee for entrusting us with the organi-
zation of the conference. We are grateful to the area chairs, who did a tremendous
job in selecting the papers, and to more than 340 Program Committee members
and 220 additional reviewers for all their professional efforts. To the organizers
of the previous ECCV 2004 in Prague, Vaclav Hlaváč, Jiŕı Matas and Tomáš
Pajdla for providing many insights, additional information, and the superb con-
ference software. Finally, we would also like to thank the authors for contributing
a large number of excellent papers to support the high standards of the ECCV
conference.

Many people showed dedication and enthusiasm in the preparation of the
conference. We would like to express our deepest gratitude to all the members
of the involved institutes, that is, the Institute of Electrical Measurement and
Measurement Signal Processing and the Institute for Computer Graphics and
Vision, both at Graz University of Technology, and the Visual Cognitive Systems
Laboratory at the University of Ljubljana. In particular, we would like to express
our warmest thanks to Friedrich Fraundorfer for all his help (and patience) with
the conference software and many other issues concerning the event, as well as
Johanna Pfeifer for her great help with the organizational matters.

February 2006 Aleš Leonardis,
Horst Bischof,

Axel Pinz
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Jane Mulligan
Joe Mundy
Vittorio Murino
Hans-Hellmut Nagel
Vic Nalwa
Srinivasa Narasimhan
P.J. Narayanan
Oscar Nestares
Heiko Neumann
Jan Neumann
Ram Nevatia
Ko Nishino
David Nister
Thomas O’Donnell
Masatoshi Okutomi
Ole Fogh Olsen
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Tomáš Suk

Rahul Sukthankar
Josephine Sullivan
Changming Sun
David Suter
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Abstract. Algorithms for discrete energy minimization play a fundamental role
for low-level vision. Known techniques include graph cuts, belief propagation
(BP) and recently introduced tree-reweighted message passing (TRW). So far,
the standard benchmark for their comparison has been a 4-connected grid-graph
arising in pixel-labelling stereo. This minimization problem, however, has been
largely solved: recent work shows that for many scenes TRW finds the global
optimum. Furthermore, it is known that a 4-connected grid-graph is a poor stereo
model since it does not take occlusions into account.

We propose the problem of stereo with occlusions as a new test bed for min-
imization algorithms. This is a more challenging graph since it has much larger
connectivity, and it also serves as a better stereo model. An attractive feature of
this problem is that increased connectivity does not result in increased complex-
ity of message passing algorithms. Indeed, one contribution of this paper is to
show that sophisticated implementations of BP and TRW have the same time and
memory complexity as that of 4-connected grid-graph stereo.

The main conclusion of our experimental study is that for our problem graph
cut outperforms both TRW and BP considerably. TRW achieves consistently a
lower energy than BP. However, as connectivity increases the speed of conver-
gence of TRW becomes slower. Unlike 4-connected grids, the difference between
the energy of the best optimization method and the lower bound of TRW appears
significant. This shows the hardness of the problem and motivates future research.

1 Introduction

Many early vision problems can be naturally formulated in terms of energy minimiza-
tion where the energy function has the following form:

E(x) =
∑
p∈V

Dp(xp) +
∑

(p,q)∈E
Vpq(xp, xq) . (1)

Set V usually corresponds to pixels; xp denotes the label of pixel p which must be-
long to some finite set. For motion or stereo, the labels are disparities, while for im-
age restoration they represent intensities. This energy is often derived in the context of
Markov Random Fields [1]: unary terms Dp represent data likelihoods, and pairwise
terms Vpq encode a prior over labellings. Energy minimization framework has been
applied with great success to many vision applications such as stereo [2, 3, 4, 5, 6, 7],
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image restoration [2], image segmentation [8], texture synthesis [9]. Algorithms for
minimizing energy E are therefore of fundamental importance in vision. In this paper
we consider three different algorithms: Graph Cut, belief propagation (BP) and tree-
reweighted message passing (TRW). For the problem of stereo matching these methods
are among the best performing optimization techniques [10]. A comparison of their
advantages and disadvantages is at the end of this section.

So far, comparison studies of these optimization methods have been rather limited
in the sense that they only consider energy functions with a particular graph struc-
ture [11, 12, 13, 14]. The algorithms have been tested on the energy function arising in
stereo matching problem [2]. This energy is defined on a graph with a 4-neighborhood
system, where nodes correspond to pixels in the left image. Occlusion are not modeled
since this gives a more complex and highly connected graph structure. The comparison
studies consistently concluded that the lowest energy is obtained by TRW, graph cuts
come second and BP comes third [11, 12, 13, 14]. Very recently, it has been shown [13]
that TRW even achieves the global optimum for standard benchmark stereo pairs [10].
Consequently, this problem, which was considered to be very challenging a decade ago,
has now largely been solved. The comparison studies also showed that the proposed
energy gives large error statistics compared with state-of-the art methods, and conse-
quently progress in this field can only be achieved by improving the energy formulation
itself, as stated in [11, 13].

The main goal of this paper is to test how different optimization methods perform
on graphs with larger connectivity. Our study has two motivations. First, such energy
functions are becoming increasingly important in vision [3, 4, 5, 6, 7, 15]. They typically
arise when we need to match two images while imposing regularization on the defor-
mation field. Pixels (or features) in one image can potentially match to many pixels
(features) in the other image, which yields a highly connected graph structure.

Our second motivation is to understand better intrinsic properties of different algo-
rithms. One way to achieve this is to consider a very difficult problem: Algorithm’s
weaknesses then become more apparent, which may suggest ways of improving the
method. It is known that the presence of short cycles in the graph makes the problem
harder for message passing techniques. From this point of view, the problem that we are
considering is much more challenging than 4-connected grid graphs. Another indicator
of the difficulty of our problem will be shown by our experiments.

We choose the energy function arising in the problem of stereo with occlusions [4].
In this case there are nodes corresponding to pixels in the left and right image, and
each node has K + 4 neighbors where K is the number of disparities. We propose this
problem as a new challenging test bed for minimization algorithms. Our experiments
also show that modeling occlusions gives a significantly better stereo model, since the
energy of the ground truth is close to the energy of the best optimization method, and
the value of the energy correlates with the error statistics derived from ground truth.

When applying BP or TRW to this energy, we immediately run into efficiency prob-
lems. There are K labels and O(NK) edges, so a straightforward implementation
would take O(NK2) memory and time for one iteration, even with the distance trans-
form technique in [16]. By exploiting a special structure of the energy we show that
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both quantities can be reduced to O(NK). Thus, we get the same complexity as that of
message passing for the simple stereo problem without occlusions.

We have tested the three different optimization methods on six standard benchmark
images [10]. The findings are different to the scenario of a 4-connected grid-graphs. For
our problem graph cut clearly outperforms message passing techniques, i.e. TRW and
BP, both in terms of lower energy and lower error rates wrt to ground truth.

It is worth mentioning that energy functions with similar graph structure were used
in other methods for stereo with occlusions [6, 7]. In both approaches each pixel is con-
nected to O(K) pixels in the other image. The former uses graph cuts as a minimization
algorithm, as the latter uses BP. However, [7] does not attempt to apply message passing
to the original function. Instead, an iterative technique is used where in each iteration
the energy function is approximated with a simpler one, and BP is then applying to a
graph with 4-neighborhood system.

Let us compare the three optimization methods.

Graph cuts were introduced into computer vision in the 90’s [17, 2] and showed a
major improvement over previously used simulated annealing [1]. The strength of graph
cuts is that for many applications it gives very accurate results, i.e. it finds a solution
with very low energy. In fact, in some cases it even finds a global minimum [17, 18]. A
major drawback of graph cuts, however, is that it can be applied only to a limited class
of energy functions. There are different graph cut-based methods: Expansion move [2],
swap move [2] or jump move [19]. Each has its own restrictions that come from the
fact that binary minimization problems used in the “inner loop” must be submodular.
Expansion move algorithm is perhaps the most powerful technique [14], but can be
applied to a smaller set of functions than swap move. Following [4], we use expansion
move version of the graph cut algorithm for the problem of stereo with occlusions.

The class of functions that graph cuts can handle covers many useful applications,
but in some cases the energy falls outside this class, for example, in the super-resolution
problem [20] This may also occur when parameters of the energy function are learned
from training data [21]. In this case one can either approximate a non-submodular func-
tion with a submodular one [15], or use more general algorithms. Two of such algo-
rithms are described below.

Belief propagation (BP). Max-product loopy belief propagation (BP) [22, 16] is a very
popular technique for approximate inference. Unlike graph cuts, BP can be applied to
any function of the form 1. Unfortunately, recent studies have shown that for a simple
stereo problem it finds considerably higher energy than graph cuts [11, 23, 12, 13].

Tree-reweighted message passing (TRW) was recently introduced by Wainwright et
al. [24]. Similar to BP it can be applied to any function of the form 1. However, there are
several important differences. First, on a simple stereo problem it finds slightly lower
energy than graph cuts [12]. Second, it maintains a lower bound on the energy that can
be used to measure how close we are to the energy of an optimal solution. Third, there is
a variant of TRW algorithm, called TRW-S, with certain convergence properties [12]. In
contrast, no convergence guarantees are known for BP algorithm. For our comparison
we use this variant of the TRW algorithm introduced in [12].
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2 Background

We begin by introducing our notation. Let G = (V , E) be an undirected graph with the
set of vertices V and the set of edges E . We assume that for each p ∈ V variable xp takes
values in some discrete set L = {0, . . . , K − 1} where K is the number of labels1.

Function Dp(·) in energy 1 is determined by K values. It is convenient to treat
Dp as a vector of size K × 1. Later we introduce other vectors of size K × 1 (in
particular, messages m). Notation D′ = D + m denotes the usual sum of two vectors,
i.e. D′(k) = D(k) + m(k) for any k ∈ L.

2.1 Overview of Message Passing Algorithms

We now give an overview of BP and TRW algorithms. They both maintain messages
mpq for directed edges p → q, which are vectors of size K × 1. The basic operation
of the algorithms is passing a message from node p to its neighbor q. The effect of
this operation is that message mpq gets updated according to a certain rule (which is
different for BP and for TRW).

An important choice that we have to make is the schedule of updating messages.
There are many possible approaches; for example, [11] uses parallel (or synchronous)
and accelerated schedules, and [12] uses sequential schedule. In this paper we use the
latter one. One advantage of this schedule is that it requires half as much memory com-
pared to other schedules. For TRW algorithm sequential schedule also has a theoretical
advantage described in the end of this section.

0. Set all messages to zero.
1. For nodes p ∈ V do the following operation in the order of increasing i(p):
(a) Aggregation: compute Dp = Dp + (q,p)∈E mqp

(b) Propagation: for every edge (p, q) ∈ E with i(p) < i(q) update message mpq as
follows:
- Compute Dpq = γpqDp − mqp

- Set mpq(xq) := minxp{Dpq(xp) + Vpq(xp, xq)}
2. Reverse the ordering: set i(p) := |V| + 1 − i(p).
3. Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go to step 1.

Fig. 1. Sequential message passing algorithm. Function i : V → {1, 2, . . . , |V|} gives the
ordering of nodes. Weighting coefficient γpq is 1 for BP and a value in (0, 1] for TRW (see text).

Sequential schedule is specified by some ordering of nodes i(p), p ∈ V (which can be
chosen arbitrarily). During the forward pass, we process nodes in the order of increasing
i(p), and we send messages from node p to all its forward neighbors (i.e. nodes q with
i(q) > i(p)). After that we perform similar procedure in the reverse direction (backward
pass). A precise description of the algorithm is given in Fig. 1. Note that the operation of
computing the minimum in step 1(b) can be computed efficiently, for many interaction
potentials Vp,q , in time O(k) using distance transforms [16].

1 To simplify notation, we assumed that number of labels is the same of all nodes. Note that in
general this is not required.
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Memory requirements. An important property of the sequential schedule is that for
each edge (q, r) it is enough to store message in only one direction. Namely, suppose
that i(q) < i(r) and p is the node being processed. Then we store message mqr if
i(q) < i(p), and message mrq otherwise. The reverse messages are not needed since
we update them before they are used. The same space in memory can be used for storing
one of the two messages. The exact moment when mqp gets replaced with mpq is when
edge (p, q) is processed in step 1(b).

The fact that memory requirements of message passing can be reduced by half was
first noted in [16] for a special case (bipartite graphs and simulation of parallel sched-
ule of updating messages). It was generalized to arbitrary graphs and larger class of
schedules in [12].

Weighting coefficients. Both BP and TRW algorithms have the structure shown in
Fig. 1. The difference between the two is that they use difference coefficients γpq . For
BP algorithm we set γpq = 1. Next we describe how to choose these coefficients for
TRW algorithm.

First we select set T of trees in graph G such that each edge is covered by at least
one tree. We also select probability distribution over T , i.e. function ρ : T → (0, 1]
such that

∑
T∈T ρ(T ) = 1. Set T and distribution ρ define coefficients γpq as follows:

γpq = ρpq/ρp where ρp and ρpq are the probabilities that tree T chosen under ρ contains
node p and edge (p, q), respectively.

TRW and lower bound on the energy. As shown in [24], for any set of messages
m = {mpq | (p → q) ∈ E} it is possible to compute a lower bound on the energy,
denoted as Φρ(m). In other words, for any m and for any configuration x we have
Φρ(m) ≤ E(x). Function Φρ(m) serves as a motivation for TRW: the goal of updating
messages is to maximize Φρ(m), i.e. to get the tightest bound on the energy.

In general, TRW algorithms in [24] do not always increase the bound - function
Φρ(m) may go down (and the algorithm may not converge). In contrast, sequential
schedule proposed in [12] does have the property that the bound never decreases, as-
suming that the following condition holds: trees in T are monotonic chains, i.e. chains
T = (p1, . . . , pm) such that sequence (i(p1), . . . , i(pm)) is monotonic. The algorithm
in Fig. 1 with this selection of trees is referred to as sequential tree-reweighted message
passing (TRW-S).

Choosing solution. An important question is how to choose solution x given messages
m. The standard method is to choose label xp for node p that minimizes D̂p(xp) where
D̂p = Dp +

∑
mqp and the sum is over edges (q, p) ∈ E . However, it is often the case

that D̂p(xp) has several minima. In the case of TRW algorithm this is not surprising: if
upon convergence all nodes had unique minimum, then it would give the global min-
imum of the energy, as shown in [24]. Clearly, we cannot expect this in general since
otherwise we could solve arbitrary NP-hard problems.

To alleviate the problem of multiple minima, we use the same technique as in [12].
We assign variables to nodes p in the order given by i(p). We select label xp that mini-
mizes Dp(xp) +

∑
i(q)<i(p) Vqp(xq, xp) +

∑
i(q)>i(p) mqp(xp).
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2.2 Stereo with Occlusions

In this section we review the energy function used in [4], adopting it to our notation.
For simplicity we restrict our attention to the case of two rectified cameras.

The set of nodes contains pixels VL in the left image and pixels VR in the right
image, so V = VL ∪ VR. Label xp for pixel p denotes its disparity. We assume that
xp ∈ L = {0, . . . , K − 1} where K is the number of disparities. Pixel p with label
k corresponds to some pixel q in the other image which we denote as q = F(p, k).
Formally, coordinates of q are defined as follows:

(qx, qy) =

{
(px − k, py) if p ∈ VL

(px + k, py) if p ∈ VR

Note that q = F(p, k) implies p = F(q, k), and vice versa.
The energy function in [4] does not use unary data terms Dp; instead, all information

is contained in pairwise terms Vpq . In order to describe them, first we need to define the
set of edges E . It contains edges of two types: coherence edges EC and stereo edges ES

discussed below.

Coherence edges. These edges encode the constraint that disparity maps in the left
and right images should be spatially coherent. Set EC contains edges (p, q) where p, q
are neighboring pixels in the same image defined, for example, using 4-neighborhood
system.

For the purpose of comparison of minimization algorithms we used Potts terms Vpq :

Vpq(xp, xq) = λpq · [xp �= xq]

where [·] is 1 if its argument is true, and 0 otherwise. This term prefers piecewise con-
stant disparity maps. To get better results, however, it might be advantageous to use
terms that allow smooth variations, especially when the number of disparities is large.
A good choice could be truncated linear term.

Stereo edges. Each pixel p (except for pixels at image boundary) has K incident edges
connecting it to pixels F(p, 0), . . . ,F(p, K − 1) in the other image. To simplify nota-
tion, we denote edge (p, q) with q = F(p, k)) as either (p, k) or (k, q).

Terms Vpk combine data and visibility terms defined in [4]. They can be written as

Vpk(xp, xq) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mpk if xp = xq = k

∞ if xp = k, xq < k

or xq = k, xp < k

0 otherwise

(2)

where q = F(p, k) (see Fig. 2). Constant Mpk is the matching score between pixels p
and q. The expansion move algorithm in [4] can only be applied if all scores are non-
positive. Therefore, Mpk can be defined, for example, as Mpk = min{||Intensity(p)−
Intensity(q)||2 − C, 0} where C is a positive constant.
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0
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88

Fig. 2. Structure of term Vpk(·, ·) for stereo edge (p, q) with q = F(p, k). Left column represents
pixel p, right column pixel q. Costs V (k′, k′′) are shown on links from label k′ to k′′. The dashed
link k − k has cost Mpk, solid links have infinite costs. Links that are not shown have cost zero.

3 Efficient Message Passing for Stereo with Occlusions

In this paper we apply sequential message passing algorithm in Fig. 1 to the energy
function defined in the previous section. However, a naive implementation is extremely
inefficient. Indeed, consider first the memory requirements. We have O(NK) edges
where N is the number of pixels. For each edge we need to store a message which is a
vector with K components. This results in O(NK2) memory requirements.

We now show how this number can be reduced to O(NK). Consider message mpk

from pixel p to pixel q = F(p, k). It is obtained as the result of applying distance
transform to vector Dpk via edge term Vpk (step 1(b) of the algorithm). Inspecting the
structure of Vpk we conclude that

mpk(k′) =

⎧⎪⎨⎪⎩
Apk = min{Ãpk, C̃pk} if k′ < k

Bpk = min{B̃pk + Mpk, C̃pk} if k′ = k

Cpk = min{Ãpk, B̃pk, C̃pk} if k′ > k

where

Ãpk = min
0≤k′<k

Dpk(k′) ; Bpk = Dpk(k) ; C̃pk = min
k<k′<K

Dpk(k′) (3)

Therefore, although mpk is a vector with K components, it can be stored using only
three numbers - Apk, Bpk and Cpk . (In fact, even two numbers are sufficient. The mes-
sages are defined only up to an additive constant. Thus, it is enough to store Apk − Cpk

and Bpk − Cpk, for example.)
To summarize, messages can be stored using 4NK numbers, ignoring effects at

image boundaries (2NK numbers for coherence edges and 2NK numbers for stereo
edges2). We also need NK numbers to store matching scores Mpk.

Now let us consider the complexity of one iteration. If we are not careful, we may
get O(NK2) running time even with the trick described above. Next we show how to
implement the algorithm so that we get O(NK) complexity for one iteration.

2 Recall that in the sequential message passing algorithm for each edge we need to store a
message only in one direction.
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Aggregation. Let us consider the aggregation step for pixel p. We need to sum K + 4
vectors of size K corresponding to K stereo edges and 4 coherence edges. A naive
implementation would take O(K2) time. However, it is possible to reduce it to O(K)
using ideas from dynamic programming.

Summing messages in coherence edges is not a problem since their number is con-
stant. Thus, we focus on summing messages corresponding to stereo edges, i.e. com-
puting D =

∑K−1
k=0 mkp. Suppose that message mkp is described by numbers Ak, Bk,

Ck (we drop subscript p for brevity). We can write

D =

⎛⎜⎜⎜⎜⎝
B0
C0
. . .
C0
C0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
A1
B1
. . .
C1
C1

⎞⎟⎟⎟⎟⎠ + . . . +

⎛⎜⎜⎜⎜⎝
AK−2
AK−2

. . .
BK−2
CK−2

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
AK−1
AK−1

. . .
AK−1
BK−1

⎞⎟⎟⎟⎟⎠
To compute D, we first compute sums Āk =

∑K−1
k′=k+1 Ak′ and C̄k =

∑k−1
k′=0 Ck′ for

k = 0, 1, . . . , K − 1 (by definition, ĀK−1 = C̄0 = 0). This can be done in O(K) time
using recursions

Āk−1 = Āk + Ak , C̄k+1 = C̄k + Ck .

Now computing D is easy: D(k) = Āk + Bk + C̄k.

Propagation. Now consider the propagation step 2(b) for pixel p. Updating messages
in coherence edges can be done in O(K) time using distance transform techniques
in [16]. We focus on updating messages mpk in stereo edges for disparities k ∈ L
with i(F(p, k)) > i(p). In order to update message mpk, we need to compute numbers
Ãpk = min0≤k′<k Dpk(k′) and C̃pk = mink<k′<K Dpk(k′) (eq. 3). Direct calculation
of these minima would take O(K) time, resulting in O(K2) complexity for O(K) stereo
edges. To improve the running time, we do the following precalculation. For vector D̂p

obtained after aggregation step 2(a), we compute values Âpk = min0≤k′<k D̂p(k′) and
Ĉpk = mink<k′<K D̂p(k′) (by definition, Âp0 = Ĉp,K−1 = ∞). This can be done in
O(K) time using recursions

Âp,k+1 = min{Âpk, D̂p(k)}, Ĉp,k−1 = min{Ĉpk, D̂p(k)}.

Now values Ãpk, B̃pk, C̃pk can be computed in constant time as follows:

Ãpk = γpkÂpk − Akp ; B̃pk = γpkD̂p(k) − Bkp ; C̃pk = γpkĈpk − Ckp (4)

where Akp, Bkp, Ckp describe message mkp in the reverse direction.

4 Experimental Results

We tested the methods on four benchmark stereo images, which were used in the stereo
survey paper [10] and also two ground truth data sets with large disparity range [25]. All
data sets are available online3. Fig. 3-4 show left disparity maps produced by different

3 http://cat.middlebury.edu/stereo/
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Graph Cut (a) TRW (b) BP (c)

Fig. 3. Tsukuba image. The left disparity map produced by (a) graph cuts, (b) TRW, and (c) BP,
which is clearly the worst result.

Graph Cut (a) TRW (b) BP (c)

Fig. 4. Teddy image. The left disparity map produced by (a) graph cuts, which has the lowest
error statistics, (b) TRW, and (c) BP.

methods. More disparity maps can be found in [26]. Visually BP performed worse than
graph cut and TRW, and also the results of BP were always less smooth. Numerical re-
sults for all six data sets are summarized in table 1. All experiments give a concise and
clear message: Graph cut consistently outperforms TRW and BP, both in terms of lower
energy and smaller error rate wrt ground truth (BŌ and BD). For smaller number of la-
bels (K < 30) TRW clearly outperforms BP, otherwise TRW performs only marginally
better. For all examples the quality of the results is correlated with the obtained energy,
i.e. low energy corresponds to a low error statistics (BŌ and BD). Also, the energy of
the ground truth (last column table 1) lies within the range of the energy computed by
graph cut and TRW. For stereo without occlusions these two observations could not be
established: The energy of the ground truth is considerably larger than graph cut and
BP, and low energy did not necessarily correspond to a good result [11, 13]. Therefore,
we can conclude that modeling occlusions gives a better stereo model. The fact that
the ground truth energy is larger than the best method does not contradict to this: The
problem is inherently ambiguous, which means that it is impossible to design an energy
function whose global minimum always gives a correct solution.

Plots of energy vs. runtime are shown in Fig. 5. For instance, one iteration of TRW
takes about 3.26 sec. for teddy (image size 450 × 375 and K = 54) on a Pentium IV
3.2 GHz processor. For all examples the discrete curve for graph cut is always below
the curve of TRW and BP. An interesting observation is that the relative performance
of TRW and BP depends on the number of labels: Larger connectivity makes TRW
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Table 1. Comparison table for six benchmark stereo pairs applied to the optimization meth-
ods: Graph cut, TRW and BP. Both TRW and BP were run for 10.000 iterations, and graph
cut until convergence. The values for BŌ and BD correspond to the percentage of pixels in
non-occluded (BŌ) and textureless (BD) areas with a disparity error greater than 1 wrt ground
truth. These are standard error measurements as proposed in [10]. Note that all energies E are
scaled by 10−3. The last column gives the energy of the ground truth. Note that a very small
percentage of pixels in the ground truth image violate the visibility constrained, which are ig-
nored for the computation of the ground truth energy. Furthermore, the energy of the ground
truth can only be computed for three data sets since for Tsukuba only one ground truth disparity
map is available and Teddy and Cones have undefined areas in the disparity map. (see text for
discussion).

Image Graph Cut TRW BP Ground Truth
BŌ BD E BŌ BD E BŌ BD E E (violation)

Tsukuba (K=16) 1.84 6.50 -1536 2.62 7.15 -1534 7.52 16.10 -1495 not available
Sawtooth (K=19) 0.56 6.26 -2071 0.65 7.12 -2065 3.43 10.39 -2020 -2027 (0.16%)

Venus (K=21) 1.20 6.11 -2118 1.55 8.12 -2109 10.31 14.88 -2021 -2069 (0.47%)
Map (K=29) 0.38 5.32 -3460 0.58 7.20 -3407 1.21 9.64 -3374 -3410 (0.40%)

Teddy (K=54) 13.14 23.35 -10273 14.88 26.95 -9889 15.25 27.63 -9834 not available
Cones (K=56) 5.16 11.99 -13936 6.04 14.16 -13648 9.25 15.14 -13455 not available

algorithm much slower, while the speed of BP is affected less significantly. Note, how-
ever, that when TRW is run long enough, it always outperformed BP (see table 1). It
is worth noting that neither TRW nor BP converged. BP gets into a loop after typi-
cally 50 − 200 iterations. In case of TRW the lower bound never decreases with time.
Since it is bounded from above, the lower bound must converge to a fixed number.
In our experiments, however, the lower bound of TRW continued increasing slowly
even after 50000 iterations (for Tsukuba), which means that the algorithm still did not
converge.

In order to understand how difficult our problem is, we looked at how close the
energy Emin of the best method is to the lower bound Ebound given by TRW. Since
absolute numbers are not very meaningful, we can consider the ratio Emin−Ebound

Ebound
.

If all energy values are non-negative, then this ratio gives an upper bound on the ap-
proximation factor. In our case, however, the energy can be negative due to numbers
Mpq ≤ 0. To solve this problem, we added constant NC to the energy where N is
the number of pixels and C is defined in section 2.2. Since there are at most N terms
Mpq in the energy and Mpq ≥ −C, this ensures that energy is always non-negative.
Furthermore, absolute energy values of the two models: stereo with and without oc-
clusions are related, if we use same matching costs and similar smoothness parame-
ters. This is confirmed by our experiments: Emin differ by about 3 times for the two
models and Tsukuba data set, i.e. they are of the same order of magnitude. For stereo
without occlusions ratios Emin−Ebound

Ebound
were as follows [12]: Tsukuba (0.0037%), Map

(0.055%), Sawtooth (0.096%), and Venus(0.014%). For our model the corresponding
values are: Tsukuba (3.09%), Map (3.28%), Sawtooth (1.27%), and Venus(2.26%).
These values are in average two to three orders of magnitude larger for our model. Con-
sequently, we may conclude that our problem is considerably harder than stereo without
occlusions.
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Fig. 5. Comparison of energies and lower bound with respect to runtime (discussion in text)

4.1 Settings for TRW

In order to implement TRW-S algorithm we need to make several choices. First, we
need to select the ordering of nodes i(p). In our implementation we used row-major
order for both left and right images, and nodes of the left images had smaller ordering
than nodes of the right image. Next, we need to choose the set of trees T . As described
in sec. 2, these trees must be chains that are monotonic with respect to ordering i(p).
We selected each horizonal and vertical line in the two images as a single chain; we
call them coherence chains4. In addition, every stereo edge was declared to be a chain.
It can be seen that with this choice every edge in the graph is covered by exactly one
tree. Finally, we need to select probability distribution ρT over trees T ∈ T . As our
experiments show, this distribution affects the results of the algorithm significantly.

Intuitively, coherence and stereo chains are quite different, therefore they should be
assigned different probabilities. The difference between coherence and stereo chains,
however, is not the only source of asymmetry. Indeed, consider some node p and an
incident stereo edge (p, q) where q = F(p, k). Term Vpk for this edge has a very special
structure; in particular, there is one preferred label, namely label k. Recall that if labels
of pixels p and q are k then this edge contributes matching cost Mpq to the energy
function, otherwise the penalty is either 0 or ∞. Thus, it could be beneficial to select

4 There are 2(W + H) such chains where W is the width of the image and H is the height.
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probabilities that would favor label k over other labels k′ ∈ L − {k} for the chain
corresponding to edge (p, q), and we will show that this improves the performance
of TRW. Since the scheme described in sec. 2 does not allow this (each tree has a
single probability which does not depend on labels), we now extend the tree-reweighted
algorithm to allow probabilities that depend on labels. Consider the case when each
edge is covered by exactly one chain. Let us define a probability distribution over trees
for each node p ∈ V and label k ∈ L. We denote it as ρ(T ; p, k). We require that∑

T∈T ρ(T ; p, k) = 1 for all p, k. In addition, ρ(T ; p, k) must be positive if tree T
contains node p, and zero otherwise. Using these probabilities, we define coefficients
γpq(k) as follows: γpq(k) = ρ(T ; p, k) where T is the tree containing edge (p, q). The
algorithm in Fig. 1 is then modified as follows: In step 1(b) vector Dpq is computed as
Dpq(k) = γpq(k)D̂p(k) − mqp(k) for all k ∈ L. We claim that the modified algorithm
has the same properties properties as the sequential tree-reweighted message passing
method in [12]. In particular, the lower bound is guaranteed not to decrease, and there
exists a limit point satisfying the weak tree agreement condition [26].

Let us apply this scheme to the problem of stereo with occlusions. Consider node
p ∈ V and label k ∈ L. This node is contained in K + 2 trees (unless it is a pixel
near the image boundary): vertical coherence chain, horizontal coherence chain and K
stereo chains. We set probabilities ρ(T ; p, k) as follows:

ρ(T ; p, k) =

⎧⎪⎨⎪⎩
ρC if T is a coherence edge

ρS1 if T = (p, F(p, k))
ρS2 if T = (p, F(p, k′)) for k′ �= k

.

Note that there must hold 2ρC + ρS1 + (K − 1)ρS2 = 1. Due to this constraint we
are left with two degrees of freedom for the choice of the tree probabilities: ρC and βS

= ρS1/ρS2. Note that in the TRW algorithm the γpk in eqn. 4 has to be replaced by:
γpk = ρS1 for B̃pk and γpk = ρS2 for Ãpk and C̃pk .

We examined different settings of ρC and βS for three data sets. We discovered that
the settings depend on the number of labels. For a thorough investigation we re-scaled
the teddy image with a factor of 1.5 and 3 (“Teddy Small”), which correspond to a
maximum disparity of 36 and 18 respectively. Fig. 6 shows the energy of TRW for a
large range of values for ρC and βS , where TRW was run for a fixed amount of 700
iterations. An obvious observation is that for extreme settings, e.g. βS very close to 1 or
below 0.4, the results are worse. The first conclusion we can draw is that the energy is
more sensitive to parameters settings for larger disparities. For “Teddy Small” the range
of comparable low energies for ρC is [0.4, 0.9] whereas for teddy it is [0.7, 0.8]. The
second observation is that parameters which give the lowest energy differ, depending
on the number of disparities. The optimal setting of ρC is 0.76 (K = 54) and 0.9
(K = 36 and 18). The optimal probability for different stereo edges βS is less sensitive
to the number of disparities. For these three examples a value of βS = 3.0 gives low
energy. Taking this into account we chose the settings as follows: ρC = 0.9(K < 40);
otherwise 0.78; and βS = 3.0. We do not claim that this is the optimal setting for TRW
for this type of energy, however, we believe that it is sufficient for a comparison to
other methods. We believe that further testing of these probabilities might improve the
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Fig. 6. Testing TRW settings for the teddy data set with 54 (left column) and 18 (right column)
disparities (discussion in text)

performance of TRW only marginal. A more significant improvement might come from
changing the structure of the trees, e.g. choosing longer stereo chains.

5 Conclusions

We have presented an experimental comparison of three optimization techniques: Graph
cut, BP and TRW for highly connected graphs. We have chosen the energy of the stereo
with occlusions problem. Despite high connectivity of the graph, we have shown that
message passing techniques can still be applied efficiently.

In the past comparisons have only been carried out for relatively simple 4-connected
grid-graphs, in particular for stereo without occlusions. Our findings are different to
4-connected graphs where TRW outperforms graph cut, and even achieves the global
optimum for some problems. For highly connected graphs, graph cut clearly outper-
forms TRW and BP, both in terms of lower energy and lower error rates with respect to
ground truth. We found that for all examples TRW is capable of obtaining lower energy
than BP. However, as the connectivity increases, the speed of convergence for TRW
becomes slower and slower, while the speed of BP is affected less significantly. This
suggests that a future direction of research is to try improving the speed of TRW, like



14 V. Kolmogorov and C. Rother

by choosing trees in a different way or using a different schedule of updating messages.
We believe that if the speed is improved then TRW may still outperform graph cuts.

The experiments show that modeling occlusions gives a better stereo model. Another
finding is that the difference between the lower bound of TRW and the minimum en-
ergy of the best method is significant compared to 4-connected graphs. This indicates
the hardness of the problem, at least for algorithms based on solving LP relaxation
(such as TRW). Consequently we propose this energy as new test bed for optimization
techniques and hope that it will motivate future research in this area. Furthermore, we
also plan to analyse other vision problems with highly connected graphs such as [15].
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Abstract. One of the most exciting advances in early vision has been
the development of efficient energy minimization algorithms. Many early
vision tasks require labeling each pixel with some quantity such as depth
or texture. While many such problems can be elegantly expressed in
the language of Markov Random Fields (MRF’s), the resulting energy
minimization problems were widely viewed as intractable. Recently, al-
gorithms such as graph cuts and loopy belief propagation (LBP) have
proven to be very powerful: for example, such methods form the basis
for almost all the top-performing stereo methods. Unfortunately, most
papers define their own energy function, which is minimized with a spe-
cific algorithm of their choice. As a result, the tradeoffs among different
energy minimization algorithms are not well understood. In this paper
we describe a set of energy minimization benchmarks, which we use
to compare the solution quality and running time of several common
energy minimization algorithms. We investigate three promising recent
methods—graph cuts, LBP, and tree-reweighted message passing—as
well as the well-known older iterated conditional modes (ICM) algo-
rithm. Our benchmark problems are drawn from published energy func-
tions used for stereo, image stitching and interactive segmentation. We
also provide a general-purpose software interface that allows vision re-
searchers to easily switch between optimization methods with minimal
overhead. We expect that the availability of our benchmarks and inter-
face will make it significantly easier for vision researchers to adopt the
best method for their specific problems. Benchmarks, code, results and
images are available at http://vision.middlebury.edu/MRF.
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1 Introduction

Many problems in early vision involve assigning each pixel a label, where the la-
bels represent some local quantity such as disparity. Such pixel labeling problems
are naturally represented in terms of energy minimization, where the energy func-
tion has two terms: one term penalizes solutions that are inconsistent with the
observed data, while the other term enforces spatial coherence. One of the rea-
sons this framework is so popular is that it can be justified in terms of maximum
a posteriori estimation of a Markov Random Field [1, 2]. Despite the elegance and
power of the energy minimization approach, its early adoption was slowed by com-
putational considerations. The algorithms that were originally used, such as ICM
[1] or simulated annealing [3], proved to be extremely inefficient.

In the last few years, energy minimization approaches have had a renaissance,
primarily due to powerful new optimization algorithms such as graph cuts [4, 5]
and loopy belief propagation (LBP) [6]. The results, especially in stereo, have
been dramatic; according to the widely-used Middlebury stereo benchmarks [7],
almost all the top-performing stereo methods rely on graph cuts or LBP. More-
over, these methods give substantially more accurate results than were previously
possible. Simultaneously, the range of applications of pixel labeling problems
has also expanded dramatically, moving from early applications such as image
restoration [1], texture modeling [8], image labeling [9], and stereo matching
[3, 4], to applications such as interactive photo segmentation [10, 11] and the
automatic placement of seams in digital photomontages [12].

Relatively little attention has been paid, however, to the relative performance
of various optimization algorithms. Among the few exceptions are [14], which
compared the efficiency of several different max flow algorithms for graph cuts,
and [13], which compared graph cuts with LBP. [13] also noted a particulary
impressive demonstration of the effectiveness of modern energy minimization
methods: for the stereo problems in the Middlebury benchmarks, both graph
cuts and LBP produced results whose energy is lower than the ground truth
solution. We will return to this issue at the end of this paper.

While it is generally accepted that algorithms such as graph cuts are a huge
improvement over older techniques such as simulated annealing, less is known
about the efficiency vs. accuracy tradeoff among more recently developed al-
gorithms. Concurrently with our work, [15] compared tree-reweighted message
passing, LBP and graph cuts for highly connected graphs.

In this paper, we evaluate a number of different energy minimization algo-
rithms for pixel labeling problems. We propose a number of benchmark problems
for energy minimization and use these benchmarks to compare several different
energy minimization methods. Since much of the work in energy minimization
has been motivated by pixel labeling problems over 2D grids, we have restricted
our attention to problems with this simple topology. (The extension of our work
to more general topologies, such as 3D, is straightforward.)

This paper is organized as follows. In section 2 we give a precise description
of the energy functions that we consider, and present a simple but general soft-
ware interface to describe such energy functions and to call an arbitrary energy
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minimization algorithm. In section 3 we describe the different energy minimiza-
tion algorithms that we have implemented, and in section 4 we present our set of
benchmarks. In section 5 we provide our experimental comparison of the different
energy minimization methods, and we conclude in section 6.

2 Problem Formulation and Experimental Infrastructure

We define a pixel labeling problem as assigning to every pixel p a label, which
we write as lp. The collection of all pixel-label assignments is denoted by l, the
number of pixels is n, and the number of labels is m. The energy function E,
which can also be viewed as the log likelihood of the posterior distribution of a
Markov Random Field [2, 16], is composed of a data energy Ed and smoothness
energy Es, E = Ed+λEs. The data energy is simply the sum of a set of per-pixel
data costs dp(l), Ed =

∑
p dp(lp). In the MRF framework, the data energy comes

from the (negative) log likelihood of the measurement noise.
We assume that pixels form a 2D grid, so that each p can also be written

in terms of its coordinates p = (i, j). We use the standard 4-connected neigh-
borhood system, so that the smoothness energy is the sum of spatially varying
horizontal and vertical nearest-neighbor smoothness costs, Vpq(lp, lq), where if
p = (i, j) and q = (s, t) then |i − s| + |j − t| = 1. If we let N denote the set of
all such neighboring pixel pairs, the smoothness energy is

Es =
∑

{p,q}∈N
Vpq(lp, lq). (1)

Note that in equation 1, the notation {p, q} stands for an unordered set, that is
the sum is over unordered pairs of neighboring pixels.

In the MRF framework, the smoothness energy comes from the negative log
likelihood of the prior. In this paper, we consider a general form of the smooth-
ness costs, where different pairings of adjacent labels can lead to different costs.
This is important in a number of applications, ranging from stereo matching
(§8.2 of [4]) to image stitching and texture quilting [12, 17, 18].

A more restricted form of the smoothness energy is Es =
∑

{p,q}∈N wpq ·
V (|lp − lq|), where the smoothness terms are the product of spatially varying
per-pairing weights wpq and a non-decreasing function of the label difference
V (Δl) = V (|lp − lq|). While we could represent V using an m-valued look-up
table, for simplicity, we instead parameterize V using a simple clipped monomial
form V (Δl) = min(|Δl|k, Vmax), with k ∈ {1, 2}. If we set Vmax = 1.0, we get
the Potts model, V (Δl) = 1− δ(Δl), which penalizes any pair of different labels
uniformly (δ is the unit impulse function).

While they are not our primary focus, a number of important special cases
have fast exact algorithms. If there are only two labels, the natural Potts model
smoothness cost can be solved exactly with graph cuts (this was first applied to
images by [19]). If the labels are the integers starting with 0 and the smoothness
cost is an arbitrary convex function, [20] gives a graph cut construction. An
algorithm due to [21] can be used with V (Δl) = Δl (L1 smoothness) and convex
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data costs. However, the NP-hardness result proved in [4] applies if there are
more than two labels, as long as the class of smoothness costs includes the
Potts model. This, unfortunately, implies that the vast majority of MRF-based
energy functions are intractable.

The class of energy functions we are considering is quite broad, and not all
energy minimization methods can handle the entire class. For example, accel-
eration techniques based on distance transforms [22] can significantly speed up
message-passing algorithms such as LBP or TRW, yet these methods are only
applicable for certain smoothness costs V . Other algorithms, such as graph cuts,
only have good theoretical guarantees for certain choices of V (see section 3 for
a discussion of this issue). We will assume that any algorithm can run on any
benchmark problem; this can generally be ensured by reverting to a weaker or
slower of the algorithm if necessary for a particular benchmark.

2.1 Software Interface for Energy Minimization

Now that we have defined the class of energy functions that we minimize, we need
to compare different energy minimization methods on the same energy function
E. Conceptually, it is easy to switch from one energy minimization method to
another, but in practice, most applications are tied to a particular choice of E.
As a result, almost no one in vision has ever answered questions like “how would
your results look if you used LBP instead of graph cuts to minimize your E?”
(The closest to this was [13], who compared LBP and graph cuts for stereo.)
In order to create a set of benchmarks, it was necessary to design a standard
software interface (API) that allows a user to specify an energy function E and
to easily call a variety of energy minimization methods to minimize E.

The software API is available at http://vision.middlebury.edu/MRF, as
are all of our benchmarks and implementations of most of the energy minimiza-
tion methods discussed in this paper. The API allows the user to define any
energy function described above. The data cost energy can be specified implic-
itly, as a function dp() or explicitly as an array. The smoothness cost likewise
can be specified either by defining the parameters k and Vmax, or by providing
an explicit function or array. Excerpts from an example program that uses our
API to call two different energy minimization algorithms on the same energy
function are given below.

// Abstract definition of an energy function E
EnergyFunction *E = (EnergyFunction *) new EnergyFunction(data,smooth);
// Energy minimization of E via ICM
solver = (MRF *) new ICM(width,height,num_labels,E);
// To use graph cuts to minimize E instead, substitute the line below
// solver = (MRF *) new Expansion(width,height,num_labels,E);
// Run one iteration, store the amount of time it takes in t
solver->optimize(1,&t);
// Print out the resulting energy and running time
print_stats( solver->totalEnergy(), t);
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Note that the interface also has the notion of an iteration, but it is up to each
energy minimization method to interpret this notion. Most algorithms have some
natural intermediate point where they have a current answer. By supporting this,
our API allows us to plot the curve of energy versus time. This is particularly
important because a number of powerful methods (such as TRW and graph cuts)
make very small changes in the last few iterations.

2.2 Evaluation Methodology

To evaluate the quality of a given solution, we need the final energy E along
with the computation time required, as a function of the number of iterations.
For every benchmark, we produce a plot that keeps track of the energy vs.
computation time for every algorithm tested. We implemented the algorithms
in C or C++, and ran the benchmarks on a modern Pentium 4. Most of the
experiments used the same machine (3.4 GHz, 2GB RAM), while a few used a
fairly similar computer.

Of course, not all authors spent the same amount of effort tuning their im-
plementation for our benchmarks. Note that while the natural way to compare
energy minimization algorithms is in terms of their energy and speed, it is not al-
ways the case that the lowest energy solution is the best one for a vision problem.
(We return to this issue at the end of section 6.)

3 Energy Minimization Algorithms

In this section, we describe the optimization algorithms that we have imple-
mented and included in our interface. Most of the energy minimization algo-
rithms were implemented by their original inventors; the exceptions are ICM
and LBP, which we implemented ourselves (for LBP, we received help from sev-
eral experts).

Iterated conditional modes (ICM) — Iterated conditional modes [1] uses
a deterministic “greedy” strategy to find a local minimum. It starts with an
estimate of the labeling, and then for each pixel it chooses the label giving the
largest decrease of the energy function. This process is repeated until conver-
gence, which is guaranteed to occur, and in practice is very rapid.

Unfortunately, the results are extremely sensitive to the initial estimate, es-
pecially in high-dimensional spaces with non-convex energies (such as arise in
vision) due to the huge number of local minima. In our experiments, we initial-
ized ICM in a winner-take-all manner, by assigning each pixel the label with the
lowest data cost. This resulted in significantly better performance.

Graph cuts — The two most popular graph cuts algorithms, called the swap
move algorithm and the expansion move algorithm, were introduced in [4]. These
algorithms rapidly compute a strong local minimum, in the sense that no “per-
mitted move” will produce a labeling with lower energy.

For a pair of labels α, β, a swap move takes some subset of the pixels currently
given the label α and assigns them the label β, and vice-versa. The swap move
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algorithm finds a local minimum such that there is no swap move, for any pair of
labels α,β, that will produce a lower energy labeling. Analogously, we define an
expansion move for a label α to increase the set of pixels that are given this label.
The expansion move algorithm finds a local minimum such that no expansion
move, for any label α, yields a labeling with lower energy.

The criteria for a local minimum with respect to expansion moves (swap
moves) are so strong that there are many fewer minima in high dimensional
spaces compared to standard moves. In the original work of [4] the swap move
algorithm was shown to be applicable to any energy where Vpq is a semi-metric,
and the expansion move algorithm to any energy where Vpq is a metric. The
results of [5] imply that the expansion move algorithm can be used if for all
labels α,β,and γ, Vpq(α, α) + Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β, α). The swap move
algorithm can be used if for all labels α,β Vpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) +
Vpq(β, α). (This constraint comes from the notion of regular, i.e. submodular,
binary energy functions, which are closely related to graph cuts.)

If the energy does not obey these constraints, graph cut algorithms can still
be applied by “truncating” the violating terms [24]. In this case, however, we
are no longer guaranteed to find the optimal labeling with respect to swap (or
expansion) moves. In paractice, the performance of this version seems to work
well when only relatively few terms need to be truncated.

Max-product loopy belief propagation (LBP) — To evaluate the perfor-
mance of LBP, we implemented the max-product LBP version, which is de-
signed to find the lowest energy solution. The other main variant of LBP, the
sum-product algorithm, does not directly search for a minimum energy solu-
tion, but instead computes the marginal probability distribution of each node in
the graph. The belief propagation algorithm was originally designed for graphs
without cycles [25], in which case it produces the exact result for our energy.
However, there is nothing in the formulation of BP that prevents it from being
tried on graphs with loops.

In general, LPB is not guaranteed to converge, and may go into an infi-
nite loop switching between two labelings. Felzenszwalb and Huttenlocher [22]
present a number of ways to speed up the basic algorithm. In particular, our LBP
implementation uses the distance transform method described in [22], which sig-
nificantly reduces the running time of the algorithm.

Tree-reweighted message passing (TRW) — Tree-reweighted message pass-
ing [30] is a message-passing algorithm similar, on the surface, to LBP. Let M t

p→q

be the message that pixel p sends to its neighbor q at iteration t; this is a vector
of size m (the number of labels). The message update rule is:

M t
p→q(lq) = min

lp

⎛⎝cpq{dp(lp) +
∑

s∈N (p)

M t−1
s→p(lp)} − M t−1

q→p(lp) + Vpq(lp, lq)

⎞⎠ .

The coefficients cpq are determined in the following way. First, a set of trees
from the neighborhood graph (a 2D grid in our case) is chosen so that each
edge is in at least one tree. A probability distribution ρ over the set of trees is
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then chosen. Finally, cpq is set to ρpq/ρp, i.e. the probability that a tree chosen
randomly under ρ contains edge (p, q) given that it contains p. Note that if cpq

were set to 1, the update rule would be identical to that of standard LBP.
An interesting feature of the TRW algorithm is that it computes a lower

bound on the energy. The original TRW algorithm does not necessarily converge,
and does not, in fact, guarantee that the lower bound always increases with
time. In this paper we use an improved version of TRW due to [23], which is
called sequential TRW, or TRW-S. In this version, the lower bound estimate is
guaranteed not to decrease, which results in certain convergence properties. In
TRW-S we first select an arbitrary pixel ordering function S(p). The messages
are updated in order of increasing S(p) and at the next iteration in the reverse
order. Trees are constrained to be chains that are monotonic with respect to
S(p). Note that the algorithm can be implemented using half as much memory
as standard BP [23].

4 Benchmark Problems

For our benchmark problems, we have created a representative set of low-level
energy minimization problems drawn from a range of different applications. As
with the optimization methods, we were fortunate enough to persuade the orig-
inal authors of the problems to contribute their energy functions and data.

Stereo matching — For stereo matching, we followed in the footsteps of [13]
and used a simple energy function for stereo, applied to images from the widely-
used Middlebury stereo data set [7]. We used different energy functions for differ-
ent images, to make the optimization problems more varied. For the “Tsukuba”
image we used the truncated L1 distance Vmax = 2, k = 1, with λ = 20 and
m = 16 labels. For “Venus” we used the truncated L2 distance Vmax = 2, k = 7,
with λ = 50 and m = 20 labels. For “Teddy” we used the Potts model Vmax =
1, k = 1, with λ = 10 and m = 60 labels. The default smoothness weight was
wpq = 1 at all pixels. For “Tsukuba” and “Teddy” we increased the weight at
locations where the intensity gradient gpq in the left image is small: we used
wpq = 2 if |gpq| ≤ 8 for “Tsukuba,” and wpq = 3 if |gpq| ≤ 10 for “Teddy.”

Photomontage — The Photomontage system [12] seamlessly stitches together
multiple photographs for a variety of photo merging applications. We formed
benchmarks for two such applications, panoramic stitching and group photo
merging. The input is a set of aligned images S1, S2, . . . , Sm of equal dimension;
the labels are the image indexes, i.e. 1, 2, ..., m; the final output image is formed
by copying colors from the input images according to the computed labeling. If
two neighbors p and q are assigned the same input image, they should appear
natural in the composite and so Vpq(i, i) = 0. If lp �= lq, we say that a seam exists
between p and q; then Vpq measures how visually noticeable the seam is in the
composite. The data term dp(i) is 0 if pixel p is in the field of view of image i,
and ∞ otherwise.

The first benchmark stitches together the panorama in Fig. 8 of [12]. (See the
project web page for all images.) The smoothness energy, derived from [18], is
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Vpq = |Slp(p) − Slq(p)| + |Slp(q) − Slq(q)|. This energy function is suitable for
the expansion algorithm without truncation.

The second benchmark stitches together the five group photographs shown in
Fig. 1 of [12]. The best depiction of each person is to be included in a composite.
Photomontage itself is interactive, but to make the benchmark repeatable the
user strokes are saved into a data file. For any pixel p underneath a drawn stroke,
dp(lp) = 0 if lp equals the user-indicated source image, and ∞ otherwise. The
smoothness terms are modified from the first benchmark to encourage seams
along strong edges. The expansion algorithm is applicable to this energy only
after truncating certain terms, but it continues to work well in practice.

Binary image segmentation — Binary MRF’s are also widely used in medi-
cal image segmentation [10], stereo matching using minimal surfaces [27, 28], and
video segmentation using stereo disparity cues [29] As previously mentioned, for
the natural Ising model smoothness costs, the global minimum can be computed
rapidly via a graph cuts [19]; this result has been generalized to other smoothness
costs by [5].) Nevertheless, such energy functions still form an interesting bench-
mark, since there may well be other heuristic algorithms that perform faster
while achieving nearly the same level of performance.

Our benchmark consists of a segmentation problem, inspired by the interactive
segmentation algorithm of [10] or its more recent extensions [11]. As with our
Photomontage stitching example, this application requires user interaction; we
handle this issue as above, by saving the user interactions to a file and using
them to derive the data costs.

The data cost is the log likelihood of a pixel belonging to either foreground or
background and is modeled as two separate Gaussian mixture models as in [11].
The smoothness term is a standard Potts model which is contrast sensitive:
Vpq = || exp(−β‖xi − xj‖2)|| + λ2, where λ = 50 and λ2 = 10. The quantity β
is set to (2〈‖xi − xj‖2〉)−1 where the expectation denotes an average over the
image, as motivated in [11]. The impact of λ2 is to remove small and isolated
areas that have high contrast.

Image restoration and inpainting — We experimented with the “penguin”
image, which appears in figure 7 in [22]. We added random noise to each pixel,
and also obscured a portion of the image. The labels are intensities, and the data
cost for each pixel is the squared difference between the label and the observed
distance. However, pixels in the obscured portion have a data cost of 0 for any
intensity. The smoothness energy was the truncated L2 distance with uniform
wpq’s (we used Vmax = 200, k = 2, wpq = 25).

5 Experimental Results

The experimental results from running the different optimization algorithms on
these benchmarks are given in figure 1 (stereo), figure 2 (Photomontage), and
figure 3 (binary image segmentation). The images themselves are provided on
the project web page. The x-axis of these plots shows running times, measured
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Fig. 1. Results on stereo matching benchmarks. Each plot shows energies vs. run time
in seconds. Energies are given relative to the largest lower bound provided by the TRW-
S method. The plots on the right are zoomed versions of the plots on the left. Note
that some of the horizontal (time) axes use a log scale to better visualize the results.
ICM is omitted in the right plots, due to its poor performance. Depth map images are
available at http://vision.middlebury.edu/MRF.
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Fig. 2. Results on the Photomontage benchmarks, “Panorama” is at top and “Family”
is below. Each plot shows energies vs. run time in seconds, using a log scale for time.
The plots on the right are zoomed versions of the plots on the left. ICM is omitted in
the right plots, due to poor performance. The associated color images can be found on
the project web page.

in seconds. Note that some figures use a log scale for running time, which is
necessary since some algorithms perform very poorly. For the y-axis, we made
use of TRW’s ability to compute a lower bound on the energy of the optimal
solution. We normalized the energy by dividing it by the best known lower bound
given by any run of TRW-S. Due to space limitations we had to omit the plots
for the image restoration benchmark; they can be found on the project web page.

For all of these examples, the best methods achieved results that are extremely
close to the global minimum, with less than 1 percent error. For example, on
“Tsukuba”, expansion moves and TRW-S got to within 0.27% of the optimum,
while on “Panorama” expansion moves was within 0.78%. These statistics may
actually understate the performance of the methods; since the global minimum is
unknown, we use the TRW-S lower bound, which (of course) can underestimate
the optimal energy.

The individual plots show some interesting features. In figure 1, TRW-S does
extremely well, but in the “Teddy” energy it eventually oscillates. However,
during the oscillation it achieves the best energy of any algorithm on any of our
stereo benchmarks, within 0.018% of the global minimum. The same oscillation
is seen in figure 2, though this time without as good performance. On the binary
image segmentation problems, shown in figure 3, graph cuts are guaranteed to
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Fig. 3. Results on binary image segmentation benchmarks. Graph cuts are guaranteed
to compute the global minimum, as is TRW-S. (In fact, this minimum is found by the
first iteration of the swap move algorithm, which is equivalent to a single max flow
computation.) Note that LBP comes extremely close (under 0.04% error), but never
actually attains it.

Fig. 4. Results on “Panorama” benchmark. LBP output is shown at left, TRW-S in
the middle, and expansion moves at right. Larger versions of these images are available
on the project web page.

compute the global minimum, as is TRW-S (but not the original TRW [30]).
LBP comes extremely close (under 0.04% error), but never actually attains it.

For reasons of space, we have omitted most of the actual images from this
paper (they are available at http://vision.middlebury.edu/MRF). In terms
of visual quality, the ICM results looked noticeably worse, but the others were
difficult to distinguish on most of our benchmarks. The exception was the Pho-
tomontage benchmarks. On “Panorama”, shown in figure 4, LBP makes some
major errors, leaving slices of several people floating in the air. TRW-S does
quite well, though the some of its seams are more noticeable than those pro-
duced by expansion moves (which gives the visually best results). On “Family”
(not shown), LBP also makes major errors, while TRW-S and expansion moves
both work well.

6 Discussion

The strongest impression that one gets from our data is of how much better
modern energy minimization methods are than ICM, and how close they come
to computing the global minimum. We do not believe that this is purely due
to flaws in ICM, but simply reflects the fact that the methods used until the
late 1990’s performed poorly. (As additional evidence, [4] compared the energy
produced by graph cuts with simulated annealing, and obtained a similarly large
improvement.) We believe that our study demonstrates that the state of the art
in energy minimization has advanced significantly in the last few years.
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There is also a dramatic difference in performance among the different energy
minimization methods on our benchmarks, and on some of the benchmarks there
are clear winners. On the Photomontage benchmark, expansion moves perform
best, which provides some justification for the fact that this algorithm is used
by various image stitching applications [12, 26]. On the stereo benchmark, the
two best methods seem to be TRW-S and expansion moves. There are also some
obvious paired comparisons; for instance, there never seems to be any reason to
use swap moves instead of expansion moves. In terms of runtime, the expansion
move algorithm is clearly the winner among the competitive methods (i.e., all
except ICM), but as noted not all methods have been optimized for speed equally.

There is clearly a need for more research on message-passing methods such as
TRW-S and LBP. While LBP is a well-regarded and widely used method, on our
benchmarks it performed surprisingly poorly (the only method it consistently
outperformed was ICM). This may be due to a quirk in our benchmarks, or it
may reflect issues with the way we scheduled message updates (despite the help
we were given by several experts on LBP). TRW-S, which has not been widely
used in vision, gave consistently strong results. In addition, the lower bound
on the energy provided by TRW-S proved extremely useful in our study. For a
user of energy minimization methods, this lower bound can serve as a confidence
measure, providing assurance that the solution obtained has near-optimal energy.
Another area that needs investigation is the use of graph cut algorithms for wider
classes of energy functions than the limited ones they were originally designed for.
The benchmarks that were most challenging for the expansion move algorithm
(such as “Venus”) use a V that is not a metric.

Another important issue centers around the use of energy to compare energy
minimization algorithms. The goal in computer vision, of course, is not to com-
pute the lowest energy solution to a problem, but rather the most accurate one.
While computing the global minimum was shown to be NP-hard [4], it is some-
times possible for special cases. For example, the energy minimization problem
can be recast as an integer program, which can be solved as a linear program;
if the linear program’s solutions happen to be integers, they are the global min-
imum. This is the basis for the approach was taken by [31], who demonstrated
that they could compute the global minimum for several common energy func-
tions on the Middlebury images. The global minimum has only slightly lower
energy than that produced by graph cuts or LBP. In addition, [31] points out
that the globally minimum is no more accurate than the results achieved with
graph cuts or LBP. More precisely, according to [31] at best graph cuts produces
an energy that is 0.018% over the global minimum, while at worst the energy is
3.6% larger; at best LBP gives an energy that is 3.4% higher, and at worst 30%.

In light of these results, it is clear that for the models we have considered,
better minimization techniques are unlikely to produce significantly more accu-
rate labelings. For the Middlebury stereo benchmarks this is particularly clear:
the best methods produce energies that are extremely close to the global mini-
mum; the global minimum, when known, is no more accurate than the ground
truth; and, in fact, the ground truth has substantially higher energy. However, it
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is still important to compare energy minimization algorithms using the energy
they produce as a benchmark. Creating more accurate models will not lead to
better results if good labelings under these models cannot be found. It is also
difficult to gauge the power of a model without the ability to produce low energy
labelings.

7 Conclusions and Future Work

There are many natural extensions to our work that we are currently pursuing,
including energy minimization algorithms, classes of energy functions, and se-
lection of benchmarks. While most of the energy minimization algorithms we
have implemented are fairly mature, there is probably room for improvement
in our implementation of LBP, especially in terms of the schedule of message
updates. We also plan to implement several other modern algorithms, as well
as additional benchmarks. We are particularly interested in [31], whose method
could potentially achieve the global minimum on some of our benchmarks, and
[32], who generalize the expansion move algorithm so that (like TRW) it also
computes a lower bound on the energy.

We also plan to increase the class of energy functions we consider. We hope
to investigate different grid topologies (such as the 8-connected topology for
2D, or 26-connected for 3D), as well as non-local topologies such as those used
with multiple depth maps [15]. Finally, we will expand our set of benchmarks
to include both more images and more applications, and continue to update our
project web page to include the latest results in this rapidly evolving area.
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Abstract. In recent years the use of graph-cuts has become quite popular in com-
puter vision. However, researchers have repeatedly asked the question whether it
might be possible to compute a measure of uncertainty associated with the graph-
cut solutions. In this paper we answer this particular question by showing how the
min-marginals associated with the label assignments in a MRF can be efficiently
computed using a new algorithm based on dynamic graph cuts. We start by re-
porting the discovery of a novel relationship between the min-marginal energy
corresponding to a latent variable label assignment, and the flow potentials of
the node representing that variable in the graph used in the energy minimization
procedure. We then proceed to show how the min-marginal energy can be com-
puted by minimizing a projection of the energy function defined by the MRF.
We propose a fast and novel algorithm based on dynamic graph cuts to efficiently
minimize these energy projections. The min-marginal energies obtained by our
proposed algorithm are exact, as opposed to the ones obtained from other infer-
ence algorithms like loopy belief propagation and generalized belief propagation.
We conclude by showing how min-marginals can be used to compute a confidence
measure for label assignments in labelling problems such as image segmentation.

1 Introduction

Researchers in computer vision have extensively used graph cuts to compute the maxi-
mum a posteriori (MAP) solutions for various discrete pixel labelling problems such as
image restoration, segmentation and stereo. Graph cuts are preferred over other infer-
ence algorithms like Loopy Belief Propagation (LBP), Generalized Belief Propagation
(GBP) and the recently introduced Tree Re-weighted message passing (TRW) [1, 2]
primarily because of their ability to find globally optimal solutions for an important
class of energy functions (sub-modular) in polynomial time [3]. Even in problems
where they do not guarantee globally optimal solutions, they can be used to find so-
lutions which are strong local minima of the energy [4]. These solutions for certain
problems have been shown to be better than the ones obtained by other methods [5].
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Graph cuts however do suffer from a big disadvantage. Unlike other inference algo-
rithms, they do not provide any uncertainty measure associated with the solution they
produce. This is a serious drawback since researchers do not have any information re-
garding the probability of a particular latent variable assignment in a graph cut solution.
Inference algorithms like LBP, GBP, and TRW provide the user with marginal or min-
marginal energies associated with each latent variable. However, these algorithms are
not exact. Note that for tree-structured graphs, the simple max-product belief propaga-
tion algorithm gives the exact max-marginal probabilities/min-marginal energies1 for
different label assignments in O(nl2) time where n is the number of latent variables,
and l is the number of labels a latent variable can take.

This paper addresses the problem of efficiently computing the min-marginals as-
sociated with the label assignments of any latent variable in a Markov Random Field
(MRF). Our method can work on all MRFs that can be solved using graph cuts. First,
we show how in the case of binary variables, the min-marginals associated with the
labellings of a latent variable are related to the flow-potentials (defined in section 3) of
the node representing that latent variable in the graph constructed in the energy mini-
mization procedure. The exact min-marginal energies can be found by computing these
flow-potentials. We then show how flow potential computation is equivalent to mini-
mizing projections of the original energy function2.

Minimizing a projection of an energy function is a computationally expensive op-
eration and requires a graph cut to be computed. In order to obtain the min-marginals
corresponding to all label assignments of all random variables, we need to compute
a graph cut O(nl) number of times. In this paper, we present an algorithm based on
dynamic graph cuts [6] which solves these O(nl) graph cuts extremely quickly. Our
experiments show that the running time of this algorithm i.e. the time taken for it to
compute the min-marginals corresponding to all latent variable label assignments is of
the same order of magnitude as the time taken to compute a single graph cut.

Overview of Dynamic Graph Cuts. Dynamic computation is a paradigm that pre-
scribes solving a problem by dynamically updating the solution of the previous problem
instance. Its hope is to be more efficient than a computation of the solution from scratch
after every change in the problem. A considerable speedup in computation time can be
achieved by this procedure especially when the problem is large scale and changes are
few. Dynamic algorithms are not new to computer vision. They have been extensively
used in computational geometry for problems such as range searching, intersections,
point location, convex hull, proximity and many others [7].

Boykov and Jolly [8] were the first to use a partially dynamic st-mincut algorithm
in a vision application, by proposing a technique with which they could update capac-
ities of certain graph edges, and recompute the st-mincut dynamically. They used this

1 We will explain the relation between max-marginal probabilities and min-marginal energies
later in section 2. To make our notation consistent with recent work in graph cuts, we formu-
late the problem in terms of min-marginal energies (subsequently referred to as simply min
marginals).

2 A projection of the function f(x1, x2, ..., xn) can be obtained by fixing the values of some of
the variables in the function f(.). For instance f ′(x2, ..., xn) = f(0, x2, ..., xn) is a projection
of the function f(.).
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method for performing interactive image segmentation, where the user could improve
segmentation results by giving additional segmentation cues (seeds) in an online fash-
ion. However, their scheme was restrictive and did not allow for general changes in the
graph. In one of our earlier papers, we proposed a new algorithm overcoming this re-
striction [6], which is faster and allows for arbitrary changes in the graph. The running
time of this new algorithm has been empirically shown to increase linearly with the
number of edge weights changed in the graph. In this paper, we will use this algorithm
to compute the exact min-marginals efficiently. To summarize, the key contributions of
this paper include:

– A novel relationship between min-marginal energies and node flow-potentials in
the residual graph obtained after the graph cut computation.

– A method to compute min-marginals by minimizing energy function projections.
– An extremely fast algorithm based on dynamic graph cuts for efficiently minimiz-

ing these energy projections.
– A method to obtain confidence maps for different assignments in labelling problems

such as image segmentation.

Organization of the Paper. A brief outline of the paper is given next. We discuss
MRFs and min-marginal energies in section 2. In section 3, we formulate the st-mincut
problem, define terms that would be used in the paper, and describe how certain energy
functions can be minimized using graph cuts. In section 4, we show how min-marginals
can be found by minimizing projections of the original energy function. We then pro-
pose a novel algorithm based on dynamic graph cuts to efficiently compute the minima
of these energy projections. In section 5, we show some experimental results of our
algorithm.

2 Notation and Preliminaries

We will now describe the notation used in the paper. We will formulate our problem
in terms of a pairwise MRF3. Note that the pairwise assumption does not affect the
generality of our formulation since any MRF involving higher order interaction terms
can be converted to a pairwise MRF by addition of auxiliary variables in the MRF [9].

Consider a random field consisting of a set of discrete random variables {x1, . . . , xn}
defined on the set V , such that each variable xv takes values from the label set Xv. We
represent the set of all variables xv, ∀v ∈ V by the vector x which takes values from the
set X defined as X = X1 × X2 × . . . × Xn. Unless noted otherwise, we use symbols
u and v to denote values in V , and i and j to denote particular values in Xu and Xv

respectively. Further, we use Nv to denote the set consisting of indices of all variables
which are neighbours of the random variable xv in the graphical model. The random
field is said to be a MRF with respect to a neighborhood N = {Nv|v ∈ V} if and only
if it satisfies the positivity property Pr(x) > 0 ∀x ∈ X , and the Markovian property

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv}) ∀v ∈ V . (1)

3 Pairwise MRFs have cliques of size at most two.
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The MAP-MRF estimation problem can be formulated as an energy minimization
problem where the energy corresponding to the configuration x is the negative log like-
lihood of the joint posterior probability of a MRF configuration and is defined as

E(x|θ) = − log Pr(x|D) − const. (2)

Here θ is the energy parameter vector defining the MRF [1]. The energy of a configu-
ration for such a pairwise MRF can be written in terms of unary and pairwise energy
terms as:

E(x|θ) =
∑
v∈V

(
φ(xv) +

∑
u∈Nv

φ(xu,xv)

)
+ const. (3)

In the paper, ψ(θ) is used to denote the value of the energy of the MAP configuration
of the MRF and is defined as:

ψ(θ) = min
x∈X

E(x|θ). (4)

The term optimal solution will be used to refer to the MAP solution in the paper.

Min-marginal Energies. A min-marginal is a function that provides information about
the minimum values of the energy E under different constraints. Following the notation
of [1], we define the min-marginal energies ψv;j , ψuv;ij as:

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ), and ψuv;ij(θ) = min
x∈X ,xu=i,xv=j

E(x|θ). (5)

In words, given an energy functionE whose value depends on the variables (x1, . . . , xn),
ψv;j(θ) represents the minimum energy value obtained if we fix the value of variable xv

to j and minimize over all remaining variables. Similarly, ψuv;ij(θ) represents the value
of the minimum energy in the case when the values of variables xu and xv are fixed to
i and j respectively.

2.1 Computing the Likelihood of a Label Assignment

Now we show how min-marginals can be used to compute a confidence measure for a
particular latent variable label assignment. Given the function Pr(x|D), which specifies
the probability of a configuration of the MRF, the max-marginal μv;j gives us the value
of the maximum probability over all possible configurations of the MRF in which xv =
j. Formally, it is defined as:

μv;j = max
x∈X ;xv=j

Pr(x|D) (6)

Inference algorithms like max-product belief propagation produce the max-marginals
along with the MAP solution. These max-marginals can be used to obtain a confidence
measure σ for any latent variable labelling as:

σv;j =
maxx∈X ,xv=j Pr(x|D)∑

k∈Xv
maxx∈X ,xv=k Pr(x|D)

=
μv;j∑

k∈Xv
μv;k

(7)
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where σv;j is the confidence for the latent variable xv taking label j. This is the ratio
of the max-marginal corresponding to the label assignment xv = j to the sum of the
max-marginals for all possible label assignments.

We now proceed to show how these max-marginals can be obtained from the min-
marginal energies computed by our algorithm. Substituting the value of Pr(x|D) from
equation (2) in equation (6), we get μv;j = maxx∈X ;xv=j (exp (−E(x|θ) − const))
or μi;j = 1

Z exp (− minx∈X ;xv=j E(x|θ)), where Z is the partition function. Combin-
ing this with equation (5a), we get μi;j = 1

Z exp (−ψv;j(θ)). As an example consider
a binary label object-background image segmentation problem, where there are two
possible labels i.e. object (‘ob’) and background (‘bg’). The confidence measure σv;ob

associated with the pixel v being labelled as object can be computed as:

σv;ob =
μv;ob

μv;ob + μv;bg
=

1
Z exp (−ψv;ob(θ))

1
Z exp (−ψv;ob(θ)) + 1

Z exp (−ψv;bg(θ))
, (8)

or σv;ob =
exp (−ψv;ob(θ))

exp (−ψv;ob(θ)) + exp (−ψv;bg(θ))
(9)

Note that the Z’s cancel and thus we can compute the confidence measure from the
min-marginal energies alone without knowledge of the partition function.

2.2 Computing the M Most Probable Configurations

Another important use of min-marginals has been to find the M most probable con-
figurations (or labellings) for latent variables in a Bayesian network [10]. Dawid [11]
showed how min-marginals on junction trees can be computed, which was later used
by [12] to find the M most probable configurations of a probabilistic graphical network.
Note that the method of [11] is guaranteed to run in polynomial time for tree-structured
networks. However, for arbitrary graphs, its worst case complexity is exponential in the
number of the nodes in the graphical model.

3 The st-Minimum Cut Problem

In this section we will give a brief overview of graph cuts and show how they can
used to minimize energy functions such as the one defined in equation (3). A cut
is a partition of the node set V of a graph G into two parts S and S = V − S, and
is defined by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of a cut (S, S)
is equal to: C(S, S) =

∑
(i,j)∈E;i∈S;j∈S(cij) where cij is the cost associated with the

edge (i, j). For a weighted graph G(V, E) with two special nodes, namely the source s
and the sink t, collectively referred to as the terminals, the st-mincut problem is that of
finding a cut with the smallest cost satisfying the properties s ∈ S and t ∈ S.

By the Ford-Fulkerson theorem [13], the st-mincut problem is equivalent to comput-
ing the maximum flow from the source to the sink with the capacity of each edge equal
to cij . Specifically, while passing flow through the network, a number of edges become
saturated. When the maximum amount of flow is being passed in the network, there re-
mains no path from the source to the sink that does not have a saturated edge. In effect,
these saturated edges separate the source from the sink and thus by the Ford-Fulkerson
theorem, constitute the minimum cut.
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Computing the Maximum Flow. The Max-flow problem for a capacitated network
G(V, E) with a non-negative capacity cij associated with each edge is that of finding
the maximum flow f from the source node s to the sink node t subject to the edge
capacity and flow balance constraints:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (10)

∑
i∈N(v)

(fvi − fiv) = 0 ∀v ∈ V − {s, t} (11)

where fij is the flow from node i to node j, and N(v) is the neighbourhood of v.

Residual Graphs, Augmenting Paths and Flow Potentials. Given a flow fij , the
residual capacity rij of an edge (i, j) ∈ E is the maximum additional flow that can be
sent from node i to node j using the edges (i, j) and (j, i). The residual capacity rij has
two components: the unused capacity of the edge (i, j): cij −fij and the current flow fji

from node j to node i which can be reduced to increase the flow from i to j. A residual
graph G(f) of a graph G consists of the node set V and the edges with positive residual
capacity (with respect to the flow f ). The topology of G(f) is identical to G. G(f)
differs only in the capacity of its edges and so for zero flow i.e. fij = 0 ∀(i, j) ∈ E ,
G(f) is same as G.

An augmenting path is a path from the source to the sink along unsaturated edges of
the residual graph. Augmenting path based algorithms for solving the max-flow prob-
lem work by repeatedly finding augmenting paths in the residual graph and saturating
them. When no more augmenting paths can be found i.e. the source and sink are dis-
connected in the residual graph, the maximum flow is obtained.

We define the flow potentials of a graph node as the maximum amount of flow that
can be pumped between it and the two terminals without invalidating the flow balance
(11) and edge capacity (10) constraints of the weighted graph. For a node i, we refer
the maximum amount of flow that can be pumped from it is as the source flow potential
fs

i and that into it as the sink flow potential f t
i . The computation of flow potential is

not a trivial process and in essence requires a graph cut to be computed as shown in
figure 2. The flow potentials of a particular graph node are shown in figure 1(a). Note
that in a residual graph G(fmax) where fmax is the maximum flow, all nodes on the sink
side of the st-mincut are disconnected from the source and thus have the source flow
potential equal to zero. Similarly, all nodes belonging to the source have the sink flow
potential equal to zero. We will show later that the flow-potentials we have just defined
are intimately linked to the min-marginals.

3.1 Minimizing Energies Using Graph Cuts

The basic procedure for energy minimization using graph cuts comprises of building a
graph in which each cut defines a configuration x, and the cost of the cut is equal to the
energy value associated with x i.e. E(x|θ). Kolmogorov and Zabih [3] showed under
what conditions energies like (3) can be minimized exactly using st-mincuts. They also
described how to construct the graph for this particular class of energy functions. Their
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Fig. 1. a) Illustrating the flow potentials of graph nodes. The figure shows a directed graph having
seven nodes, two of which are the terminal nodes, the source s and the sink t. The number asso-
ciated with each directed edge in this graph is a capacity which tells us the maximum amount of
flow that can be passed through it in the direction of the arrow. The flow potentials for node 4 in
this graph when no flow is passing through any of the edges are fs

4 = 2 and f t
4 = 11. b) Energy

minimization using graph cuts. The figure shows how individual unary and pairwise terms of an
energy function taking two binary variables are represented and combined in the graph. The cost
of a st-cut in the final graph is equal to the energy E(x) of the configuration x the cut induces.
The minimum cost st-cut induces the least energy configuration x for the energy function.

Fig. 2. Computing min-marginals using graph cuts. In (a) we see the graph representing the orig-
inal energy function. This is used to compute the minimum value of the energy ψ(θ) which is
equal to the max-flow fmax = 8. The residual graph obtained after the computation of max-flow
is shown in (b). In (c) we show how the flow-potential fs

5 can be computed in the residual graph
by adding an infinite capacity edge between it and the sink and computing the max-flow again.
The addition of this new edge constrains node 5 to belong to sink side of the st-cut. A max-flow
computation in the graph (c) yields fs

5 = 4. This from theorem 1, we obtain the min-marginal
ψ5;c = 8 + 4 = 12, where T(c) = source(s).
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work dealt with energy functions involving binary random variables. The conditions
and graph construction corresponding to the multiple label case was later given in [14].

The basic graph construction for the minimization procedure works by decomposing
the energy function into unary and pairwise energy terms. The MRF energy (3) can be
written as:

E(x|θ) = θconst+
∑

v∈V,i∈Xv

θv;iδi(xv)+
∑

(s,t)∈E,(j,k)∈(Xs,Xt)

θst;jkδj(xs)δk(xt), (12)

where θv;i is the penalty for assigning label i to latent variable xv , θst;ij is the penalty
for assigning labels i and j to the latent variables xs and xt, and each δj(xs) is an
indicator function which is defined as:

δj(xs) =
{

1 if xs = j, wherej ∈ Xs

0 otherwise
,

These individual energy terms are represented by weighted edges in the graph. Multiple
edges between the same nodes are merged into a single edge by adding their weights.
Finally, the st-mincut is found in this graph, which provides us with the MAP solution.
The cost of this cut corresponds to the energy of the MAP solution. The labelling of a
latent variable depends on the terminal it is disconnected from by the minimum cut. If
the node is disconnected from the source, we assign it the value zero and one otherwise.
The graph construction for a two node MRF is shown in figure 1(b).

4 Computing Min-marginals Using Graph Cuts

We will now explain how min-marginal energies can be computed using graph cuts. The
total flow ftotal flowing from the source s to the sink t in a graph is equal to the difference
between the total amount of flow coming in to a terminal node and that going out i.e.

ftotal =
∑

i∈N(s)

(fsi − fis) =
∑

i∈N(t)

(fit − fti). (13)

We know that the cost of the st-mincut in an energy representing graph is equal to
the energy of the optimal configuration. From the Ford-Fulkerson theorem, this is also
equal to the maximum amount of flow fmax that can be transferred from the source to
the sink. Hence from the minimum energy (4) and total flow equation (13) for a graph
in which maxflow has been achieved i.e. ftotal = fmax, we obtain:

ψ(θ) = min
x∈X

E(x|θ) = fmax =
∑

i∈N(s)

(fsi − fis). (14)

Note that flow cannot be pushed into the source i.e. fis = 0, ∀i ∈ V . Thus, we get
ψ(θ) =

∑
i∈N(s) fsi. The MAP configuration x∗ of a MRF is the one having the least

energy and is defined as x∗ = argminx∈X E(x|θ). The min-marginals correspond-
ing to the optimal label assignments for the latent variables are equal to the minimum
energy i.e.

ψv;x∗
v
(θ) = min

x∈X ,xv=x∗
v

E(x|θ) = ψ(θ) (15)



38 P. Kohli and P.H.S. Torr

where x∗
v is the label given to the latent variable xv in the MAP configuration x∗. Thus

the maximum flow equals the min-marginals for the case when the latent variables take
their respective MAP labels. The min-marginal energy ψv;x−

v
(θ) corresponding to a

non-optimal label x−
v can be computed by finding the minimum value of the energy

function projection E
′

obtained by constraining the value of xv to x−
v as:

ψv;x−
v
(θ) = min

x∈X ,xv=x−
v

E(x|θ) = min
(x−xv)∈(X−Xv)

E(x1, .., x
−
v , xv+1..xn|θ). (16)

In the next paragraph, we will show that this constraint can be enforced in the origi-
nal graph construction used for minimizing E(x|θ) by modifying certain edge weights
which make sure that the latent variable xv takes the label x−

v . The exact modifications
needed in the graph for the binary label case are given first while those required in the
graph for the multi-label case are discussed later.

Min-marginals and Flow potentials. We now show how in the case of binary
variables, flow-potentials in the residual graph G(fmax) are related to the min-marginal
energy values. We will use a and b to represent the MAP and non-MAP label respec-
tively.

Theorem 1. The min-marginal energy of a binary latent variable xv is equal to the
sum of the max-flow and the flow-potential of the node representing it in the residual
graph corresponding to the max-flow solution G(fmax) i.e.

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ) = ψ(θ) + fT (j)
v = fmax + fT (j)

v (17)

where T (j) is the terminal corresponding to the label j, and fmax is the value of the
maximum flow in the graph G representing the energy function E(x|θ).

Proof. The proof is trivial for the case where the latent variable takes the optimal label.
We already know that the value of the min-marginal ψv;a(θ) is equal to the lowest
energy ψ(θ). Further, the flow potential of the node for the terminal corresponding to
the label assignment is zero since the node is disconnected from the terminal T (a) by
the minimum cut4.

We already know from (16) that the min-marginal ψv;b(θ) corresponding to the non-
optimal label b can be computed by finding the minimum value of the function E under
the constraint xv = b. This constraint can be enforced in our original graph (used for
minimizing E(x|θ)) by adding an edge with infinite weight between the graph node
and the terminal corresponding to the label a, and then computing the st-mincut on this
updated graph5. It can be easily seen that the additional amount of flow that would now

4 The amount of flow that can be transferred from the node to the terminal T (a) in the residual
graph is zero since otherwise it would contradict our assumption that the max-flow solution
has been achieved.

5 Adding an infinite weight edge between the node and the terminal T (a) is equivalent to putting
a hard constraint on the variable xv to have the label b. Please note that the addition of an
infinite weight edge can be realized by using an edge whose weight is more than the sum of all
other edges incident on the node. This condition would make sure that the edge is not saturated
during the max-flow computation.
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flow from the source to the sink is equal to the flow potential fT (b)
v of the node. Thus the

value of the max-flow now becomes equal to ψ(θ) + f
T (b)
v where T (b) is the terminal

corresponding to the label b. The whole process is shown graphically in figure 2.
We have shown how minimizing an energy function with constraints on the value

of a latent variable, is equivalent to computing the flow potentials of a node in the
residual graph G(fmax). Note that a similar procedure can be used to compute the min-
marginal ψuv;ij(θ) by taking the projection and enforcing hard constraints on pairs of
latent variables.

Extension to Multiple Labels. Graph cuts can also be used to optimize certain spe-
cific energy functions which involve variables taking multiple labels [14]. Graphs rep-
resenting the projections of such energy functions can be obtained by incorporating
hard constraints in a fashion analogous to the one used for binary variables. In the
graph construction for multiple labels proposed by Ishikawa [14], the label of a dis-
crete latent variable is found by observing which data edge is cut. The value of a vari-
able can be constrained or ‘fixed’ in this graph construction by making sure that the
data edge corresponding to the particular label is cut. This can be realized by adding
edges of infinite capacity from the source and the sink to the tail and head node of
the edge respectively as shown in figure 3. The cost of the st-mincut in this modified
graph will give the exact value of min-marginal energy associated with that particular
labelling.

Fig. 3. Graph construction for projections of energy functions involving multiple labels. The first
graph G shows the graph construction proposed by Ishikawa [14] for minimizing energy func-
tions representing MRFs involving latent variables which can take more than 2 labels. All the
label sets Xv ∀v ∈ V , consist of 4 labels namely l1, l2, l3 and l4. The MAP configuration of the
MRF induced by the st-mincut is found by observing which data edges are cut (data edges are
depicted as black arrows). Four of them are in the cut here (as seen in graph G), representing the
assignments x1 = l2, x2 = l3, x3 = l3, and x4 = l4. The graph G′ representing the projection
E′ = E(x1, x2, x3, l2) can be obtained by inserting infinite capacity edges from the source and
the sink to the tail and head node respectively of the edge representing the label l2 for latent
variable x4.
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4.1 Minimizing Energy Function Projections Using Dynamic Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now explain
how this can be done efficiently. As explained in the proof of theorem 1, we can compute
min-marginals by minimizing projections of the energy function. It might be thought
that such a process is extremely computationally expensive as a graph cut has to be
computed for each min-marginal computation. While modifying the graph in order to
minimize the projection E

′
of the energy function, we observed that only a few edge

weights have to be changed in the original graph6 as seen in figure 2, where only one in-
finite capacity edge had to inserted in the graph. In our earlier work [6], we had showed
that the st-mincut can be recomputed rapidly for such minimal changes in the problem
by using the dynamic graph cut algorithm. The dynamic graph cut algorithm works by
updating the residual graph obtained from the previous minimization procedure to re-
flect the changes in the problem. It then recomputes the st-mincut on this updated resid-
ual graph. This scheme enables extremely fast computation of the st-mincut when the
number of changes in the problem are few. Our proposed algorithm is given in Table 1.

Table 1. Algorithm for computing min-marginal energies using dynamic graph cuts

1. Construct graph G for minimizing the MRF energy E.
2. Compute the maximum s-t flow in the graph. This induces the residual graph Gr con-

sisting of unsaturated edges.
3. If a label assignment is included in the MAP solution obtained in step 2, then the corre-

sponding min-marginal is equal to the energy of the MAP solution.
4. For computing each remaining min-marginal, perform the following operations:

(a) Obtain the energy projection E′ corresponding to the latent variable assignment.
(b) Construct the graph G′ to minimize E′.
(c) Use dynamic updates as given in [6] to make Gr consistent with G′, thus obtaining

the new graph G
′
r .

(d) Compute the min-marginal by minimizing E′ using the dynamic st-mincut algo-
rithm [6] on G

′
r .

4.2 Algorithmic Complexity and Experimental Evaluation

We now discuss issues related to the complexity of the algorithm shown in Table 1. Note
that in step (4d) of the algorithm, the amount of flow computed is equal to the difference
in the min-marginal ψv;j(θ) of the particular label assignment and the minimum energy
ψ(θ). Let Q be the set of all label assignments whose corresponding min-marginals
have to be computed. Then the number of augmenting paths to be found during the
whole algorithm is bounded from above by: U = ψ(θ)+

∑
q∈Q(ψq(θ)−ψ(θ)). For the

case of binary random variables, assuming that we want to compute all latent variable
min-marginals i.e. Q = {(u; i) : u ∈ V, i ∈ Xv} and qmax = maxq∈Q(ψq(θ) − ψ(θ)),
the complexity of the above algorithm becomes O((ψ(θ) + nqmax)T (n, m)), where

6 The exact number of edge weights that have to be changed is of the order of the number of
variables whose value is being fixed for obtaining the projection.
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Table 2. Times (in seconds) taken for min-marginal computation for binary random variables.
For a sequence of randomly generated MRFs of a particular size and neighbourhood system, a
pair of times is given in each cell of the table. On the left is the average time taken to compute the
MAP solution using a single graph cut while on the right is the average time taken to compute
the min-marginals corresponding to all latent variable label assignments.

MRF size 105 2 × 105 4 × 105 8 × 105

4-neighbourhood 0.18, 0.70 0.46, 1.34 0.92, 3.156 2.17, 8.21
8-neighbourhood 0.40, 1.53 1.39, 3.59 2.42, 8.50 5.12, 15.61

T (n, m) is the complexity of finding an augmenting path in the graph with n nodes
and m edges and pushing flow through it. Although the worst case complexity T (n, m)
of the augmentation operation is O(m), we observe experimentally that using the dual
search tree algorithm of [5], we can get a much better amortized time performance. The
average time taken by our algorithm for computing the min-marginals in random MRFs
of different sizes is shown in Table 2.

5 Applications of Min-marginals

Min-marginal energies have been used for a number of different purposes. One of the
most important of these has been to compute the M most probable configurations of a
MRF [10]. Prior to this work, the use of min-marginals was severely restricted because
they were computationally expensive to compute for MRFs having a large number of
latent variables. However, our new algorithm is able to handle a MRF of far larger size
which opens up possibilities for many new applications. For instance, in the experi-
ments shown in figure 4, the time taken for all min-marginal computations for a MRF
consisting of 2×105 binary latent variables was 1.2 seconds which is roughly four times
the time taken for a single graph cut. Next, we show how min-marginals can be used
to obtain a confidence value for any pixel label assignment in the image segmentation
problem.

Min-marginals as a Confidence Measure. We have shown in section 2.1 how min-
marginals can be used to compute a confidence measure for any latent variable assign-
ment in a MRF. Figure 4 shows the confidence values obtained for a MRF used for
modeling the two label (foreground and background) image-segmentation problem as
defined in [8]. Note that ideally we would like the confidence map to be black and white
showing extremely ‘low’ or ‘high’ confidence for a particular label assignment. How-
ever, as can be seen from the result, the confidence map contains regions of different
shades of grey. Such confidence maps can be used to direct user interaction in the con-
text of interactive image segmentation. In order to remove the ambiguity in the solution,
the user could give additional cues in the grey regions.

Recently, a number of image segmentation method have been proposed which cou-
ple MRFs with prior information about the shape of the object being segmented. In a
separate work within this volume [15], we describe how a shape prior generated using
an articulated human model can be integrated with the MRF used to solve the image
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Fig. 4. Image segmentation with max-marginal probabilities. The first image is a frame of the
movie Run Lola Run. The second shows the binary foreground-background segmentation where
the aim was to segment out the human. The third and fourth images shows the confidence values
obtained by our algorithm for assigning pixels to be foreground and background respectively. In
the image, the max-marginal probability is represented in terms of decreasing intensity of the
pixel. Our algorithm took 1.2 seconds for computing the max-marginal probabilities for each
latent variable label assignment. The time taken to compute the MAP solution was 0.3 seconds.

Fig. 5. Effect of incorporating a shape prior on the confidence values. The first column shows
the original image from which we intend to segment out the human. The images in the first row
are the result of using only colour information for the segmentation problem. The images in the
second row correspond to using a shape prior along with the colour information. In the second
column, we see the images representing the difference of the unary penalties θv;bg − θv;fg for
every pixel v. The MAP segmentation is shown in the third column, while the images in the fourth
column show the confidence values obtained by our algorithm for labelling pixels as foreground.

segmentation problem. The effect of incorporating a shape prior on the confidence val-
ues of the pixels can be seen in figure 5. Our analysis of uncertainty shows that the
incorporation of the shape prior in the image segmentation problem gives better results,
and reduces the ambiguity in the solution.
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6 Conclusions

In this paper we addressed the long-standing problem of computing the exact min-
marginals for graphs with arbitrary topology in polynomial time. We propose a novel
algorithm based on dynamic graph cuts [6] that computes the min-marginals extremely
efficiently. Our algorithm makes it feasible to compute exact min-marginals for MRFs
with large number of latent variables. This opens up many new applications for min-
marginals which were not feasible earlier. We have presented one such application in
the form of obtaining confidence values for pixel label assignments in the image seg-
mentation problem.

References

1. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. In:
AISTATS05. (2005) 182–189

2. M. J. Wainwright, T.S.J., Willsky, A.S.: Map estimation via agreement on (hyper)trees:
Message-passing and linear-programming approaches. Technical Report UCB/CSD-03-1269
(2003)

3. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In:
ECCV02. (2002) III: 65 ff.

4. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In:
CVPR98. (1998) 648–655

5. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. PAMI 26 (2004) 1124–1137

6. Kohli, P., Torr, P.: Eficiently solving dynamic markov random fields using graph cuts. In:
ICCV05. (2005)

7. Chiang, Y.J., Tamassia, R.: Dynamic algorithms in computational geometry. Technical Re-
port CS-91-24 (1991)

8. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation
of objects in n-d images. In: ICCV01. (2001) I: 105–112

9. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory (2001)

10. Yanover, C., Weiss, Y.: Finding the m most probable configurations in arbitrary graphical
models. In: Advances in Neural Information Processing Systems 16. MIT Press (2004)

11. Dawid, P.: Applications of a general propagation algorithm for probabilistic expert systems.
Statistics and Computing. 2 (1992) 25–36

12. Nilsson, D.: An efficient algorithm for finding the m most probable configurations in
bayesian networks. Statistics and Computing 8 (1998) 159–173

13. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)
14. Ishikawa, H.: Exact optimization for markov random fields with convex priors. PAMI 25

(2003) 1333–1336
15. Bray, M., Kohli, P., Torr, P.: Posecut: Simulataneous segmentation and 3d pose estimation of

humans using dynamic graph cuts. In: ECCV06. (2006)



Tracking Dynamic Near-Regular Texture Under

Occlusion and Rapid Movements

Wen-Chieh Lin1 and Yanxi Liu2

1 College of Computer Science, National Chiao-Tung University, Taiwan
wclin@cs.nctu.edu.tw

2 School of Computer Science, Carnegie Mellon University, USA
yanxi@cs.cmu.edu

Abstract. We present a dynamic near-regular texture (NRT) tracking
algorithm nested in a lattice-based Markov-Random-Field (MRF) model
of a 3D spatiotemporal space. One basic observation used in our work is
that the lattice structure of a dynamic NRT remains invariant despite its
drastic geometry or appearance variations. On the other hand, dynamic
NRT imposes special computational challenges to the state of the art
tracking algorithms: including highly ambiguous correspondences, occlu-
sions, and drastic illumination and appearance variations. Our tracking
algorithm takes advantage of the topological invariant property of the dy-
namic NRT by combining a global lattice structure that characterizes the
topological constraint among multiple textons and an image observation
model that handles local geometry and appearance variations. Without
any assumptions on the types of motion, camera model or lighting condi-
tions, our tracking algorithm can effectively capture the varying underly-
ing lattice structure of a dynamic NRT in different real world examples,
including moving cloth, underwater patterns and marching crowd.

1 Introduction

Real-world examples of near-regular texture (NRT) are numerous, especially
in man-made environment, such as fabric patterns, decorated surface of archi-
tectures, floor patterns, and wallpapers. Effective computational algorithms to
handle NRTs, however, are scarce. Although texture analysis and synthesis have
been studied in computer vision and computer graphics for years, the geomet-
ric and photometric regularity of NRT have not been fully exploited in existing
algorithms. Liu et al.[1, 2] first utilized the idea of departures from regularity to
analyze and manipulate a static NRT.

An NRT P is defined as a geometric and photometric deformation of a regular
texture P = d(Pr), where Pr is a congruent wallpaper pattern formed by 2D
translations of a single tile and d is the deformation mapping [1]. Dynamic
NRTs are NRTs under motion. Correspondingly, we define the basic unit of
a dynamic NRT texton, as a geometrically and photometrically varying tile,
moving through a 3D spatiotemporal space. Topologically, the structure of an
NRT can be modeled as a network of statistically varied springs. Photometrically,
the appearance of different textons are similar but not exactly identical. The
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Fig. 1. Lattices (red lines) and textons (yellow quadrilaterals) of different types of
NRTs. We model the lattice of an NRT as an MRF where each node represents a
texton. The state of a node statistically depends on its twelve neighbors (pointed by
arrows).

tracking of dynamic NRT is to treat the deformation field d as a function of
time d(t) while maintaining its topological relations. Figure 1 shows the lattice
and textons of different types of dynamic NRTs.

In this paper, we further exploit texture regularity to track a dynamic NRT
under rapid motion and self-occlusions. One fundamental observation in our work
is that the topological structure of a dynamic NRT remains invariant while the
NRT going through geometric and photometric variations. Tracking a dynamic
NRT, however, is challenging computationally. Because textons of an NRT have
similar appearance, a tracking algorithm can easily mistake one texton for an-
other. Furthermore, the tracking problem becomes very difficult when textons
move rapidly or occlude each other. Due to these difficulties, tracking textons of
a dynamic NRT remains an unsolved problem.

Seeking for an effective computational tool and an in-depth understanding
of dynamic NRTs, we propose a lattice-based tracking algorithm based on a
spatiotemporal inference formulation. We treat textons of an NRT as multi-
ple targets with a topological constraint while allowing individual textons to
vary flexibly in geometry and appearance. Inspired by the physics-based cloth
simulation[3], we model the lattice topology as a network of springs and imple-
ment it as a Markov Random Field (MRF). We use a Lucas-Kanade-registration-
based observation model to handle the appearance and geometry variations of
individual textons in the tracking process. Under such a computational modeling
of the topology and appearance of a dynamic NRT, we solve the spatiotemporal
inference problem using the belief propagation and the particle filtering algo-
rithms. The main contribution of this paper is a framework to track the global
structure as well as individual textons of a dynamic NRT, which may undergo
rapid motion, occlusion, large geometric and photometric deformations.
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2 Related Work

Our work is related to three types of tracking problems: deformable object track-
ing, cloth motion capture, and multi-target tracking. Image alignment is adopted
in many deformable object tracking algorithms where different models are used
to confine the deformation space, such as PCA[4, 5], finite element mesh[6], or
subdivision surface[7]. These models are not suitable for tracking textons on
a folded surface as they assume the surface to be tracked is smooth and non-
folded. Recently, Pilet et al. track a non-rigid surface by repeatedly detecting and
matching features in an image sequence[8]. They do not handle NRT tracking in
which repeated patterns can cause a serious feature correspondence problem.

The goal of cloth motion capture is to capture the 3D motion of cloth. Special
calibrated multi-camera systems[9, 10, 11], color-coded patterns[9, 10], or con-
trolled lighting[9] are required to reduce the tracking difficulties due to ambigu-
ous feature correspondences or occlusion problems. Guskov[12] developed an
algorithm that can detect and track a black-white chess board pattern on cloth.
His algorithm does not work on general NRTs since the black-white chess board
pattern is assumed in the detection and image alignment process. Our tracking
algorithm can serve as the front end of a cloth motion capture system where no
special purpose color-coded pattern or camera calibration is required.

Tracking textons of a dynamic NRT can also be considered as a special case
of multi-target tracking. The main difference between NRT tracking and multi-
target tracking is that the connection topology among targets does not change
in NRT tracking. Modeling the spatial relation among tracked targets using an
MRF has been applied to ant tracking[13], sports player tracking[14] and hand
tracking[15]. These algorithms may not track dynamic NRTs effectively since
topology regularity is not explicitly modeled and utilized.

Existing algorithms for deformable object tracking, cloth motion capture, or
multi-target tracking succeed in their respective domains, but none of them deals
with general NRT tracking problem under various types of motion and occlusion
conditions as treated in this paper. Our approach combines techniques used in
multi-target tracking (MRF) and deformable object tracking (image alignment).
Therefore, we can track various types of dynamic NRTs under different motion
and conditions in a unified framework.

3 Approach

Dynamic NRTs can be categorized into two types based on the spatial connectivity
between textons. If the textons of a dynamic NRT are located on a deforming sur-
face where there is no gap between textons, we call this type of texture a dynamic
NRT with tightly coupled textons. On the other hand, if two neighboring textons
are allowed to move with a loosely connected constraint, there might be a gap or
overlap between two neighbor textons. We call this type of texture a dynamic NRT
with loosely coupled textons. Figure 1 illustrates these two types of dynamic NRTs.

Our NRT tracking algorithm consists of four components: 1)texton detec-
tion, 2)spatial inference, 3)temporal tracking, and 4)template update
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Fig. 2. Tracking approach overview

(Figure 2). In the initialization stage, the texton detection algorithm finds all
textons in the first frame based on a given template for textons. All detected
textons are then geometrically aligned. We call these aligned textons from the
first frame texton templates. A quadrilateral lattice is constructed by connecting
the centers of detected textons. In the tracking stage, texton detection is per-
formed at each frame to include any additional texton entering the scene. We
handle the texton tracking problem through a statistical inference process con-
sisting of spatial inference and temporal tracking, where the states of a texton
(position, shape, and visibility) are sampled and its distribution is modeled by
a particle filter in the tracking process. In each frame, a set of sampled states is
drawn and a dynamic model generates the predicted states for the next frame.
Belief propagation (BP)[16, 17] is then applied to these predicted states to find
the most likely lattice configuration based on an MRF-based lattice model and
image data. BP also provides the probability of each texton state, which is used
to refine the approximation of the distribution of texton states through particle
filtering. The above process iterates until the whole image sequence is tracked.
In addition, the texton template set is updated to handle the variation of image
intensities of textons in the tracking process.

3.1 Tracking Initialization and Texton Detection

In the initialization stage, the user identifies a texton in the first image frame
by specifying two vectors t1 and t2 that form a parallelogram (Figure 3(a)).
Once the first texton is identified, the second, third, and fourth textons are
obtained by translating the first texton by t1, −t1 and t2. A texton template
T 1 is constructed by transforming the parallelogram region in the image to a
rectangular region [1, w] × [1, h], where w = length(t1), h = length(t2), and the
affine transformation matrix A1 is parameterized by the image coordinates of
texton vertices (c1x, c1y), (c2x, c2y), (c3x, c3y), (c4x, c4y),

A1 =
c1x c3x c2x+c4x

2

c1y c3y c2y+c4y

2
1 1 1

w 1 w
1 h h

2
1 1 1

−1

(1)
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(a) (b)

Fig. 3. (a)Initial texton (yellow parallelogram formed by t1 and t2) and lattice (red
lines). The neighboring textons are estimated by translating the first texton by t1, −t1
and t2. (b)Spatial prediction of the position of a new texton.

1 2

3

4

20

34

(a)initial lattice (b)intermediate result (c)final result

Fig. 4. Temporal tracking initialization via spatial tracking

Using the first four textons as the basis for the initial lattice, the lattice
grows by repeating the spatial prediction and the validation steps. In the spatial
prediction step, the vertices of a texton are estimated from existing textons. Let
Ai be the affine transformation matrix that maps pixels of the texton template
T i to the texton i in the image. Suppose texton i − 1, i, and i + 1 are on the
same lattice row or column, and Ai−1 and Ai are known, Ai+1 is predicted by
Ai+1 = Ai ·A−1

i−1 ·Ai[18]. In the validation step, we verify if the texton is valid by
checking its associative topology constraints, area and side length difference with
the neighboring textons. Additionally, the vertex positions of all valid textons
are refined through an image alignment process where a global optimization that
involves the whole lattice is performed[18]. The spatial prediction and validation
process are repeated until no new texton is detected. A texton template set
T1 = {T i

1}N
i=1 is constructed by collecting all valid texton template T i

t , where Tt

denotes the template set at frame t. The initial configuration of lattice is obtained
by connecting all the centers of textons. Figure 4 shows texton detection results
at different stages of tracking initialization.

3.2 Spatial Inference

LetXt = (x1
t , x

2
t , ..., x

N
t )be the configurationof the lattice andZt = (z1

t , z2
t , ..., zN

t )
the image observation at frame t, where N is the number of textons, and xi

t, zi
t

represent the state and the image intensities of texton i respectively. The spatial
inference problem is modeled as a Markov network[17]:
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p(Xt|Zt) ∝
(i,j)∈E

ϕ(xi
t, x

j
t )

N

i=1

φ(xi
t, z

i
t) (2)

where xi
t = (ci1x

t , ci1y
t , ci2x

t , ci2y
t , ci3x

t , ci3y
t , ci4x

t , ci4y
t , vi

t) is the state of a texton and
E is the set of all connected edges. The pair (cikx, ciky) denotes the image coor-
dinates of the kth vertex of the texton (k = 1, 2, 3, 4) and vi

t ∈ (0, 1) represents
visibility of texton i at frame t. The first product term

∏
ϕ(xi

t, x
j
t ) in Equation

(2) can be considered as a lattice model that models the probabilistic rela-
tion among textons, and the second product term

∏
φ(xi

t, z
i
t) is an observation

model that evaluates the likelihood of texton states based on image data.

Lattice Model. We model the lattice structure as a pairwise MRF. An MRF is
an undirected graph (V , E) where the joint probability is factored as a product of
local potential functions at each node (each node corresponds to a texton), and
the interactions are defined on neighborhood cliques. The most common form of
MRF is a pairwise MRF in which the cliques are pair of connected nodes in the
undirected graph. The potential function in our MRF is defined as follows:

ϕ(xi
t, x

j
t ) = e−β·dg(xi

t,x
j
t) (3)

dg(xi
t, x

j
t ) = (‖ci

m − cj
m‖ − lijt )2 · vi

tv
j
t (4)

where β is a global weighting scalar that is applied to all springs. β weights
the influence of the lattice model versus the observation model in the Markov
network. dg is a function that measures the geometric deformation (spring energy
function). ci

m ∈ R2×1 is the mean position of four vertices of the texton i. This
potential function acts like a spring that adjusts the position of textons based
on their mutual distance. The rest length lijt of the spring is spatially dependent.
To handle occlusion, vi

t and vj
t in Equation (4) are used to weigh the influence

of a node by their visibility status.
The neighborhood configuration of the MRF in our lattice model is similar

to the spring connection used in cloth motion simulation[3]. Figure 1 shows the
connection of a node where the state of a node depends on the states of its twelve
neighbors. It has been shown in cloth simulation that this kind of configuration
provides a good balance between structural constraint and local deformations.

Observation Model. We define the image likelihood as follows:

φ(xi
t, z

i
t) ∝ e

− 1
vi

t
da(xi

t,z
i
t,T i

t )
(5)

where the appearance difference function da is weighted by the visibility score
vi of a texton so that visible textons contribute more in the likelihood function.
da =

∑2
r=1

∑
p ‖zir

t (p) − T i
t (p)‖2 is the sum of squared differences (SSD) be-

tween a texton template T i
t and the observed texton at frame t. p denotes a

pixel location in the coordinate frame of the template. zir
t = It(W(p; ãir

t )) is
an aligned texton obtained from the affine warp W whose parameters ãir

t are
computed by the Lucas-Kanade algorithm using the texton vertex coordinates
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(cikx
t , ciky

t ) as the initial values (see appendix in [18]). Note that a quadrilateral
texton is divided into two triangles and the vertex coordinates of each triangle
are used to parameterize ai1

t and ai2
t respectively. If textons are tightly coupled,

the textured region is modeled as a piecewise affine warp and the position of
each texton vertex is affected by four neighboring textons. This enforces hard
connected constraints among textons when computing ãir

t . If the textons are
loosely coupled, ãir

t of each texton is computed independently. This allows the
observation model to handle more flexible motion, such as underwater texture,
or people in a crowd.

Visibility Computation. The visibility of a texton is determined by con-
straints and measurements related to geometry and appearance of a texton. The
constraints, which include topology, side length and area difference with neigh-
boring textons, are used to decide if a texton is valid and can be included in
the tracking process. The measurements define the visibility score vi

t of a valid
texton i at frame t:

vi
t =

1

1 + ρ
(
si

s∗ +
ρ

4

4

k=1

|bi
k − b∗

k|
b∗
k

) (6)

where ρ is a constant to weight the influence of area and side length variations
in the visibility measurement. si and s∗ are the area of texton i and the seed
texton. bi

k and b∗k are the kth side length of texton i and the seed texton. A
visibility map V is constructed based on the visibility scores of all textons:

V = {M i|M i ∈ (0, 1), i = 1 . . . N} (7)

where M i = 1 if vi
t ≥ 0.5; M i = 0 if vi

t < 0.5.

Belief Propagation. The spatial inference is solved by the belief propagation
(BP) algorithm[16, 17]. Since the conventional BP algorithm works on discrete
variables while the configuration of a lattice is described by continuous vari-
ables, we need to either discretize the state variables or apply continuous BP
algorithms[19, 20]. For computational efficiency, we choose to use the discrete BP
and adopt the sample-based statistics to represent the continuous state variables
for each texton. Particle filtering[21, 22] is applied to update the particle set for
each texton in the temporal tracking process.

3.3 Temporal Tracking

We adopt particle filtering to represent and maintain the distribution of the
lattice configurations in temporal tracking. The belief distribution computed by
the BP is used in importance sampling to draw new samples. The dynamic model
is then applied to predict a set of states for each texton, and the discrete BP is
applied to infer the most likely configuration based on these predicted states.

We use a second-order dynamic model, i.e., the state of the lattice at current
frame depends on the states at previous two frames:

p(Xt|Xt−1, Xt−2) ∝ p(xi
t|xi

t−1, x
i
t−2) (8)

where a constant velocity model with Gaussian noise is used for each texton:
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p(xi
t|xi

t−1, x
i
t−2) = N (xi

t − 2xi
t−1 + xi

t−2; 0, Λi) (9)

Λi is a diagonal matrix whose diagonal terms correspond to the variance of the
state at different dimensions.

Our approach of combining BP and particle filter is similar to PAMPAS[20] in
spirit, however, PAMPAS incorporates particle filter in the message propagation
process within BP while we only use particle filter to carry the texton states
between image frames. Note that Guskov et al.[10] also used the Markov network
to associate color-coded quadrilaterals in an image with the quadrilaterals of the
surface model. They did not use the Markov network to infer the position and
the shape of the textons.

3.4 Template Update

As the appearance of textons vary during tracking process, it is necessary to
update the texton template set. We use the template updating algorithm in [23]
where the basic idea is to correct the drift in each frame by additionally aligning
the current image with the template at the first frame. After aligning the current
image with the previous frame, the computed warping parameters are used as
the initial values in the additional alignment process. If the warping parameters
obtained from the second image alignment process is close to the first one, the
template is updated; otherwise, the template remains unchanged.

4 Results

4.1 Tracking Dynamic NRTs Without Occlusion

We tested our tracking algorithm on several dynamic NRTs under different types
of motions1 (Figure 5). We also compared our results against the robust optical
flow algorithmas it is a general purpose tracking algorithm[24]. Although there are
more sophisticated tracking algorithms, they are usually designed for certain types
of problems (section 2). Due to similar appearance of NRT textons, the optical flow
tracking algorithm was distracted by neighboring textons. We also tested our algo-
rithm on a pattern viewed through disturbed water (Figure 5(b)(e)). The appear-
ance of textons vary rapidly in the video because of surface refraction and motion
blur. Despite these difficulties, our algorithm is able to track these highly dynamic
and varied textons successfully. These two experiments demonstrate that, even
without occlusion, general tracking algorithms like optical flow is not suitable to
track a dynamic NRT in a video effectively.

The textons of the underwater texture are modeled as a loosely coupled MRF
allowing flexible motion of textons. Figure 5(c)(f) show another example of track-
ing loosely coupled textons. In this example, a texton is defined as a local patch
around the head region of a person. The marching motion presents a relatively
large global motion and small local deformation of individual textons compared
to the motion of tightly coupled textons. Also, the appearance of textons varies
1 All video results can be seen in http://www.cs.cmu.edu/∼wclin/dnrtPAMI/dnrt.html.
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(a)Optical flow results (b)Optical flow results (c)Optical flow results

(d)Our results (e)Our results (f)Our results

Fig. 5. Comparison of dynamic NRT tracking results without occlusion (robust optical
flow[24] vs. ours). (a)(d) is a dynamic NRT on slowly varying cloth. (b)(e) is a pattern
seen through disturbed water; there are serious motion blur and reflection highlights
in the video. (c)(f) is a crowd motion exhibiting NRT property.

more due to shadows. The underwater texture and crowd marching examples
show that our algorithm is able to handle large illumination changes, rapid ge-
ometric deformation, and intensity variations in the tracking process.

4.2 Tracking Dynamic NRTs with Occlusion

Occlusion is one of the major challenges in dynamic texture tracking. Textons
may leave/enter the scene, or be occluded by other objects or other textons on
a folded surface. Figure 6 shows our tracking result of a folding fabric pattern
under self and external occlusions. The lattice, visible textons, and occluded
textons are shown in red, yellow, and cyan colors respectively. The bottom row
in Figure 6 shows visibility maps of textons where black regions correspond to
occluded textons and visible textons are geometrically aligned. One can observe
that a few textons are occluded in the middle and two occluded by a finger in
the bottom-right region in Figure 6(b). When the texton is at the boundary of
a lattice, the BP inference result for the texton is less reliable since it receives
messages from fewer neighboring nodes. This is the reason why there are some
tracking errors in the cyan lattice at boundary, e.g, top-middle in Figure 6(c).

The results of dynamic NRT tracking can be used in many other applications,
e.g., video editing, cloth motion capture, and fashion design preview (changing
cloth texture). Figure 7 demonstrates a superimposing application as a result of
the NRT tracking. For more tracking and video editing results, and comparisons
to other tracking algorithms, please see [18].

Although our algorithm can successfully track textons through occlusion,
there is another interesting research problem: can we infer the positions of tex-
tons when they are occluded? One way to solve this problem is to modify the
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(a) frame 25 (b) frame 50 (c) frame 100

Fig. 6. Tracking lattices (top row) and visibility map (bottom row) of a folding fabric
pattern. The visible lattice, occluded lattice, visible textons, and occluded textons
are shown in red, cyan, yellow, and cyan color. One can observe that there are self-
occlusions due to folding in (b)(c) and external occlusion by a finger in (b).

(a)input (b)tracking result (c)visibility map (d)superimposing result

Fig. 7. Tracking and superimposition results of a fabric pattern under occlusion

MRF model such that it can represent a folded topology under occlusion. We
would like to explore this problem in the future.

5 Conclusion

We propose a lattice-based dynamic NRT tracking algorithm which combines a
lattice structure model to represent the topological constraint of a dynamic NRT
and a registration-based image observation model to handle the geometry and
appearance variations of individual textons. We demonstrate the effectiveness
of our algorithm on tracking dynamic NRTs under rapid movements, folding
motion or illumination changes through different mediums. There are several
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remaining future research issues. First, given the captured lattice structure of
an NRT on a 3D surface, a shape-from-texture algorithm may be applied to
obtain the 3D geometry of the textured surface. Results from this will further
expand graphics applications of our tracking algorithm. Secondly, we would like
to investigate whether it is necessary to use a varying topology formalization
for extremely deformed regular textures. For example, the topological structure
for a crowd motion may vary drastically. It may or may not be beneficial to
allow adaptive topology during the tracking process. Finally, a thorough and
more comprehensive evaluation of various tracking algorithms on dynamic NRT
tracking is needed to enhance and solidify our understanding of both the state
of the art tracking algorithms and the dynamic NRT itself.
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Abstract. An original concept for computing instantaneous 3D pose
and 3D velocity of fast moving objects using a single view is proposed,
implemented and validated. It takes advantage of the image deforma-
tions induced by rolling shutter in CMOS image sensors. First of all,
after analysing the rolling shutter phenomenon, we introduce an origi-
nal model of the image formation when using such a camera, based on
a general model of moving rigid sets of 3D points. Using 2D-3D point
correspondences, we derive two complementary methods, compensating
for the rolling shutter deformations to deliver an accurate 3D pose and
exploiting them to also estimate the full 3D velocity. The first solution
is a general one based on non-linear optimization and bundle adjust-
ment, usable for any object, while the second one is a closed-form linear
solution valid for planar objects. The resulting algorithms enable us to
transform a CMOS low cost and low power camera into an innovative
and powerful velocity sensor. Finally, experimental results with real data
confirm the relevance and accuracy of the approach.

1 Introduction

In many fields such as robotics, automatic inspection, road traffic, or metrology,
it is necessary to capture clear images of objects undergoing high velocity mo-
tion without any distortion, blur nor smear. To achieve this task, there is a need
to image sensors which allow very short exposure time of all the matrix pixels
simultaneously. This functionality requires a particular electronic design that is
not included in all camera devices. Full Frame CCD sensors, without storage
memory areas, require mechanical obturator or stroboscopic light source, intro-
ducing more complexity in the vision system. Frame Transfer CCD sensors may
not reach the desired frame rate or may be costly because of additional sillicium
in storage areas [9].

Standard CMOS Rolling Shutter sensors are considered as low cost and low
power sensors. They are becoming more frequently used in cameras. They en-
able adequate exposure time without reducing frame rate thanks to overlapping
exposure and readout. Their drawback is that they distort images of moving
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Fig. 1. An example of distortion of a rotating ventilator observed with a Rolling Shutter
camera: static object (right image) and moving object (left image)

objects because the pixels are not all exposed simultaneously but row by row
with a time delay defined by the sensor technology (figure 1). This distortion
may represent a major obstacle in tasks such as localization, reconstruction or
default detection (the system may see an ellipse where in fact there is a circular
hole). Therefore, CMOS Rolling Shutter cameras could offer a good compro-
mise between cost and frame rate performances if the problem of deformations
is taken into account.

2 Related Works and Contributions

This work, is related to our previous one presented in [1], which focused on
the development of a method which maintains accuracy in pose recovery and
structure from motion algorithms without sacrificing low cost and power char-
acteristics of the sensor. This was achieved by integrating, in the perspective
projection model, kinematic and technological parameters which are both causes
of image deformations. The resulting algorithm, not only enables accurate pose
recovery, but also provides the instantaneous angular and translational veloc-
ity of observed moving objects. Rolling shutter effects which are considered as
drawbacks are transformed into an advantage ! This approach may be consid-
ered as an alternative to methods which uses image sequences to estimate the
kinematic between views since it reduces the amount of data and the computa-
tional cost (one image is processed rather than several ones). In a parallel work
by Meingast [7] (published after the submission of this paper), the projection in
rolling shutter cameras is modelled in the case of fronto-parallel motion obtain-
ing equations which are similar to those of Crossed-Slits cameras [13]. To our
knowledge, there is no work in the vision community literature on taking into
account effects of rolling shutter in pose recovery algorithms nor on computing
velocity parameters using a single view. Indeed, all pose recovery methods ([6],
[8], [2], [3], [10]) make the assumption that all image sensor pixels are exposed
simultaneously. The work done by Wilburn et al. [11] concerned the correction
of image deformation due to rolling shutter by constructing a single image us-
ing several images from a dense camera array. Using the knowledge of the time
delay due to rolling shutter and the chronograms of release of the cameras, one
complete image is constructed by combining lines exposed at the same instant
in each image from the different cameras.
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Two main contributions are presented in this paper. First, the perspective
projection model of rolling shutter cameras presented in [1] is improved by re-
moving the assumption of small motion during image acquisition. This makes
the model more accurate for very fast moving objects. A novel non-linear al-
gorithm for pose and velocity computation is then described. It generalizes the
bundle adjustment method to the case of moving points. Indeed, it is based on
non-linear least-square optimization of an error function defined in image met-
ric and expressed with respect to both pose and velocity parameters (rather
than to only pose parameters in classical approaches). Second, a linear al-
gorithm for pose and instantaneous velocity computation is developed in the
particular case of planar objects. This linear solution provides an initial esti-
mate of the pose and velocity parameters and serves to initialize the non-linear
algorithm.

Section 3 of this paper describes the process of image acquisition using a
CMOS Rolling Shutter imager. In section 4, a general geometric model for
the perspective projection of 3D point on a solid moving object is presented.
Image coordinates of the point projections are expressed with respect to ob-
ject pose and velocity parameters and to the time delay due to image scanning.
Section 5 deals with the problem of computing pose and velocity parameters
of a moving object, imaged by a Rolling Shutter camera, using point corre-
spondences. Finally, experiments with real data are presented and analyzed in
section 6.

3 What is Rolling Shutter ?

In digital cameras, an image is captured by converting the light from an object
into an electronic signal at the photosensitive area (photodiode) of a solid state
CCD or CMOS image sensor. The amount of signal generated by the image sen-
sor depends on the amount of light that falls on the imager, in terms of both
intensity and duration. Therefore, an on-chip electronic shutter is required to
control exposure. The pixels are allowed to accumulate charge during the inte-
gration time. With global shutter image sensors, the entire imager is reset before
integration. The accumulated charge in each pixel is simultaneously transferred
to storage area. Since all the pixels are reset at the same time and integrate
over the same interval there is no motion artifacts in the resulting image. With
a CMOS image sensor with rolling shutter, the rows of pixels in the image are
reset in sequence starting at the top and proceeding row by row to the bot-
tom. The readout process proceeds in exactly the same fashion and the same
speed with a time delay after the reset (exposure time). The benefit of rolling
shutter mode is that exposure and readout are overlapping, enabling full frame
exposures without reducing the frame rate. Each line in the image has the same
amount of integration, however the start and end time of integration is shifted in
time as the image is scanned (rolled) out of the sensor array as shown in Fig.2.
In this case, if the object is moving during the integration time, some artifacts
may appear. The faster the object moves the larger is the distortion.



Simultaneous Object Pose and Velocity Computation 59

Fig. 2. Reset and reading chronograms in rolling shutter sensor (SILICON IMAGING
documentation)

4 Projecting a Point with Rolling Shutter Camera

Let us consider a classical camera with a pinhole projection model defined by
its intrinsic parameter matrix [10]

K =

⎡⎣αu 0 u0
0 αv v0
0 0 1

⎤⎦
Let P = [X, Y, Z]T be a 3D point defined in the object frame. Let R and T be
the rotation matrix and the translation vector between the object frame and the
camera frame. Let m = [u, v]T be the perspective projection of P on the image.
Noting m̃ =

[
mT, 1

]T and P̃ =
[
P T, 1

]T, the relationship between P and m
is:

sm̃ = K [R T ] P̃ (1)

where s is an arbitrary scale factor. Note that the lens distortion parameters
which do not appear here are obtained by calibration [5] and are taken into
account by correcting image data before using them in the algorithm.

Assume now that an object of known geometry, modelled by a set of n points
Pi = [Xi, Yi, Zi]

T, undergoing a motion with instantaneous angular velocity Ω

around an instantaneous axis of unit vector a = [ax, ay, az]
T, and instantaneous

linear velocity V = [Vx, Vy, Vz ]
T, is snapped with a rolling shutter camera at an

instant t0. In fact, t0 corresponds to the instant when the top line of the sensor
is exposed to light. Thus, the light from the point Pi will be collected with a
delay τi proportional to the image line number on which Pi is projected. As
illustrated in figure 3, τi is the time delay necessary to expose all the lines above
the line which collects the light from Pi. Therefore, to obtain the projection
mi = [ui, vi]

T of Pi, the pose parameters of the object must be corrected in
equation 1 by integrating the motion during the time delay τi. Since all the
lines have the same exposure and integration time, we have τi = τvi where τ
is the time delay between two successive image line exposures. Thus τ = fp

vmax

where fp is the frame period and vmax is the image height. Assuming that τi
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Fig. 3. Perspective projection of a moving 3D object: due to the time delay, points P 0

and P 1 are not projected from the same object pose

is short enough to consider uniform (but not necessarily small) motion during
this interval, the object rotation during this interval is obtained thanks to the
Rodrigues formula:

δRi = aaT (1 − cos (τviΩ)) + Icos (τviΩ) + âsin (τviΩ)

where I is the 3×3 identity matrix and â the antisymetric matrix of a. The
translation during the same interval, expressed in the static camera frame, is:

δT i = τviV

Thus, equation 1 can be rewritten as follows:

sm̃i = K [δRiR T + δT i] P̃i (2)

where R and T represent now the instantaneous object pose at t0. Equation 2
is the expression of the projection of a 3D point from a moving solid object
using a rolling shutter camera with respect to object pose, object velocity and
the parameter τ . One can note that it contains the unknown vi in its two sides.
This is due to the fact that coordinates of the projected point on the image
depend on both the kinematics of the object and the imager sensor scanning
velocity.

5 Computing the Instantaneous Pose and Velocity of a
Moving Object

In this section, we assume that a set of rigidly linked 3D points Pi on a moving
object are matched with their respective projections mi measured on an image
taken with a calibrated rolling shutter camera. We want to use this list of 3D-2D
correspondences to compute the instantaneous pose and velocity of the object
at t0.
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5.1 Non-linear Method for 3D Objects

In the general case, the scale factor of equation 2 can be removed as follows:

ui = αu
R

(1)
i P i+T

(x)
i

R
(3)
i P i+T

(z)
i

+ u0
Δ= ξ

(u)
i (R, T , Ω, a, V )

vi = αv
R

(2)
i P i+T

(y)
i

R
(3)
i P i+T

(z)
i

+ v0
Δ= ξ

(v)
i (R, T , Ω, a, V )

(3)

where T
(x,y,z)
i are the components of T i = T + δT i and R

(j)
i is the jth row of

Ri = δRiR. Subsiding the right term from the left term and substituting ui

and vi by image measurements, equation 3 can be seen as an error function with
respect to pose and velocity (and possibly τ) parameters:

ui − ξ
(u)
i (R, T , Ω, a, V ) = ε

(u)
i

vi − ξ
(v)
i (R, T , Ω, a, V ) = ε

(v)
i

We want to find (R, T , Ω, a, V ) that minimize the following error function:

ε =
n∑

i=1

[
ui − ξ

(u)
i (R, T , Ω, a, V )

]2
+
[
vi − ξ

(v)
i (R, T , Ω, a, V )

]2
(4)

This problem with 12 unknowns can be solved using a non-linear least square
optimization if at least 6 correspondences are available. This can be seen as a
bundle adjustment with a calibrated camera. Note that, in our algorithm, the
rotation matrix R is expressed by a unit quaternion representation q(R). Thus,
an additional equation, which forces the norm of q(R) to 1, is added. It is obvious
that this non-linear algorithm requires an initial guess to converge towards an
accurate solution.

5.2 Linear Method for Planar Objects

In this section, a linear solution which may yield an initial guess of the pose and
velocity parameters that can initialize the non-linear algorithm is developed.
Assuming that τi is short enough to consider small and uniform motion during
this interval, equation 1 can be rewritten, as in [7], as follows:

sm̃i = K
[(

I + τviΩ̂
)

R T + τviV
]
p̃i (5)

where Ω̂ is the antisymetric matrix associated to Ω =
[
Ω(x), Ω(y), Ω(z)

]T
. When

points pi are all coplanar, the projection equation 1 becomes a projective ho-
mography. By choosing an adequate object frame, all points can be written
pi = [Xi, Yi, 0]T . Noting p̃i = [Xi, Yi, 1]T , the classical projection equation is
([12]):

sm̃i = Hp̃i (6)

where H = K [r1 r2 T ] with rj the jth column of R. As for the 3D object
case, the velocity parameters are integrated in the projection equation as follows:

sm̃i = Hp̃i + τviDp̃i (7)
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where D = K [ω1 ω2 V ] with ωj the jth column of ω = Ω̂R. From equation 7
one can derive a cross product which must be null:

m̃i × (Hp̃i + τviDp̃i) = 0

which yields the following equation:

Ax = 0 (8)

where

A =
[
p̃i

T 0T −uip̃i
T τvip̃i

T τvi0T −τviui
˜pi
T

0T p̃i
T −vip̃i

T τvi0T τvip̃i
T −τv2

i p̃i
T

]
is a 18 × 2n matrix and x =

[
h1

T h2
T h3

T d1
T d2

T d3
T
]T is the unknown vector

with hj , dj being the jth columns of respectively H and D. Equation 8 can be
solved for x using singular value decomposition (SVD) as explained in [4].

Once x is computed, the pose parameters are derived, following [12], as
follows:

r1 = λhK−1h1, r2 = λhK−1h2, r3 = r1 × r2, T = λhK−1h3 (9)

where λh = 1
||K−1h1|| .

The translational velocity vector is obtained by:

V = λK−1d3 (10)

and angular velocity parameters are obtained by first computing columns 1 and
2 of matrix ω:

ω1 = λdK
−1d1, ω2 = λdK

−1d2 (11)

where λd = 1
||K−1d1|| , and then extracting Ω as follows:

Ω(x) = ω12R12−ω22R11
R32R11−R31R12

, Ω(y) = ω11R22−ω21R21
R31R22−R32R21

, Ω(z) = ω11R32−ω21R31
R31R22−R32R21

(12)

6 Experiments

The aim of this experimental evaluation is first to illustrate our pose recovery
algorithm accuracy in comparison with classical algorithms under the same ac-
quisition conditions, and second, to show its performances as a velocity sensor.
The algorithm was tested on real image data. A reference 3D object with white
spots was used. Sequences of the moving object at high velocity were captured
with a Silicon Imaging CMOS Rolling Shutter camera SI1280M-CL, calibrated
using the method described in [5]. Acquisition was done with a 1280×1024 res-
olution and at a rate of 30 frames per second so that τ = 7.15 × 10−5 s. Image
point coordinates were accurately obtained by a sub-pixel accuracy estimation of
the white spot centers and corrected according to the lens distortion parameters.
Correspondences with model points were established with a supervised method.
The pose and velocity parameters were computed for each image using first our
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Fig. 4. Image samples of pure translational motion

Table 1. RMS re-projection error (pixel)

Linear algorithm Classical algorithm Non linear algorithm
Image number RMS-u RMS-v RMS-u RMS-v RMS-u RMS-v

1 9.30 16.00 0.14 0.12 0.15 0.13
2 14.08 17.95 1.71 1.99 0.10 0.09
3 5.24 8.06 3.95 4.18 0.11 0.09
4 11.33 14.21 7.09 7.31 0.09 0.07
5 9.25 11.02 5.56 6.73 0.13 0.12
6 12.26 13.04 1.87 3.02 0.18 0.11
7 9.85 11.56 0.25 0.12 0.25 0.17

algorithm, and compared with results obtained using the classical pose recovery
algorithm described in [5]. In the latter, an initial guess is first computed by
the algorithm of Dementhon [2] and then the pose parameters are accurately
estimated using a bundle adjustment technique.

Figure 4 shows image samples from a sequence where the reference object was
moved following a straight rail, forcing its motion to be a pure translation. In
the first and last images of the sequence, the object was static. Pose parameters
corresponding to these two static views were computed accurately using the
classical algorithm. They serve as ground-truth values to validate our algorithm
when velocity is null. The reference object trajectory was then assumed to be the
3D straight line relating the two extremities. Table 1 shows the RMS pixel re-
projection error obtained using the pose computed with the classical algorithm
and a classical projection model from the one hand-side, and the pose computed
with our algorithms and the rolling shutter projection model from the other
hand-side. Column 2 shows results obtained with the linear algorithm using only
nine coplanar points of the pattern. Note that these results are obtained using
the minimum number of correspondences required from the linear algorithm
and can thus be improved. Anyhow, even under these conditions, the method
remains accurate enough to correctly initialize the non-linear algorithm. Results
in columns 3 and 4 show errors obtained using respectively a classical algorithm
and our non-linear algorithm. One can see that errors obtained with static object
views are similar. However, as the velocity increases, the error obtained with the
classical algorithm becomes too important while the error obtained with our
algorithm remains small.
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Fig. 5. Pose and velocity results: reconstructed trajectory (left image), translational
velocity vectors (right image)

Table 2. Distances from computed poses to reference trajectory (cm)

Image number 1 2 3 4 5 6 7

Classical algorithm 0.00 0.19 0.15 1.38 3.00 4.54 0.00
Our algorithm 0.28 0.34 0.26 0.32 0.32 0.11 0.10

Table 3. Angular deviation of computed poses from reference orientation (deg.)

Image number 1 2 3 4 5 6 7

Dementhon’s algorithm 0.00 2.05 4.52 6.93 6.69 3.39 0.30
our algorithm 0.17 0.13 0.17 0.34 1.09 0.91 0.40

Let us now analyze pose recovery results shown in figure 5. The left-hand side
of this figure shows 3D translational pose parameters obtained by our non-linear
algorithm and by the classical algorithm (respectively represented by square and
*-symbols). Results show that the two algorithms give appreciably the same re-
sults with static object views (first and last measurements). When the velocity
increases, a drift due to the distortions appears in the classical algorithm results
while our algorithm remains accurate (the 3D straight line is accurately recon-
structed by pose samples) as it is illustrated on Table 2 where are represented
distances between computed poses with each algorithm and the reference trajec-
tory. Table 3 presents computed rotational pose parameters. Results show the
deviation of computed rotational pose parameters from the reference orienta-
tion. Since the motion was a pure translation, orientation is expected to remain
constant. As one can see, a drift appears on classical algorithm results while our
algorithm results show a very small deviation due only to noise on data.

Another result analysis concerns the velocity parameters. Figure 5 shows that
the translational velocity vector is clearly parallel to the translational axis (up
to noise influence). Table 4 represents magnitude of computed velocity vectors
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Table 4. Computed translational velocity magnitude in comparison with measured
velocity values (m/s)

Image number 1 2 3 4 5 6 7

Measured values 0.00 1.22 2.02 2.32 1.55 0.49 0.00
Computed values 0.06 1.10 1.92 2.23 1.54 0.50 0.02

Table 5. Computed rotational velocities (rad/s)

Image number 1 2 3 4 5 6 7

our algorithm 0.04 0.07 0.05 0.01 0.15 0.11 0.12

in comparison with measured values. These reference values were obtained by
dividing the distance covered between each two successive images by the frame
period. This gives estimates of the translational velocity mean value during each
frame period. Results show that the algorithm recovers correctly acceleration,
deceleration and static phases. Table 5 represents computed rotational velocity
parameters. As expected, the velocity parameter values are small and only due
to noise.

In the second experiment, the algorithm was tested on coupled rotational and
translational motions. The previously described reference object was mounted on
a rotating mechanism. Its circular trajectory was first reconstructed from a set
of static images. This reference circle belongs to a plan whose measured normal
vector is N = [0.05, 0.01, −0.98]T. Thus, N represents the reference rotation
axis. An image sequence of the moving object was then captured. Figure 6 shows
samples of images taken during the rotation, where rolling shutter effects appear
clearly. The left part of figure 7 represents the trajectory reconstructed with
a classical algorithm (*-symbol) and with our algorithm (square symbol). As
for the pure translation, results show that the circular trajectory was correctly
reconstructed by the poses computed with our algorithm, while a drift is observed
on the results of the classical algorithm as the object accelerates. The right part
of the figure shows that translational velocity vectors were correctly oriented
(tangent to the circle). Moreover, the manifold of instantaneous rotation axis
vectors was also correctly oriented. Indeed, the mean value of the angles between

Fig. 6. Image samples of coupled rotational and translational motions
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Fig. 7. Pose and velocity results for coupled rotational and translational motion: re-
constructed trajectory (left image), rotational and translational velocities (right image)

Table 6. Computed and measured rotational velocity magnitudes (rad/s)

Image number 1 2 3 4 5 6 7 8 9 10

Measured values 0.00 1.50 9.00 11.20 10.50 10.20 10.10 10.00 10.00 7.50
Computed values 0.06 1.20 8.55 10.38 10.32 10.30 9.80 9.90 9.73 8.01

the computed rotation axis and N is 0.50 degrees. Results in table 6 shows
a comparison of the computed rotational velocity magnitudes and the values
estimated from each two successive images.

7 Conclusion and Perspectives

An original method for computing simultaneously the pose and instantaneous
velocity (both translational and rotational) of rigid objects was presented. It
profits from an inherent defect of rolling shutter CMOS cameras consisting in
exposing one after the other the rows of the image, yielding optical distortions
due to high object velocity. Consequently, a novel model of the perspective pro-
jection of a moving 3D point onto a rolling shutter camera image was introduced.
From this model, an error function equivalent to collinearity equations in cam-
era calibration was defined in the case of both planar and non-planar objects. In
the planar case, minimizing the error function takes the form of a linear system,
while in the non-planar case it is obtained through bundle adjustment techniques
and non-linear optimization. The approach was validated on real data showing
its relevance and feasibility. Hence, the proposed method in the non planar case
is not only as accurate as similar classical algorithms in the case of static objects,
but also preserves the accuracy of pose estimation when the object is moving.
However, in the planar case, the experimental results were only accurate enough
to initialize the non-planar method but these results were obtained with the
minimal number of points.
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In addition to pose estimation, the proposed method gives the instantaneous
velocity using a single view. Thus, it avoids the use of finite differences between
successive images (and the associated constant velocity assumption) to estimate a
3D object velocity. Hence, carefully taking into account rolling shutter turns a low
cost imager into a powerful pose and velocity sensor. Indeed, such an original tool
can be useful for many research areas. For instance, instantaneous velocity infor-
mation may be used as evolution models in motion tracking to predict the state of
observed moving patterns. It may also have applications in robotics, either in vi-
sual servoing or dynamic identification. However, in the latter case, accuracy needs
to be quantified by independent means on accurate ground-truth values within an
evaluation framework, such as laser interferometry or accurate high-speed mech-
anisms, before the proposed method can serve as a metrological tool.

From a more theoretical point of view, several issues open. First, the pro-
posed method uses a rolling shutter camera model based on instantaneous row
exposure, but it should be easily extendable to more general models where each
pixel has a different exposure time. One could also imagine that an uncali-
brated version of this method could be derived for applications where Euclidean
information is not necessary (virtual/augmented reality or qualitative motion
reconstruction, for instance). Finally, another point of interest could be the cal-
ibration of the whole system (lens distortion + intrinsic parameters + rolling
shutter time) in a single procedure.
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Abstract. Estimation of local orientations in multivariate signals
(including optical flow estimation as special case of orientation in space-
time-volumes) is an important problem in image processing and com-
puter vision. Modelling a signal using only a single orientation is often
too restrictive, since occlusions and transparency happen frequently, thus
necessitating the modelling and analysis of multiple orientations.

In this paper, we therefore develop a unifying mathematical model
for multiple orientations: beyond describing an arbitrary number of ori-
entations in multivariate vector-valued image data such as color image
sequences, it allows the unified treatment of transparently and occludingly
superimposed oriented structures. Based on this model, we derive novel
estimation schemes for an arbitrary number of superimposed orientations
in bivariate images as well as for double orientations in signals of arbi-
trary signal dimensionality. The estimated orientations themselves, but
also features like the number of local orientations or the angles between
multiple orientations (which are invariant under rotation) can be used
for various inspection, tracking and segmentation problems. We evaluate
the performance of our framework on both synthetic and real data.

1 Introduction: (Single) Orientation Estimation

Local orientations are an important low level feature for analyzing and under-
standing multivariate data. The basis for the concept of orientations is the impor-
tant observation that signal gradients usually vary much slower than the signal
itself. However, fast variations of gradients do appear in signals, for instance at
corners in image data. In this paper, we want to promote the perspective that
limitations of the orientation concept can be overcome by considering multiple
signal orientations, thus making the concept of orientations even more funda-
mental for signal analysis. But first, let us review single orientation estimation.

1.1 The Structure Tensor

Let x ∈ RN be a vector in N -dimensional space. Then a function of x, e.g. s(x),
defines a multivariate1 signal. Such a signal is called locally oriented in some
region Ω if it is constant along parallel lines, i.e.
1 The signal s is scalar-valued and therefore one-dimensional. But it depends on a mul-

tidimensional vector and is therefore correctly called a multivariate (here: N-variate)
signal. Multidimensional signals also exist in the orientation estimation context, for
instance color images (which are three-dimensional and bivariate).
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s(x + λu) = s(x) for all λ ∈ R and x, x + λu ∈ Ω (1)

with some unit vector u denoting the orientation direction.
A given signal is locally constant with respect to some unit vector u, if its

directional derivative ∂s
∂u = 〈g, u〉, i.e. the scalar product between signal gradient

g and u, is zero for all gradients computed in some local neighborhood Ω. The
gradients span a subspace in which the signal is not oriented and consequently,
the orthogonal complement of this subspace is the sought orientation (which is
uniquely determined if we can find N − 1 linearly independent gradients).

The introduction given so far is one out of several possible approaches leading
to the so-called structure-tensor approach for orientation estimation which can
be found in pioneering work of Förstner [1], Bigün et al [2] and others. For
bivariate image data (N = 2; generalization to arbitrary N is straightforward),
we first compute the discrete derivative of the signal with respect to x and y
using convolution with filters fx and fy: sx = fx ∗ s and sy = fy ∗ s. With the
image gradient g = (sx, sy)T , we now define the (standard) structure tensor S(1)

as local integration over the outer product of the gradient:

S(1) = f ′ ∗ (ggT ) (2)

where f ′ is some averaging filter. (Widely used choices for fx, fy, and f ′ are
(directional derivative of) Gaussian filters.) If (1) is only valid for a single ori-
entation in general N -variate signals, then the structure tensor S(1) has one
zero eigenvalue and the corresponding eigenvector is the sought orientation. For
noisy data or model violations, the eigenvector corresponding to the smallest
eigenvalue defines the orientation in which the signal is “most constant”.

1.2 Related Approaches

The structure tensor S(1) is not the only possibility to analyse single-oriented
structures. As pointed out in [3], higher order directional derivatives also vanish
in the orientation direction:

∂s

∂u
= 0 and

∂2s

∂u2 = 0 and
∂3s

∂u3 = 0 and · · · (3)

which allows to design a wide class of approaches based on combinations of dif-
ferent order derivatives. This freedom can be used for filter design. For instance,
the book of Granlund and Knutsson [4] gives a slightly different definition of
the orientation concept: the invariance requirement states that an entity which
characterizes orientation must not depend on the signal variations orthogonal to
the sought orientation. This defines a much stronger concept of orientation than
the one defined in (1). For instance in bivariate signals (i.e. images), it forces us
to design an orientation estimator such that it makes no distinction between two
especially important types of oriented 1D structures: “lines” (variation on two
sides; also called “ridges”) and “edges” (variation only on one side). A detector
that reacts uniformly on these two types of structures is called phase invariant
and can be realized with quadrature filters [4] and a bandpass prefilter.
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If, on the contrary, we are interested in detecting line structures only (and
not edges), the second order directional derivative defines a popular filter; this
can be traced back to [5]. A recent PAMI paper [6] also discusses line-specific
and edge-specific orientation estimation in the context of steerable filters.

Two generalizations of the structure tensor to phase-invariant feature detec-
tors are the 2D energy tensor defined by Felsberg and Granlund in [7] and
the boundary tensor proposed by Köthe in [8]. The connections between en-
ergy tensor and boundary tensor are analyzed recently by both authors in a
joint paper [9]. All these approaches are based on higher (up to fourth) order
derivatives.

Summarizing this section, we emphasize that the standard structure tensor
approach can be extended with combinations of higher order derivatives in order
to obtain advantageous properties. Odd order filters can be optimized for edge
detection, even order filters for lines, and mixed order filters for phase invariant
behaviour.

2 Modelling and Estimation of Multiple Orientations

Higher order derivatives in the context of orientation estimation also appear
in a different line of research: the analysis of multiple orientations. In spite of
characterizing many important low level image features like lines or edges, the
underlying single orientation signal model is much too restrictive for many real
signals. For instance, the presence of two oriented textures in a region Ω calls for
an extended mathematical model. This observation led to the study of double-
oriented signals (we will denote the multiplicity of orientations by M , so double
orientations estimation means M = 2).

For image sequences, double orientation estimation means the study of two
independent optical flows; this is the area where double orientation estimation
appeared first in the beginning of the 90s in pioneering work of Shizawa/Mase
[10, 11] (additive superposition model, grey value image sequences), followed
by Shizawa/Iso [12] (additive superposition, grey value images, connection to
steerable filters). More recent results can be found in [13, 14] (additive model,
images; multispectral signals in the second reference; first theoretical steps to-
wards higher multiplicity of signals beyond double orientations) and [15] (oc-
cluding model, multispectral images). However, present day algorithms are still
limited to the estimation of double orientations (M = 2) in image or volume
data (N ≤ 3). Summarizing the previous work, we emphasize that model (addi-
tive or occluding), signal dimensionality (grey value or multispectral), N -variate
signals (bivariate images, volumes, N > 3), and multiplicity M (double ori-
entations or M > 2) define four ‘orthogonal’ directions for extensions of the
early multiple orientations estimation work. First steps in all directions have
been made, but the unifying theory is still missing. Most importantly, no ex-
periments for triple or more orientations (M ≥ 3) can be found anywhere in
literature.
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2.1 Transparent and Occluding Orientations

Two different ways of combining two or more oriented signals si (with i =
1, . . . , M) to form a new signal s can be found in literature. The occluding ori-
entations model (OOM) and the transparent orientations model (TOM):

Multiple orientation models:

(OOM:) s(x) = si(x) ∀ x ∈ Ωi (TOM:) s(x) =
M∑
i=1

αi si(x) .
(4)

The first model states that we take the first oriented signal if the point x is in
some region Ω1 and so on (obviously, all regions must be distinct and add up to
the whole analysis region Ω). For instance, this model is applicable with M = 2
if the region Ω1 corresponds to some object which occludes another object (Ω2:
background), provided that both objects can be modelled reasonably well as
single-oriented structures.

The second model, TOM, assumes that all basic signals are present in the
whole signal and we observe a superposition of them, weighted with some con-
stants αi.2 Computing directional derivatives, we obtain the constraints:

Multiple orientation constraints, derivative forms:

(OOM:)
M∏
i=1

∂s

∂ui
= 0 (TOM:)

∂Ms

∂u1 · · · ∂uM
= 0 .

(5)

The directional derivative is defined as

〈g, ui〉 =
∂s

∂ui
= 〈∇s, ui〉 =

N∑
j=1

∂s

∂xj
(ui)j (6)

and inserting in the left hand side of (5) yields

M∏
i=1

⎛⎝ N∑
j=1

∂s

∂xj
(ui)j

⎞⎠ =
N∑

k1,...,kM=1

(O)k1···kM (U)k1···kM = 〈O, U〉 = 0 (7)

where we have rewritten a product of M factors (which are sums consisting
of N summands each) as a large sum of NM summands and then as scalar
product of two tensors (i.e. sum over all element-by-element products). The
whole dependency on the sought orientations is encapsulated in the tensor

U = u1 ⊗ · · · ⊗ uN (8)
2 It is also possible to define the weights αi as functions of x (instead of constants).

Then, the OOM is a subset of the (generalized) TOM. Therefore, the TOM-approach
can also be used for estimation under the OOM, though at the expense of needing
higher order derivatives.
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where “⊗” denotes the tensor product operator. We now can state the multiple
orientation constraints for both models. We first obtain the

Multiple occluding orientations constraint:

〈O, U〉 = 0 with (O)k1···kM =
M∏
i=1

∂s

∂xki

.
(9)

Each point in Ω yields one data tensor O and from all these tensors, we have
to estimate the sought orientation tensor U which is orthogonal (i.e. has scalar
product zero) to the given data tensors. Both O and U are N × · · · × N tensors
(all indices ki with i = 1, . . . , M run from 1 to N). For instance, in image
sequences (trivariate data, N = 3), O contains all possible products of M first
order derivates w.r.t. x, y and t coordinates. Analogously, we find the

Multiple transparent orientations constraint:

〈T , U〉 = 0 with (T )k1···kM =
∂Ms

∂xk1 · · ·∂xkM

.
(10)

At the end of this subsection, we want to stress the structural similarity of both
models: the tensors constructed from signal derivatives are different (product of
first derivatives in O versus higher order derivatives in T ), but once we have
constructed the data tensor, the computation of the sought orientations (the
estimation and decomposition of the orientation tensor U) is exactly the same.

2.2 Symmetry Properties of the Data Tensors

The commutativity in the definitions of (9) and (10) is the key to the under-
standing of multiple orientations. The data tensors are invariant against any
arbitrary permutation of indices and therefore have some very pronounced sym-
metry properties. For M = 2, the data tensors O and T are symmetric N × N
matrices, but for higher M , we cannot rely on concepts from matrix algebra
anymore. We therefore define the space of fully symmetric M -tensors3 as

RN×···×N
⊕ =

{
T ∈ RN×···×N

∣∣∣∣(T )i1···iM = (T )P (i1···iM )

}
(11)

with P (i1 · · · iM ) denoting any arbitrary permutation of the indices i1 · · · iM .
Whereas the data tensors are fully symmetric, the orientation tensor U =

u1 ⊗ · · · ⊗ uM is clearly not. But the symmetry of the left operand in some
scalar product (like 〈T , U〉) always means that the value of the scalar product
does not change if the same symmetry transformations are applied to the second
operand (here: U). Hence, if 〈T , U〉 = 0, then 〈T , U ′〉 = 0 with U ′ denoting any

3 Fully symmetric in order to allow the term symmetric also for invariance against
special permutations only, for instance the exchange of indices 1 and 2.
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arbitrary permutation of the order of orientations in the tensor product U .4 As a
consequence, the original tensor U cannot be recovered uniquely and any linear
combination of permuted tensors solves the problem.

However, it is possible to describe a set of M orientations with a unique order-
M tensor. The key is symmetrization: among all possible orientation tensors U
which are orthogonal to T (i.e. 〈T , U〉 = 0), there is only a single fully symmetric
one (up to a non-zero scale factor): the sum over all possible permutations with
equal weights. This means that we have to estimate the orientation tensor subject
to U ∈ RN×···×N

⊕ in order to obtain a unique solution.
All tensor scalar products can be converted to standard scalar products by

stacking the tensor elements to form a long vector. But now, the symmetry
properties of both operands call for a slightly modified version of vectorization.
Our fully symmetric tensors have

k =
(

N + M − 1
M

)
(12)

different elements (≡ degrees of freedom, DOF). Therefore, the space RN×···×N
⊕

can be mapped to Rk. We now define

Definition 1. Let A ∈ RN×···×N
⊕ denote a fully symmetric tensor of order M .

Then we define the mapping VecSymm (·) : R
N×···×N
⊕ → Rk with k defined in

(12) as stacking all independent elements under each other in some arbitrary but
fixed order. Furthermore, we define VecSymmN (·) : R

N×···×N
⊕ → Nk as counting

the number of appearances (index permutations) of each element.

Note that the VecSymmN (·) operation only depends on the dimensionality of
the argument, not on the entries. Thus, every element of R

N×···×N
⊕ produces the

same VecSymmN (·) result. Applying these definitions to (9) and (10) now allows
to generalize the single orientation constraint 〈g, u〉 = 0 (gradient orthogonal to
sought orientation) to 〈g̃, ũ〉 = 0 with mixed orientations gradient vector

(OOM:) g̃ = VecSymm (O) resp. (TOM:) g̃ = VecSymm (T ) (13)

and mixed orientation parameters (MOP) vector

ũ = VecSymmN (U) · VecSymm (U) (14)

with “·” indicating element-by-element multiplication. The vectors g̃ are the
multiple orientations equivalent of the gradients. In analogy to single orientation
estimation, we can therefore define the double [triple, M -] orientation structure
tensor S(M) as spatial integration (i.e. convolution with averaging filter f ′) over
the outer product of g̃ with itself

S(M) = f ′ ∗ (g̃g̃T ) (15)

4 Geometric interpretation: we can only estimate a set of M orientations and cannot
identify them as “first”, “second”, “M -th” orientation; they are interchangeable.
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and the eigenvector of S(M) corresponding to the smallest eigenvalue will then
yield the MOP vector for M orientations. But unfortunately, we cannot claim
that this already solves the multiple orientation estimation problem because

a) the MOP vector has clearly too many DOF: k is a polynomial with leading
term NM , whereas M unit vectors only have M(N − 1) DOF, and

b) no general way exists in literature how to decompose it into its underlying
orientations,5

i.e. what we have solved by now is just an intermediate step towards the sought
set of orientation vectors.

2.3 Vector-Valued Signals

Based on early work by Di Zenzo [16] and Förstner [17], who first studied gradi-
ents of multi-band images, it is possible to derive multiple orientations structure
tensors also for vector-valued signals s(x) ∈ RP (for instance color images).
Orientation estimation is also possible in such P -dimensional data, but notation
gets much more complex. We therefore deferred discussion of multi-dimensional
signals to this point where the generalized gradients g̃ have become available.

In principle, for every derivative, we now have to choose between P signal
bands. In the transparent model, each component of g̃ is a single M -th order
derivative; hence for general P , it gets vector-valued and for the structure tensor,
we have to perform an additional contraction over this index, turning the outer
product g̃g̃T into a matrix of scalar products.6 For instance, multi-dimensional
TOM orientation estimation for N = 2 and M = 2 means

S(2) = f ′ ∗

⎛⎝ 〈sxx, sxx〉 〈sxx, sxy〉 〈sxx, syy〉
〈sxx, sxy〉 〈sxy, sxy〉 〈sxy, syy〉
〈sxx, syy〉 〈sxy, syy〉 〈syy, syy〉

⎞⎠ . (16)

Under the occlusion model (M first-order derivatives), every element of the
mixed orientations gradient becomes a P × · · · × P tensor (M factors) and com-
puting the structure tensor means contraction over all M signal band indices.
Fortunately, all elements are outer products which turns the structure tensor
elements from products of 2M scalar values (for P = 1) to M scalar products
of two P -vectors. Considering N = 2 and M = 2 for arbitrary P again yields
g̃ = (sx ⊗ sx, 1

2sx ⊗ sy + 1
2sy ⊗ sx, sy ⊗ sy)T (symbolic notation!) and then

S(2) = f ′ ∗

⎛⎝ 〈sx, sx〉2 〈sx, sx〉〈sx, sy〉 〈sx, sy〉2
〈sx, sx〉〈sx, sy〉 1

2 〈sx, sx〉〈sy, sy〉 + 1
2 〈sx, sy〉2 〈sx, sy〉〈sy, sy〉

〈sx, sy〉2 〈sx, sy〉〈sy, sy〉 〈sy, sy〉2

⎞⎠
(17)

5 In principle, the MOP vector itself (i.e. without decomposition into underlying ori-
entations) could be used for applications like texture classification or tracking. How-
ever, the distance between two vectors in an highly overparameterized space is clearly
suboptimal without previous projection onto the space of “valid MOP vectors”.

6 As summation and convolution commute, we can alternatively sum the P structure
tensors computed for each individual signal band.
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(this equation was also derived in [15]). We can thus finally compute structure
tensors for an arbitrary number M of orientations, either occludingly or trans-
parently superposed, in arbitrary P -dimensional and N -variate signals.

3 Solving the Decomposition Problem

Once an estimate ˆ̃u for the MOP vector is computed, we first reverse (14) by
dividing each component by the corresponding number of permutations. Then
the mapping itself can be reversed, thus producing an estimate Û which is a fully
symmetric tensor, i.e. an element of R

N×···×N
⊕ . However, this tensor is in general

not an element of

RN×···×N
� =

{ ∑
P (i1···iM )

ui1 ⊗ · · · ⊗ uiM

∣∣∣∣ui1 , . . . ,uiM ∈ RN \ {0}
}

, (18)

the space of symmetrized outer products, which we will call the space of minimal
fully symmetric tensors from now on. Therefore, our estimate does not represent
a valid set of M orientations in general. Going back to vector space, we see that
the space of valid MOP vectors is a subset of Rk, and only in tensor space,
we have the means to define both spaces properly: any estimated tensor is a
fully symmetric tensor (i.e. an element of R

N×···×N
⊕ ), but valid tensors have to

be restricted to the subspace R
N×···×N
� . For single orientation estimation, this

novel perspective on (multiple) orientation estimation coincides with the known
definitions (order-1 tensors are vectors), but in general, only a tensor approach
is suited to handle the symmetry constraints properly.

3.1 Multiple Orientation Estimation for Images

For bivariate images (i.e. N = 2), we find that k =
(2+M−1

M

)
=

(
M+1

M

)
= M + 1.

Subtracting 1 for undefined scale, we obtain M which is the same number as
M(N − 1) (DOF for M unit vectors in N -dimensional space) for N = 2. There-
fore, the problem of overdetermined MOP vectors does not appear in images.
This means that we have to qualify the last sentence of the previous paragraph:
for images (and only for images!), the MOP vector is in fact a minimal de-
scription of the sought parameters. In images, derivatives are only possible with
respect to two coordinates, say x and y. For instance, M = 3 yields

(ũ)1 = (u1)x(u2)x(u3)x

(ũ)2 = (u1)x(u2)x(u3)y + (u1)x(u2)y(u3)x + (u1)y(u2)x(u3)x

(ũ)3 = (u1)x(u2)y(u3)y + (u1)y(u2)x(u3)y + (u1)y(u2)y(u3)x

(ũ)4 = (u1)y(u2)y(u3)y ;

generalization to arbitrary M is straightforward. Every orientation vector con-
sists of two unknowns (ui)x and (ui)y with the constraint ((ui)x)2+((ui)y)2 = 1
(it must be a unit vector). However, this problem can be reformulated as an
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unconstrained problem easily: If (ũ)1 = 0, then at least one of the sought orien-
tations is (0, 1)T . Without loss of generality, we therefore can define (uM )x = 0
and (uM )y = 1, thus reducing the degree of the problem by 1. Otherwise, we
divide by (ũ)1 and obtain the equation system

p1 = x1 + x2 + x3

p2 = x1x2 + x1x3 + x2x3

p3 = x1x2x3

with given values pi := (ũ)i+1
(ũ)1

and the new unknowns xi := (ui)y

(ui)x
. The set of M

values for xi (which can be interpreted as slope of the orientation vectors) are
easily found as roots of the polynomial

M∑
i=0

(−1)i (ũ)i+1 xM−i = 0 . (19)

By combining the vertical orientation vectors with the normalized version of
all (1, xi)T vectors, we successfully solved the multiple orientations estimation
problem for images.

3.2 Double Orientation Estimation in Multivariate Signals

For double orientation estimation, all tensors can be interpreted as matrices.
Matrix algebra offers a convenient interpretation of the difference between fully
symmetric tensors (RN×N

⊕ ) and its subset RN×N
� . While the first space is the

space of symmetric N × N matrices, the latter space is the space of matrices
formed by u1 ⊗ u2 + u2 ⊗ u1, i.e. the space of symmetric rank-2 matrices.

This allows to define a very simple strategy for double-orientation estimation
in general N -variate signals. We estimate the MOP vector ũ and map it to the
space of fully symmetric tensors (here: symmetric matrices), taking care not to
forget the division by the permutation count, see (14). Let U denote the result
of this operation; we now have to find the two unit vectors u1 and u2 which
fulfill

U = c(u1 ⊗ u2 + u2 ⊗ u1) (20)

for some scaling factor c. From

Uu1 = c(c′ u1 + u2) and Uu2 = c(u1 + c′ u2) (21)

(with c′ = 〈u1, u2〉 denoting the cosine of the angle between u1 and u2) follows

U(u1 +u2) = c(c′ +1)(u1 +u2) and U(u1 −u2) = c(c′−1)(u1 −u2) , (22)

i.e. u1 − u2 and u1 + u2 are eigenvectors of U. Being a rank-2 matrix, U only
has two non-zero eigenvalues and because |〈u1, u2〉| < 1 for u1 �= u2, one of
them is positive and one is negative. Let λ+, λ− denote the eigenvalues and x+,
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x− the corresponding eigenvectors of U (+ for positive eigenvalue, − for negative
eigenvalue). Then the sought orientations can be found by normalizing

u1 =
√

λ+ x+ +
√

−λ− x− and u2 =
√

λ+ x+ −
√

−λ− x− . (23)

Given some noisy estimate for U, we can apply exactly the same strategy, now
silently ignoring all intermediate eigenvalues which are close to zero (instead
of being exactly zero); this yields the closest minimal fully symmetric matrix in
terms of the Frobenius norm. Our scheme closely resembles to a method proposed
by Shizawa and Mase for trivariate signals (N = 3) in [10]. The difference to our
scheme is that U was corrected to the space of 3 × 3-matrices having rank 2 by
subtracting λ2 times the identity matrix with λ2 denoting the (only) intermediate
eigenvalue. In contrast to our scheme, this method cannot be generalized to
N > 3 because it only works for a single intermediate eigenvalue.

Summarizing this section, we have presented multiple orientation estimation
schemes for (a) N = 2 and arbitrary M and (b) M = 2 and arbitrary N .
Again we stress that the decomposition schemes can be applied for both models
(occluded and transparent) and for either grey value or multispectral data.

4 Experiments

We tested our algorithms on synthetic and real data. Synthetic data allow a
thorough examination of the performance of an algorithm with known ground
truth (under some assumed model), while testing with real data gives evidence
that this modelling is accurate (at least for specific situations). Both types com-
plement one another.

For multiple orientation estimation, the amount of parameters which can be
modified is huge: the number M of superposed signals, the basic signals them-
selves, their orientations, their respective weight functions in the combination
process, the filters used for computing the discrete derivatives, the filter used for
spatial integration of the structure tensors, and the level and type of added noise.
In our opinion, a thorough examination and testing of an algorithm is only pos-
sible with synthetic data and a graphical user interface (GUI) which allows easy
modification of the individual input parameters and immediate feedback on the
consequences it has for the estimate. Fig. 1 shows our GUI tool which we used
to “explore the parameter space”. It is enclosed on the electronic version of the
proceedings and it is also available for download at www.lfb.rwth-aachen.de.

We found that orientation estimation under the models discussed above be-
haves rather robust under added noise. Figs. 2 and 3 show two examples for
the combination of two transparent resp. three occluding orientations, both for
added Gaussian noise with SNR of 6 dB. Thick lines: true orientations; darker
thin lines: estimated orientations.

For our next experiment, we used the image of a house (fig. 4) and tested the
ratio s between smallest and second-smallest eigenvalue of S(M) against some
predefined thresholds. This allows a hierarchical testing of orientedness: if the
texture (norm of image gradient) is high enough, then set M = 1 and
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Fig. 1. The GUI which we use for experimentation with synthetic data
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Fig. 2. Estimation of 2 transparent orien-
tations (SNR = 6 dB)
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Fig. 3. Estimation of 3 occluding orienta-
tions (SNR = 6 dB)

1. compute structure tensor S(M) and significance value s
2. if s is lower than some threshold cM , then compute orientation vectors for

M orientations model
3. otherwise increase M by one and go to first step (provided that M is smaller

or equal than some maximum value Mmax).

Applying this scheme with Mmax = 3, we obtain a segmentation of the image
into areas of 1, 2, or 3 orientations, plus two classes for “not enough texture”
(i.e. image more or less constant) and “not oriented” (which is a reasonable
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Fig. 4. An image of a house. Different tex-
tures can be characterized by a different
number of local orientations.

Fig. 5. Number of orientations (0–3)
encoded in four different gray levels. The
regions in white were rejected by our ori-
entation model.

Fig. 6. Image (left) and estimated orientations (right) for each pixel at the part of the
image where the two roof parts meet. We can see that the rooftiles are modelled well
with three local orientations, and the two textures / roofs lead to two different sets of
orientation estimates.

interpretation for bivariate data not fulfilling our model with M ≤ 3). Fig. 5
shows the segmentation result which is based only on the number of found ori-
entations. Also note that the image content (a house) is clearly visible in an
image with only 5 different values; this demonstrates the importance of (multi-
ple) local orientations as low level images (resp. texture) features.

For each of the regions labelled as single-, double- or triple-oriented, we also
obtain the corresponding orientation vectors. Fig. 6 shows the part of the image
where the two roof parts meet and it is clearly visible that the three estimated
orientations do not vary much within the same roof, but are considerably dif-
ferent in both halves of the image (the ‘stars’ indicating the three orientations
roughly look mirrored), thus allowing further segmentations within the regions
having the same number of local orientations.

Another important application for the low level image feature “local orienta-
tion(s)” is the definition of invariance properties. For instance, the angle between
two orientations defines a measure which is invariant to rotation. Therefore, the
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Fig. 7. Left: An x-ray image of metal
gratings in a rubber product. Right: num-
ber of local orientations for each pixel.

Fig. 8. Left: enlarged part of fig. 7. Right:
number of local orientations again; the de-
fect is easily visible.

theory of multiple orientation estimation is also important for the search of
corresponding regions.

A third set of experiments was carried out on x-ray images within an industrial
inspection application. Fig. 7 shows an x-ray image of metal gratings in a rubber
product. The superposition of such gratings gives rise to single-, double- or triple-
oriented areas. This means that the theory presented in our paper can be used
to detect the number of gratings (i.e. the number of orientations) and their
respective orientations vectors.

More specifically, it also allows to detect defects where a metal wire is not
aligned properly within the grating or extends beyond the edge. Fig. 8 shows
an enlarged part of fig. 7 where such a defect is visible as model violation and
therefore increase of orientation number. In the segmentation image, the defect
is clearly visible as a blob of triple-oriented and non-oriented textures.

5 Summary and Conclusions

In this paper, we presented a theory for modelling textures composed from multi-
ple dominant orientations, thus extending the well-known structure tensor frame-
work to a unified mathematical model for M orientations in P -dimensional and
N -variate signals s(x). Generalization of the signal gradient to multiple direc-
tional derivatives leads to tensor-valued entities, and depending on the assumed
signal model, this generalization can be done either under the occluding orien-
tations model (OOM) or under the transparent orientations model (TOM). (One
can also imagine mixed or intermediate forms which could be a topic for future
research.) After the discussion of the two ways for generating data tensors, we
have identified a suitable mathematical representation for a set of M orientations,
namely the space of minimal fully symmetric tensors R

N×···×N
� . We emphasize

that this tensor representation is superior to other approaches relying on vector-
ization. The mixed orientation parameters (MOP) vector – which we derived for
general M , N and P – can be a highly overparameterized representation of orien-
tations. Based on this better mathematical understanding of multiple orientation
estimation, we presented algorithms for multiple orientation estimation in images
(the only case where the MOP vector is not overparameterized) and for double
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orientation estimation in general N -variate data. Both algorithms are applicable
also to vector-valued data, for instance color images.

In the experimental part, we successfully applied multiple orientation esti-
mation (in contrast to previous papers: beyond double orientations) to both
synthetic and real data. Especially for image data, we showed that estimation
of superimposed orientations (here: with M = 0, . . . , 3) provides new and highly
useful low level image features which appear perfectly suited for various inspec-
tion, tracking or segmentation problems.
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Abstract. Active Appearance Models (AAM) are compact represen-
tations of the shape and appearance of objects. Fitting AAMs to im-
ages is a difficult, non-linear optimization task. Traditional approaches
minimize the L2 norm error between the model instance and the input
image warped onto the model coordinate frame. While this works well
for high resolution data, the fitting accuracy degrades quickly at lower
resolutions. In this paper, we show that a careful design of the fitting
criterion can overcome many of the low resolution challenges. In our
resolution-aware formulation (RAF), we explicitly account for the finite
size sensing elements of digital cameras, and simultaneously model the
processes of object appearance variation, geometric deformation, and im-
age formation. As such, our Gauss-Newton gradient descent algorithm
not only synthesizes model instances as a function of estimated parame-
ters, but also simulates the formation of low resolution images in a dig-
ital camera. We compare the RAF algorithm against a state-of-the-art
tracker across a variety of resolution and model complexity levels. Ex-
perimental results show that RAF considerably improves the estimation
accuracy of both shape and appearance parameters when fitting to low
resolution data.

1 Introduction

Image analysis at low resolution has its challenges. Due to camera blur, objects
appear fuzzy, lose their boundaries, and start looking alike. This degradation
makes detection, localization, and classification tasks increasingly more difficult,
if not impractical.

In this paper, we focus on the tracking performance of Active Appearance
Models (AAM) [5, 7] in low resolution regimes. Fitting AAMs is a non-trivial
optimization task [10]. Traditional approaches minimize the L2 norm error be-
tween the model instance and the input image warped onto the model coordinate
frame [5, 7, 10]. While this formulation works well for high resolution data, its
accuracy degrades quickly at lower resolutions.

Any representation, model, and/or algorithm will perform poorly under con-
ditions they are not built for, and the fitting of AAMs is no exception. In this
paper, we diagnose why the traditional model fitting degrades, and propose a
remedy. We show that a careful redesign of the AAM fitting criterion can indeed
overcome accuracy degradation at low resolution.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 83–97, 2006.
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2 Background

2.1 Active Appearance Models

An AAM [5, 7] consists of two models, namely the shape and appearance of
an object. Each of these is a linear, Principal Components model learned from
training data. The shape of an AAM is defined by a set of landmark locations

s = (x1, y1, x2, y2, . . . , xv, yv)T. (1)

The shape model, parametrized with p = (p1, p2, . . . , pn), expresses any shape
as a linear combination of basis shapes added onto a base shape:

s(p) = s0 +
n∑

i=1

pisi. (2)

An AAM is defined in the coordinate system of the object being modeled. To
express object instances in arbitrary poses, a global transform is needed. Follow-
ing [10], we define four special shape bases to account for similarity transforms
(scale, rotation, and two translations), and compose them with the shape model.
We denote the combined geometric deformation by W(x;p), where x is a model
point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. These images
are shape-normalized, i.e., they are defined within the base shape s0. The ap-
pearance model is linear, and parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m∑

i=1

λiAi(x) ∀ x ∈ s0, (3)

where x is a pixel coordinate in s0. The appearance basis images are usually
defined at the same resolution as the training images.

In this paper, we consider the simpler case of independent AAMs [10], where
the statistical dependence between the shape and appearance is ignored. While
such couplings have been exploited in prior work, their advantages remain or-
thogonal to our discussion.

2.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (2) and (3) can
uniquely synthesize an object instance. Image analysis deals with the inverse
of this process. It aims to recover those AAM parameters which best explain a
given image. For this end, one needs to define a similarity metric to quantify what
constitutes a good match, and a fitting algorithm for computing the parameter
values which optimize the similarity metric. The choice of this fitting criterion
is the main subject of this paper.

In the original AAM work by Cootes et al. [5,6,7], as well as its computation-
ally efficient reformulation by Matthews and Baker [10], the fitting criterion was
the sum of squared intensity differences between the synthesized model template
and the warped input image I:
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∑
x∈s0

[
I
(
W(x;p)

)
− A(x; λ)

]2
. (4)

Note that the summation above is defined over x, pixel coordinates in the shape-
normalized template image. Since this objective function is highly nonlinear in
its parameters, iterative gradient-descent methods were used to find its mini-
mum: At each iteration, updates Δp and Δλ were computed and added to (or
composed with) current estimates of p and λ, respectively. Cootes et al. [5,6,7]
assumed a constant, linear relationship between the error image and the additive
updates. They learned this mapping through regression on perturbation-based
training data. Matthews and Baker [10] explored linearizing the objective func-
tion just as in the Lucas-Kanade [2] registration algorithm, and achieved com-
putational savings by switching the roles of the template and input images [9]
in computing the warp update Δp.

2.3 The Unsuspected Culprit in Low Resolution Problems

Any search method for optimizing the criterion (4) would suffer from a large
number of local minima. In some cases, the solution might even be ambiguous.
To make matters worse, these difficulties are only exacerbated when the available
data is noisy and low in resolution, such as in surveillance imagery.

Let u denote the pixel coordinates of a low resolution observation I. As visu-
alized in Fig. 1, the fitting criterion (4) prescribes first warping and interpolating
the image I, and then comparing it against the synthesized template. Recall that
the summation in (4) is defined over the pixels of the template. The latter is

I(u) I W(u;p) I W(x;p) A(x;λ)

Fig. 1. Graphical representation of the traditional fitting criterion of (4). From left
to right, observed images get warped, interpolated, and finally compared against the
synthesized model instance. When the input image is low in resolution, significant
interpolation is needed to warp it onto the model coordinate frame.
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normalized to shape s0 at the AAM’s native resolution, and remains fixed in
size. Consequently, when objects appear small in comparison to the AAM, they
need to be enlarged through interpolation.

This reliance on interpolation used in the traditional formulation turns out
to be its Achilles’ heel in low resolution regimes. The fitting criterion itself
becomes increasingly suboptimal (in accuracy) with higher scaling factors. This
is an artifact of formulation. Using the same gradient-descent algorithm and low
resolution data, but minimizing a more carefully designed fitting criterion, we
will show that we can overcome low resolution challenges.

3 Resolution-Aware Fitting (RAF)

3.1 Formulation

We propose an alternative to the fitting criterion (4). In order to better account
for low resolution data, our formulation takes a generative point of view and
incorporates the image formation model of a typical CCD camera [1]. We feed the
AAM and its current parameters into a camera model, and compare the outcome
against the observed low resolution image. Mathematically, the proposed fitting
criterion is ∑

u∈I

[
I(u) − B

(
u; A(W(p); λ)

)]2
, (5)

where the summation is now over pixel coordinates u of the observed image
I. The operator B simulates a low resolution image of the object, believed to
be what the camera would have captured under current AAM parameters. This

I(u) B u; A(W(p); λ) A W(x;p); λ A(x;λ)

Fig. 2. The Resolution-Aware Fitting (RAF) algorithm simulates the formation of low
resolution images in a digital camera. In contrast to the traditional formulation (Fig. 1),
the fitting criterion is defined between observed and simulated image pixels.
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formulation can accommodate arbitrary camera models and point spread func-
tions. In this paper, we use the rectangular PSF

B
(
u; A(W(p); λ)

)
=

1
area(u)

∫
u′ ∈bin(u)

A
(
W

−1
(u′;p); λ

)
du′,

where the continuous integral is defined over bin(u), the sensing area of the dis-
crete pixel u. As illustrated in Fig. 2, the blur operator itself is independent of
AAM parameters. It simply averages out those template pixel intensities which
map into a low resolution pixel’s sensing area under the current warp p. To ex-
press the integral above in the shape-normalized coordinate frame s0, we observe
that u′ = W(x;p), and consequently, du′ =

∣∣J(W(p)
)∣∣dx,

B
(
u; A(W(p); λ)

)
=

1
area(u)

∫
x∈s0 s.t.

W(x;p) ∈ bin(u)

A(x; λ)
∣∣J(W(p)

)∣∣dx.

In practice, we implement this integration as a discrete, Jacobian-weigthed sum
over template pixels,

B
(
u; A(W(p); λ)

)
=

1
area(u)

∑
x∈s0 s.t.

u− .5
.5 <W(x;p)<u+ .5

.5

A(x; λ)
∣∣J(W(p)

)∣∣. (6)

Observe that our formulation avoids interpolating low resolution data, and mod-
els the object appearance, geometric deformation, and the image formation pro-
cesses simultaneously.

3.2 RAF Algorithm

We now present a Gauss-Newton gradient-descent scheme for the minimization
of the fitting criterion (5) with respect to p and λ. Until convergence, updates
Δp and Δλ will be iteratively computed and added to the current estimates.
The derivation below closely follows that of the simultaneous algorithm in [8].
Expressing A as a sum of the mean and linearly weighted basis images, the fitting
criterion is

∑
u∈I

[
I(u)−B

(
u; A0

(
W(p)

)
+

m∑
i=1

λiAi

(
W(p)

))]2

.

Consider the Taylor expansion

∑
u∈I

[
I(u)−B

(
u; A0

(
W(p+Δp)

)
+

m∑
i=1

(λi+Δλi)Ai

(
W(p+Δp)

))]2

.
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Ignoring its second-order terms, the fitting criterion is approximately∑
u∈I

[
I(u)−B

(
u;A0

(
W(p)

)
+∇A0

∂W
∂p

Δp+
m∑

i=1

(λi+Δλi)
(
Ai

(
W(p)

)
+∇Ai

∂W
∂p

Δp
))]2

.

For notational conciseness, denote n+m steepest-descent images as

SDsim=

[(
∇A0+

m∑
i=1

λi∇Ai

)∂W
∂p1

, ...,
(
∇A0+

m∑
i=1

λi∇Ai

)∂W
∂pn

,A1
(
W(p)

)
, ...,Am

(
W(p)

)]
.

We can now compactly rewrite the fitting criterion as

∑
u∈I

[
I(u)−B

(
u;A0(W(p))+

m∑
i=1

λiAi(W(p))−SDsim

(
Δp
Δλ

))]2

.

Observing that B is a linear operator, the objective function to be minimized is

∑
u∈I

[
I(u)−B

(
u;A0

(
W(p)

))
+

m∑
i=1

λiB
(
u;Ai

(
W(p)

))
−B

(
u;SDsim

)(Δp
Δλ

)]2

,

whose minimum is given by(
Δp
Δλ

)
=−H

−1

sim

∑
u∈I

B
(
u;SDT

sim

)[
I(u)−B

(
u; A0

(
W(p)

))
+

m∑
i=1

λiB
(
u; Ai

(
W(p)

))]
,

where Hsim is the Hessian with appearance variation:

Hsim =
∑
u∈I

B
(
u;SDT

sim

)
B
(
u;SDsim

)
.

4 Quantifying the Benefits of RAF

We compared the RAF formulation (5) to the traditional formulation in (4). In
particular, we compared the algorithm detailed in Section 3.2 with the simul-
taneous, inverse-compositional algorithm described in [11], which we refer to as
AAMR-SIM. This represents a fair ground for comparison, since Matthews &
Baker [10] “project out” the appearance variation. We artificially downscaled a
variety of input test sequences by a range of scaling factors, and measured each
algorithm’s accuracy at lower input resolutions.

Independently of the resolution of a given test sequence, we initialized all
algorithms with fitting results at the highest resolution. This allowed us to dis-
card initialization quality as a confounding factor when comparing performances
across resolution levels. While manual initialization is reasonable at higher res-
olutions, it becomes increasingly sub-optimal in lower resolutions, jeopardizing
the fairness of comparisons across scales. Once in tracking mode, the fitting of
each frame was initialized with the parameters of the preceding frame.
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Fig. 3. We define two metrics to compare the fitting accuracy of algorithms. The
average landmark tracking error combines the estimation accuracy of the similarity and
non-rigid shape parameters. The reconstruction error quantifies how well the underlying
high-resolution face could be inferred based only on low resolution data.

4.1 Metrics of Fit Quality

The most appropriate metric of an AAM’s fit quality depends on the applica-
tion at hand. For example, in an object tracking scenario, only the global pose
(i.e., the similarity transform parameters) may be of interest. For lip-reading,
non-rigid deformations of a speaker’s lips, encoded by a facial AAM’s shape
coefficients, may carry all the information. If the application requires synthesiz-
ing realistic face images, accurate appearance parameter estimates may be of
importance.

In the lack of a specific application, we defined two metrics, illustrated in
Fig. 3, to compare the fitting accuracy of the RAF and AAMR-SIM algorithms.
The tracking error is the position error of landmarks (such as the corner of
nostrils), averaged over the face: this is a combined effect of both similarity
transform (scale, rotation, and translation) and non-rigid deformation parame-
ters, as encoded by the estimate p̂. The reconstruction error, on the other hand,
is computed by comparing the synthesized model instance, parametrized by λ̂,
against the ground truth image. In addition, we report estimation errors for the
coefficients of the top four principal shape and appearance modes.

For all test sequences included in this paper, only the landmark coordinates
were available as hand-labeled, ground truth data. To infer the ground truth
values for the similarity, non-rigid shape and appearance variables, we ran the
AAMR-SIM tracker at the original resolution of the videos, and verified its con-
vergence (each landmark’s tracking error smaller than 1 high-resolution pixel).
The resulting parameter estimates were then regarded as “ground truth” values.

4.2 Examples

Before presenting extensive quantitative results, some examples of our error
metrics and their temporal behavior would be in order. In reporting Euclidian
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Fig. 4. The landmark tracking (upper left) and reconstruction (upper right) error
metrics are plotted as a function of time for a 10-fold resolution degraded tracking
experiment. Included images (bottom, captured at frame no. 102) display the mesh fits
as well as synthesized model images (lower right). We overlay the latter onto pixel-
replicated low resolution inputs (lower left) to demonstrate how well the underlying
high-resolution image could be inferred.

distance metrics (as in translation parameters or landmark tracking error), we
scale-normalize the estimates so that their numerical values are in high-resolution
pixel units. Similarly, we normalize each shape and appearance coefficient accord-
ing to its mode’s variance, and report them in units of their standard deviation.

Fig. 4 plots error trajectories of a low resolution tracking experiment, where
the subject’s speaking and eye blinking were the major sources of motion. The
input sequence was 10 times lower in resolution than the AAM. The error metrics
indicate that RAF tracked the face consistently better than AAMR-SIM. To
provide further evidence, Fig. 5 shows temporal trajectories of selected variables.
Those estimated by AAMR-SIM do not follow the ground truth values, and
remain mostly constant. In contrast, RAF can track the non-rigid deformations
and appearance changes, amounting to a more accurate recovery of the facial
expressions. We included this experiment and others in the supplemental video1.

4.3 Test Set Statistics

It would be impractical to include time trajectories for all our experiments. In the
following, we simply include the temporal mean and standard deviation of the
Root Mean Squared (RMS) errors of selected variables. Note that lost trackers
can easily corrupt these statistics with outliers. To prevent this, we required
both trackers to produce valid results (i.e., not have lost track of the face) for a
fitting instance to be included in the comparison. This was achieved by visually
inspecting all experiments and verifying that faces were tracked reasonably well.
1 Demonstrations available at http://www.cs.cmu.edu/∼dedeoglu/eccv06
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Fig. 5. Selected temporal trajectories are shown for a 10-fold resolution degraded face
tracking experiment. As the supplemental video material shows, the main source of
motion were the subject’s speaking and eye blinking. See Fig. 4 for one example frame of
this sequence. The estimates of AAMR-SIM do not follow the ground truth, and remain
mostly constant. In contrast, RAF remains close to ground truth in all trajectories,
indicating that it is able to extract the underlying facial expressions correctly.

Recall that each tracking experiment was initialized with the highest resolu-
tion fitting results. At lower input resolutions, such an optimistic initialization
would cause the fitting performance to be overestimated at the beginning. To
avoid this effect, we discarded the results of the first 20 frames of each sequence.

Fig. 6 compares the AAMR-SIM and RAF algorithms for fitting a single-
person AAM. In the upper-left corner, we first provide a brief summary of ex-
perimental conditions. This AAM was built using 31 training images, and was
tested on a set of 180. These were 8-bit grayscale images, and the AAM’s native
resolution was 100x104 pixels. We retained 95% of the total variation, yielding
11 shape and 23 appearance principal components.

The plots in Fig. 6 present extensive quantitative comparisons between the
fitting algorithms. They are organized to show RMS error metrics as a func-
tion of downscaling factor. Observe how AAMR-SIM and RAF perform equally
well at downsampling factor 2. This case corresponds to a minor degradation
in resolution, but the fact that both algorithms perform similarly confirms the
correctness of our derivations as well as implementations. Starting from down-
sampling factor 4, RAF brings substantial accuracy improvements across all
metrics and variables of interest.

The performance of a model-based method ultimately depends on the quality
of the available model. In order to investigate how the AAM fitting accuracy
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Fig. 6. Quantitative comparison between the AAMR-SIM and RAF algorithms for
fitting the single-person AAM to a 180 frame-long sequence. Both algorithms perform
well at half-resolution, validating the derivation and implementation of RAF. The latter
brings substantial improvements across all metrics for downscaling factors 4 and higher.
The principal modes are displayed in order of % energy (i.e., variation) they capture.
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Fig. 7. Quantitative comparison between the AAMR-SIM and RAF algorithms for fit-
ting the multi-person (5 subjects) AAM. Each reported mean and standard deviation is
calculated over 900 frames, comprising 180 frames for each of 5 subjects. RAF improves
the tracking, reconstruction, non-rigid shape, and appearance estimates considerably.
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varies with model complexity, we also ran our experiments on a multi-person
AAM, which we built using data from 5 subjects. Details of this AAM are
provided in the upper-left corner of Fig. 7, organized in the same fashion as Fig. 6.
The multi-person appearance model has almost twice the number of principal
modes compared to the single-person case, indicating a richer sub-space being
modeled. Again, RAF is observed to be consistently superior to AAMR-SIM in
accuracy with regard to both tracking and reconstruction.

5 Qualitative Results

As a complementary method of comparison between the AAMR-SIM and RAF
algorithms, we include a selection of synthesized model instances. For this end,
we first pixel-replicated the original low resolution inputs, and then overlaid
high-resolution reconstructions where the trackers thought the faces were. Many
such reconstructions are included in the supplemental video.

Fig. 8 shows every second frame of a subsequence of the single-person AAM
tracking experiment. Observe that RAF correctly extracts the eye blink and
mouth opening, whereas AAMR-SIM does not. Fig. 9 offers a visual alternative
for assessing how the trackers degrade with increased downscaling: it displays
the single-person AAM results for frame no. 102 across various scales. While
RAF can consistently recover the open eyes and mouth, AAMR-SIM’s estimates
degrade quickly: starting from downsampling factor 6, the eyes and mouth are
first estimated to be half-open, and then totally closed. Similarly, Fig. 10 displays

Fig. 8. Exemplar subsequence of high-resolution reconstructions, obtained by fit-
ting the single-person AAM. Observe how RAF correctly extracts the eye blink
and mouth opening, whereas AAMR-SIM does not. See complete videos at http://
www.cs.cmu.edu/∼dedeoglu/eccv06
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Fig. 9. We compared the AAMR-SIM and RAF algorithms over a range of scales.
Increasingly lower resolution versions of input frame no. 102 are shown in the top row.
While AAMR-SIM degrades quickly, RAF maintains a reasonable estimate of the face.

snapshots of different test subjects, all tracked using the multi-person AAM. For
both AAMs, we find the visual reconstruction quality of RAF to be consistently
superior to that of AAMR-SIM.

6 Discussion and Conclusions

In low resolution scenarios, there is significant scaling between the AAM and
input images. In such cases, traditional fitting algorithms [5, 10] interpolate the
observations when computing the fitting criterion. The essential novelty of our
formulation is that it employs a camera model which mimics the image formation
in digital cameras, and thereby avoids interpolation.

Throughout this paper, we focused on accuracy measures. Other factors such
as robustness and computational efficiency may be as important. Indeed, in
extremely low resolutions, we found the AAMR-SIM algorithm to be more ro-
bust than RAF. Given the smoothing effect of (bilinear) interpolation, this does
not seem surprising. While RAF struggles among the many parameter settings
which yield almost the same low resolution images, AAMR-SIM commits to an
interpolated high-resolution observation, and pursues the fit.

We only fit nominal-resolution AAMs, independently of how much lower
in resolution the observations were. This allowed us to reconstruct faces in
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Fig. 10. Selected test frames are shown to visually compare the algorithms for fitting
the multi-person AAM. The quantitative improvement in appearance estimates (Fig. 7)
has visible effects. Mesh displays are omitted due to a lack of significant difference.
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high-resolution. A related idea is to construct a scale-space pyramid of AAMs,
and to model multiple resolutions in parallel. Due to blur, higher-level (i.e.,
lower-resolution) AAMs would have more compact appearance models, and
would therefore be easier to fit. Though this may seem to be an alternative
to our approach, comparison across models is outside the scope of this paper.
In comparing between fitting formulations across a range of resolution degrada-
tions, we used exactly the same AAMs. Our goal was to make a given fitting
problem more accurate, rather than finding an easier fitting problem.

The fact that the summation in RAF’s criterion is defined over observed image
pixels has important consequences. Recall that the traditional fitting formula-
tion had conveniently defined the summation over the model template pixels.
Since the latter do not change as a function of the input, computational savings
become possible: For instance, Matthews and Baker’s [10] tracker considers the
Taylor expansion for the warp parameters over the template, and pre-compute
all associated Jacobians and Hessians. One area for future work is to incorporate
such savings into the RAF formulation.

Our discussion remains orthogonal to practical search heuristics such as multi-
resolution, hierarchical and progressive [3, 4] methods. We can still exploit the
advantages of these: for instance, a pyramid style algorithm would increase the
robustness of RAF, complementing its accuracy at the bottom level.

In a more compherensive report [12], we argue that image-based warp esti-
mation is an asymmetric problem: in the presence of relative scaling, the warp
direction ought to be chosen such that the higher resolution image gets pre-
blurred and warped onto the lower resolution one. As such, the AAM-based face
tracking presented in this paper is an application of this general principle.
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would also like to thank Jonas August and other members of the CMU misc-
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Abstract. Tracking the 3-D pose of an object needs correspondences between
2-D features in the image and their 3-D counterparts in the object model. A large
variety of such features has been suggested in the literature. All of them have
drawbacks in one situation or the other since their extraction in the image and/or
the matching is prone to errors. In this paper, we propose to use two comple-
mentary types of features for pose tracking, such that one type makes up for the
shortcomings of the other. Aside from the object contour, which is matched to a
free-form object surface, we suggest to employ the optic flow in order to compute
additional point correspondences. Optic flow estimation is a mature research field
with sophisticated algorithms available. Using here a high quality method ensures
a reliable matching. In our experiments we demonstrate the performance of our
method and in particular the improvements due to the optic flow.

1 Introduction

To determine the 3-D pose of objects in a scene is an important task in computer vision.
In this paper, we focus on the task of pose tracking, i.e., we assume the pose of the
object is approximately known at the first frame of an image sequence. For not loosing
this pose information over time, we seek to capture the exact 3-D object motion from
one frame to the next, given an a-priori 3-D object model. The estimated motion thereby
has to fit the 3-D model to some 2-D image data in the new frame. We assume rigid
objects, though the concept can also be extended to more general objects modelled as
kinematic chains [3, 10, 1]. So our goal is to determine 6 motion parameters, 3 for the
object’s rotation and 3 for its translation in space.

For estimating these parameters, one has to match 3-D features of the object model
to their 2-D counterparts in the image. There are many possibilities which features to
match, ranging from line matching [8] and block matching [27], up to local descriptors
like SIFT [16] and free-form contour matching [23]. All of these features have their
specific shortcomings. Either they are not appropriate for general objects, like lines, or
they are difficult to match, consequently producing false matches that disturb the pose
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Fig. 1. Illustration of the pose tracking system. Given an initial pose, segmentation and contour
based pose estimation are iterated to successively improve the extracted contour and the pose.
Between frames, the optic flow helps to improve the initial pose. Furthermore, it supplements
additional point correspondences for pose estimation.

estimation. The appropriateness of a feature for matching depends on the situation. In
case of textured objects with many distinctive blobs, block matching and SIFT work
pretty well. However, such methods may fail to match homogeneous objects with few
distinctive features. Further on, block matching is only suited for translational motion
and has well known problems in scenes with, e.g., rotating objects. In such cases, con-
tour matching may work much better, as the contour is adaptive to the object’s shape.
However, the silhouette of very smooth and convex objects does not carry much in-
formation, and further point matches from inside the object region can be necessary to
ensure unique solutions. Moreover, contour extraction and matching are susceptible to
local optima.

To overcome these limitations of individual features, we propose to combine two
complementary types of features. On one hand, we match the object contour extracted
from the image to the object surface. This method works well for all rigid objects if
two requirements are satisfied: 1) the silhouette contains enough information to pro-
vide a unique pose estimate, 2) the motion of the object from one image to the next is
small enough to ensure that the contour extraction and matching do not run into a local
optimum.

Additionally to the correspondences from the silhouette, we propose to add matches
obtained from the optic flow, i.e., correspondences of 2-D points in successive images. If
the pose in the first image is known, which is the case for pose tracking, the optic flow
allows for constructing 2D-3D correspondences in the second image. Since the optic
flow based features provide correspondences for points from the interior of the object
region, they are complementary to the silhouette features and may provide uniqueness
of solutions precisely in cases where the silhouettes are not sufficiently descriptive.
This aims at the first shortcoming of contour based matching. To address the second
shortcoming, we employ the high-end optic flow estimation method introduced in [4],
which can deal with rather large displacements. With the flow based pose estimation
predicting the pose in the next image, we enable a contour matching that avoids local
minima and can handle much larger motion.

In experiments, we verified that the integration of these two complementary features
yields a very general pose tracking approach that can deal with all kinds of rigid objects,
large object motions, background clutter, light changes, noise, textured and non-textured
objects, as well as partial occlusions. The information from multiple cameras can be
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used and it does not matter whether the object or the camera are moving. Moreover,
the interlaced contour-surface matching ensures that errors from the optic flow do not
accumulate, so even after many frames the method yields precise pose estimates.

Paper organization. The next section explains the pose estimation method assuming
that 2D-3D point correspondences are given. In Section 3 we then show how such cor-
respondences can be obtained, once by matching the contour to the object surface, and
once by employing 2-D correspondences obtained from the optic flow. In our experi-
ments we demonstrate the generality of the method and show in particular the improve-
ments due to the optic flow. Section 5 finally provides a brief summary.

Related work. There exists a wide variety of pose estimation algorithms differing by
the used object or image features, the camera geometry, single or multi-view geometry,
and numerical estimation procedures. For an overview see [11, 22]. The first point based
techniques were studied in the 80’s and 90’s, and pioneering work was done by Lowe
[15] and Grimson [12]. A projective formulation of Lowe’s work can be found in [2].
The use of 3-D Plücker lines was investigated in [25]. Point matching by means of the
optic flow has been investigated, e.g., in [14] and [3], where optic flow correspondences
are used in a point-based approach with a scaled orthographic camera model. In [9] the
linearized optic flow constraint is integrated into a deformable model for estimating
the object motion. Block matching approaches are related to optic flow based methods,
though the matching is often restricted to a few interest points. Combinations of optic
flow or block matching with edge maps has been presented in [17, 26]. Recently, more
enhanced local descriptors have been suggested to deal with the shortcomings of block
matching. A performance evaluation can be found in [18].

2 Pose Estimation

This section describes the core algorithm for point based 2D-3D pose estimation. We
assume a set of corresponding points (Xi, xi), with 4-D (homogeneous) model points
Xi and 3-D (homogeneous) image points xi. Each image point is reconstructed to a
Plücker line Li = (ni,mi), with a unit direction ni, and moment mi [19]. The 3-D
rigid motion we estimate is represented in exponential form

M = exp(θξ̂) = exp
ω̂ v

03×1 0
(1)

where θξ̂ is the matrix representation of a twist ξ = (ω1, ω2, ω3, v1, v2, v3) ∈ se(3) =
{(v, ω̂)|v ∈ R3, ω̂ ∈ so(3)}, with so(3) = {ω̂ ∈ R3×3|ω̂ = −ω̂T }. In fact, M
is an element of the one-parametric Lie group SE(3), known as the group of direct
affine isometries. A main result of Lie theory is, that to each Lie group there exists
a Lie algebra, which can be found in its tangential space, by derivation and evalua-
tion at its origin; see [19] for more details. The corresponding Lie algebra to SE(3)
is denoted as se(3). A twist contains six parameters and can be scaled to θξ with
a unit vector ω. The parameter θ ∈ R corresponds to the motion velocity (i.e., the
rotation velocity and pitch). Variation of θ corresponds to a screw motion around an
axis in space. To reconstruct a group action M ∈ SE(3) from a given twist, the ex-
ponential function exp(θξ̂) = M ∈ SE(3) must be computed. It can be calculated
efficiently by using the Rodriguez formula [19]. For pose estimation we combine the
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reconstructed Plücker lines with the screw representation for rigid motions and apply a
gradient descent method: incidence of the transformed 3-D point Xi with the 3-D ray
Li = (ni,mi) can be expressed as

(exp(θξ̂)Xi)3×1 × ni − mi = 0. (2)

Indeed,Xi is a homogeneous 4-D vector, and after multiplication with the 4×4 matrix
exp(θξ̂) we neglect the homogeneous component (which is 1) to evaluate the cross
product with ni. Note that this constraint equation expresses the perpendicular error
vector between the Plücker line and the 3-D point. The aim is to minimize this spatial

error. To this end, we linearize the equation by using exp(θξ̂) =
∑∞

k=0
(θξ̂)k

k! ≈ I + θξ̂,
with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni − mi = 0 (3)

which can be rearranged into an equation of the form

Aξ = b. (4)

Collecting a set of such equations (each is of rank two) leads to an over-determined
linear system of equations in ξ. From the twist ξ one can reconstruct the group action
M1. It is then applied to Xi which results in X1

i = MXi as the result after the first
iteration. The pose estimation is now repeated until the motion converges. For n itera-
tions we get M = Mn . . .M1 as pose of Xi to xi. Usually 3-5 iterations are sufficient
for an accurate pose.

In this setting, the extension to multiple views is straightforward: we assume N im-
ages which are calibrated with respect to the same world coordinate system and are trig-
gered. For each camera the system matrices A1 . . .AN and solution vectors b1 . . . bN

are generated. The equations are now bundled in one system A = (A1, . . . ,AN )T

and b = (b1, . . . , bN )T . Since they are generated for the same unknowns ξ, they
can be solved simultaneously, i.e., the spatial errors of all involved cameras are
minimized.

In conclusion, given the projection matrices of the cameras and a set of 2D-3D cor-
respondences, pose estimation comes down to solve an overdetermined linear system
of equations, which takes typically 4ms for 200 point correspondences. The remaining
problem of pose estimation is hence how to compute reliable point correspondences,
i.e., how to match features visible in the image to features of the object model.

3 Feature Matching

The following two sections are concerned with the computation of contour based and
optic flow based point correspondences. For both the contour extraction [7, 6] and the
optic flow estimation [4], rather sophisticated methods are employed. We focus on
describing only the models of these techniques and how they affect the pose estima-
tion. Implementation details, such as numerical schemes, can be found in the above-
mentioned papers and the references therein.
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Fig. 2. Illustration of contour representations by means of level set functions. From Left to
Right: (a) Level set function Φ. (b) Contour represented by the zero-level line of Φ. (c) Ob-
ject projected to the image, given the current pose. (d) Shape prior Φ0 derived from the object
silhouette.

3.1 Contour-Surface Matching

Contour extraction. The computation of contour based correspondences is according
to our prior work in [5]. It builds upon contour extraction by means of region based level
set segmentation [7, 21]. In such methods, one provides an initial contour and evolves
this contour for that it becomes optimal with regard to some energy model. This energy
functional reads in our case:

E(Φ) = −
Ω

H(Φ(x)) log p1(F (x)) + (1 − H(Φ(x))) log p2(F (x) dx

Region Statistics

+ ν
Ω

|∇H(Φ(x))| dx

Contour Smoothness

+λ
Ω

(Φ(x) − Φ0(x))2 dx

Shape

→ min .

(5)

Hereby the level set function Φ represents the contour by its zero-level line [20, 7]; see
Fig. 2a,b for an illustration. H(Φ) is the Heaviside function simply indicating whether
a point is within the object or the background region, and ν = 0.6 and λ = 0.03 are
weighting parameters.

Let us take a closer look at the meaning of the three terms in the functional. The
first term maximizes the a-posteriori probability of a point to belong to the assigned
region. In other words: points are assigned to the region where they fit best. For a point
to fit well to a region, its value must fit well to the probability density function of this
region. The probability densities of the object and the background region, p1 and p2,
are modelled as local Gaussian densities. They can be estimated given a preliminary
contour and are successively updated when the contour evolves. In order to deal with
textured regions, we perform the statistical modelling in the texture feature space F
proposed in [6]. In case of color images it is of dimension M = 7. For keeping the
region model manageable, the different channels are supposed to be independent, so
p1 and p2 can be approximated by pi =

∏M
j=1 pij , where pij denotes the probability

density estimated in region i and channel j. Due to this statistical modelling of the
regions, the contour extraction can deal with textures and is very robust under noise or
other disturbances as long as one can still distinguish the regions in at least one of the
image or texture channels.

The second term in (5) applies a length constraint to the contour, which effectively
smoothes the contour. The amount of smoothing is determined by ν.
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The last term finally takes information provided by the object model into account.
The level set function Φ0 represents the model silhouette given the current pose esti-
mate; see Fig. 2c,d for illustration. Minimizing the distance between Φ and Φ0 draws
the contour towards the projected model, ruling out solutions that are far from its shape.
Hence, pose estimation and contour extraction are coupled by this shape term: as soon
as an improved pose estimate is obtained, one can compute an update of the contour and
thus successively improves both the contour and the pose estimate. Each such iteration
takes around 4 seconds on a 400 × 300 image.

Due to the sophisticated statistical region model and the integration of the object’s
shape, the contour can be extracted in quite general situations including background
clutter, texture, and noise. However, the quality depends on a good guess of the object’s
pose that is involved in a) providing an initialization of Φ and b) in keeping Φ close to
Φ0.

Contour matching. Once a contour has been extracted from the image, one has to
match points from this contour to 3-D points on the object surface. This is done by an
iterated closest point procedure [28]. First one determines those points from the surface
model that are part of the object silhouette, resulting in the 3-D object rim contour. The
projection of each of these points is then matched to the closest point of the extracted
contour. In this way, one obtains a 2D-3D point correspondence for each 3-D mesh
point that is part of the silhouette [22, 24]. After pose estimation, a new rim contour is
computed and the process is iterated until the pose converges.

These correspondences are often erroneous when the estimated pose is far from the
correct pose, yet the errors tend to zero as the estimated pose gets close to the true pose.
Iterating pose estimation and matching, one hopes that the estimated pose converges to
the correct pose. However, the contour matching is obviously susceptible to local op-
tima. To alleviate this problem, we use a sampling method with different (neighboring)
start poses and use the resulting pose with minimum error. Depending on the number
of samples, this can considerably increase the computation time, and the contour based
pose tracking still stays restricted to relatively small object motions.

3.2 Optic Flow

Facing the shortcomings of contour based pose tracking, we propose the supplement of
optic flow, which improves the pose tracking in two ways. Firstly, it provides additional
correspondences, which makes pose estimation more robust and can resolve equivocal
situations. Secondly, the object motion estimated by means of the optic flow correspon-
dences provides a better initial guess of the pose and thus allows the tracking method
to capture also large object motions.

Optic flow is defined as the 2-D vector field w := (u, v, 1) that matches a point in
one image to the shifted point in the other image. In other words, optic flow estimation
provides correspondences between the points of two images. During the past 30 years
numerous techniques for optic flow estimation have emerged. Differential methods, and
in particular variational methods based on the early approach of Horn and Schunck [13],
are among the best performing techniques. Variational techniques combine a constancy
assumption, e.g. the assumption that the gray value of a point stays constant during
motion, with a smoothness assumption. Both assumptions are integrated in an energy
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functional that is sought to be minimized. Thanks to the smoothness constraint, which
distributes information from textured areas to close-by non-textured areas, the resulting
flow field is dense, i.e., there is an optic flow estimate available for each pixel in the
image.

We employ the technique from [4], which is the currently most accurate optic flow
estimation method available. Let x := (x, y, t). Then given two images I(x, y, t) and
I(x, y, t+ 1), the technique is described by the energy minimization problem

E(u, v) =
Ω

Ψ (I(x + w) − I(x))2 + γ(∇I(x + w) − ∇I(x))2 dxdy

Data term

+α
Ω

Ψ(|∇u|2 + |∇v|2) dxdy

Smoothness term

→ min
(6)

where α = 50 and γ = 2 are tuning parameters and Ψ(s2) =
√
s2 + 0.0012 is a robust

function which allows for outliers in both the data and the smoothness term. The data
term is based on the assumption that the gray value and the gradient of a point remain
constant when the point is shifted by w. The smoothness constraint additionally requires
the resulting flow field to be piecewise smooth. This optic flow estimation method has
several positive properties that are important for our pose tracking task:

1. Due to non-linearized constancy assumptions, the method can deal with larger dis-
placements than most other techniques. This ensures a good matching quality even
when the object changes its pose rather rapidly.

2. It provides dense and smooth flow fields with subpixel accuracy.
3. The method is robust with respect to noise as shown in [4].
4. Thanks to the gradient constancy assumption, it is fairly robust with regard to il-

lumination changes that appear in most real-world image sequences, e.g., due to
artificial light source flickering or an automatic aperture adaptation of the camera.

Deriving 2D-3D correspondences from the optic flow. With the optic flow computed
between two frames, one can establish 2D-3D point correspondences. The visible 3-D
object points from the previous frame (where the pose is known) are projected to the
image plane. They are then shifted according to the optic flow to their new position
in the current frame. Thus, for each visible 3-D point from the last frame, one gets a
correspondence to a 2-D point in the new frame.

The resulting correspondence set is used twice: firstly, it is exploited for predicting
the object pose in the new frame, i.e., for getting a better pose initialization. Secondly,
it is joined with the correspondence set stemming from the contour matching thus sta-
bilizing the contour based pose estimation.

As the optic flow can also provide correspondences for points away from the rim
contour of the surface, the number of correspondences is significantly larger than for
the contour based matching. We therefore weight the equations (4) stemming from flow
based correspondences by a factor 0.1. In this way, both correspondence sets influence
the solution in an equal manner.
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4 Experiments

In order to confirm the theoretical generality and robustness of the pose tracking
method, it has been tested in a number of experiments using three different object mod-
els and four different image sequences.

Fig. 3 depicts an experiment where a tea box has been moved considerably between
two frames. The motion is so large that the computed optic flow vectors contain errors
as can be seen from the pose prediction in Fig. 3b. However, thanks to the additional
contour based correspondences, the final pose result is good. Obversely, the pose esti-
mation also fails, if only the contour based correspondences are used. This demonstrates
the effective coupling of the two different ways to obtain point correspondences.

Fig. 4 depicts the coupled iteration process between contour extraction and pose
estimation. As the contour evolves towards the object boundary, also the pose result im-
proves. In return, the projected pose prohibits the contour to run away from the object
in order to capture, e.g., the shadow of the tea box. Note that the setting of this exper-
iment with a textured object, shadows, and moving background clutter rules out most
alternative segmentation methods.

In the experiment depicted in Fig. 5, we tracked the pose of a quite homogeneous
puncher in front of a cluttered background while the camera was moving. The camera

Fig. 3. The optic flow helps to capture the large motion of a tea box. From Left to Right: (a) Ob-
ject pose at frame 1. (b) Object motion due to the estimated optic flow between frame 1 and frame
2. Gray: pose from frame 1. Black: pose prediction for frame 2. (c) Estimated pose at frame 2
using the optic flow and the evolving contour. (d) Estimated pose without the use of optic flow.

Fig. 4. Evolution of the contour and pose in Fig. 3. From Left to Right. Contour and pose are
bad at the beginning since the optic flow estimate was erroneous, yet the contour evolves towards
the object making the object pose to follow. Thereby, the shape term in the contour evolution
ensures that the contour does not drift away capturing the shadow on the right.
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Fig. 5. Four successive frames from a sequence with the camera moving and Gaussian noise with
standard deviation 60 added (242 frames, 8fps). Top: Extracted contour. Center: Object motion
due to the optic flow. Gray: pose from previous frame. Black: pose prediction at current frame.
Bottom: Estimated pose using contour and optic flow constraints.

was moved rapidly, thus the displacements between the frames are rather large and there
is a motion blur in some images. Additionally, we added severe noise to the sequence.
The results reveal that both the contour extraction and the optic flow estimation method
can deal with these high amounts of noise. The pose prediction due to the optic flow
is very good, despite the noise and the large displacements. Due to the homogeneous
object surface and the noise, methods that are based on local descriptors are likely to
fail in this situation.

In Fig. 6, we disturbed the puncher by adding some stickers to its surface. Since
the contour extraction can deal with textured regions, also the modified puncher can be
tracked accurately. One can clearly see the motion blur due to the fast camera motion.
Fig. 7 shows what happens, if only flow based correspondences are used, whereas the
contour based matches are neglected. Since the flow based constraints rely on the cor-
rect pose in the previous frame, errors accumulate in the course of time. This effect is
avoided by the contour based correspondences.

In Fig. 8, we show the tracking result in a stereo sequence. The used tea pot model
is more complex than the objects shown before. In particular, the background region
is no longer connected. Here the advantage of the level set based contour representa-
tion to be able to deal with such kinds of topologies comes into play. One can see that
the handle of the pot, which is quite important for a good pose estimate, is captured
in three out of the four depicted images. Thanks to the integration of information from
the two cameras, this works even though the hand partially occludes the handle. At
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Fig. 6. Puncher disturbed by some stickers (244 frames, 8fps). Top row: Frames 80, 95, 100, 110,
and 120. Some images show a considerable blur due to motion or the auto-focus of the camera.
In others there are reflections on the puncher. Bottom row: Pose results at these frames.

Fig. 7. Accumulation of errors when only flow based correspondences are used. From Left to
Right: Pose results at frames 2, 5, 10, and 20. Rightmost: Pose result at frame 242 if contour
and flow based correspondences are employed.

Fig. 8. Stereo sequence with partial occlusions (131 frames, 8 fps). Top Row: Left camera. Bot-
tom Row: Right camera. From Left to Right: Contour at image 59. Pose at image 59. Contour
at image 104. Pose at image 104.
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Fig. 9. Quantitative error in a static stereo scene with illumination changes and partial occlusions.
The sequence has been disturbed by rectangles of random size, position, and color. Top: Two
frames from the sequence. The right one shows the worst pose estimate according to the diagram
below. Bottom: Rotational (left) and translational (right) errors along the three spatial axes in
radians and millimeters, respectively.

Fig. 10. Quantitative error analysis in a dynamic stereo scene disturbed by rectangles of random
size, position, and color. Horizontal axis: frame number. Vertical axis: translation results (in the
three spatial dimensions) blue: with optic flow; gray: without optic flow; black: with the undis-
turbed sequence. Right: Three stereo frames from the sequence.
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this point, the optic flow providing good initializations is also very important, since the
inner contour at the handle may get lost if the initialization is too far away from the
correct pose.

Fig. 9 depicts a sequence where object and camera are static to allow a quantitative
error measurement. The parameter settings were the same as in Fig. 8, so the object was
allowed to move. The sequence has further been disturbed with rectangles of random
size, position, and color which leads to occlusions of the object.

The two diagrams show the translational and angular errors along the three axes,
respectively. Despite the change of the lighting conditions and partial occlusions, the
error has a standard deviation of less than 7mm and 5 degrees.

Finally, Fig. 10 shows another dynamic sequence. At the beginning, the tea pot is
rotated on the floor, then it is grabbed and moved around. Again the sequence has been
disturbed with rectangles of random size, position, and color leading to occlusions of the
object. The diagram in Fig. 10 quantifies the outcome. It shows the tracking curves for
the disturbed sequence, with and without using optic flow (blue and gray, respectively)
and the successful tracking of the undisturbed sequence (black) that can be regarded as
some kind of ground truth. The optic flow clearly stabilizes the tracking.

The total computation time depends on the number of iterations necessary for the
method to converge. For the last (and hardest) experiment we ran a setup that required
approximately 2 minutes per frame on a 2.4GHz Opteron Linux machine.

5 Summary

We have suggested a pose tracking method that combines two conceptionally different
matching strategies: contour matching and optic flow. Providing both qualitative and
quantitative results, we have demonstrated the generality of this combination: it does not
matter whether the object or the camera is moving, the method can deal with textured
and homogeneous objects, as well as clutter, blurring, or noise artifacts.

In particular, we have shown that the integration of both constraints outperforms
approaches that exploit only one or the other constraint. The multiresolution scheme for
the optic flow estimator provides accurate contour matching even in case of larger inter-
frame motion, where contour based schemes fail. The interlaced contour matching, on
the other hand, prevents the accumulation of tracking errors, which is characteristic for
purely optic flow based tracking systems.
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Abstract. We consider the problem of tracking a given set of point
features over large sequences of image frames. A classic procedure for
monitoring the tracking quality consists in requiring that the current
features nicely warp towards their reference appearances. The procedure
recommends focusing on features projected from planar 3D patches (pla-
nar features), by enforcing a conservative threshold on the residual of the
difference between the warped current feature and the reference. How-
ever, in some important contexts, there are many features for which the
planarity assumption is only partially satisfied, while the true planar
features are not so abundant. This is especially true when the motion
of the camera is mainly translational and parallel to the optical axis
(such as when driving a car along straight sections of the road), which
induces a permanent increase of the apparent feature size. Tracking fea-
tures containing occluding boundaries then becomes an interesting goal,
for which we propose a multi-scale monitoring solution striving to maxi-
mize the lifetime of the feature, while also detecting the tracking failures.
The devised technique infers the parts of the reference which are not pro-
jected from the same 3D surface as the patch which has been consistently
tracked until the present moment. The experiments on real sequences
taken from cars driving through urban environments show that the tech-
nique is effective in increasing the average feature lifetimes, especially in
sequences with occlusions and large photometric variations.

1 Introduction

Tracking point features in a sequence of image frames is an important low-level
problem of early computer vision. The quality of the recovered trajectories di-
rectly affects the performance of attractive higher level tasks such as structure
from motion [1], visual odometry [2], concurrent mapping and localization [3],
and visual servoing [4]. However, the priorities of the desired tracking behaviour
may differ between the particular contexts, since the former two involve larger
numbers of “nameless” features, while the latter ones usually focus on fewer but
more important landmarks. Thus, achieving the longest possible contact with
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each of the tracked features, being the focus of this paper, is highly desired
in the latter tasks, even though the former ones can operate with considerably
shorter feature lifetimes. The two main approaches for conceiving a point feature
tracker are iterative first-order differential approximation [5, 6], and exhaustive
matching [2, 7]. In both approaches, a straightforward implementation based on
integrating inter-frame motion is a viable solution only for short-term operation,
due to the incontrollable growth of the accumulated drift. It is therefore neces-
sary either to adapt the higher-level task to work only with short feature tracks
[2], if applicable, or to devise a monitoring approach which would try to correct
the drift by aligning the current appearance of the feature with a previously
stored template image or reference. The desired alignment is usually performed
by minimizing the norm of the error image, which is obtained by subtracting
the current feature from the reference [8]. Shi and Tomasi [5] have addressed
the monitoring over linear deformations of the planar surface, which have been
described with a 2D affine transform, under reasonable assumptions of the fea-
ture position with respect to the camera. An extension of their work has been
proposed by Jin et al. [6] who devised a scheme which additionally compensated
for affine photometric deformations of the grey level value in the image.

An important issue in monitored long-term tracking is being able to recognize
when a match with the reference can not be confidently established any more,
so that the tracking of the feature can be discontinued in order to prevent errors
at the higher levels. Previously, this has been accomplished by using criteria
based on the RMS (root-mean-square) residual of the error image [5], and nor-
malized cross-correlation score combined with the ratio between the two areas
[6]. However, the richer deformation models pose a bigger danger of allowing a
warp producing an incorrect match with a low residual [9]. This danger can be
mitigated by enlarging the size of a feature window: larger windows provide a
better security that a good match score is not due to a chance. On the other
hand, large features are more likely to include a 3D surface discontinuity, which
usually makes a correct warp towards past appearances impossible. The odds
for straddling a discontinuity are especially high if we consider the tracking of
features that are initially distant. For a usual horizontal field of view of 30◦ and
a resolution of 320× 160 pixels, a 15× 15 pixels region corresponds to a perpen-
dicular planar patch of over 1 × 1 m at a distance of 50m. In such a scenario,
characteristic for an observer situated in a car moving along a straight road,
there may indeed be too few planar features for the needs of a higher task.

A technique is proposed for alleviating the problems with features which are
only partly projected from a distinctive quasi-planar 3D surface, while keeping
the good behaviour for the true planar features. The well behaved portion of
a feature window is termed as feature support, while its robust and adaptive
detection is the main objective of the paper. The technique is related to robust
estimation of the warp parameters [10, 11], but is more suitable for detecting
correct feature supports which often contain statistical outliers. Here we do not
consider updating the reference [12, 13, 11] despite its potential for increasing the
tracking flexibility, since it offers less precision while requiring more processing
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power. The related research also includes the cumulative similarity transform [14]
which is suitable only for tracking homogeneous regions, and the probabilistic
filtering of the feature position [15, 13, 11], which has been used for handling
temporary total occlusions.

The paper is organized as follows: the theoretical background is briefly sum-
marized in Sect. 2. Sect. 3 describes the two complementary procedures to infer
the feature support. Experimental results are described and discussed in Sect. 4,
while Sect. 5 contains a short conclusion and the directions for future work.

2 Theoretical Background

2.1 General Differential Tracker with Warp Correction

Let the feature in the current frame is given by I(x), its appearance after a
warp with parameters p by IW (x,p), and the corresponding reference by IR(x).
Then the tracking consists in finding p̂ which minimizes the error image norm,
or equivalently, the error over the feature window:

p̂ = argmin
p

∑
x

‖IW (x,p) − IR(x)‖ . (1)

The minimization is performed in a Gauss-Newton style, by employing a first-
order Taylor expansion of the warped feature around the previous approximation
of p̂. This can be expressed in different ways [8], and here we present a “forward-
additive” formulation with which the best accuracy has been obtained. The
current feature warped with a sum of the previous parameter vector p and an
unknown additive improvement Δp is therefore approximated as:

IW (x,p +Δp) ≈ IW (x,p) +
∂IW
∂p

·Δp . (2)

The scalar residual norm appearing in (1) can now be represented as:

R(Δp) =
∑
x

‖IW (x,p +Δp) − IR(x)‖

≈
∑
x

‖IW (x,p) +
∂IW
∂p

·Δp − IR(x)‖ . (3)

For clarity, we omit the arguments, denote the previous error image as e, and
introduce g as the transposed warped feature gradient over the warp parameters:

R(Δp) ≈
∑
x

‖e+ g�Δp‖ . (4)

The requirement (1) can be enforced by finding a Δp̂ for which the gradient of
the residual vanishes. In case of the L2 norm, this is easy to perform:

∂R(Δp̂)
∂Δp̂

≈
∑
x

2 · (e+ g�Δp̂) · g� = 0� . (5)
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After transposing both ends of (5), we arrive at the final expression for an
iteration in the context of a general warp (note that e is a scalar function):∑

x

(ge+ gg�Δp̂) = 0 . (6)

Thus, in each iteration, the additive improvement is calculated by solving a linear
system of equations. The procedure stops when the norm of the improvement
‖Δp̂‖ falls below a threshold, or when the new feature position falls outside the
image bounds, or when the determinant |gg�| becomes too small.

2.2 Tracker with Isotropic Scaling and Contrast Compensation

In order to mitigate the danger that a physically unrelated image patch might be
well transformed towards the reference, a trade-off between the modelling power
and the tracking security should be carefully chosen. For our application, a good
balance is obtained by a 5-dimensional warp consisting of a 2-dimensional trans-
lational offset (d), an isotropic scaling parameter (m), and the two parameters of
the affine contrast compensation model (λ, δ) [6]. It is convenient to express the
warp in terms of geometric and photometric components as p = (q, r), where
q = (m,d), and r = (λ, δ). The warped feature is then obtained as:

IW (x,p) = λ · I(m ∗ x + d) + δ = U(I(T (x,q)), r) . (7)

In order to use the general formulation from 2.1, an expression for ∂IW

∂p = [∂U
∂q

∂U
∂r ]

must be derived using the chain rule. The second term is simpler to obtain:

∂U

∂r
(I(T (x,q)), r) =

[
IT 1

]
, (8)

where IT is the current feature warped with T: IT = I(T (x,q))). The derivation
of the first term is a little bit more involved:

∂U

∂q
(I(T (x,q)), r) =

∂U

∂I
(I(T (x,q)), r) · ∂I

∂T
(T (x,q)) · ∂T

∂q
(x,q)

= λ · Ix
T ·

[
x1 1 0
x2 0 1

]
= λ

[
Ix
T x Ix1

T Ix2
T

]
, (9)

where Ix
T is the gradient in the feature warped by T: Ix

T = ∂I
∂T (T (x,q))). The

combined result, (9) and (8), can be plugged into (6), with g given by:

g� =
[
Ix
T x Ix1

T Ix2
T IT 1

]
. (10)

2.3 The Running Average Gaussian Estimation

The proposed tracking approach relies on estimating the gray scale value distri-
bution for each single pixel within the feature window. This can be achieved by
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a space-efficient approximation of the running average, which has been exten-
sively used in the field of the background subtraction. For each feature pixel x,
the current estimate of a distinct normal distribution is updated as follows [16]:

μx,t = (1 − α) · μx,t−1 + α · xt

σ2
x,t = (1 − α) · σ2

x,t−1 + α · (xt − μx,t)2 . (11)

The parameter α ∈ 〈0, 1〉 represents the learning rate, or alternatively, how many
previous frames are taken into account for the estimate. Although there are no
guarantees that a certain pixel is normally distributed (indeed, the pixels which
are interesting in our context may have arbitrary distributions, depending on
the scene), the estimates do offer an insight into the pixel mean and variability.

3 The Feature Support Concept

3.1 Assumptions and Basic Notions

The high level application context assumes robot navigation in urban environ-
ment, controlled by techniques in which a long term contact with the features
from a given set is highly desired. The considerations are therefore focused on
tracking over a significant forward motion, as illustrated in Fig. 1. The features
which are visible throughout the whole sequence are located quite far from the
initial observer location, so that they experience considerable changes of scale
and photometry. The 3D surfaces projecting into initial feature windows are
quite large (due to the distance), so that many features cross a discontinuity. In
fact, since parts of the scenery behind the car (to the left from #28 and to the
right from #39) were out of the field of view in some frames of the sequence,
#20 is the only feature in Fig. 1(a), for which the final appearance does not sub-
stantially deviate from the affine transformation model. The proposed concept
strives to enlarge the application field of a differential tracker with warp correc-
tion onto the features for which the initial windows are only partly projected
from a plane. The resulting convergence of the feature support provides a valu-
able shape information allowing the non-rectangular features to be introduced in
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Fig. 1. Illustration of the tracking task: central portions of the first and the last frames
of the sequences rennes and compiegne, with the designated windows of the tracked
features
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Rt:20.9 Ra:7.9

l2:26.7
[0.9,11.3]
[4.0] Rt:42.5 Ra:9.0

l2:16.3
[0.6,10.0]
[1.2]

#24 in rennes, frame 220 #C59 in compiegne, frame 250

Rt:21.6 Ra:10.6

l2:10.4
[0.7,65.4]
[1.7] Rt:21.8 Ra:6.3

l2:27.3
[1.0,-13.0]
[1.2]

#8 in rennes, frame 220 #44 in rennes, frame 220

Fig. 2. The enlarged triples of the reference, the warped current feature and the feature
support (non-masked areas) for the four features from Fig. 1. The numbers in the
reference images indicate the RMS residuals for the whole feature window (Rt), and for
the feature support only (Ra). The numbers in the warped features indicate the smaller
eigenvalue of the second-order moment matrix (l2), the photometric warp (λ, δ) and
the isotropic scaling (m).

(6), and in the calculation of the monitoring residual. To illustrate the proposed
objectives, the obtained supports for several features from sequences rennes
and compiegne are shown in Fig. 2. The need for feature support arises most
often when the feature is on a foreground structure occluding the background,
either because the feature is at the boundary (#24, #C59), or the structure has
holes (#8). The concept can also be helpful if the feature is situated on a back-
ground structure which is at times occluded by the foreground (#44), and when
there are complex surface radiance variations which can not be counterbalanced
by a feature-wide contrast compensation model (#C59). The relation between
the obtained residuals (Ra
Rt, see Fig. 2) illustrates the effectiveness of the
technique.

3.2 The Volatile Feature Support Due to a Robust Rejection Rule

In the first investigated approach, the pixels not belonging to the feature support
are identified as outliers within the distribution of the squared grey level value
within the current error image {e2i }. The outliers are detected following a robust
X84 rejection rule, which has also been used to reject the entire features (not the
individual pixels), based on the magnitude of their RMS residual [17]. The rule
uses the median as an estimator for the distribution location, while the scale of
the distribution is estimated by the median absolute deviation (MAD):

Ce2 = med{e2i }
MADe2 = med{|e2i − Ce2 |} . (12)

Due to a further noise suppression, much better results are obtained when tempo-
rally smoothed values are used within (12). This can be achieved by substituting
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the error image pixels ei with a difference between the mean value of the warped
feature pixel estimated by (11), and the corresponding reference pixel.

The pixels of the feature support can finally be identified by testing for:

(|e2i − Ce2 |) < max(thmin, k · MADe2) . (13)

The choice of k = 5 is often appropriate here, since 5 ·MAD corresponds to 3.5 ·σ
in a Gaussian distribution. Experiments have shown that the threshold thmin is
required for suppressing the bad behaviour when there are no real outliers.

3.3 The Persistent Feature Support Due to Temporal Consistency

Experiments have shown that the previous approach for inferring the feature
support is surprisingly effective in increasing the tolerance to the occasional out-
liers. However, that approach assumes that all the inlier error image pixels come
from the same distribution, which is rarely the case. Good features usually have
pixels originating from different materials which are likely to generate different
error distributions. Thus, the obtained instances of the feature support usually
do not resemble the part of the window projected from a continuous surface.

The second approach makes a more explicit check for the temporally con-
sistent feature pixels, by analyzing the standard deviation estimated by (11).
During the motion of the observer, the pixels belonging to a different continuous
surface than the one which is consistently tracked, will refer to different points
of the scene. In the case of natural scenes which are rich in texture, this will
be reflected by occasional spikes in the standard deviation. These spikes can be
detected by a threshold on the standard deviation σth, while the corresponding
pixels can be persistently excluded from the feature support. An inverse process
(adding a pixel to the feature support if it is consistently similar to the reference)
could be employed for recovering after temporary occlusions. This has not been
performed in our experiments, since for the most frequent foreground features it
implies relinquishing the valuable information about the feature shape, which is
not always attainable (e.g. when the background is homogenous).

A critical notion in both approaches is controlling the learning rate of the
Gaussian estimates in (11). A fixed value would not be acceptable, since it would
imply obtaining different results for different dynamics of the same motion. Per-
haps the best solution would be to modulate α0 by a perceived translational
displacement with respect to the structure on which the feature resides. How-
ever, this would bring a serious increase of the implementation complexity, due
to the coupling of the tracker with pose estimation. A simpler solution is there-
fore proposed, in which the modulating factor is computed from the interframe
change of geometric warp parameters d and m:

α = α0 · ρ(|Δm| · wx + |Δdx|, |Δm| · wy + |Δdy|) , (14)

where ρ is a 2D metric, and (wx, wy) are the feature window dimensions. If the
camera motion is strictly translational and the feature occludes the background
at infinity, the proposed solution gives each background fraction a fair amount
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in the distribution of a feature pixel. The behaviour would be less satisfactory
for a chiefly rotational motion and for occlusions of distant features, but these
cases do not occur in many realistic situations, as confirmed by experiments.

3.4 Multiscale Considerations

Due to the expected increase in the feature scale, it is suitable to initialize the
tracking by the features at the smallest feasible scale. In order to ensure a good
behaviour for large features (e.g. the feature #24 in Fig. 2 is more than 4 times
larger than the reference), the tracking is performed at the level of the image
pyramid which most closely resembles the previous scale of the feature. This is
achieved by a simple scaling of the parameters of the geometrical warp before
and after the tracking procedure for each individual feature. However, due to
discretization issues, this sometimes causes artificial spikes in the parameters
of the pixel Gaussians. The mean estimates for the feature pixels are therefore
reinitialized to the corresponding actual values at each change of the pyramid
level, in order to avoid the degradation of the feature support.

4 Experimental Results

The performed experiments were directed towards three different goals. The first
goal was to investigate whether a threshold on the feature RMS residual can be
at least partially substituted by other, hopefully more discriminative indicators
of bad tracking. The second goal was to obtain a qualitative insight into the
benefits of the proposed technique, by analyzing its sensitivity to the change of
feature monitoring parameters. The final goal was an objective assessment of
the influence of the technique to the measured lifetime of the tracked features.

The provided experimental results were obtained exclusively by the persis-
tent support described in 3.3. The volatile approach described in 3.2 was not
evaluated due to the ad-hoc threshold in (13), which undermines the capability
to find a right ballance between the feature longevity and the tracking security.
The recovered support is used for restricting the area of the feature window
both in the tracking equations (6), as well as in the sum for calculating the error
image norm (1). In order to be able to deal with large scale changes, a 3-level
image pyramid is employed, obtained by successive smoothing and 1:2 subsam-
pling. The switch of the pyramid level occurs whenever the feature window at
the current resolution becomes greater than 1.8 times the size of the reference.
The initial feature windows are 15 × 15 pixels wide, while the feature support
modelling parameters are: α0 = 0.005, σth = 12. The source code used for per-
forming the experiments is based on a public implementation of the KLT feature
tracker [5] (see http://www.ces.clemson.edu/~stb/klt/) .

4.1 Criteria for Evaluating the Warp Correction Quality

Knowing when to abandon the tracking is a very important quality of a point
tracker. In the previous work [5, 6], this was achieved chiefly by relying on the



120 S. Šegvić, A. Remazeilles, and F. Chaumette

31

17 38

104

143 51

94

48

enlarged frame 1 of rennes

Rt:23.1 Ra:23.1

l2:96.2
[0.7,58.3]
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[2.3]
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#38 in rennes, frame 55 #104 in rennes, frame 56

Fig. 3. The position of some features from rennes which will be discussed in the further
text (left), and the four problematic ones (right). The abrupt magnification change test
detects #17 and #31, but not #38. The gradient test detects “dissolved” features such
as #104. See Fig. 2 for annotations.

RMS residual. However, the discriminative power of that criterion in real scenes
with complex photometric variations leaves to desire, since for a given threshold,
there are often both correctly rejected and incorrectly tracked features. For il-
lustration, similar non-masked residuals (Rt) are obtained for the good features
in Fig. 2, and for the problematic ones in Fig. 3 (#17, #31, #38, #104). The two
most difficult situations for a point tracker are (i) when a foreground structure
occludes the feature, which then tends to “jump” onto the foreground, and (ii)
when the feature is on a face which is nearly parallel to the motion, when the
warp may approach singularity. In both cases, the tracker may diverge from a
consistent local minimum, but fortunately, this often can be detected by observ-
ing some common divergence symptoms. The latter scenario can be detected
by testing for a “blanc wall” condition within the warped feature, by setting
a threshold on the smaller eigenvalue of the second-order moment matrix [9].
Naturally, in the proposed context, the test is only performed for the pixels of
the feature support. This test is very effective in avoiding tracking errors in low
gradient areas, where a bad match often produces a small residual (see #104 in
Fig. 3). Despite the efficacy in pruning the bad features, the test is a candidate
for refinement because some features can be well tracked in spite of the low
gradient (#48, #51 and #94 in Fig. 3).

Although the foreground structure and the background feature may be quite
similar, as for features #17 (the car occludes the fence), #38 (the car occludes the
bush), and #31 (the car occludes the building) in Fig. 3, the transfer is seldom
smooth. This can be detected by an abrupt change of the recovered warp param-
eters. In particular, a threshold of 10% on the interframe relative magnification
change1 detects many of such situations, while seldom reporting false alarms.

1 This is also true for other affine degrees of freedom: anisotropic scaling, skew, ro-
tation. These parameters are not allowed since they actually decrease the tracking
quality, by providing a way for the tracker to “escape” towards wrong local minima.
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Nevertheless, the transfer of the feature #38 (see Fig. 3) involves only a 6%
interframe relative magnification change. The proposed technique deals success-
fully with this situation since the feature support decreases with the occlusion,
and the tracking is abandoned when a threshold of 40% is reached. However, as
explained in 3.3, this would not work for a very distant feature, since the mod-
ulation factor for α would have been zero. Thus, unfortunately, the residuum
threshold can not be completely avoided in the current implementation.

4.2 Sensitivity to Threshold Parameters

The choice of the threshold parameters used to detect the bad tracking is a
trade-off between the security and the multiplicity of the tracked features. For
the case of the RMS residual threshold, this is illustrated in Table 1. The results

Table 1. Count of features tracked until the end of rennes, for different thresholds on
RMS residual r. For the discussion on feature #38, see 4.1 and Fig. 3.

r = 10 r = 15 r = 20 r = 25

without feature support 1 3 8 12+#38
with feature support 3 11 13 13

suggest that the feature support offers better tracking results, even with a stricter
residuum threshold. For example, the basic tracker with r = 25 produces a 18%
magnification error for #8, while #18 is discontinued due to the abrupt mag-
nification change. Both features are well tracked using the proposed technique,
while the development of their supports is shown in Fig. 4.

Similar considerations hold for the threshold on the condition of the second-
order moment matrix. If this threshold is released, two more features survive
to the last frame in the basic tracker (#94, #143), only one of which is well

Rt:21.6 Ra:10.6

l2:10.4
[0.7,65.4]
[1.7]

reference 80 90 100 220 220 (cur.)

Rt:17.2 Ra:8.0

l2:6.9
[0.6,74.8]
[1.7]

reference 80 90 100 220 220 (cur.)

Fig. 4. The development of the support for the two features #8 (up) and #18 (down)
from rennes, which are not correctly tracked when the feature support is not used. See
Fig. 2 for annotations.
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tracked. However, when feature support is used, additional two features are
tracked without errors (#48, #51, all in Fig. 3).

4.3 Quantitative Experiments

The effects of the proposed technique are quantitatively evaluated on several real
sequences taken from cars moving in urban environments. In the experiments,
we test whether the proposed technique can provide longer feature lifetimes
even with a more restrictive residuum threshold. We consider eight sequences
which are briefly described in Table 2, while a more detailed presentation is
available at http://www.irisa.fr/lagadic/demo-cv-tracking-eng.html. Each se-
quence from the table has been acquired during about one minute of mainly
translational movement of the vehicle on which the camera was mounted. For
each sequence, the tracking procedure was invoked with and without the feature
support enabled, for different combinations of the RMS residual threshold. The
relation between the two sets of obtained lifetimes (liFS) and (linoFS), has been
analysed exclusively for features in which the tracking was discontinued due to
the one of the criteria described in 4.1. In particular, we do not consider the
features discontinued after a contact with the image border, which introduces a
bias towards shorter-living features. Two different measures of average feature
lifetime were used:

1. geometric average of individual lifetime ratios: Mg = n
√∏

i l
i
FS/l

i
noFS

2. ratio of the total feature lifetime: Ma = (
∑

i l
i
FS)/(

∑
i l

i
noFS)

The latter measure is judged as better since it reduces the bias towards short-
living features. The obtained results are summarized in Table 2, and they show
that the proposed technique favourably influences the feature lifetimes. Besides
the occlusions and large photometric variations, the technique also allows to
deal with structural changes, affecting the roof silhouettes (see #C30 in Fig. 1),
and moderate affine deformations occurring on the pavement signalization. Con-
versely, the results for compiegne2 and compiegne3 suggest that there is no
negative impact if the addressed effects are absent.

Table 2. Quantitative comparison of the total feature lifetime ratio Ma, for different
combinations of RMS thresholds RFS : RnoFS

sequence description 15:15 20:20 15:20

rennes approaching a building with holes 1.32 1.14 1.06
rennes2 a tour in the inner court 1.23 1.11 1.01
compiegne towards a square in the sunlight 1.20 1.23 1.03
compiegne2 traversing a large square into a street 1.09 1.10 0.96
compiegne3 a very narrow street 1.05 1.07 0.93
compiegne4 a street bordered by buildings and trees 1.17 1.18 0.98
antibes1 some trees on the left and far away 1.09 1.13 0.99
antibes2 a narrow downhill winding street 1.07 1.07 1.02
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5 Conclusions and the Future Work

A technique for increasing the feature lifetimes in extended real sequences acquired
during a mainly translational forward motion of the observer has been presented.
The technique addresses “almost good” features, for which the deformations dur-
ing the tracking can not be completely explained by linear transforms, due to
occlusions, photometric variations or small structural developments. The experi-
ments suggest that the technique favourably affects the tracking quality, on both
accounts of the correct tracking and the correct rejection.

The future work will be concentrated on applying the technique in the field
of the autonomous robot navigation. There we would like to explore the poten-
tial of using all geometric warp parameters recovered by the tracking procedure
(d,m). Further improvements might be obtained by devising more sophisticated
ways to regulate the modulation speed α for estimating the distribution param-
eters of the warped feature pixels. An eventual faster convergence would allow
the monitoring procedure to rely more heavily on the size and the shape of the
feature support, and consequently further improve the chances for early detec-
tion of ill-conditioned situations, and confident tracking during extended time
intervals.
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Abstract. This paper presents a scalable solution to the problem of
tracking objects across spatially separated, uncalibrated, non-overlapping
cameras. Unlike other approaches this technique uses an incremental
learning method, to model both the colour variations and posterior prob-
ability distributions of spatio-temporal links between cameras. These
operate in parallel and are then used with an appearance model of the
object to track across spatially separated cameras. The approach requires
no pre-calibration or batch preprocessing, is completely unsupervised, and
becomes more accurate over time as evidence is accumulated.

1 Introduction

The aim of this paper is to automatically track objects between cameras (inter
camera). This is often termed object ”handover”, where one camera transfers a
tracked object or person to another camera. To do this we need to learn about the
relationships between the cameras, without colour, or spatial pre-calibration. In
summary, an ideal tracking system could be described as one that, upon initiali-
sation is able to work immediately, as more data becomes available will improve
performance, and is adaptable to changes in the camera’s environment.

To achieve this the system needs to be able to learn both the spatial and
colour relationships between non-overlapping cameras. This allows the system
to determine if a newly detected object has previously been tracked on another
camera, or is a new object. The approach learns these spatial and colour re-
lationships, though unlike previous work it does not require pre-calibration or
explicit training periods. Incremental learning of the object’s colour variation
and movement, allows the accuracy of tracking to increase over time without
supervised input.

The paper firstly gives a brief background of inter camera tracking and cal-
ibration. With section 3 describing the intra camera tracking and its use in
creating the inter camera links is described in section 4. Sections 5 and 6 explain
the spatial block subdivision to improve the representation of links and how the
links and an object appearance model is used to track inter camera. Incremental
camera colour calibration is explained in section 7, with experiments and results
that combine both approaches presented in Section 8.
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2 Background

Early tracking algorithms [1][2] required both camera calibration and overlap-
ping fields of view (FOV). These are needed to compute the handover of tracked
objects between cameras. Additionally Chang [3] required a 3D model of the
environment using epipolar geometry, to allow for the registration of objects
across the different overlapping cameras. The requirement that cameras have an
overlapping FOV is impractical due to the large number of cameras required and
the physical constraints upon their placement.

Kettnaker and Zabih [4] presented a Bayesian solution to track people across
cameras with non-overlapping FOVs. However the system required calibration,
with the user providing a set of transition probabilities and their expected dura-
tion a priori. This means that the environment and the way people move within
it must be known. In most surveillance situations this is unrealistic.

Probabilistic or statistical methods have seen some of the greatest focus to
solve inter camera tracking. They all use the underlying principle that through
accumulating evidence of movement patterns over time it is likely that com-
mon activities will be discovered. Huang and Russel [5] presented a probabilistic
approach to tracking cars on a highway, modelling the colour appearance and
transition times as gaussian distributions. This approach is very application spe-
cific, using only two calibrated cameras with vehicles moving in one direction
in a single lane. Javed, et al [6] present a more general system by learning the
camera topology and path probabilities of objects using Parzen windows. This is
a supervised learning technique where transition probabilities are learnt during
training using a small number of manually labeled trajectories. Dick and Brooks
[7] use a stochastic transition matrix to describe patterns of motion both intra
and inter camera. For both systems the correspondence between cameras has to
be supplied as training data a priori. The system required an offline training pe-
riod where a marker is carried around the environment. This would be infeasible
for large systems and can not adapt to cameras being removed or added ad hoc
without recalibration.

KaewTraKulPong and Bowden [8] or Ellis et al [9] do not require a priori
correspondences to be explicitly stated, instead they use the observed motion
over time to establish reappearance periods. Ellis learns the links between cam-
eras, using a large number of observed objects to form reappearance period
histograms between the cameras. Bowden instead uses appearance matching to
build up fuzzy histograms of the reappearance period between cameras. This al-
lows a spatio-temporal reappearance period to be modelled. In both cases batch
processing was performed on the data which limits their application.

Colour is often used in the matching process. Black et al [10] use a non-uniform
quantisation of the HSI colour space to improve illumination invariance, while
retaining colour detail. KaewTraKulPong and Bowden [11] uses a Consensus-
Colour Conversion of Munsell colour space (CCCM) as proposed by Sturges
et al [12]. This is a coarse quantisation based on human perception and provides
consistent colour representation inter-camera. Most multi camera surveillance
systems assume a common camera colour response. However, even cameras of
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the same type will exhibit differences which can cause significant colour errors.
Pre-calibration of the cameras is normally performed with respect to a single
known object, such as the 24 main colour GretagMacbeth [13] ColorCheckerTM
chart used by Ilie and Welch [14]. Porikli [15] proposes a distance metric and
model function to evaluate the inter camera colour response. It is based on a cor-
relation matrix computed from three 1-D quantised RGB colour histograms and
a model function obtained from the minimum cost path traced within the cor-
relation matrix. Joshi [16] similarly proposes a RGB to RGB transform between
images. By using a 3x3 matrix, inter channel effects can be modelled between
the red, green, and blue components.

3 Object Tracking and Description

The test environment consists of 4 non-overlapping colour cameras in an office
building, with the layout shown in Figure 1. The area between cameras contains
doors and corners removing smooth motion inter camera. The video feeds are
multiplexed together to form a time synchronized single video, fed into a P4
windows PC in real time. To detect objects the static background colour dis-
tribution is modelled [11] in a similar fashion to that originally presented by
Stauffer and Grimson [17]. A gaussian mixture model on a per-pixel basis is
used to form the foreground vs background pixel segmentation, learnt using an
online approximation to expectation maximisation. Shadows are identified and
removed by relaxing a models constraint on intensity but not chromaticity, and
the foreground object is formed using connected component analysis on the re-
sulting binary segmentation. Objects are linked temporally with a Kalman filter
to provide movement trajectories within each camera, illustrated in Figure 1.

Fig. 1. (Left)The top down layout of the camera system, (Right) The tracking envi-
ronment used

3.1 Colour Similarity

Once the foreground objects have been identified, an object descriptor is formed
for inter camera correlation. The colour histogram is used to describe the objects
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appearance as it is spatially invariant and through quantisation, some invariance
to illumination can be achieved. Several colour spaces and quantisation levels
were investigated including the HSI (8x8x4) approach proposed by Black et al
[10], the Consensus-Colour Conversion of Munsell colour space (CCCM) [12] and
differing levels of conventional RGB quantisation. Without calibrating camera
colour responses, CCCM produced marginally superior results and was selected
for initial object correlation, for further details see [18]. CCCM works by breaking
RGB colour into 11 basic colours. Each basic colour represents perceptual colour
category established through a physiological study of how human’s categorise
colour. This coarse quantisation provides a consistent colour representation inter-
camera prior to quantisation. With calibration, quantised RGB performs best
as will be seen in Section 7.

4 Building the Temporal Links Between Cameras

To learn the spatial links between cameras, we make use of the key assumption
that, given time, objects (such as people) will follow similar routes inter camera
and that the repetition of the routes will form marked and consistent trends in
the overall data. These temporal links inter camera can be used to link camera
regions together, producing a probabilistic distribution of an objects movement
between cameras.

Linking all regions to all others is feasible in small scale experimental sys-
tems. However, as the number of cameras increase, the number of possible links
required to model the posterior increases exponentially. With each camera in
a system of 20 cameras having 3 entry or exit regions, a total of 3540 links
would be required to ensure that all possibilities are covered. As links increase,
the amount of data required to learn these relationships also increases and the
approach becomes infeasible. However, most of the links between regions are
invalid as they correspond to impossible routes. Thus to use the available re-
sources effectively a method is required to distinguish between valid and invalid
links. Most solutions to this problem require either batch processing to identify
entry/exit points or hand labeling of the links between regions (impractical in
large systems). Both of these approaches are unable to adjust to changes in the
environment or camera position. This section proposes a method that is initially
coarsely defined but then refines itself over time to improve accuracy as more
data becomes available. It has the ability to adjust to any changes that might
occur in the environment without a complete system restart.

4.1 Region Links

The system starts by identifying links at the basic camera-to-camera level,
discarding unused or invalid links. Valid links can then be subdivided to provide
a higher level of detail. The tracking algorithm automatically tracks objects
within the camera’s FOV and forms a colour appearance model for the object or
person. The colour histogram B = (b1, b2....bn) is the median histogram recorded
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Fig. 2. An example of a probability distribution showing a distinct link between two
regions

for an object over its entire trajectory within a single camera. All new objects
that are detected are compared to previous objects within a set time window,
T . The colour similarity is calculated and combined together, to form a discrete
probability distribution over time based on this reappearance period T . Thus
the frequency f of a bin φ is calculated as:

fφ =
∑
∀i

∑
∀j

{
Hij (tend

i − tstart
j ) < φ

0 otherwise
∀φ < T (1)

where tstart
i and tend

i are the entry and exit times of object i respectively, T is
the maximum allowable reappearance period. Hij is the histogram intersection
of objects i and j given by Hij =

∑11
k=1 min(Bik, Bjk). Frequencies are only

calculated for an object i that disappears from region y followed by a reappear-
ance in region x (fx|y). Normalising the total area by

∑T
i f

x|y
φ=0, an estimate

to the conditional transition probability P (Ox,t|Oy) is obtained. An example of
P (Ox,t|Oy) is shown in Figure 2 where Ox,t is object x at time t. The distinct
peak at 6 seconds indicates a link between the two regions.

5 Incremental Block Subdivision and Recombination

This section explains how the system identifies valid links and therefore when
to subdivide the connected blocks. Eventually, adjacent neighbouring blocks can
be recombined to form larger blocks if found to have similar distributions.

The system is based on a rectangular subdivision. Initially, at the top level,
the system starts with one block for each of the four cameras. This allows track-
ing to start immediately with links initially uniformly distributed. The twelve
links (ignoring self transitions) between the blocks are learnt over time using
the method described in the previous section. After sufficient evidence has been
accumulated, determined by the degree of histogram population, the noise floor
level is measured for each link. This could be determined with statistical methods
such as the average and standard deviation, however, through experimentation,
double the Median of all the values of the probability distribution was found
to provide consistent results. If the maximum peak of the distribution is
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Fig. 3. The iterative process of splitting the blocks on the video sequence

found to exceed the noise floor level, this indicates a possible correlation be-
tween the two blocks (eg Figure 2).

If a link is found between two blocks, they are both subdivided to each create
four new equal sized blocks. The previous data is then reused and incorporated
with future evidence to form links in the newly subdivided blocks. It is likely that
many of the blocks will not form coherent links, and if a link has no data in it, it
is removed to minimise the number of links maintained. Figure 3 shows how the
blocks are removed and subdivided over time. Table 1 shows the number of links
maintained and dropped at each iteration, along with the amount of data used.
It can be seen that with each iteration, the number of possible links increases
dramatically, whereas the number of valid links maintained by the system are
considerably less. The policy of removing unused and invalid regions improves
system scalability.

As the process proceeds the blocks start to form the entry and exit points
of the cameras, Figure 3 (interation 4) shows the result after 4 subdivisions.
The lighter blocks have a higher importance determined by the number of sam-
ples each link contains. As the number of iterations increase, the size of the

Table 1. Table of number of links maintained and dropped in each split

IterationAmount of Total Total Number of Total InitialDropped Links
Data PossiblePossible Blocks Possible links links maintained

Blocks Links maintained Links

1 1000 4 12 4 12 12 0 12
2 5000 16 240 16 240 240 45 195
3 10000 64 4032 60 2540 1631 688 943
4 10000 256 65280 191 36290 36134 34440 1694
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linked blocks decrease and thus reduce the number of samples detected in each
block. Low numbers of samples result in unreliable distributions. To counter this,
blocks which are found to have similar distributions to neighbouring blocks are
combined together to increase the overall number of samples within that block
(as illustrated in the right image in Figure 3(recombination)). This reduces the
number of blocks and therefore links maintained, and increases the accuracy of
those links. Should new evidence be identified in previously discarded blocks,
eg if a door is suddenly opened, the affected blocks can be recombined to the
previous level of subdivision.

6 Calculating Posterior Appearance Distributions

This section describes how the weighted links between blocks can be used to
weight the observation likelihood of tracked people. Over time the posterior
becomes more accurate as the iterative block splitting process (described previ-
ously) takes place. Given an object which disappears in region y we can model
its reappearance probability over time as;

P (Ot|Oy) =
∑
∀x

wxP (Ox,t|Oy) (2)

where the weight wx at time t is given as

wx =

∑T
i=0 f

x|y
φ∑

∀y

∑T
i=0 f

x|y
φ

(3)

This probability is then used to weight the observation likelihood obtained
through colour similarity to obtain a posterior probability of a match, across
spatially separated cameras. Tracking objects is then achieved by maximising
the posterior probability within a set time window.

7 Modelling Colour Variations

The CCCM colour quantisation descriptor used in the previous section, assumes
a similar colour response between cameras. However this is seldom the case. In-
deed the cameras of Figure 1 show marked difference in colour response even to
the human eye. Therefore, a colour calibration of these cameras is proposed that
can be learnt incrementally as with the distribution previously discussed.

The system uses the initial CCCM colour descriptor to form posterior dis-
tributions, in parallel to forming the colour transformation matrices between
cameras. Novelly, the tracked people are automatically used as the calibration
objects, and a transformation matrix is formed incrementally to model the colour
changes between cameras. However, the people used are not identical sizes, there-
fore a point to point transformation is unavailable. We therefore use the colour
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descriptor matched between regions in different cameras to provide the cali-
bration. Equation 4 shows the transformation matrix between image I and the
transformed image T using 2 bin RGB quantisation in this simple example.

[ Ir1 Ir2 Ig1 Ig2 Ib1 Ib2 ]∗

⎡⎢⎢⎢⎢⎢⎣
tr1r1 tr1r2 tr1g1 tr1g2 tr1b1 tr1b2

tr2r1 tr2r2 tr2g1 tr2g2 tr2b1 tr2b2

tg1r1 tg1r2 tg1g1 tg1g2 tg1b1 tg1b2

tg2r1 tg2r2 tg2g1 tg2g2 tg2b1 tg2b2

tb1r1 tb1r2 tb1g1 tb1g2 tb1b1 tb1b2

tb2r1 tb2r2 tb2g1 tb2g2 tb2b1 tb2b2

⎤⎥⎥⎥⎥⎥⎦ � [Tr1 Tr2 Tg1 Tg2 Tb1 Tb2 ]

(4)
txy is the term that specifies how much the input from colour channel x con-
tributes to the output of colour channel y. Transformation matrices are formed
between the four cameras. Six transformations along with their inverses provide
the twelve transformations required to transform objects between the four cam-
eras. As camera calibration is refined the illumination changes that affected the
success of the original correlation methods investigated in [18] and section 3, are
reduced. This allows other less coarse quantisation (such as RGB) to be used
with improved performance as will be shown.

The six transformation matrices for the four cameras are initialised as identity
matrices assuming a uniform prior of colour variation between camera. When a
person is tracked inter camera and is identified as the same object, the difference
between the two colour descriptors, is modelled by the transform matrix t from
Equation 4. The matrix t is calculated by computing the transformation that
maps the person’s descriptor from the previous camera I to the person’s current
descriptor T . This transformation is computed via SVD. The matrix t is then
averaged with the appropriate camera transformation matrix, and repeated with
other tracked people to gradually build a colour transformation between cam-
eras. This method will introduce small errors, however it is in keeping with the
incremental theme of the paper. Allowing the system to continually update and
adapt to the colour changes between cameras as more data becomes available.

To form the transform matrices a number of different quantisations were ex-
amined. A 3x3 matrix of the median colour of a person, was found to be too
coarse, losing too much colour information. The 11 bin CCCM quantisation
used to create the posterior distributions is an arbitrary labeling, not metric
and therefore cannot be represented by a linear transformation. However it is
more accurate than RGB without calibration. With calibration RGB performs
better. A number of RGB quantisations were investigated with varying accu-
racy, however a parzen window gives a stable accuracy of 77% over a range of
quantisation levels.

8 Results

The final system starts uncalibrated with uniform priors for all distributions and
identity matrices for colour transforms. It uses no supervised learning of its envi-
ronment, instead automatically adding information as it becomes available. This
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Table 2. Table of results of using CCCM colour similarity alone, colour calibration
alone, posterior distribution weighting of CCCM similarity and a combination of all
three. With an increasing number of refinements of the blocks.

Accuracy:

Block split Total Data Posterior 4 bin RGB Colour Combined weight
Used Distrib Weights Calib alone + colour model

CCCM Colour only 0 55% 42% 55%

1 500 60% 55% 68%
2 1000 63% 60% 69%
3 5000 68% 60% 76%
4 10000 73% 67% 78%

section demonstrates the performance of the incrementally constructed spatio-
temporal weights, the inter camera colour calibration and the result of combining
both approaches. The data used consisted of 10,000 objects tracked over a pe-
riod of 72 hours of continuous operation. Evaluation was performed using an
unseen ground-truthed 20 minute sequence with 300 instances of people tracked
for more than 1 second.

Initially, the experiment has no a priori information of the environment, us-
ing only the CCCM colour similarity between objects to correlate inter camera.
The posterior probability of the object match is gained by multiplying the colour
similarity by the reappearance probability (3). At each refinement the accuracy
increases as indicated in Table 2. After 5 days and 10,000 tracked objects each
camera has been split 4 times resulting in a possible 64 regions per camera. At
this point accuracy has increased from the base 55% of colour similarity alone
to 73%. Equally our incremental learning scheme for colour calibration can be
applied. Again as additional objects are added into the colour transformation
matrices the accuracy of colour similarity for RGB increases from 42% to 67%.

Obviously it would be beneficial to combine both of these methods to further
increase performance. The first level of block refinement and reappearance period
estimation is constructed and the posterior appearance of objects used for colour
calibration. This provides a boost in performance as apposed to using colour
similarity alone. Once a colour transformation is available, a transformed RGB

Table 3. Looking at iterations of the colour calibration to further improve accuracy

Accuracy:

Iteration Total Data Posterior 4 bin RGB Colour Combined weight
Used Distrib Weights Calib alone + colour model

Inital results from 10,000 73% 67% 78%
block splitting

1 10,000 73% 69% 80%

2 10,000 73% 70% 81%

3 10,000 73% 70% 81%
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Fig. 4. Comparing the accuracies of; the baseline colour CCCM similarity, colour cal-
ibration alone, posterior distributions weights alone (space) and the combination of
spatio-temporal weighted colour calibration over a number of program iterations

Fig. 5. Both the main entry and exit points and a top down layout of the camera
system environment with these blocks marked

colour descriptor can be used in learning the second level of block refinement.
This process can be repeated where colour calibration can further increase the
accuracy of block refinement and vice versa. This is indicated in Table 2 where
using this interative scheme raises detection performance from 55% to 78%.

Of course this process can be continued until performance converges to a
stable level. Table 3 shows a further 3 iterations without additional data or block
refinement providing a final accuracy of 81% which is a significant improvement
upon colour similarity alone. This is the stable point for this system without
more data being added.

The graph in Figure 4, shows how the accuracy increases both over block splits
(shown in Table 2), and program iterations (shown in Table 3). The greatest
overall increase in accuracy is in the combination of both posterior distribution
weights and colour calibration of the cameras. The increase in accuracy allows
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the system to fulfill the three ideals stated in the introduction, of working im-
mediately, improving performance as more data is accumulated, and can adapt
to changes in its environment.

The main entry/exit blocks and links after 4 iterations are shown in Figure 5,
along with a spatial map of the blocks.

9 Conclusions

We have described an approach to automatically derive the main entry and exit
areas in a camera probabilistically using incremental learning, while simultane-
ously the colour variation inter camera is learnt to accommodate inter-camera
colour variations. Together these techniques allow people to be tracked between
spatially separated uncalibrated cameras with up to 81% accuracy, importantly
using no a priori information in a completely unsupervised fashion. This is a
considerable improvement over the baseline colour similarity alone of 55%. The
spatio-temporal structure of the surveillance system can be used to weight the
observation likelihood extracted through the incrementally calibrated colour sim-
ilarity. The incremental colour calibration and posterior distribution weighting
are both completely automatic, unsupervised and able to adapt to changes in the
environment. The incremental technique ensures that the system works imme-
diately but will become more accurate over time as additional data is acquired.
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Abstract. Filtering based algorithms have become popular in tracking
human body pose. Such algorithms can suffer the curse of dimensionality
due to the high dimensionality of the pose state space; therefore, efforts
have been dedicated to either smart sampling or reducing the dimension-
ality of the original pose state space. In this paper, a novel formulation
that employs a dimensionality reduced state space for multi-hypothesis
tracking is proposed. During off-line training, a mixture of factor analyz-
ers is learned. Each factor analyzer can be thought of as a “local dimen-
sionality reducer” that locally approximates the pose manifold. Global
coordination between local factor analyzers is achieved by learning a set
of linear mixture functions that enforces agreement between local factor
analyzers. The formulation allows easy bidirectional mapping between
the original body pose space and the low-dimensional space. During on-
line tracking, the clusters of factor analyzers are utilized in a multiple
hypothesis tracking algorithm. Experiments demonstrate that the pro-
posed algorithm tracks 3D body pose efficiently and accurately , even
when self-occlusion, motion blur and large limb movements occur. Quan-
titative comparisons show that the formulation produces more accurate
3D pose estimates over time than those that can be obtained via a num-
ber of previously-proposed particle filtering based tracking algorithms.

1 Introduction

Tracking articulated human motion is of interest in numerous applications: video
surveillance, gesture analysis, human computer interfaces, computer animation,
etc. Various tracking algorithms have been proposed that require neither special
clothing nor markers on the human body. A number of algorithms track body
motion in the image plane (2D), thereby avoiding the need for complex 3D mod-
els or camera calibration information. While these methods are usually efficient,
only 2D joint locations and angles can be inferred. As a result, the 2D methods
have difficulty in handling occlusions and they are inutile for applications where
accurate 3D information is required. To better understand human motion, 3D
tracking algorithms resort to detailed 3D articulated models which require sig-
nificantly more degrees of freedom. Consequently, algorithms that are able to
handle high-dimensional, non-linear data efficiently and effectively are essential
to the success of 3D human tracking algorithms.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 137–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we propose an efficient and accurate algorithm for tracking
3D articulated human motion given monocular video sequences. We exploit
the physical constraints of human motion by learning a low-dimensional latent
model from high-dimensional motion capture data. A probabilistic algorithm
is employed to perform non-linear dimensionality reduction and clustering con-
currently within a global coordinate system. The projected data forms clusters
within the globally coordinated low-dimensional space; this makes it possible
to derive an efficient multiple hypothesis tracking algorithm based on the dis-
tribution modes. By tracking in low-dimensional space, we avoid the sample
impoverishment problem [1] and retain the simplicity of the multiple hypothesis
tracking algorithm at the same time. Given clusters formed in the latent space,
temporal smoothness is only enforced within each cluster. In experiments with
real video, the system reliably tracks body motion during self-occlusions and in
the presence of motion blur. The system can accurately track large movements
of the human limbs in adjacent time steps by propagating each cluster’s infor-
mation over time in the multiple hypothesis tracking algorithm. A quantitative
comparison shows that the formulation produces more accurate 3D pose esti-
mates than those obtained via a number of previously-proposed particle filtering
based tracking algorithms.

2 Related Work

In this section, we first outline recent progress in particle filtering based tracking
algorithms. We then give a quick review of dimensionality reduction algorithms,
followed by a discussion of algorithms that solve the tracking problem in the
dimensionality reduced space.

2.1 Particle Filtering

Particle filtering methods have been applied widely in tracking applications. Un-
fortunately, the number of particles needed to sufficiently approximate the state
posterior distribution can explode when the state vector is high dimensional.
Various approaches have been proposed to alleviate this problem. One common
approach is to reposition the particles according to some importance function [2]
to ensure a high survival rate [3]. For example, particles can be resampled using
weighted resampling [3] or repositioned using deterministic search [4, 5] to local-
ize the set of particles around significant maxima of the importance function.
Other methods employ a coarse to fine search on the weighting function, e.g.,
the annealed particle filter [6] or layered sampling [7]. If the particle dynamics
can be factored into independent components, then partitioned sampling [3] can
be used to improve the performance of the particle filter.

2.2 Non-linear Dimensionality Reduction Algorithms

Dimensionality reduction algorithms are popular techniques to discover compact
representations of high-dimensional data. As a classic dimensionality reduction
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algorithm, Principal Component Analysis (PCA) is inadequate to handle the
non-linear behavior inherent to our problem domain. Locally Linear Embedding
(LLE) [8], Isomap [9] and Laplacian Eigenmaps [10] are some representative non-
linear dimensionality reduction algorithms – but unfortunately, these techniques
are typically not invertible. Inverse mapping of particles (proposals) back to the
original human pose space is needed in order to reweight the particles given the
image measurements. A number of existing dimensionality reduction methods
provide inverse mappings, such as Charting [11], Locally Linear Coordination
(LLC) [12] and the Gaussian Process Latent Variable Model (GPLVM) [13].
In principle, any dimensionality reduction technique that provides an inverse
mapping will be applicable. LLC is chosen in our algorithm because it is a
probabilistic algorithm that performs non-linear dimensionality reduction and
clustering concurrently within a global coordinate system. The projected data
forms clusters within the globally coordinated low-dimensional space; this makes
it possible to derive an efficient multiple hypothesis tracking algorithm based on
distribution modes.

2.3 Human Motion Tracking

There is a broad range of work related to human motion tracking. See [14] for a
recent survey as our focus is on the subclass of stochastic tracking algorithms.

Following the seminal work of [15], the CONDENSATION algorithm has been
adapted for human motion tracking [4, 6]. Multiple Hypothesis Tracking [16]
tracks modes in a simpler piece-wise Gaussian distribution. In [17], exemplars
are incorporated into the CONDENSATION algorithm. A more specific motion
model and accurate background modelling using learning are used in [18, 19].

Recently, researchers have proposed the use of dimensionality reduction tech-
niques on the state space to reduce the size of the body pose state vector. This is
justified by the insight that the space of possible human motions is intrinsically
low-dimensional [20, 21, 22]. Particle filtering with the reduced state space will
be faster because significantly fewer particles are required to adequetely approx-
imate the state space posterior distribution. Recent works [23, 24, 25] are most
closely related to our proposed algorithm for tracking human in a dimensionality-
reduced space. In [23], two different regression algorithms are used for the
forward mapping (dimensionality reduction) and inverse mapping. The repre-
sentatives used in the regression are chosen in an heuristic manner [23]. In [25],
GPLVM and a second order Markov model are used for tracking applications.
The learned GPLVM model is used to provide model prior. Tracking is then done
by minimizing a cost of 2D image matching, with the negative log-likelihood of
the model prior as the regularization term. Both [23] and [25] advocate the use
of gradient descent optimization techniques; hence, the low-dimensional space
learned has to be smooth. An alternative approach [24] employs the GPLVM
in a modified particle filtering algorithm where samples are drawn from the
low-dimensional latent space. The GPLVM model in this case is used as
a good non-linear dimensionality reduction algorithm. The smoothness en-
forced in the low-dimensional space by the learning algorithms in these three
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papers works well for tracking small limb movements, but may fail when large
limb movements occur over time. In the case of using gradient descent op-
timization techniques, good initialization is required for the success of such
techniques.

As will be shown in the rest of this paper, Locally Linear Coordination (LLC)
leads to a principled way of solving the embedding and inverse mapping prob-
lems. Instead of enforcing smoothness everywhere in the latent space, this algo-
rithm preserves the clustering behavior of similar high-dimensional data points
and separates different clusters in the global coordinate system. The model
learned from the LLC is then used in the algorithm for multiple hypothesis
tracking of 3D human body motion.

3 Formulation

There are two main components in the proposed tracking algorithm as shown
in Fig. 1. The first component is an off-line algorithm that learns a bidirec-
tional mapping function between the low-dimensional space and the original
pose space. The second component is an on-line algorithm for articulated hu-
man pose tracking that makes use of a modified multiple hypothesis tracking
algorithm; the modes of this multiple hypothesis tracker are propagated over
time in the embedded space.

3.1 Learning the Global Coordination Model

Roweis et. al. [26] proposed a model which performs a global coordination of local
coordinate systems in a mixture of factor analyzers (MFA). Each factor analyzer
(FA) can also be regarded as a local dimensionality reducer. The assumption is
that both the high-dimensional data y and its global coordinate g are generated
from the same set of latent variables s and zs, where each discrete hidden variable
s refers to the s-th FA and each continuous hidden variable zs represents the
low-dimensional local coordinates in the s-th FA.

In the MFA model, data generated from s-th FA with prior probability P (s),
and the distribution of zs are Gaussian: zs|s ∼ N (0, I), where I is the identity
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Fig. 1. Overview of our algorithm
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matrix. Given s and zs, y and the global coordinate g are generated by the
following linear equations:

y = TLszs + μs + us,

g = TGszs + κs + vs, (1)

where TLs and TGs are the transformation matrices, μs and κs are uni-
form translations between the coordinate systems, us ∼ N (0, Λus) and vs ∼
N (0, Λvs) are independent zero mean Gaussian noise terms. The following prob-
ability distributions can be derived from Eq. 1, 1:

y|s, zs ∼ N (TLszs + μs, Λus)
g|s, zs ∼ N (TGszs + κs, Λvs). (2)

With zs being integrated out, we have

y|s ∼ N (μs, Λus + TLsT
T
Ls

)

g|s ∼ N (κs, Λvs + TGsT
T
Gs

). (3)

The inference of global coordinate g conditioned on a data point yn can be
rewritten as

p(g|yn) =
∑

s

p(g|yn, s)p(s|yn), (4)

where
p(g|yn, s) =

∫
p(g|s, zs)p(zs|s,yn)dzs. (5)

Given Eq. 1, both p(g|s, zs) and p(zs|s,yn) are Gaussian distributions,
p(g|yn, s) also follows a Gaussian distribution. Since p(s|yn) ∝ p(yn|s)p(s) can
be computed and viewed as a weight, p(g|yn) is essentially a mixture of Gaus-
sians. Though the mappings from {s, zs} to y and g are linear, the mappings
between them are not. An EM algorithm is proposed in [26] to learn this global
coordination by maximizing the likelihood of the data, with an additional
variational penalty term to encourage consistency of internal coordinates of
each factor analyzer. This algorithm requires a user given trade-off parameter
between modeling data and having consistent local coordinate systems. This
algorithm suffers from the same problems of standard EM approaches, i.e.,
inefficiency and local minima.

Teh and Roweis came up with an efficient two stage model learning algorithm
in [12]. By leveraging on the mixture of local models to collapse large groups
of points together, their proposed algorithm works only with the groups rather
than individual data points in the global coordination. In the two-stage model
learning process, first the MFA between y and (s, zs) is learned as proposed in
[27]. Given the learned MFA model with S factor analyzers, zns is the expected
local coordinate in the s-th FA for each data point yn. Let rns denote the
likelihood, p(yn|s). From Eqs. 1 and 2, gn, the expected global coordinate of yn

is defined as:
gn =

∑
s

rns(TGszns + κs) = Lun, (6)
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where
L = [TG1 , κ1,TG2 , κ2 . . . ,TGS , κS ]

and
uT

n = [rn1z
T
n1
, rn1 , rn2z

T
n2
, rn2 , . . . , rnSzT

nS
, rnS ].

Let G = [g1,g2, . . . ,gN ]T be the global coordinates of the whole data set
(the rows of G corresponding to the coordinated data points) and U =
[u1,u2, . . . ,uN ]T , we then have a compact representation G = UL. We want to
estimate L. To determine L, we need to minimize a cost function that incorpo-
rates the topological constraints that govern gn. The cost function used here is
based on LLE [8]. For each data point yn, we denote its nearest neighbors as
ym (m ∈ Nn) and minimize the following:

ξ(Y,W) =
∑

n

‖yn −
∑

m∈Nn

wnmym‖2

= Tr(YT (I− WT )(I − W)Y), (7)

with respect to W and subject to the constraint
∑

m∈Nn
wnm = 1. Here the set

of training data points is Y = [y1,y2, . . . ,yN ]T where each row of Y corresponds
to a training data point. The weights wnm are unique and can be obtained via
constrained least squares. These weights represent the locally linear relationships
between yn and its neighbors. In a similar fashion, we can define the following
cost function:

ξ(G,W) =
∑

n

‖gn −
∑

m∈Nn

gm‖2

= Tr(GT (I − WT )(I − W)G)
= Tr(LT AL), (8)

where A = U(I − WT )(I − W)UT . To ensure G is invariant to translations,
rotations and scaling, the following constraints are defined,

1
N

∑
n

gn = 0 (9)

and
1
N

∑
n

gngT
n =

1
N

GT G = LT BL = I, (10)

where I is the identity matrix and B = 1
N UT U. Both the cost function Eq. 8

and the constraints Eq. 10 are quadratic and the optimal L is determined by
solving a generalized eigenvalue problem [12]. Let d 
 D be the dimensionality
of the underlying manifold that y is generated from. The 2nd to (d+1)th smallest
generalized vectors solved from Av = λBv form the columns of L. The whole
process is summarized in Fig. 2.
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Fig. 2. The two stage learning process of [12]

3.2 Learning the Joint Angle Configurations

In our application for using LLC to learn the dimensionality reduced space, each
training data y is a column vector that consists of joint angles computed from
motion capture data. We adopt the same 3D cylindrical model used in [18]; we
ignore the global translation. The dimension of y is 28 and 1900 frames from a
motion capture sequence with a person walking are used for training. Y is used
to represent the collection of training data yn, n = 1, . . .N and N = 1900. In
the LLC learning, the dimension for variables z in each MFA is 3 and the number
of mixtures S = 10. In the global coordination stage, the dimension of the latent
space variable g is 3 (these parameters were determined empirically). The learn-
ing algorithm is summarized in Algorithm 1. Clusters are obtained through the
two stage learning process described above. Each cluster is modeled as a Gaus-
sian distribution in the latent space with its own mean vector and covariance
matrix as shown in Fig. 3. This cluster-based representation leads to a straight-
forward algorithm for multiple hypothesis tracking, as described in Section 3.3.

Algorithm 1. Learning the globally coordinated space of human motion
Compute local linear reconstruction weights wnm based on Eq. 7 using Y
Train a mixture of local dimensionality reducers.

Apply this mixture to training human motion poses Y.
Obtain a local representation zns and responsibility rns for each submodel s and
each data point yn.

Form the matrix U and compute A and B from Eq. 8, Eq. 9 and Eq. 10.
Solve the generalized eigenvalue problem Av = λBv and form L as described in
Section 3.1.
Return G = UL and L.
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Fig. 3. The learned globally coordinated latent space. Each ellipsoid represents a clus-
ter in the latent space, where mean is the centroid and covariances are the axes of the
ellipsoids.

3.3 3D Articulated Human Tracking

In the application to 3D articulated human tracking, at each time instance, the
tracker state vector is represented by Xt = (Pt,gt). Pt is the 3D location of
the pelvis (which is the root of the kinematic chain of the 3D human model)
and gt is the point in latent space. Once tracker state has been initialized, the
basic idea of a filtering based tracking algorithm is to maintain a time-evolving
probability distribution over the tracker state. Let Zt denote the aggregation of
past image observations (i.e. Zt = {z1, z2, . . . , zt}). Assuming zt is independent
of Zt−1 given Xt, we have the following standard equation:

p(Xt|Zt) ∝ p(zt|Xt)p(Xt|Zt−1) (11)

Here we use a multiple hypothesis tracker (MHT) together with the learned
LLC model for the tracking task. As LLC provides clusters in the latent space
as a step in the global coordination, it is natural to make use the centers of the
clusters as the initial modes in the MHT (p(g|zs, s) follows a Gaussian distri-
bution). Given that in each cluster, the points in the latent space represent the
poses that are similar to each other in the original space, we can apply a much
simpler dynamical model in the prediction step of the filtering algorithm. The
modified MHT is summarized in Algorithm 2. To compute the likelihood for the
current prediction and the input video frame, first the silhouette of the current
video frame is extracted through background subtraction. The predicted model
is then projected onto the image and the chamfer matching cost between the
projected model and the image silhouettes is considered to be proportional to
the negative log-likelihood. We use the same model proposed by [28], which con-
sists of a group of cylinders. The MHT algorithm proposed here differs from the
algorithm proposed in [16] in the use of the latent space to generate proposals
in a principled way. This is in contrast with [16], where the modes were se-
lected empirically and the distributions were assumed to be piecewise Gaussian.
While in the proposed algorithm, the output from the off-line learning algorithm
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Algorithm 2. A Modified Multiple Hypothesis Tracker
for each time instance t do

Prediction:
generate the prior density p(Xt|Zt−1) by passing through the modes of p(Xt|Zt−1

through a simple constant velocity predictor.

Likelihood computation:

1. Create the initial hypothesis seeds by sampling the distribution of p(Xt|Zt−1).
Note the samples of g are drawn around the modes of G in the latent space
based on the covariance matrix of each cluster in the latent space.

2. Obtain the modes (local maxima) of the likelihood function p(zt|Xt) by com-
puting the matching cost of the samples.

3. Measure the local statistics associated with each likelihood mode.

Posterior density computation:
The posterior density p(Xt|Zt) is updated through Eq. 11.

end for

(LLC) forms clusters (each cluster is described by a Gaussian distribution in la-
tent space), the samples generated from the latent space are indeed drawn from
a piecewise Gaussian distribution. The choice of modes to propagate over time
becomes straightforward given the statistics of the clusters in the latent space.

4 Experiments

The proposed algorithm has been tested in tracking walking humans. The data
set and calibration information were obtained from [28]. The video data set shows
a person walking, as captured simultaneously from four different viewpoints.
Sigal et. al. have used the multiple view information for 3D tracking [28]. We
only need monocular sequences, and so we use each of the four videos as an
individual test sequence for our algorithm. Our proposed tracker is able to track
reliably over 400 frames for all four test sequences (there are 596 frames in each
sequence).

We conducted a quantitative comparison of our method (where 10 modes are
used) against (1) simple particle filtering, (2) annealed particle filtering [6], and
(3) the tracking algorithm proposed by [24] where the GPLVM was used for non-
linear dimensionality reduction. We used 2000 particles for the simple particle
filtering algorithm and 200 particles for our implementation of [24]. Ten layers
and 100 particles for each layer are used in the annealed particle filtering algo-
rithm, following the setup of [6]. The frame rate for both our proposed method
and the method of [24] on a 1.6GHz machine with 512MB RAM was approx-
imately one minute per frame, while the annealed particle filtering algorithm
took two minutes per frame. The frame rate of the simple particle filtering was
about four minutes per frame due to the large number of particles. In both our
proposed algorithm and [24], the global translation was modeled separately by
simple linear dynamics learned from motion capture data.
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Fig. 4 shows the accuracy of the four different tracking algorithms. As pro-
posed in [28], the error is measured as the absolute distance in millimeters be-
tween the true and estimated marker positions on the body limbs. 15 markers are
chosen which correspond roughly to the locations of the joints and “ends” of the
limbs. As can be seen in the graph of Fig. 4, our proposed method is consistently
more accurate and the simple particle filtering algorithm does much worse than
all other methods. Smart sampling, or a dimensionality reduction method can
greatly improve the performance of particle filtering based tracking. Based on
the performance reported in [28] (up to 50 frames), our proposed algorithm is
able to track reliably over a longer time on monocular video sequences (all 400
frames, for all four sequences).
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Fig. 4. Estimation Error

Figs. 5 and 6 show example tracking results and the corresponding 3D poses.
The results of particle filtering are not shown here due to the large error. With
a learned prior model, both the proposed algorithm and particle filtering with
GPLVM are able to track reliably when self-occlusion or motion blur occurred.
In contrast, annealed particle filtering usually loses track of some body limbs. At
frame 183 in Fig. 5, particle filtering with GPLVM loses track of the subject’s
left arm. The strength of the GPLVM (global smoothness) in this case may be
its weakness. As GPLVM ensures temporal smoothness, it may learn a over-
smoothed density function and consequently fail to capture large pose change
over time. This over-smoothing effect is also demonstrated in the tracking re-
sult of frame 70 in Fig. 6, where the left leg movement was underestimated. In
contrast, our method propagates modes over time. At each time step, the sam-
ples are generated from each mode separately and temporal smoothness is only
enforced on samples drawn from the same cluster; hence, our proposed algorithm
is able to capture large movements accurately.
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Fig. 5. Selected frames of the tracking results from one of the four sequences and the
corresponding 3D poses. The proposed algorithm was able to track the pose reliably while
the other two failed to track the movement of the limbs, e.g., forearm (frame 38 and 299)
and legs (frame 183). See http://cs-people.bu.edu/lir/tracking for videos.
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Fig. 6. Selected frames of the tracking results from another sequence and the corre-
sponding 3D poses. The proposed algorithm was able to track the pose reliably while
the other two failed to track the movement of the certain limbs, this is similar to what
has been observed in Fig.5. See http://cs-people.bu.edu/lir/tracking for videos.
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5 Conclusions and Future Work

We have proposed a algorithm for tracking 3D body poses. The proposed algo-
rithm is able to track long sequences of video robustly. The experiments demon-
strate that our tracker performs much better than the recent tracking algorithms
proposed by [6] and [24]. It is also shown that our tracker is capable of handling
self-occlusions, motion blur and large movement over time. The tracking al-
gorithm is tested on sequences that contain similar motion with respect to the
training data set. Currently we only learned the model of human walking. Essen-
tially, with the proposed learning algorithm, multiple motions can be clustered
in the globally coordinated system; hence, more complicated tracking tasks can
be accomplished using the same tracking algorithm when more data becomes
available. Another promising direction is to recognize activities during tracking
by analyzing the mode jumping in the latent space. It is likely that motions from
the same category will form clusters together in the latent space, so whenever a
mode jumping occurs, there is likely a change of activity.
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Abstract. The estimation of the epipolar geometry is especially dif-
ficult where the putative correspondences include a low percentage of
inlier correspondences and/or a large subset of the inliers is consistent
with a degenerate configuration of the epipolar geometry that is totally
incorrect. This work presents the Balanced Exploration and Exploita-
tion Model Search (BEEM) algorithm that works very well especially for
these difficult scenes.

The BEEM algorithm handles the above two difficult cases in a uni-
fied manner. The algorithm includes the following main features: (1)
Balanced use of three search techniques: global random exploration, lo-
cal exploration near the current best solution and local exploitation to
improve the quality of the model. (2) Exploits available prior informa-
tion to accelerate the search process. (3) Uses the best found model to
guide the search process, escape from degenerate models and to define
an efficient stopping criterion. (4) Presents a simple and efficient method
to estimate the epipolar geometry from two SIFT correspondences. (5)
Uses the locality-sensitive hashing (LSH) approximate nearest neighbor
algorithm for fast putative correspondences generation.

The resulting algorithm when tested on real images with or without
degenerate configurations gives quality estimations and achieves signifi-
cant speedups compared to the state of the art algorithms!

1 Introduction

The estimation of the epipolar geometry is an important task in computer vision.
The RANdom SAmple Consensus algorithm (RANSAC) [1] has been widely used
in computer vision in particular for recovering the epipolar geometry.

The estimation of the epipolar geometry is especially difficult in two cases.
The first difficult situation is when the putative correspondences include a low
percentage of inliers. In such a situation, the number of required iterations is
usually high. A popular stopping criterion in a RANSAC like algorithm is

I = log(1 − p)/ log(1 − αs) ≈ log(1 − p)/αs, (1)
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where s is the size of the random sample, I is the number of iterations, α is the
inlier rate, and p is the required probability [1, 2]. For example, for α = 0.15 the
number of needed iterations for s = 7 and s = 2 are I = 2, 695, 296 and I = 202
respectively, for p = 0.99.

Several approaches have been suggested to speed-up the RANSAC algorithm.
In [3] the random sampling was replaced by guided sampling. The guidance of
the sampling is based on the correlation score of the correspondences. PROSAC
[4] exploits the linear ordering defined on the set of correspondences by the simi-
larity function used in establishing putative correspondences. PROSAC samples
are drawn from progressively larger sets of top-ranked correspondences. LO-
RANSAC [5] exploits the fact that the model hypothesis from an uncontami-
nated minimal sample is often sufficiently near the optimal solution and a local
optimization step is applied to selected models. In our previous work [6] the algo-
rithm generates a set of weak motion models (WMMs) and generates an outlier
correspondence sample. Using these the probability that each correspondence is
an inlier is estimated and enable to guide the sampling. In [7, 8] it was suggested
to use three affine region to region matches to estimate the epipolar geometry
in each RANSAC sample. Under this framework s in Eq. (1) is changed from
seven to three, reducing considerably the number of iterations.

The second difficult situation is when a large subset of inliers is consistent
with a degenerate epipolar geometry. This situation often occurs when the scene
includes a degeneracy or close to degenerate configurations. In this case stan-
dard epipolar geometry estimation algorithms often return an epipolar geometry
with a high number of inliers that is however totally incorrect. The estimation
of the fundamental matrix in such situations has been addressed before. In [9]
a RANSAC-based algorithm for robust estimation of epipolar geometry in the
possible presence of dominant scene plane was presented. The algorithm detects
samples in which at least five correspondences are consistent with an homogra-
phy. This homography is then used to estimate the epipolar geometry by the
plane and parallax algorithm.

Consider the following two examples. Figure 1(a) shows the flowerpot im-
age scene in which the inlier rate is low and it includes a dominant degenerate
configuration. In this scene 17% out of 252 putative correspondences are inliers
and 70% of the inliers lie in a small part of the scene which yields a degenerate
configuration. A computation of the fundamental matrix based on only inliers
from this small space results in a very unstable fundamental matrix. On this
scene RANSAC often fails to find the correct fundamental matrix. Figure 1(a)
shows a typical result of RANSAC. A dot represents inliers from the degenerate
configuration, a circle represents inliers not belonging to the degenerate config-
uration and the × represents an outlier that RANSAC detected as inlier. In this
example RANSAC succeeded to find all the inliers that belong to the degenerate
configuration but failed to find any inliers outside it. This is demonstrated in
Figure 1(b), which shows the square root of the symmetric epipolar distance
of the inlier from the fundamental matrix. The distances of the inliers outside
the degenerate configuration are large. Although, a large number of inliers were
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found, the precision of the resulting fundamental matrix is very low. The number
of iterations for this scene according to Eq. (1) for p = 0.99 is over one million.
Figure 1(c) shows another example in which the inlier rate is 16.5% out of 310
putative correspondences and it includes a dominant plane degenerate configu-
ration. In this scene 78% of the inliers lie near the plane. Figure 1(c) shows a
typical result of the RANSAC which succeed to find part of the inliers that lie
near the plane and failed to find any inliers not close to the plane. As a result,
the fundamental matrix is totally incorrect as can be seen in Figure 1(d). The
number of iterations for this scene according to Eq. (1) is again over one million.

(a) Flowerpot scene
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the flowerpot scene

(c) Book scene
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Fig. 1. Image scenes and quality evaluation

In this paper we propose a novel algorithm for robust estimation of epipo-
lar geometry. The algorithm handles the above two difficult cases in a unified
manner. The algorithm can handle not only planar degeneracy, but scenes that
include a variety of degeneracies or close to degenerate configurations.

The balanced exploration and exploitation model search (BEEM) algorithm
includes a balanced use of three search techniques: global random exploration,
local exploration near the current best solution and local exploitation to improve
the quality of the model. Moreover, it exploits available prior information, the
distance ratio of the closest to second-closest neighbors of a keypoint, to accel-
erate the search process. Also, it uses the best found model to guide the search
process, escape from degenerate models and define an efficient stopping crite-
rion. This is done by indirectly updating the probability that a correspondence
is an inlier and by a smart sampling strategy. In addition, a simple and efficient
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method to estimate the epipolar geometry from two SIFT correspondences is
presented. The matching is sped up using the LSH [10] approximate nearest
neighbor algorithm. The generation of the SIFT features can be sped up using
the approximation described in [11].

The resulting algorithm when tested on real images with or without degen-
erate configurations gives quality estimations and achieves significant speedups,
especially in scenes that include the aforementioned difficult situations.

2 Exploration and Exploitation

Any efficient search algorithm must use two general techniques to find the global
maximum: exploration to investigate new and unknown areas in the search space
and exploitation to make use of knowledge found at points previously visited to
help find better points. These two requirements are contradictory, and a good
search algorithm must strike a balance between them. A purely random search
is good at exploration, but does no exploitation, while a purely hill climbing
method is good at exploitation, but does little exploration. Combinations of
these two strategies can be quite effective, but it is difficult to know where the
best balance lies.

Robust estimation of the fundamental matrix can be thought of a search
process. The search is for the parameters of the fundamental matrix and the
set of inliers. Therefore, algorithms that estimate the epipolar geometry can be
analyzed according to the way they combine the above techniques. The RANSAC
algorithm [1] samples in each iteration a minimal subset of points and computes
from it a model. This random process is actually an indirect global exploration
of the parameter space. In the PbM algorithm [12, 13] each exploration iteration
is followed by a standard exploitation step. A hill climbing procedure over the
parameter space is performed using a local search algorithm. The LO-RANSAC
algorithm [5] makes an exploitation step only when a new good model is found
in an exploration iteration. The exploitation step is performed by choosing the
random sample only from the set of suspected inliers, the model’s support set. In
cases that there exists a degenerate configuration the exploitation step tends to
enlarge the support set but it includes only inliers belonging to the degeneracy.

One disadvantage of the above methods is that they do not have a step similar
to the local exploration step that exists in methods like simulated annealing,
i.e. even if they find a relatively good model that includes a large number of
inliers, they do not use this information after the exploitation step. Once the
exploitation step is over, they return to random sampling hoping to find by
chance a better model. We suggest to add an intermediate technique that uses
the previous best solution and explores its neighborhood looking for a better
solution whose support set is larger and includes most of the support set of the
previous best solution. To achieve this we need to generate a sample of inliers
which includes beside members of the support set other correspondences. Once
we have a “good” previous solution it can be assumed that the vast majority of
its support set are inliers. Therefore, when choosing a subset for the RANSAC
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step, we choose most of the subset from the support set and the rest from points
that are outside the support set. When such a subset consists only of inliers the
support set of the resulting model tends to break out from the confines of the
set of inliers belonging to degeneracy yielding a more correct solution.

When incorporating a local exploration step into the algorithm several ques-
tions have to be addressed. First, local exploration is only effective when the best
previous support set includes nearly only inliers. So, it is essential to be able to
recognize such sets. Second, depending on the quality of the set a balance be-
tween the application of global exploration, local exploration and exploitation
has to be struck. Finally, how to incorporate available prior information about
the quality of each putative correspondence into the general scheme.

Fig. 2. State diagram of the balanced exploration and exploitation model search
(BEEM) algorithm

The BEEM algorithm includes all the above components. Its state diagram
is presented in Figure 2. The algorithm includes the following states:

– Prior estimation. Use prior available information to estimate the proba-
bility that a correspondence is an inlier. This probability is used to guide
the sampling in the other states.

– Global exploration. Sample a minimal subset of correspondences and in-
stantiate the model from the subset. If the size of the support set of the
formed model is larger than all the models that were formed in this state
goto the exploitation state, otherwise goto to the model quality estimation
state.

– Model quality estimation. Estimate the quality of the best model found
until now based on the size of its support set and the number of iterations
that the algorithm has performed until now. Use this quality estimate to
choose probabilistically the next state, global exploration or local exploration.

– Local exploration. Sample a subset of correspondences from the support
set of the best model and sample a subset of correspondences from the rest
of the correspondences. Instantiate the model from the union of the two
subsets. If the size of its support set is larger than all the models that were
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previously formed in this state goto the exploitation state, otherwise goto to
the model quality estimation state.

– Exploitation. Iteratively try to improve the last formed model.

The various components of the algorithm are described in the following sections.

3 Using Prior Information of the Match

The best candidate match for each SIFT keypoint from the first image is found
by identifying keypoints in the second image whose descriptor is closest to it in
a Euclidian distance sense. Some features from the first image will not have any
correct match in the second image. Therefore, it is useful to have the ability to
discard them. A global threshold on the distance to the closest feature does not
perform well, as some descriptors are much more discriminative than others. A
more effective measure as suggested by [14] is obtained by comparing the distance
of the closest neighbor to that of the second-closest neighbor. This measure per-
forms well because for correct matches the closest neighbor is significantly closer
than the closest incorrect match. For false matches, there will likely be a number
of other false matches within similar distances due to the high dimensionality
of the feature space. We can think of the second-closest match as providing an
estimate of density of the false matches within this region of the feature space
and at the same time identifying specific instances of feature ambiguity.

Let ri be the distance ratio of the closest to the second-closest neighbors of
the ith keypoint of the first image. Figure 3(a) shows the value of this measure
for real image data for inliers and outliers. In [14] it was suggested to reject all
matches in which the distance ratio is greater than rtresh = 0.8. The probabilistic
meaning of this is that each correspondence whose score is below this threshold
is sampled uniformly. PROSAC exploits this ratio even more and its samples are
drawn from progressively larger sets from the set of correspondences ordered by
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Fig. 3. (a) The empirical distributions of the distance ratio, r, for inlier and outliers
were generated based on twenty image pairs. (b) The probability that a correspondence
is an inlier as a function of r for several values of the inlier rate, α. (c) The distributions
of the estimated probability Pin() of the inliers and the outliers, for the book scene
image pair.



BEEM for Efficient Epipolar Geometry Estimation 157

this ratio. This improves the performance of the algorithm. In this work we make
an additional step by giving an empirical probabilistic meaning to this ratio.

The distance ratio can be thought of as a random variable and is modeled as
a mixture model:

fr(ri) = fin(ri)α+ fout(ri)(1 − α),

where fin(ri) = f(ri|pi ↔ p′i inlier), fout(ri) = f(ri|pi ↔ p′i outlier), and α is
the mixing parameter which is the probability that any selected correspondence
is an inlier. The probability, Pin(i), that correspondence pi ↔ p′i is an inlier can
be calculated using Bayes’ rule:

Pin(i) =
fin(ri)α

fin(ri)α+ fout(ri)(1 − α)
. (2)

We estimate this probability in a non-parametric manner. We generate two
samples from real images:

– Sin, a sample of Ñin inlier ratio distances.
– Sout, a sample of Ñout outlier ratio distances.

We estimates fin() and fout() using a kernel density estimator over Sin and Sout

respectively.
We estimate α for a given image pair using curve fitting of the empirical

cumulative distribution function (cdf) of Sin, Sout and the set of ratios of the
putative correspondences. Once α has been estimated Pin() can be estimated
for all putative correspondences using Eq. (2). Figure 3(b) shows the probability
Pin() for several values of α. Figure 3(c) shows the distributions of the estimated
Pin() of the inliers and the outliers, for the book scene image pair. As can be seen
in the graph, a large portion of the correspondences that got high probabilities
are indeed inliers. In this example the inlier rate is 16.5% and the estimated α
is 15.7% which is quite accurate.

4 Epipolar Geometry from Two SIFT Correspondences

In [7, 8] it was suggested to use three affine region to region matches to estimate
the epipolar geometry in each RANSAC sample. The novelty here is to use the
SIFT descriptor in the computation in a similar manner. The SIFT descriptor
is a very powerful descriptor for image matching. This descriptor is invariant to
the similarity transformation. The ability to generate epipolar geometry from
two SIFT correspondences instead of seven point correspondences is expected
to reduce significantly the run-time according to Eq. (1). We suggest a simple
method to estimate the epipolar geometry from two SIFT correspondences. Each
SIFT keypoint is characterized by its location p = (x, y), orientation θ of the
dominant gradient and its scale s. We generate for each SIFT keypoint a set of
four points ((x, y), (x + ls cos(θ), y + ls sin(θ), (x + ls cos(θ + 2π

3 ), y + ls sin(θ +
2π
3 ), (x + ls cos(θ + 4π

3 ), y + ls sin(θ + 4π
3 )). We set l = 7

8
w
2 , where w is the

width of the descriptor window. Thus, the three additional points lie within
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the descriptor window. A set of two SIFT correspondences gives a set of eight
point correspondences. These can be used to estimate the fundamental matrix
using the linear normalized eight-point algorithm [15]. A SIFT correspondence is
consistent with the hypothesized epipolar geometry only when all coincident four
point correspondences, (ps1, ps2, ps3, ps4) ↔ (p′s1, p

′
s2, p

′
s3, p

′
s4), are consistent.

The location of the first point in the set is quite accurate, whereas, the location
of the last three points are less accurate because they are approximated from
the SIFT characteristics. We use the error thresholds d for the first point in the
set and d

√
s′s for the other three, where s and s′ are the scale SIFT parameters

of the keypoints of the first and the second SIFT descriptors respectively and d
is a threshold parameter.

One may wonder how accurate is the estimation of the fundamental matrix
using the 2-SIFT method. The 2-SIFT method generates four point correspon-
dences from each SIFT keypoint. These four points are usually quite close to
each other and the last three points are estimated less accurately. Therefore, a
fundamental matrix which is based on such point correspondences is expected
to be less accurate. To check the severity of this problem, the estimation quality
of the 2-SIFT method, 7-point algorithm, normalized 8-point algorithm with 8
and 9 point correspondences were checked. Two types of real scenes without any
dominant degenerate configurations were checked: a scene moving sideways and
a scene moving forward. For each scene the inlier SIFT correspondences were
found. For each algorithm in each scene 10, 000 samples were taken from the in-
lier correspondences. For each sample a fundamental matrix was calculated and
the number of correspondences consistent with the model was checked. Figure 4
shows the results. The results of the 2-SIFT method are less accurate than the
7-point algorithm and the 9-point algorithm as expected. However, it usually re-
covers enough supporting inliers to initialize the fundamental matrix estimation
process. Clearly, the use of the exploitation step after the 2-SIFT method is very
important. To improve the estimation quality, we checked one more method, the
2-SIFT without singularity constraint (2-SIFT-NSC) method. In this method
the singularity constraint of the fundamental matrix is not enforced. The result
is usually an illegal model, but in the sample step of the algorithm it is not
necessary to work with legal models, because the main purpose of the sample
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Fig. 4. Algorithm evaluation
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step is to detect large amounts of supporting inliers. The results of the 2-SIFT-
NSC method which are also shown in Figure 4 outperform the 2-SIFT method.
The reason for this is that the singularity constraint enforcement applied in the
8-point algorithm is not optimal since all the entries of the fundamental matrix
do not have equal importance. Note also that the 2-SIFT-NSC method requires
less computational cost, because it does not enforce the singularity constraint.
For the above reasons we use the 2-SIFT-NSC method in our algorithm.

5 Best Found Model Quality Estimation

In the model quality estimation state the algorithm estimates the quality of the
best found model as an inlier model, i.e. a model that nearly all the members of
its support set are inliers. When an inlier model is detected it can help accelerate
the search process using the local exploration state, whereas using an outlier
model in that state is useless. In such situations we want to cause the BEEM
algorithm to perform global exploration. To achieve this we have to estimate the
probability that the model is supported by outliers that are by chance consistent
with it. Let Pom(i) be the probability that at most i outliers support an outlier
model. Let Nbest = max{Ni}I

i=1 be the maximal size of the support set after I
iterations achieved by model Mbest, where Ni is the size of the support set of
the ith iteration. Using the above definitions, the probability, Pq, that Mbest is
not an outlier model is estimated. This is equivalent to the probability that in
all of the I iterations the support set of size Nbest could not be achieved by an
outlier model. Thus,

Pq = ∀I
i=1Prob(Ni < Nbest) =

I∏
i=1

Prob(Ni < Nbest) = (Pom(Nbest − 1))I .

The BEEM algorithm uses the probability Pq as an estimate to the quality of
the best found model. We estimate Pom() using several unrelated image pairs in
a non-parametric manner. We ran the algorithm for the above image pairs and
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Fig. 5. (a) The cdf Pom() as function of the inlier rate, α. (b) The probability Pq as
function of Nbest for I = 10, I = 100 and I = 1000 where the number of putative
correspondences is set to 400.
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recorded the size of the support sets of the outlier models. Figure 5(a) shows the
cdf Pom() as a function of the inlier rate, α. Figure 5(b) shows the probability
Pq as function of Nbest for I = 10, I = 100 and I = 1000, where the number of
putative correspondences is set to 400. Note that when the number of iterations
increases the “belief” of the algorithm in small subsets decreases. As a result,
the algorithm tends to do more global exploration.

6 The Algorithm

Up to this point, we have described the principles of the BEEM algorithm.
Now, we will combine them all together, yielding the complete epipolar geometry
estimation algorithm. The algorithm is summarized in Algorithm 1. The details
of the algorithm are as follows:

Fundamental matrix generation. The generation of the fundamental matrix
given a subset S of SIFT correspondences is done as follows: if 2 ≤ |S| < 7
then we use the normalized eight-point algorithm, where each SIFT correspon-
dence provides four point correspondences, as described in Section 4. If |S| = 7
then we use the seven-point algorithm with seven points, one from each SIFT

Algorithm 1. The BEEM algorithm.

1: Prior estimation.
Estimates α and Pin() of the set C of putative correspondences.

2: Global exploration.
a) Sample according to Pin() a subset of two SIFT correspondences from C.
b) Instantiate the fundamental matrix F .
c) If the support set S of F is the best found in this state then goto Exploitation

else goto Model quality estimation.

3: Exploitation.
a) Execute local optimization with inner RANSAC over S until Il repetitions

without improvement.
b) If found model with largest support until now keep its support set in Sbest.

4: Model quality estimation.
a) Estimate Pq.
b) If the stoping criterion is satisfied terminate.
c) Choose with probability Pq to goto Local exploration

else goto Global exploration.

5: Local exploration.
a) Sample according to Pin() a subset of SIFT correspondences from Sbest.
b) If Pq < 1 then sample according to Pin() a single SIFT from C \ Sbest.

else choose the next SIFT correspondence from C \ Sbest.
c) Instantiate the fundamental matrix F .
d) If the support set S of F is the largest found in this state then goto Exploitation

else goto Model quality estimation.
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correspondence. If |S| > 7 then we use the standard normalized eight-point
algorithm with |S| keypoints provided from the SIFT correspondences.

Exploitation. This state is very similar to the local optimization method de-
scribed in [5] with a small improvement. In this state a new sampling procedure
is executed. Samples are selected only from the support set S of the previous
state. New models are verified against the whole set of putative correspondences.
The size of the sample is set to min(S/2, NF ), where NF is set to 14. For each
fundamental matrix generated from a sample, all the correspondences in its
support set are used to compute a new model using the linear algorithm. This
process is repeated until no improvement is achieved. The modification we made
to the original LO-RANSAC is that whenever a larger support set is found the
exploitation process restarts again with it. The algorithm exits this state to the
model quality estimation state after ten iterations without improvement.

Local exploration. The parameter space close to the best model found so far is
searched in this state by choosing a sample of size min (|Sbest|/2, NF − 1) SIFT
correspondences from Sbest and a single SIFT correspondence from C \ Sbest.
The fundamental matrix is instantiated from the union of the above subset and
the single SIFT correspondence, where the single SIFT correspondence always
contributes four point correspondences. This way, the algorithm has a better
chance to escape from degenerate configurations.

Once Pq is equal to one, the sampling strategy for correspondences from
C \ Sbest changes. Each time a new maximum is found, i.e. Sbest was updated,
the correspondences in C\Sbest are sorted in decreasing order according to Pin().
In each iteration a single SIFT correspondence is chosen from C \Sbest according
to the sorting order.

Stopping criterion. The BEEM algorithm terminates if in the last |C|−|Sbest|
exploration samples the subset Sbest was not updated and if Pq is equal to one
in these samples. This criterion ensures with high confidence that nearly all
the inliers will be detected. This suggested stopping criterion usually terminates
much earlier than in the standard approach, because once the algorithm finds a
model with an adequate number of inliers, Pq is estimated as one and the algo-
rithm enters the final local exploration iterations. Because the correspondences
in C \ Sbest are sorted in decreasing order according to Pin(), the rest of the
inliers are rapidly found. Once Sbest ceases to change |C| − |Sbest| iterations are
performed. In the experiments that we have performed, the number of iterations
until an adequate number of inliers are found is usually very small, thanks to the
various components of the BEEM algorithm. As a result, the total number of
iterations of the BEEM algorithm is in practice slightly higher than the number
of outliers in the putative correspondence set. This number is much lower than
the bound given by Eq. (1).
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7 Experiments

The proposed algorithm was tested on many image pairs of indoor and out-
door scenes several of which are presented here. The cases that are presented
here are difficult cases in which the inlier rate is low and include a dominant
degeneracy.

For each image we applied the SIFT method to detect the keypoints. The
descriptors of the first image were then stored in an LSH data structure and the
descriptors of the second image were used for querying the data structure to find
their approximate nearest neighbors to generate putative correspondences. We
used the adapted version of the LSH [16] with data driven partitions. The LSH
algorithm is simple for implementation and efficient. For example, the running
time for the generation of the putative correspondences of the book scene was
reduced from 25.6 seconds using a simple linear search to 0.45 seconds using the
LSH algorithm on a Pentium 4 CPU 1.70GHz computer.

For illustration reasons, we divided the set of putative correspondences into
three sets: outliers, inliers belonging to the degenerate configuration and the rest
of the inliers of which most of them have to be part of the support set in order to
generate an accurate fundamental matrix. The images of the scenes are shown
in Figures 1 and 6. Their details are given in Table 1.

For each scene six algorithms were tested: the BEEM algorithm, LO-RANSAC
using samples of two SIFT correspondences to generate fundamental matrixes
(2SIFT LO-RANSAC), RANSAC using samples of two SIFT correspondences
(2SIFT RANSAC), LO-RANSAC using samples of seven point correspondences
where the samples were sampled according to the probability Pin(i) (7pt

(a) Board scene (b) Car scene

Fig. 6. Image scenes

Table 1. The characteristics of the tested scenes. For each scene the table gives the
type of degeneracy, number of correspondences, inlier rate, BEEM estimation of the
inlier rate, the number of outliers, the number of inliers, the number of inliers belonging
to the degeneracy, and the number of inliers not belonging to the degeneracy.

Scene Degeneracy N α α̂ Out. In. Deg. In. Non-Deg. In.

Flowerpot Small region 252 0.17 0.25 210 42 30 12

Book Plane 310 0.17 0.16 260 50 44 6

Board Plane 276 0.27 0.25 201 75 57 18

Cars Several small regions 272 0.17 0.11 225 47 35 12
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Table 2. Experiment results

Algorithm Success Iterations In. N.Deg. Success Iterations In. N.Deg.

Flowerpot scene Book scene

BEEM 100% (5.0) 213 40.6 11.2 95% (6.3) 279 44.1 5.6

2SIFT LO-RANSAC 30% 356 29.8 3.6 5% 660 27.2 0.6

2SIFT RANSAC 0% 880 16.9 0 0% 2,449 11.2 0.2

7pt P-LO-RANSAC 65% 10,000 34.6 7.9 30% 10,000 35.1 1.8

7pt LO-RANSAC 15% 10,000 27.2 2.4 0% 10,000 19.9 0.2

7pt RANSAC 0% 10,000 19.5 1.2 0% 10,000 16.5 0.5

Board scene Car scene

BEEM 90% (1.7) 207 72.4 15.6 100% (2.5) 230 44.8 10.9

2SIFT LO-RANSAC 5% 90 57.8 1.9 30% 533 31.3 5.7

2SIFT RANSAC 0% 1,964 31.9 1.0 0% 1,236 14.8 1.0

7pt P-LO-RANSAC 15% 10,000 61.3 4.9 70% 10,000 39.2 8.2

7pt LO-RANSAC 5% 10,000 57.9 2.1 25% 10,000 27.25 3.9

7pt RANSAC 0% 10,000 53.6 1.1 0% 10,000 18.05 2.3

P-LO-RANSAC), LO-RANSAC using samples of seven point correspondences
(7pt LO-RANSAC), and RANSAC using samples of seven point correspondences
(7pt RANSAC). The termination criterion for RANSAC and LO-RANSAC was
based on Eq. (1), for p = 0.99. In cases where the number of iterations exceeded
ten thousand the algorithm also terminated. Each algorithm has been applied
to each image pair twenty times. For each algorithm the following statistics are
presented: the success rate defined as the percentage of the experiments in which
at least 75% of the inliers were found and at least 50% of the inliers outside the
degenerate configuration were found, the number of iterations until the termi-
nation of the algorithm, the number of inliers found, and the number of inliers
outside the degenerate configuration found. For the BEEM algorithm, in the it-
eration column the number of global exploration iterations is also given denoted
in parentheses.

The results clearly show that the BEEM algorithm outperforms the other
algorithms in the way that it deals with degeneracies, detecting almost always
most of the inliers outside of the degenerate configuration. The quality of the
results as represented by the overall number of detected inliers is also much
higher. Finally, the number of iterations until termination of the algorithm is
much lower than for the other algorithms. Finally, the number of global explo-
ration iteration of the BEEM algorithm is very low as a result of the use of the
prior information and the 2-SIFT method. As mentioned in the previous section,
the number of iterations of the BEEM algorithm is in practice slightly higher
than the number of outliers in the putative correspondence set. This number is
much lower than the number of iterations of the other algorithms. The results
of the other algorithms demonstrate the contribution of each component of the
BEEM algorithm to the quality of the detection.
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Abstract. Two planar mirrors are positioned to show five views of an object, and
snapshots are captured from different viewpoints. We present closed form solu-
tions for calculating the focal length, principal point, mirror and camera poses
directly from the silhouette outlines of the object and its reflections. In the noisy
case, these equations are used to form initial parameter estimates that are refined
using iterative minimisation. The self-calibration allows the visual cones from
each silhouette to be specified in a common reference frame so that the visual hull
can be constructed. The proposed setup provides a simple method for creating 3D
multimedia content that does not rely on specialised equipment. Experimental re-
sults demonstrate the reconstruction of a toy horse and a locust from real images.
Synthetic images are used to quantify the sensitivity of the self-calibration to
quantisation noise. In terms of the silhouette calibration ratio, degradation in sil-
houette quality has a greater effect on silhouette set consistency than computed
calibration parameters.

1 Introduction

Shape-from-silhouette is a popular technique for creating 3D models of real world ob-
jects; silhouettes can often easily be extracted from images in a controlled environment.
If camera pose and internal parameters are known, then the visual hull [7] can be com-
puted by intersecting the visual cones corresponding to silhouettes captured from mul-
tiple viewpoints. The visual hull is often a good approximation to the 3D shape of the
object and is useful for tasks such as 3D multimedia content creation.

We propose a simple setup for capturing images of an object from multiple well-
distributed viewpoints. Two mirrors are used to create five views of an object: a view
directly onto the object, two reflections, and two reflections of reflections (see Fig. 1).
Two or more images of the object and its reflections are captured from different cam-
era positions (without altering the internal parameters) to obtain a well-distributed set of
silhouettes. Since the method requires only readily available equipment (two bathroom-
style mirrors and a digital camera) it provides the non-specialist user with a simple,
low-cost means for creating 3D multimedia content from real objects. The user pro-
vides segmented images as input, and our software provides a visual hull model of the

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 165–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Two images of a double mirror setup positioned so that five views of the object can be
seen. Note that the camera has moved between shots, but the mirrors and object have not moved.

object. Other methods [10, 8] typically require specialist equipment such as turntables,
calibration objects, or multi-camera setups.

We provide closed form solutions for the focal length, principal point, and pose asso-
ciated with each silhouette view. These values are computed directly from the silhouette
outlines: no calibration markers or point correspondences are required. First, each five-
view image is considered separately. Four epipoles are computed from the silhouette
outlines. Each image constrains the principal point to lie on a line. The intersection
of these lines yields the camera’s principal point. The positions of the epipoles provide
constraints that allow the focal length of the camera to be computed. The mirror normals
are a function of the focal length, principal point, and positions of the epipoles. Once
the mirror normals are known, the orientation associated with each silhouette view is
computed with respect to the camera. Next, the positional component is computed using
the epipolar tangency constraint.

In some cases, five-view visual hulls provide a reasonable representation of the 3D
shape of the object. However, the visual hull model can be improved by merging mul-
tiple five-view silhouette sets of the same rigid object into a single large silhouette set.
We show how multiple five-view silhouette sets can be specified in a common reference
frame using closed form solutions. This allows visual hulls to be computed from an
arbitrary number of well-distributed views of an object.

A refined solution is obtained by treating the closed form solutions as initial esti-
mates and then adjusting parameters to minimise the sum-of-square distances between
epipolar tangencies and corresponding projected epipolar tangents. The various param-
eters are decoupled so that iterative refinement is applied at several steps using small
numbers of parameters at each step, thus limiting the dimensionality of the search space.

The paper is organised as follows. Section 2 provides a brief overview of related
work. In Section 3 we demonstrate how a silhouette image of an object and its reflection
can be used to compute the epipole from the silhouette outlines; this result will be used
in computing the calibration parameters. Section 4 describes the geometry of the double
mirror setup that is used to capture multiple views of an object. Section 5 presents closed
form solutions for calculating focal length, principal point, mirror normals and positions
from the silhouette outlines observed in images captured using our setup. In Section 6
we show how a nonlinear iterative minimisation can be used to refine the solution given
by the closed form solutions in the presence of noise. Experimental results using real
and synthetic data are presented in Section 7. Section 8 summarises the paper.
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2 Related Work

The computer vision literature describes various approaches for capturing silhouettes
of an object from multiple viewpoints so that the visual hull can be computed. Several
approaches use the silhouettes themselves to estimate camera parameters.

Wong and Cipolla [13] describe a system that is calibrated from silhouette views
using the constraint of circular motion. Once an initial visual hull model is constructed
from an approximately circular motion sequence, additional views from arbitrary view-
points can be added to refine the model. The user must manually provide an approx-
imate initial pose for each additional view which is then refined using an iterative
optimisation. Their method of minimising the sum-of-square reprojection errors corre-
sponding to all outer epipolar tangents is used in our work to provide a refined solution.

Sinha et al. [12] make use of outer epipolar tangents to calibrate a network of cam-
eras using silhouettes. Random sampling is used to identify consistent corresponding
epipolar tangencies to use for computing initial parameter estimates.

Okatani and Deguchi [11] use a camera with a gyro sensor so that the orientation
component associated with each silhouette view is known. An iterative optimisation
method is then used to estimate the positional component from the silhouettes by en-
forcing the epipolar tangency constraint.

Bottino and Laurentini [1] provide methods for determining viewpoints from silhou-
ettes for the case of orthographic viewing directions parallel to the same plane. This
type of situation applies to observing a vehicle on a planar surface, for instance.

Many works describe the use of mirrors for generating multiple views of a scene.
For example, Gluckman and Nayar [5] discuss the geometry and calibration of a two
mirror system using point correspondences. Hu et al. [6] describe a setup similar to
ours, however they use constraints imposed by both the silhouette outlines and point
correspondences for calibration.

In earlier work [4], we describe a similar method to the one we describe in this paper.
However, the previous work assumes an orthographic projection model and requires a
dense search of parameter space to determine initial estimates. In this paper, we improve
on the method by providing closed form solutions for the initial parameter estimates
using a perspective camera model. Moriya et al. [9] describe a related idea. Epipoles
are computed from the silhouette outlines of three shadows of a solid cast onto a plane,
and are shown to be collinear.

3 Epipoles from Bitangent Lines

This section deals with the case in which a camera views an object and its reflection.
We show how the epipole corresponding to the virtual camera (the reflection of the real
camera) can be computed directly from the silhouette outlines of the real object and
the virtual object in the image captured by the real camera. This result will be used to
calculate the positions of epipoles for the double mirror setup.

Fig. 2 shows an example of a camera observing a real object and its reflection in a
mirror. The virtual camera is also shown. Consider a plane Π1 that passes through the
camera centres CR and CV and touches the real object at the point PR1. By symmetry,
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Fig. 2. A camera viewing an object and its reflection. The epipole eRV corresponding to the virtual
camera can be computed from the silhouette bitangent lines LR1 and LR2.

Π1 will touch the virtual object at the point PV1 which is the reflection of PR1. Since Π1

is tangent to both objects and contains the camera centres CR and CV , PR1 and PV1 are
frontier points [3]. They project onto the silhouette outlines on the real image at points
pRR1 and pRV1. The points pRR1, pRV1 and the epipole eRV (the projection of CR into the
real image) are therefore collinear, since they lie in both Π1 and the real image plane.
The bitangent line LR1 passing through these three points can be computed directly from
the silhouette outlines: it is simply the line that is tangent to both silhouettes. Another
bitangent line LR2 passes through the epipole and touches the silhouettes on the opposite
side to LR1. These tangency points lie on a plane Π2 that is tangent to the opposite side
of the object and passes through both camera centres. Provided that the object does not
intersect the line passing through both camera centres, there will be two outer epipolar
tangent lines LR1 and LR2 that touch the silhouettes on either side.

The position of the epipole eRV can therefore be computed by determining LR1 and
LR2 from the silhouette outlines; it is located at the intersection of LR1 and LR2. Note that
the epipole is computed without requiring knowledge of the camera pose and without
requiring any point correspondences.

We also note that by symmetry, the real camera’s silhouette view of the virtual object
is a mirror image of the virtual camera’s silhouette view of the real object. The silhouette
view observed by a reflection of a camera is therefore known if the camera’s view of
the reflection of the object is known.

4 Double Mirror Setup

Fig. 3 shows a double mirror setup that is used to capture five silhouette views of an
object in a single image. The camera is centred at CR and observes a real object OR.
The camera also captures the image of four virtual objects OV1, OV2, OV12, and OV21.
Object OV1 is the reflection of OR in Mirror 1; OV2 is the reflection of OR in Mirror 2;
OV12 is the reflection of OV1 in Mirror 2; and OV21 is the reflection of OV 2 in Mirror 1.

Our method requires six virtual cameras to be considered. The virtual cameras are
reflections of the real camera CR. The virtual cameras CV1, CV 2, CV 12, and CV 21 are
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CV 1

CV 212 CV 121

CV 2

CV 21

CV 12
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OV 1
OV 2

OV 21 OV 12

OR

Mirror 1 Mirror 2

Fig. 3. Mirror setup showing one real and four virtual objects, and one real and six virtual cameras

required, as their silhouette views of the real object are the same as the silhouettes
observed by the real camera (or reflections thereof). Since we have access to the sil-
houettes from the real camera, we can determine the silhouettes observed by the four
virtual cameras. Each of the five cameras’ silhouette views of the real object can be
used to compute the five-view visual hull of the object.

The virtual cameras CV121 (the reflection of CV12 in Mirror 1), and CV 212 (the reflec-
tion of CV21 in Mirror 2) are to be considered too, since it turns out that their epipoles
can be computed directly from the five silhouettes observed by the real camera. These
epipoles, together with the epipoles from the virtual cameras CV 1 and CV2 can then be
used to calculate the focal length of the camera.

5 Analytical Solution

This section presents a method to calculate the focal length and principal point of the
camera and the poses of the virtual cameras relative to the pose of the real camera for the
five camera views in an image. Next, a method for determining camera motion between
snapshots is presented. This allows all silhouettes from all images to be specified in
a common reference frame. Closed form solutions in which the required parameters
are determined from the silhouette outlines alone are provided. Silhouette outlines are
represented by polygons, and pixels are assumed to be square.

First, we show how lines that are tangent to pairs of silhouettes can be used to calcu-
late the positions of four epipoles corresponding to four virtual cameras. The principal
point is constrained by the epipoles to a line in each image; the intersection of the lines
is the principal point. Next, we show how the focal length is a function of the relative
positions of the four epipoles. Once the focal length is known, we show that mirror
and camera orientation is easily determined from the positions of two epipoles. The
positional component of the poses is computed using the epipolar tangency constraint.
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Finally, we show how the camera poses between shots are constrained by the constant
positions of the mirrors with respect to the object.

5.1 Four Epipoles from Five Silhouettes

Here, we show how the epipoles are computed from pairs of silhouettes using the result
explained in Section 3: the epipole corresponding to a camera’s reflection can be com-
puted from the camera’s silhouette image of an object and its reflection by finding the
intersection of the two outer bitangent lines. Fig. 4 shows how the epipoles eV 1, eV2,
eV121, and eV212 are computed from the outlines of the five silhouettes observed by the
real camera. The distances a, b, and c between the epipoles will be used for computing
the focal length. The outline γRR corresponds to the object OR, and γRV1 corresponds to
OV1 which is the reflection of OR in Mirror 1. The intersection of the pair of lines that
are tangent to both γRR and γRV1 is therefore the epipole eV 1, since CV 1 is the reflection
of CR in Mirror 1. The pair of lines that are tangent to both γRV2 and γRV12 also meet at
eV1, since OV12 is the reflection of OV2 in Mirror 1. Similarly, the pairs of lines that are
tangent to both γRR and γRV2, and to γRV1 and γRV21 meet at eV2.

eV 1

eV 212
eV 121

eV 2

a

b
c

γRR

γRV1 γRV2

γRV12

γRV21

Fig. 4. Computing epipoles eV 1, eV 2, eV 121, and eV 212 from the silhouette outlines in an image

Consider CR observing OV 1. Object OV21 is related to OV1 through three reflections.
Object OV 1 must be reflected by Mirror 1 (to get OR) and then Mirror 2 (to get OV2)
and then again by Mirror 1 to get OV21. The effect of these three reflections can be
considered to be a single reflection. Applying the triple reflection to CR gives CV 121.
The pair of lines that are tangent to both γRV1 and γRV21 therefore meet at eV121. This is
again because a camera (CR) is observing silhouettes of an object (OV1) and its reflection
(OV12), so the projection of the camera’s reflection (CV121) can be computed from the
silhouette bitangent lines. Similarly, the pair of lines that are tangent to both γRV2 and
γRV12 meet at eV212.

Note that the epipoles eV1, eV2, eV121, and eV212 are collinear, since they all lie in both
the image plane of the real camera and in the plane ΠC in which all camera centres lie.

5.2 Focal Length and Principal Point from Epipoles

We now show how the focal length is computed from the positions of the four epipoles.
This will be done by considering the positions of the camera centres in the plane ΠC.
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Fig. 5. Diagrams showing (a) the intersections of Mirror 1, Mirror A and Mirror 2 with ΠC along
with the positions of the cameras and epipoles, all of which lie in ΠC , and (b) computing fπ and
pπ from the four epipoles eV 1, eV 2, eV 121, and eV 212

First we introduce two new mirrors, Mirrors A and B, that do not correspond to
physical mirrors in the scene. This approach makes the problem of calculating the focal
length tractable. Mirror A has the same orientation as Mirror 1, but is positioned so that
it passes midway between eV1 and CR (see Fig. 5a in which the positions of points in
ΠC are shown). The point eV1 is therefore the reflection of CR in Mirror A. Point E is
the reflection of eV1 in Mirror 2, and F is the reflection of E in Mirror A. Note that
F lies on the ray passing through eV121 and CR. Also note that F will stay on this line
if the position (but not the orientation) of Mirror 2 changes. This is because triangles
�CRCV 1D and �CReV1G are similar.

Fig. 5b shows the positions of the epipoles and CR in ΠC. The distances a, b, and
c between the epipoles (as shown in the figure) are used to compute the distance fΠ
between CR and the image plane in the plane ΠC. The distance fΠ is then used to cal-
culate the focal length. The figure also shows Mirror B which has the same orientation
as Mirror 2, and is positioned midway between CR and eV2. The line joining eV2 to its
reflection in Mirror B meets Mirror B at point J which projects onto eV212.

The triangle �HeV2CR is similar to �CReV1G, the line segment from eV121 to eV2

is of length c, and the line segment from eV1 to eV121 is of length a + b. This indicates
that the ratio of the sides of �HeV2CR to �CReV1G is c : (a + b). This means that
d(eV1,G) = d(CR,ev2)(a + b)/c.

Similarly, the triangle �KeV1CR is similar to �CReV2J, the line segment from eV1

to eV212 is of length a, and the line segment from eV212 to eV2 is of length b + c. This
indicates that the ratio of the sides of �KeV1CR to �CReV2J is a : (b + c). Therefore
d(eV2,J) = d(CR,eV 1)(b + c)/a.
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This allows us to write d(CR,eV1) in terms of d(CR,eV2), since �CReV2J is similar
to �CReV1G:

d(CR,eV1) =

√
c (c + b)a (a + b)

c (c + b)
d(CR,eV 2). (1)

We now know the sides of �CReV1G up to a scale factor.
The angle ∠CReV1G = α+ β can be computed using the cosine rule:

cos(α+ β) = 1/2

√
c (c + b)a (a + b)
(c + b)(a + b)

. (2)

The cosine rule can be used to determine the sides of �eV1CReV2. (The angle
∠eV1CReV2 = 180◦−α−β.)

We can now (with the help of the Matlab Symbolic Toolbox for simplification) state
fΠ in terms of a, b, and c:

fΠ = 1/2

√
3ac + 4ab + 4cb +4b2(a + b + c)

√
a
√

c
a2 + ab + c2 + cb + ac

. (3)

The point closest to CR on the line containing the epipoles, is

pΠ = eV1 + 1/2
(2a + 2b + c)a (a + b + c)

a2 + ab + c2 + cb + ac
eV 2 − eV1

||eV 2 − eV1||
. (4)

The line passing through pΠ and perpendicular to the line containing the epipoles
passes through the principal point p0. The principal point can therefore be computed as
the intersection of two such lines from two images of the scene. (If the principal point
is assumed to lie at that the image centre, then a single snapshot could be used.)

The focal length (the distance from CR to the image plane) can now be calculated
from pΠ, the principal point p0 and fΠ.

5.3 View Orientations

Once the focal length of the camera has been calculated, the view orientation can be
computed relatively easily. The mirror normal directions m1 and m2 are computed from
the focal length, the principal point p0 and the epipoles eV 1 and eV2:

m1 = −
[

eV1 −p0

f

]
, m2 = −

[
eV2 −p0

f

]
. (5)

A 3 × 3 matrix R that represents a reflection by a mirror with unit normal m̂ =
[mx,my,mz]T is used to calculate view orientation:

R =

⎛⎝−m2
x + m2

y + m2
z −2mxmy −2mxmz

−2mxmy m2
x −m2

y + m2
z −2mymz

−2mxmz −2mymz m2
x + m2

y −m2
z

⎞⎠ . (6)
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5.4 View Positions

The point CV1 is constrained to lie on the line passing through eV1 and CR. Similarly, the
point CV2 is constrained to lie on the line passing through eV2 and CR. Since absolute
scale cannot be inferred from the image (if the scene were scaled, the image would not
change), we fix CV 1 at unit distance from CR. The only positional unknown across the
entire setup is now the position of CV2 on the line passing through eV2 and CR.

To solve for w, the distance from CR to CV2, the epipolar tangency constraint is
used: a tangent to a silhouette that passes through the epipole must be tangent to the
corresponding point in its projection onto the image plane of the opposite view. The
relationship between the views of CV1 and CV 2 is used to enforce this constraint.

The poses of the cameras CV 1 and CV2 are specified by 4×4 rigid transform matrices
from the reference frame of the real camera:

M =
(

R t
0T 1

)
, (7)

where the translational component t is given by t = 2(mx px + my py +
mz pz)(mx,my,mz)T and (px, py, pz)T is a point on the mirror.

The matrix M1M−1
2 represents the rigid transform from the reference frame of CV 2

to that of CV 1.
The point pV2 is one of two outer epipolar tangencies formed by lines passing

through eV2V1 (the projection of CV 1 onto the image plane of camera CV 2) and tangent
to the silhouette observed by the camera CV2.

The point pV1V2 is the projection of pV2 into camera CV1. It must correspond to
pV1, one of two outer epipolar tangencies formed by lines passing through eV 1V2 (the
projection of CV 2 onto the image plane of camera CV 1).

The epipolar tangency constraint is expressed as

(pV1V2 × eV1V2) ·pV1 = 0, (8)

where pV1V2, eV 1V2, and pV1 are represented by homogeneous coordinates. In other
words, the line passing through pV1V2 and eV 1V2 must also pass through pV1.

Equation 8 can be specified in terms of pV1, pV2, the computed orientation and cam-
era internal parameters, and w. The Matlab Symbolic Toolbox was used to determine
a solution for w (the equation is too large to reproduce here). Unfortunately, we do
not know the values of either pV1 or pV2, since the epipoles from which they may be
computed are functions of the unknown w.

The values of pV1 and pV2 can be determined by exhaustive search, by finding the
polygon vertex pair that fulfils the epipolar tangency constraint. Instead, we remove the
need for an exhaustive search by using a parallel projection approximation to determine
approximate correspondences. The tangencies are selected as the support points for
outer tangent pairs that are parallel to the projected viewing direction. Unless the camera
is very close to the object, this method selects either the same vertices, or vertices very
close to the true tangencies under a perspective projection.
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5.5 Combining Five-View Silhouette Sets

The calibration procedure described above allows five silhouette views from one im-
age to be specified in a common reference frame. The pose and internal parameters of
the four virtual cameras and one real camera are known. The silhouettes observed by
these cameras are also known: the silhouettes observed by the virtual cameras are those
observed by the real camera of the corresponding virtual object.

The next step is to specify the silhouette sets from two or more images in a common
reference frame. This is easily achieved, since the mirror poses are known with respect
to the real camera for each image. The five-view silhouette sets are aligned by aligning
the mirrors across sets. There are two additional degrees of freedom that the mirrors
do not constrain: a translation along the join of the mirrors, and an overall scale factor.
These are approximated using the epipolar tangency constraint and a parallel projection
model (as for computing w): each five-view silhouette set is scaled and translated along
the mirror join so that outer epipolar tangents coincide with the projected tangents from
silhouettes in the other silhouette set. Each silhouette pair between different sets gives
an estimate of translation and scale. The average result over all pairings is used.

6 The Refined Self-calibration Procedure

The method described in Section 5 provides a means for computing all calibration pa-
rameters. However, better results are obtained if parameter estimates are refined at sev-
eral steps. This is done by adjusting the parameters to minimise the sum-of-of square
distances between epipolar tangencies and corresponding projected tangents using the
Levenberg-Marquardt method. The geometry of the problem naturally allows for pa-
rameters to be decoupled from one another, allowing minimisation to be applied to
small numbers of parameters at a time.

The first step of the procedure is to determine which silhouettes correspond to which
camera views for each of the five silhouettes in the image. This is done by ordering the
five silhouettes along the convex hull of the five silhouettes, and then considering the
five possible arrangements. The four epipoles eV1, eV2, eV121, and eV212 are computed
for each of the five possible arrangements. The lowest sum-of-square distances between
silhouette tangents passing through the epipoles and tangents on the corresponding sil-
houettes is used to select the correct arrangement.

In the presence of noise, the tangent line intersections used to calculate the four
epipoles will, in general, produce epipoles that are not collinear. The epipoles eV1 and
eV2 each lie at the intersection of four tangent lines. In the presence of noise, four
tangent lines will not intersect at a point. For a refined estimate, the positions of the
four epipoles are parameterised using only six degrees of freedom, so that the epipoles
are constrained to be collinear. The sum-of-square distances from tangency points to
the corresponding tangent lines generated by the opposite silhouette is minimised. The
tangent lines pass through the appropriate epipole and touch the silhouette. To form a
starting point for the minimisation, the tangent line intersections are computed, and the
points closest to an orthogonal regression line through the intersection points are used.

Focal length and principal point values are then computed for each image, aver-
aged, and adjusted to minimise reprojection error. The unknown positional component
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is computed next for each image. Parameters are then adjusted by minimising reprojec-
tion error using all possible silhouette pairings between silhouettes within each set.

Finally, the five view sets are merged into a single large set as described in Sec-
tion 5.5. A final minimisation adjusts all parameters simultaneously to minimise the
sum-of-square distances across all silhouette pairings.

7 Experimental Results

Experiments were performed using real data to obtain qualitative results, and synthetic
data to quantify the calibration performance degradation in the presence of noise.

7.1 Real Image Data

The proposed method was tested using a toy horse. Two 2592×1944 images captured
from two viewpoints are shown in Fig. 1. The five silhouettes in each image were de-
termined using an intensity threshold.

The resultant visual hull model is shown the third column of Fig. 6. The figure also
shows visual hull models created using only the five silhouettes from each of the images.
This demonstrates the improvement in the quality of the model obtained by merging the
silhouette sets. Note that both five-view visual hulls have regions of extra volume that
are not present in the ten-view visual hull.

The angle between the mirrors was computed to be 73.1 degrees. The focal length
was computed to be 2754 pixels and the principal point located at (1306,981). This
compares with values of 2875 and (1297,958) computed using a checkerboard calibra-
tion method (see www.vision.caltech.edu/bouguetj). Note, however, that a
direct comparison of individual parameters does not necessarily provide a good indi-
cation of the quality of the calibration parameters. The calibration parameters should
provide an accurate mapping from 2D image points to 3D rays in the volume of in-
terest. The interplay between the different parameters can result in different parameter

Fig. 6. Two views of the visual hull of the horse formed from the silhouettes in image 1 (first
column), the silhouettes in image 2 (second column), and all ten silhouettes (third column)
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Fig. 7. Two input images and resultant visual hull model of a toy locust

sets varying to some degree in magnitude, yet still providing a good mapping in the
volume of interest. A difference in principal point location can largely be compensated
for by a difference in translation parameters, for instance. A more meaningful measure
of calibration parameter quality using the silhouette calibration ratio is described in
Section 7.2.

Fig. 7 shows another example: a visual hull model of a toy locust.

7.2 Synthetic Image Data

Synthetic images were used to investigate the sensitivity of the method to noise. To
ensure realistic parameter values were considered, the synthetic images were based on
the real images of the toy horse. Exact polygonal projections of the ten-view polyhedral
visual hull of the horse were generated using the output provided by the real images.
This provides an exactly consistent set of silhouettes.

Quantisation noise was introduced by rendering the polygonal silhouettes, firstly at
the original image resolution, and then at successively lower resolutions. Visual hulls

Fig. 8. Visual hull models created at 2, 8, and 15 times reduction of the original resolution (left to
right), with iterative refinement (top row), and without iterative refinement (bottom row)
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Fig. 9. Plots of image resolution versus silhouette inconsistency measured using the silhouette
calibration ratio for self-calibration (a) without, and (b) with refinement

computed with and without iterative refinement are shown in Fig. 8 for three resolution
levels. Note that without refinement, the computed calibration parameters cause the
common volume of the visual cones to reduce substantially as the noise is increased.

Boyer [2] introduced the silhouette calibration ratio Cr as a measure of the combined
quality of silhouettes and camera parameters. His reasoning is as follows. Ideally, some
point on any viewing ray in a silhouette must intersect all n− 1 other visual cones of
an n-view silhouette set. The ratio of the actual maximum number of intersections for
points on the ray to n−1 is a measure of consistency; Cr is the mean value for all rays
from all silhouettes. We use 1−Cr as a measure of inconsistency.

Fig. 9 shows plots of 1−Cr versus the degree of resolution reduction. Results are also
shown with the computed camera parameters and exact silhouettes, as well as quantised
silhouettes and exact camera parameters. The plots show that without refinement, the
poor accuracy of the camera parameters is a greater contributor to inconsistency than
the quantisation of the silhouettes alone. However, for the refined camera parameters,
the quantised silhouettes and exact camera parameters are more inconsistent than the
exact silhouettes and the computed camera parameters, demonstrating the accuracy of
the refined calibration method.

8 Summary

We have presented a method for creating 3D models from real world objects for the
non-specialist. The method requires only readily-available equipment: two off-the-shelf
planar mirrors, and a digital camera. Once provided with the software, the non-specialist
user will easily be able to create 3D multimedia content from real objects.

By positioning the mirrors so that five views of the object can be seen, and capturing
two or more images of the scene, we have shown how the internal parameters and poses
associated with each silhouette can be computed from the silhouette outlines alone.



178 K. Forbes et al.

In the noisy case, closed form solutions are used for initial parameter estimates that
are refined by Levenberg-Marquardt minimisation of sum-of-square reprojection error.

Experimental results demonstrating the quality of models created using real images
have been presented. Synthetic images have been used to demonstrate the computed
camera parameters have less of an effect on quality as measured by the silhouette cali-
bration ratio than the noisy silhouettes from which they are computed.
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Abstract. Estimating photo-consistency is one of the most important
ingredients for any 3D stereo reconstruction technique that is based on
a volumetric scene representation. This paper presents a new, illumina-
tion invariant photo-consistency measure for high quality, volumetric 3D
reconstruction from calibrated images. In contrast to current standard
methods such as normalized cross-correlation it supports unconstrained
camera setups and non-planar surface approximations. We show how
this measure can be embedded into a highly efficient, completely hard-
ware accelerated volumetric reconstruction pipeline by exploiting current
graphics processors. We provide examples of high quality reconstructions
with computation times of only a few seconds to minutes, even for large
numbers of cameras and high volumetric resolutions.

1 Introduction

Volumetric multi-view stereo reconstruction, originally introduced by Seitz et
al. [1, 2], has recently been shown to produce 3D models from photographs or
video sequences with fairly high quality [3, 4]. The basic principle in volumet-
ric reconstruction is to find a classification for all elements (voxels) within a
discretized volume whether they belong to the surface of the 3D object or not.

Probably the most central aspect of all these techniques is the estimation of
the so called photo-consistency of a given voxel. The fundamental idea is that
only voxels intersected by the object’s surface have a consistent appearance in the
input images, while other voxels project to incompatible image patches (Fig. 1).
Currently there are two major approaches to this problem, either focusing on
efficient computability or quality of the reconstruction.

Originally photo-consistency was measured based on the color variance of a
voxel [1], assuming perfectly Lambertian and well textured surfaces under con-
stant illumination conditions. Despite these restrictions this method is still widely
used [5, 6] because of its computational efficiency and the often acceptable quality,
e.g., for time-critical applications such as new view synthesis [7]. Since then the
original approach has been improved in several ways. Bonet et al. [8] suggested ex-
tensions considering transparency. Zýka and Sára [9] present a statistical method
for reliable outlier rejection. A probabilistic framework for space carving was pre-
sented by Broadhurst et al. [10]. Histogram-based color consistency tests were in-
troduced by Stevens et al. [11], and Yang et al. [12] addressed the problems of
textureless regions and specular highlights.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 179–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. An example for our improved photo-consistency measure for 3D reconstruction
from images (a). Cuts through the computed consistency volume from a front and a
side view for the warrior model are shown in (b) and (c) respectively. Darker colors
indicate higher consistency values. The clear maximum at the actual surface location
allows for reconstructed 3D models of high quality (d).

In recent work focusing on the quality of the reconstructed 3D model, photo-
consistency is commonly evaluated based on more sophisticated consistency mea-
sures such as sum-of-squared-differences (SSD) or normalized cross-correlation
(NCC) [13] of image patches instead of color variances. This greatly reduces am-
biguous color configurations and accounts for changes in illumination because
of the involved normalization step. Esteban et al. [3] present a technique based
on deformable models, while Vogiatzis et al. [4] use global graph-cut optimiza-
tion to find an optimal surface within a discretized volume that satisfies photo-
consistency as well as smoothness constraints. Both methods achieve a very high
quality of the reconstructed models. However both papers point out several open
issues of NCC-based consistency estimation such as the question whether to use
planar model- or image-aligned surface patches. In both cases projective warp-
ing can introduce a considerable matching error already for medium-baseline
and non epipolar-aligned images. Our work resolves these restrictions based on
a new, color normalized supersampling approach and specifically supports these
recent optimization-based reconstruction techniques [3, 4].

A further important aspect besides the quality of a photo-consistency mea-
sure is its efficiency. Computation times up to several hours are common even
in recent NCC-based work [3, 4] due to the much higher computational com-
plexity. Although this could be considered acceptable with respect to the very
high quality of the reconstructions, it is often still time-consuming to find op-
timal parameter settings in practice. Szeliski [14] addressed performance us-
ing adaptively refined grids. Partially hardware accelerated implementations of
space carving were presented by Prock et al. [15] and Sainz et al. [16]. Solu-
tions for hardware accelerated visual hulls and improved voxel visibility estima-
tion have been discussed in [7, 17, 18]. Li et al. [7] presented a first completely
hardware-based solution, Yang et al. [19] described a hardware-based SSD es-
timation for real-time stereo. However, these works either have conceptual
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limitations in their applicability to recent optimization based approaches, or
they have restrictions concerning the accuracy of the results or the complexity
of the input data.

To resolve the above mentioned restrictions this paper presents a new im-
plementation of the complete volumetric reconstruction pipeline. Most impor-
tantly, this includes a new approach to compute the photo-consistency of a voxel.
Our consistency measure combines the advantages of the two above mentioned
approaches, resulting in an illumination invariant, computationally efficient
photo-consistency estimation for high quality 3D reconstruction. It improves
robustness by resolving the problem of matching between surface samples even
for completely unconstrained camera configurations, and is not restricted to pla-
nar surface approximations. We show how this consistency measure as well as
all the other important stages of the volumetric reconstruction pipeline, namely
visual hull and visibility determination, can be implemented in a highly efficient
way by exploiting current graphics hardware, without any restrictions concern-
ing the volumetric resolution, the number of images, nor the computational
accuracy.

2 Photo-Consistency Estimation

Assuming fully calibrated, foreground segmented input images Ij of an object
the general volumetric reconstruction pipeline consists of the following steps:

For each voxel v within a discretized volume one first has to determine whether
it is contained in the visual hull of the object or if it lies in irrelevant parts of
the volume. Voxels projecting to the background in one of the images Ij can be
instantly marked as unoccupied space and skipped by further computations. We
present an efficient background rejection test to estimate the object’s visual hull
in Sect. 3.1.

As emphasized by Vogiatzis et al. [4] the next important step is to use an initial
geometry proxy such as the visual hull to determine whether a voxel v is visible
in an input image Ij , or if it is occluded by other voxels. For basic visibility
information one can compute approximate normals for each v by estimating
tangent planes at the visual hull boundary and propagating the resulting normal
directions inwards through the remaining volume. However, one additionally has
to account for occlusions caused by other voxels. We present an efficient solution
for this problem in Sect. 3.2.

After these initial steps we know in which images Ij a voxel v is visible. There
exist two major approaches for the actual photo-consistency estimation which
we will briefly introduce here to motivate our modified consistency measure.

Generally the photo-consistency φ(v) of a voxel is computed by comparing
image patches Pj resulting from projecting v into images Ij , j ∈ {0, . . . , N − 1}
where v is visible according to the above mentioned visibility estimation. The
original space carving approach [2] computes the color of a voxel v in image Ij
as the average color cj of all pixels pi

j ∈ Pj , and computes φ(v) by applying a
transfer function f to the color variance:
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cj =
1

|Pj |
∑

i

Ij(pi
j), c =

1
N

∑
j

cj , φ(v) = f

⎛⎝ 1
N

∑
j

(cj − c)2

⎞⎠ . (1)

This variance-based photo-consistency measure supports efficient computation
and unconstrained camera setups. However, it is quite sensitive in practice to
non-Lambertian, weakly textured surfaces, and varying illumination.

A more sophisticated approach used in recent work [3, 4] is to compare the
intensity functions resulting from projecting v to images Ij and Ik by (normal-
ized) cross-correlation (NCC). Suppose we approximate the unknown surface s
intersecting voxel v by a planar surface patch (Fig. 2 a). The respective intensity
functions can be compared by placing m object space samples p0 to pm−1 on
this patch, and evaluating their respective image space projections pi

j and pi
k,

0 ≤ i < m in images Ij and Ik. Since s is unknown one generally computes an
approximate solution by doing a pixel-wise comparison of simple, image-aligned
patches Pj and Pk instead:

cj = (Ij(p0
j) − cj , . . . , Ij(pm−1

j ) − cj)T , ĉj = cj

‖cj‖ , φ(v) = f
(
ĉT

j · ĉk

)
, (2)

with pi
j ∈ Pj , m = |Pj |, cj as defined in (1), and f being a transfer function

applied to the NCC of Pj and Pk. This method strongly reduces potential color
ambiguities and accounts for changes in illumination due to the involved nor-
malization step. But despite these advantages there remains a number of open
issues with this approach.

While the NCC is computed for pairs of image patches only, one has to com-
bine results for more than two images to compute the actual photo-consistency φ.
Vogiatzis et al. [4] propose to compute the average NCC for all image pairs,
while Esteban et al. [3] compute the NCC with a single reference image. But
more importantly one of the main problems of the above approach is the fact
that pixels pi

j and pi
k in the images Ij and Ik respectively might not correspond

to the same surface sample in object space. Hence image-aligned patches pro-
vide acceptable results only for medium baseline, epipolar-aligned images while
setups with arbitrary camera configurations are difficult to handle. On the other
hand as mentioned by Esteban et al. [3] more sophisticated planar model-aligned
patches provide valid results only if the approximation is already quite close to
the true object surface (Fig. 2 a).

2.1 Voxel Supersampling

To overcome the aforementioned problems we propose a new approach to create
consistent object space samples pi such that the matching error does not depend
on the quality of the current surface approximation or view alignment but only
on the volumetric resolution of the voxel grid.

Photo-consistency can be considered as a function φ(x, y, z) defined in con-
tinuous 3-space where the scene to be reconstructed is embedded. This function
vanishes for points (x, y, z) lying exactly on the surface s, has small values in
its immediate vicinity, and has larger positive values (which however do not
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Fig. 2. For previous patch based methods the sampling error strongly depends on the
approximation quality of the planar geometry proxy to the surface s (a). Our photo-
consistency estimation is based on spatially supersampling a voxel v (b). The samples
pi are weighted equally since the exact position and orientation of s cannot be predicted
at sub-voxel accuracy. At higher resolutions our approach allows us to use non-planar
surface approximations at v (c) for the photo-consistency estimation.

necessarily increase for larger distances) everywhere else. If we do not have any
reliable information about the exact location of the surface s within a given
voxel, the best consistency indicator that we can check is to simply integrate
the function φ(x, y, z) over the whole interior of the voxel. The value of this
integral is expected to be relatively small in those voxels that are intersected by
the surface. Obviously the integration of φ has to be done numerically, i.e., by
supersampling the considered voxel at sub-voxel resolution (Fig. 2 b).

Within each voxel v we therefore uniformly distribute m equally weighted
samples pi in object-space and compute the colors for each of these samples
separately by projecting them into the respective input images. This approach
effectively eliminates the matching problem between the different images and
samples even for completely unconstrained camera positions. To preserve the
illumination invariance of the NCC-based approach we apply a similar color
normalization step ci

j → ĉi
j as in (2) to the colors of all 3D samples p0 to pm−1

in a particular image Ij .
Instead of a pairwise correlation estimation which can either be biased by the

reference camera [3] or which introduces an O(n2) complexity to evaluate all
pairs [4] for each sample pi, we compute a weighted variance of the normalized
colors ĉi

j over all images. This allows us to take a weighted contribution of all
images into account simultaneously, with the possibility to respect effects such as
blurring at grazing viewing angles. We weigh the contribution of each image Ij
to a voxel v using a Gaussian weight wj (with

∑
j wj = 1) of the angle between

the approximate voxel normal and the voxel-to-camera direction in 3D space.
The final photo-consistency is simply computed as the sum of normalized

color variances per sample:

φ(v) =
1
m

∑
i

φ(pi), φ(pi) = VARj(wj ĉi
j) =

∑
j

wj(ĉi
j)

2 −

⎛⎝∑
j

wj ĉi
j

⎞⎠2

. (3)

If we want to consider the full three channel color space instead of just one
intensity channel, the number of input images n simply increases to 3n.
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2.2 Surface Sampling

The above supersampling approach provides a robust consistency measure as
long as the projection of a voxel covers at least a few pixels in the input images.
However, if the object space voxels are too small relative to the pixel resolution
of the images this method tends to become unstable due to alias errors, e.g.,
when applying bilinear interpolation of color values (Fig. 5 c). Hence we have
to enlarge the integration domain in this case by adding neighboring voxels. If
we have additional information about which neighboring voxels are probably
intersected by the surface, e.g., in an iterative optimization setting, we are in
fact able to use non-planar geometry proxies for the consistency estimation.

Once an initial surface approximation is available it is straightforward to
compute the k-nearest neighbor voxels which are intersected by the surface.
E.g., for a technique such as [4] we can easily compute a signed distance field
from the current surface within the remaining volume. Then the corresponding
k-nearest neighbors for each voxel are found among its neighbors lying on the
same level set.

Instead of supersampling a single voxel v we can now create samples pi for
each of the m closest neighbor voxels (Fig. 2 c) and simply compute the photo-
consistency as described in Sect. 2.1. While this is conceptually similar to the
patch-based NCC, we can exploit a non-planar surface approximation in contrast
to planar patches using NCC. Again, the matching problem is implicitly avoided.
This approach results in smooth surface reconstructions even at high volumetric
resolutions relative to the resolution of the input images (Fig. 5).

3 Efficient GPU-Based Implementation

In comparison to the most simple form of NCC-based approaches our method
introduces additional computational overhead since we have to compute the
projections of each of the object space samples pi instead of only the voxel center.
In this section we will show how to compensate this overhead by exploiting the
capabilities of programmable commodity graphics hardware.

The main benefit of using GPUs as general purpose processors is their inherent
parallel processing capability. As we will show, our presented photo-consistency
measure as well as further important steps during volumetric reconstruction can
be effectively parallelized, resulting in significantly reduced processing times by
using current GPU-features [20] such as vertex and fragment shader, floating
point support, and efficient multi-resolution texture processing.

The underlying idea when transferring an arbitrary algorithm to the GPU is
to exploit the possibility to execute a custom program for each generated vertex
and fragment independently and in parallel instead of using the standard 3D
rendering pipeline. Because of the floating point support of recent GPUs even
quite complex input data can be processed by encoding it in the color channels
of one or more textures. By simply drawing a screen-sized quad we generate
w × h fragments on which a custom algorithm is executed. This means we ef-
fectively run this algorithm on the texture encoded input data w × h-times in
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one single rendering pass. The output data of the algorithm can then be ac-
cessed by reading it from the color channels of the framebuffer. The following
sections present our implementation of a fully hardware accelerated reconstruc-
tion pipeline. Our OpenGL-based shader implementations are available on our
webpage http://www.rwth-graphics.de.

In the following we assume that the volumetric scene representation is based
on an adaptively refined grid (adaptive octree), and that we have pre-computed
a multi-resolution pyramid of each input image [13]. Although the following
algorithms explicitly address the multi-resolution capabilities of modern GPUs,
they can be easily simplified to single resolution versions.

3.1 Visual Hull Estimation

For efficient voxel rejection based on segmented images we use a floating point
texture Tp to encode the 3D position p for each voxel v in the (r,g,b)-channels
of a single texture element (texel). Furthermore we initialize a texture Tb with
a false-entry for each v as a boolean background mask. To avoid the complex
estimation of a voxel’s projected area Pj we load a texture mipmap TI for each
image Ij to the GPU and perform a single multi-resolution texture lookup in
TI such that |Pj | ≈ 1. Projection matrices and the voxel size are transferred as
environment parameters.

As described above we can execute a custom fragment program for each voxel
v by drawing a screen-sized quad such that each v is represented by a sin-
gle fragment f . The 3D position of each v is retrieved by a texture lookup
p := Tp(f). Then the projected position pj and footprint size sj of v in Ij
are computed and a texture lookup bj := TI(pj , sj) is used to check whether
v is projected to the background in Ij . The results for all images are accumu-
lated by updating the boolean background mask Tb(f) := bj ∨ Tb(f) which is
finally evaluated on the CPU. Since combined reading and writing to a tex-
ture is not supported on current GPUs the accumulation step is implemented
using OpenGL framebuffer objects and two textures as alternating rendering
targets [20].

The amount of voxels which can be encoded into a texture is limited by the
maximum available texture size. Thus we run this algorithm repeatedly until all
voxels are processed. For n images, v voxels, and a texture size of w × h, this
algorithm needs v/wh iterations with n image uploads for each pass.

3.2 Visibility Estimation

The next important step is the voxel visibility estimation based on the visual
hull boundary V . The following approach is inspired by the ideas of GPU-
based splat rendering by Botsch et al. [21] and uses techniques similar to their
splat-based shadow-mapping, resulting in reduced processing times by several
orders of magnitude in comparison to a standard approach such as ray-casting
(Table 1).

The difficulty lies in choosing a proper occlusion surface for computing the
visibility of voxels v ∈ V , since the thickness of V is more than one voxel. How-
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Fig. 3. For the visibility estimation of a voxel v in image Ij we first store the depth
values of all backfacing voxels vb in a depth map Td (a). The visibility of each v can
then be evaluated by a depth comparison of v and the corresponding entry in Td (b).

ever this problem can be effectively solved using only the backfacing boundary
of V . After computing the visual hull and normals as described in Sect. 2 we
set the OpenGL projection matrix to the corresponding projection matrix of Ij
and render all backfacing v ∈ V as splats (circular discs in object space) into
the depth buffer Td. The splat radius is set in correspondence to the voxel size.
The result is a dense depth map (Fig. 3 a) of all outer boundary voxels on the
backside of surface s as seen from image Ij . Then the visibility for all v in Ij
can be computed efficiently by a simple depth comparison.

Similar to Sect. 3.1 a fragment program loads for each fragment f the corre-
sponding voxel position p := Tp(f). The depth d of p in eye-space can then be
compared to the depth value dV of the front-most boundary voxel projecting to
the same image position using a simple texture lookup in Td (Fig. 3 b). Then v
is visible iff d < dV . The number of necessary iterations is identical to Sect. 3.1.

3.3 Photo-Consistency Estimation

The GPU-based photo-consistency estimation is slightly more involved than the
previous steps because of the supersampling and color normalization. Assume
we create m samples pi per voxel v (Fig. 2). We encode the data of each sample
in a separate texel such that a single voxel v is represented by a sequence of
m texels (Fig. 4). In addition to the 3D positions pi we also store the normal
directions in another texture Tn to compute individual camera weights wj . Aux-
iliary attributes such as the range of texture coordinates for each v are stored
in Ta. The visibility computed in Sect. 3.2 is stored in an occlusion texture To.
Finally, the image Ij , the corresponding projection matrix, and the voxel size
are transferred to the GPU as a texture mipmap TI and additional environment
parameters. Similar to Sect. 3.1 color integration is avoided by a lookup in the
corresponding mipmap level of TI such that |Pj | ≈ 1. The accumulated color
values for solving (3) are stored in a texture Taccum. A fragment f is generated
for every sample pi of each voxel. Then, for all images Ij and fragments f , we
run the following algorithm:

1. Projection pass:
(a) Compute sample color ci

j := TI(pi
j , s

i
j)

(b) Compute camera weight wj based on Tn and To

(c) Store color and weight Tc(f) := (ci
j , wj)
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Fig. 4. Our hardware accelerated photo-consistency estimation is based on a three step
rendering process. Using texture-encoded input data, we first compute projected color
values for each sample pi. These colors are then normalized and finally accumulated
for the final consistency estimation.

2. Normalization pass:
(a) Loop over all samples ck

j , 0 ≤ k < m (using Ta) and normalize ci
j → ĉi

j

(b) Store normalized color and weight Tnc(f) := (ĉi
j , wj)

3. Accumulation pass:
(a) Get (ĉi

j , wj) := Tnc(f)
(b) Add wj

(
ĉi

j

)2, wj ĉi
j , and wj to the accumulation buffer Taccum

Since we have three color channels per ĉi
j we accumulate the 3 + 3 + 1 values

computed in step 3b in two output buffers using multiple render targets [20].
The evaluation of these buffers and the summation over samples i in (3) is done
in software since a GPU implementation would generate redundant summations
for all fragments f corresponding to the samples of a single voxel. For n images,
v voxels, m samples per voxel, and a texture size of w× h, this algorithm needs
vm/wh passes with n image uploads for each pass.

4 Results

The following section presents our evaluation of the presented method in terms
of quality and efficiency. Our reference system for performance evaluation is a
Linux-based Intel Pentium 4 with 3.2 GHz, 2 GB of main memory, and a NVIDIA
GeFore 6800. We captured video sequences of the Warrior- (Fig. 1) and Leo-
model (Fig. 5) with an uncalibrated turn-table setup and an image resolution
of 1024 × 768. The Bahkauv-statue (Fig. 5) was captured using a hand-held
video camera with an image resolution of 720× 576. We pre-processed the video
streams using standard structure-from-motion and segmentation techniques. All
models were reconstructed by an iterative multi-resolution implementation of [4]
consisting of our proposed volumetric reconstruction pipeline and a graph-cut
based surface extraction at a volumetric resolution of 5123.

The number of samples for each voxel was set to m = 33 for all experiments,
approximately corresponding to a 5× 5 image patch for NCC-based techniques.
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Fig. 5. Image (a) shows one of the original 46 input images of the Leo-model. The 3D
model (b) was obtained using a graph-cut based technique [4]. Small oscillations and
artifacts can occur for supersampled voxels projecting to less than a few pixels (c).
Our surface sampling using neighboring voxels significantly improves the results (d).
The approximate image size of the Leo-head is 1402 pixels. The 30 images used for
the reconstruction of the Bahkauv-statue (e) were captured using a hand-held video
camera. We are able to reconstruct a quite detailed model (f) despite the specular
surface and other illumination artifacts.

For lower values of about 23 samples particularly difficult areas such as the
quite deep concavities of the Warrior’s arms or small features such as the ears
of the Leo model could not be properly reconstructed. For higher resolutions we
did not observe a significant improvement of the reconstruction quality. How-
ever, our proposed surface sampling approach which includes neighboring voxels
as discussed in Sect. 2.2 significantly improves reconstruction results for high
voxel resolutions, so that one can achieve highly detailed, smooth reconstruc-
tions (Fig. 5) without the use of high resolution cameras. In our experiments
we applied the surface sampling approach for volumetric resolutions, where a
single voxel projects to less than 52 pixels. The reconstruction of the Bahkauv
shows that a reconstruction is possible even under difficult lighting conditions
with non-Lambertian, weakly textured surfaces.

Table 1 shows the performance of our GPU-based implementation in com-
parison to our CPU-based reference implementation. Although there is a certain
overhead associated with loading images and voxel data to the GPU we achieve
acceleration factors of 3 to 85. Using our multiresolution implementation of [4]
the overall reconstruction time for all presented models was less than 10 minutes.
Please note that computation times reported in related work [4, 3] range from
about 40 minutes to several hours for comparable target resolutions and hard-
ware. Our input data and results are available at http://www.rwth-graphics.de.
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Table 1. Comparison of computed voxels per second for our hardware-based method
and our software implementation (in parentheses) for different input complexities.

Images Voxels v Visual hull v/s Visibility v/s Consistency v/s Total time

26 2M 19.4M (1.6M) 3.7M (55K) 350K (109K) 2.7m (24m)
26 4M 33.8M (1.7M) 4.6M (55K) 375K (122K) 5.1m (46m)
51 4M 42.0M (1.7M) 4.7M (56K) 423K (139K) 8.8m (87m)

126 4M 49.4M (1.8M) 4.7M (56K) 450K (139K) 20m (215m)
126 16M 50.2M (1.8M) 4.8M (56K) 450K (140K) 82m (858m)

5 Conclusion and Future Work

In this work we presented a new and efficient approach to compute the photo-
consistency of voxels for volumetric 3D stereo reconstruction. Our method re-
solves several restrictions of previous methods such as the matching of surface
patches, biased consistency estimation, and the necessity of epipolar-aligned im-
ages, while preserving important features such as illumination invariance. We
showed furthermore how this consistency test as well as other important recon-
struction steps can be efficiently implemented using commodity graphics hard-
ware, leading to a fully hardware accelerated, high quality reconstruction pipeline
for volumetric stereo.

As future work, we plan to incorporate methods to improve the handling of
non-Lambertian surfaces. Although the Bahkauv-statue could be reconstructed
with acceptable quality, we think that photo-consistency measures should explic-
itly model specularities and other surface properties [3, 12] for improved results.

Finally we could not yet exploit the full potential of our hardware implemen-
tation, since we observed a strong performance breakdown for texture sizes larger
than 20482. This is probably related to the fact that some of the more recent
OpenGL features still have open issues. Since the data transfer to and from the
GPU is the main bottleneck of our method, we expect an approximately 4 times
higher performance for texture sizes of 40962 because of the reduced number of
iterations (and hence image uploads) for each algorithm.

Acknowledgements

We would like to acknowledge the helpful discussions with Mario Botsch, Martin
Habbecke, and Volker Schönefeld.
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Abstract. In this work, a new affine invariant of parallelograms is intro-
duced, and the explicit constraint equations between the intrinsic matrix
of a camera and the similar invariants of a parallelogram or a paral-
lelepiped are established using this affine invariant. Camera calibration
and 3D reconstruction from parallelograms are systematically studied
based on these constraints. The proposed theoretical results and algo-
rithms have wide applicability as parallelograms and parallelepipeds are
not rare in man-made scenes. Experimental results on synthetic and real
images validate the proposed approaches.

1 Introduction

Camera calibration is a necessary step to extract metric information from 2D
images. The camera calibration can be classified as: (1). Calibrated object based
approaches, such as calibration based on 3D object [1], [2], [3], 2D planar object
[4], [5], and 1D line segment [6]. (2). Self-calibration, such as calibration based on
Kurppa’s equations [7], [8], [9], the absolute conic and the absolute quadric [10],
[11], [12], [13]. (3). Scene’s structure information or camera’s motion information
based calibration, such as calibration based on parallelism [14], [16], orthogonal-
ity [15], [16], and pure rotation of camera [17]. In the paper, our attention is
focused on parallelism based camera calibration.

We find a new affine invariant of parallelograms, which is one of our main
contributions in the paper. Although the affine invariant is very simple in math-
ematics, the projections of parallelograms and parallelepipeds, as well as the
explicit constraint equations between the intrinsic matrix of a camera and the
similar invariants of a parallelogram or parallelepiped are easily obtained by
this affine invariant. Based on these results, we can obtain the following conclu-
sions: From the projections of a parallelogram across n views, 2(n-1) quadratic
constraint equations on the camera intrinsic parameters can be obtained. In
particular, from the projections of a rectangle or diamond across n views, n lin-
ear constraint equations and (n-1) quadratic constraint equations are obtained;
From the projections of m coplanar parallelograms across n views, there exist
at most 2n independent quadratic constraints on the intrinsic parameters of

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 191–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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cameras. In particular, if there are two parallelograms with the same similar
parameters or with the same side-lengths in the scene, then 2n linear constraints
can be obtained; From the projections of m non-coplanar parallelograms across
n views, the intrinsic parameters and the motion parameters of cameras, the
similar invariants of parallelograms, and the global Euclidean reconstruction of
parallelograms can be linearly computed using some prior knowledge on the
cameras or on the parallelograms.

For camera calibration based on a single parallelogram, to our best knowl-
edge, the quadratic constraint equations obtained in the paper seem to be orig-
inal, and do not appear in other places. For rectangle and diamond, the usually
used constraints in the literature are the linear constrains, which come from
orthogonality, the quadratic constraints given in the paper are of new discov-
ery. For non-coplanar parallelograms based camera calibration and Euclidean
reconstruction, our calibration method is similar to the classical self-calibration,
only difference is that in our method, the use of the prior knowledge of the
parallelograms makes the number of required images decrease.

M. Wilczkowiak, P. Sturm and E. Boyer reported their works on paral-
lelepipeds in [16]. They use the factorization-based approach to compute the in-
trinsic parameters and the motion parameters of cameras, the similar invariants
of parallelepipeds, and the global Euclidean reconstruction of parallelepipeds. In
our work, the case of parallelepipeds can be integrated into the parallelogram-
based framework as a special case of multiple non-coplanar parallelograms. As
the factorization-based approach, our method can also compute camera motion
parameters and Euclidean reconstruction of the parallelepipeds simultaneously.

In the paper, a 3D point is denoted by X = [x, y, z]τ , and a 2D point is
denoted by m = [u, v, 1]τ . The camera is of the pinhole model, then under
the camera coordinate system, a 3D point X is projected to its image point m
by αm = KX, where α is the projection depth of 3D point X, K the camera
intrinsic matrix.

The paper is organized as follows. In Section 2, the invariants of parallelograms
are introduced, and the projections of parallelograms or parallelepipeds, as well
as the explicit constraint equations between the intrinsic matrix of a camera and
the similar invariants of a parallelogram or a parallelepiped are shown. Camera
calibration and 3D reconstruction are elaborated in Section 3. Experiments are
reported in Section 4. Conclusions are given at the end of this paper.

2 Invariants and Projections of Parallelograms

2.1 Invariants of Parallelograms

Let {Xi : i = 1, 2, 3, 4} be the four vertices of a parallelogram, and we always
assume −−−→X1X2 = −−−→X3X4 in the paper. Then, the parameters,

t =
||X3 − X1||
||X2 − X1||

, cos θ =
(X3 − X1)τ (X2 − X1)
||X3 − X1|| · ||X2 − X1||

, (1)
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are the similar invariants since similarity transformation preserves the length
ratio of two line segments and the angle of two lines. The parameters {t, θ} in
fact determine the shape of a parallelogram.

Definition 2.1. Given a parallelogram {Xi : i = 1, 2, 3, 4}, the matrix:

η =
[
1 t cos θ
t cos θ t2

]
(2)

is called the similar parameter matrix of this parallelogram.

Next, we introduce an affine invariant of parallelograms, which is crucial in the
paper. From −−−→X1X2 = −−−→X3X4, we have X4 − X3 = X2 − X1, and thus,

X4 = X2 − X1 + X3 = [X1,X2,X3][−1, 1, 1]τ .

Let X = [X1,X2,X3], then

X−1X4 = [−1, 1, 1]τ . (3)

Because an affine transformation preserves the parallelism and the length ratio
of two parallel segments, the equation (3) is an affine invariant of parallelograms.

2.2 Projections of Parallelograms

From the affine invariant (3), we can easily obtain the projection of parallelo-
grams and the explicit constraint equations between the camera intrinsic param-
eters and the similar invariants of a parallelogram.

Proposition 2.1. Suppose {mi} are image of a parallelogram {Xi}, and let

[q1, q2, q3]τ = [−m1,m2,m3]−1m4,L = [q2m2 − q1m1, q3m3 − q1m1]. (4)

Then we have:
1. Under the camera coordinate system,

Xi = α4qiK
−1mi, i = 1, 2, 3, 41 (5)

2. The intrinsic parameters of the camera and the similar invariants of the
parallelogram satisfy:

(||X2 − X1||2/α2
4)η = Lτ�L. (6)

Where α4 is the projection depth of point X4; � = K−τK−1is IAC .

Proof. Under the camera coordinate system, we have

Xi = αiK−1mi, i = 1, 2, 3, 4. (7)

1 In the paper, we always assume q4 = 1.
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Thus, X = [X1,X2,X3] = K−1[m1,m2,m3]diag[α1, α2, α3]. Hence, we obtain
X−1 = diag[1/α1, 1/α2, 1/α3][m1,m2,m3]−1K, and

X−1X4 = diag[1/α1, 1/α2, 1/α3][m1,m2,m3]−1K(α4K−1m4)
= diag[α4/α1, α4/α2, α4/α3][m1,m2,m3]−1m4
= [−α4q1/α1, α4q2/α2, α4q3/α3]τ

.

By the affine invariant (3), we have αi = α4qi, i = 1, 2, 3. Substituting them into
the equation (7), we obtain the equation (5).

We have Xj − X1 = α4K−1(qjmj − q1m1) by the equation (5), and thus,

||X2 − X1||2η =
[

(X2 − X1)τ (X2 − X1) (X2 − X1)τ (X3 − X1)
(X2 − X1)τ (X3 − X1) (X3 − X1)τ (X3 − X1)

]
= α2

4L
τ�L.

Hence, the equation (6) holds.

Remark 2.1. Since X4−X3 = X2−X1 and X4−X2 = X3−X1, from the equa-
tions (5), we can obtain q2m2 − q1m1 = q4m4 − q3m3

Δ= v1, q3m3 − q1m1 =
q4m4−q2m2

Δ= v2. It is not difficult to see that v1(v2) is a homogeneous coordi-
nate of the vanishing point of the parallel sides X1X2//X3X4 (X1X3//X2X4).
This is because vτ

1 (m1 × m2) = vτ
1 (m3 × m4) = 0, vτ

2 (m1 × m3) = vτ
2 (m2 ×

m4) = 0.
If the camera intrinsic parameters are known, we have following corollaries:

Corollary 2.1. From the image of a parallelogram, we can recover its shape,
i.e., we can determine its similar invariants.

Corollary 2.2. If the length of one side of a parallelogram is known, from its
image we can determine the length of the other side and the distances from the
parallelogram vertices to the camera center.

Remark 2.2. In the classical PnP problem [18], in order to compute the dis-
tances between control points and the camera center from images of the control
points, it is necessary to know the distances between each pair of control points.
From the corollary 2.1 and 2.2, we can obtain an interesting result: If the four
control points are vertices of a parallelogram, we only need to know the distance
between a pair of control points for computing the distances between these con-
trol points and the camera center.

2.3 Projections of Parallelepipeds

Let {X1, ...,X8} be 8 vertices of a parallelepiped, and we always assume −−−→X1X2 =
−−−→X3X4 = −−−→X5X6 = −−−→X7X8. Then, the parameters

t1 =
||X3 − X1||
||X2 − X1||

, t2 =
||X5 − X1||
||X2 − X1||

, cos θ =
(X3 − X1)τ (X2 − X1)
||X3 − X1|| · ||X2 − X1||

,

cosφ =
(X5 − X1)τ (X2 − X1)
||X5 − X1|| · ||X2 − X1||

, cosϕ =
(X5 − X1)τ (X3 − X1)
||X5 − X1|| · ||X3 − X1||

,
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are the similar invariants of parallelepipeds, and they determine the shape of a
parallelepiped.

Definition 2.2. Given a parallelepiped{Xi}, the matrix:

μ =

⎡⎣1 t1 cos θ t2 cosφ
t1 cos θ t21 t1t2 cosϕ
t2 cosφ t1t2 cosϕ t22

⎤⎦ (8)

is called the similar parameter matrix of this parallelepiped.

Suppose {mi} are the image of parallelepiped {Xi}, and let

[q1, q2, q3]
τ = [−m1, m2, m3]−1m4, [q5, q6, q̃3]

τ = [−m5, m6, m3]−1m4.

By proposition 2.1, we have α4q3K
−1m3 = X3 = α4q̃3K

−1m3, and thus, q3 =
q̃3. Hence,

[q1, q2, q3, q5, q6]
τ = (AτA)−1Aτ

[
m4
m4

]
, (9)

where A =
[
−m1 m2 m3 0 0

0 0 m3 −m5 m6

]
. We can prove the following proposition.

Proposition 2.2. Let M = [q2m2− q1m1, q3m3 − q1m1, q5m5− q1m1]. Then,
we have:

1. The coordinates of vertex Xi under the camera coordinate system can be
expressed as :

Xi = α4qiK
−1mi, i = 1, 2...6. (10)

2. The intrinsic parameters of the camera and the similar invariants of the
parallelepiped satisfy:

(||X2 − X1||2/α2
4)μ = Mτ�M. (11)

Remark 2.3. The matrix M can be computed directly from the image of a
parallelepiped, which does not depend on the similar invariants. The equation
(11) establishes a duality between the intrinsic parameters of a camera and the
similar invariants of a parallelepiped. The result is also obtained in [16] using a
different method, but they do not show the explicit expression of matrix M.

3 Calibration and 3D Reconstruction

In this section, we only discuss the camera calibration and 3D reconstruction
based on parallelograms. The parallelepipeds based calibration and 3D recon-
struction are similar to those on non-coplanar parallelograms. Here we omit the
calibration and 3D reconstruction based on parallelepipeds due to space limit.

3.1 m Coplanar Parallelograms in n Views

Proposition 3.1. Given the n images{m(j)
ki : i = 1, 2, 3, 4; j = 1, 2...n} of m

coplanar parallelograms {Xki}, k=1, 2. . . m, let
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[q(j)
k1 , q

(j)
k2 , q

(j)
k3 ]τ = [−m(j)

k1 ,m
(j)
k2 ,m

(j)
k3 ]−1m(j)

k4 ,

Lkj = [q(j)
k2 m(j)

k2 − q(j)
k1 m(j)

k1 , q
(j)
k3 m(j)

k3 − q(j)
k1 m(j)

k1 ].

Then, we have 2m(n-1) quadratic constraint equations on the cameras’ intrinsic
parameters:

(Lτ
kj�jLkj)11

(Lτ
kj�jLkj)22

=
(Lτ

k1�1Lk1)11
(Lτ

k1�1Lk1)22
,

(Lτ
kj�jLkj)12

(Lτ
kj�jLkj)22

=
(Lτ

k1�1Lk1)12
(Lτ

k1�1Lk1)22
. (12)

Where �j = K−τ
j K−1

j is the j thcamera’s IAC.

Proof. By proposition 2.1, we have

||X(j)
k2 − X(j)

k1 ||2ηk = α
(j)
k4 Lτ

kj�jLkj , j = 1, 2...n; k = 1, 2...m, (13)

where
X(j)

ki = α
(j)
k4 q(j)

ki K−1
j m(j)

ki , i = 1, 2, 3, 4 (14)

are the coordinates of the kth parallelogram’s vertices under the jth camera
coordinate system. From ||X(j)

k2 − X(j)
k1 || = ||Xk2 − Xk1||, j = 1, 2...n,we have

α
(j)
k4 Lτ

kj�j Lkj = α
(1)
k4 Lτ

k1�1Lk1, j = 2, 3...n; k = 1, 2...m.

By eliminating the scale factors in the above equations, we can obtain 2m(n-1)
quadratic constraint equations (12).

Among the 2m(n-1) quadratic constraint equations, there exist at most 2n
independent constraints. Because the n images of a metric plane (i.e., the pro-
jections of circular points on the plane can be computed) can only provide 2n
independent constraints for the IACs,�j , the number of independent constraints
cannot exceed 2n in the case of m coplanar parallelograms.

Corollary 3.1. If {Xki} is a rectangle, the 2nd constraint equations in (12)
become n linear constraint equations:

(Lτ
kj�j Lkj)12 = 0, j = 1, 2...n (15)

which are from the orthogonality.

Corollary 3.2. If {Xki} is a diamond, the 1st constraint equations in (12)
become n linear constraint equations:

(Lτ
kj�j Lkj)11 = (Lτ

kj�j Lkj)22, j = 1, 2...n (16)

which are from the diamond’s similar invariant, tk = 1.

Remark 3.1. By the orthogonality of diamond’s two diagonals, we also can ob-
tain a linear constraint equation from each image. However, we can prove that
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such linear constraint equations are equivalent to the equations (16). For rect-
angle and diamond, the usually used constraints in the literature are the linear
constrains. To our knowledge, the quadratic constraints are of new discovery.

For coplanar parallelograms, the following propositions are interesting.

Proposition 3.2. If two parallelograms have the same similar invariants, then
from their n images we can obtain 2n linear constraint equations on the intrinsic
parameters of the cameras:

L̃
τ

2j�jL̃2j = sL̃
τ

1j�jL̃1j , j = 1, 2...n, (17)

where,
L̃kj = [q̃(j)

k2 m(j)
k2 − q̃(j)

k1 m(j)
k1 , q̃

(j)
k3 m(j)

k3 − q̃(j)
k1 m(j)

k1 ], (18)

q̃j
ki =

det[q(j)
11 m(j)

11 , q
(j)
12 m(j)

12 , q
(j)
13 m(j)

13 ]

det[q(j)
k1 m(j)

k1 , q
(j)
12 m(j)

12 − q(j)
11 m(j)

11 , q
(j)
13 m(j)

13 − q(j)
11 m(j)

11 ]
qj

ki, (19)

s =
||(q̃(j)

23 m(j)
23 − q̃(j)

21 m(j)
21 ) × (q̃(j)

22 m(j)
22 − q̃(j)

21 m(j)
21 )||

||(q̃(j)
13 m(j)

13 − q̃(j)
11 m(j)

11 ) × (q̃(j)
12 m(j)

12 − q̃(j)
11 m(j)

11 )||
. (20)

Remark 3.2. In the above proposition, there should exist a 2D rotation between
the two similar parallelograms. Otherwise, the proposition does not hold. In
addition, this proposition can be generalized to the case of two similar figures
with four point correspondences, i.e., if two coplanar figures with four point
correspondences are similar, then from their n images we can obtain 2n linear
constraint equations on the intrinsic parameters of the cameras.

Proposition 3.3. If two parallelograms have the same side-lengths, then from
their n images we can obtain 2n linear constraint equations on the intrinsic
parameters of the cameras:

(L̃
τ

2j�jL̃2j)11 = (L̃
τ

1j�jL̃1j)11, (L̃
τ

2j�jL̃2j)22 = (L̃
τ

1j�jL̃1j)22, j = 1, ...n. (21)

3.2 m Non-coplanar Parallelograms in n Views

In this section, we mainly show a linear method in the case of multiple non-
coplanar parallelograms in multiple views to compute the intrinsic parameters
and the motion parameters of cameras, the similar parameters of parallelograms,
and global Euclidean reconstruction of parallelograms using some prior knowl-
edge on the cameras or on the parallelograms.

Suppose there are m parallelograms {Xki},k=1, 2. . .m, in a scene, and among
them there exist at least two non-coplanar parallelograms. Given the n images
{m(j)

ki } of the parallelograms, and let

[q(j)
k1 , q

(j)
k2 , q

(j)
k3 ]τ = [−m(j)

k1 ,m
(j)
k2 ,m

(j)
k3 ]−1m(j)

k4 ,

Lkj = [q(j)
k2 m(j)

k2 − q(j)
k1 m(j)

k1 , q
(j)
k3 m(j)

k3 − q(j)
k1 m(j)

k1 ].
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Table 1. Linear constraints on �1 from prior information of camera

Prior information of camera Linear constraints on �1

zero skew (H−τ
1j �1H

−1
1j )12 = 0

principal point at origin (H−τ
1j �1H

−1
1j )13 = (H−τ

1j �1H
−1
1j )23 = 0

known aspect ratio τ = fv/fu τ 2(H−τ
1j �1H

−1
1j )22 − (H−τ

1j �1H
−1
1j )11 = 0

Table 2. Linear constraints on �1 from prior information of parallelogram

Prior information of parallelogram Linear constraints on �1

θk = π/2 (Lτ
k1�1Lk1)12 = 0

tk1 = 1 (Lτ
k1�1Lk1)11 = (Lτ

k1�1Lk1)22
two coplanar parallelograms with
the same similar invariants constraint equations (17)
two coplanar parallelograms with
the same side-lengths constraint equations (21)

By proposition 2.1, the coordinates of the kth parallelogram’s vertices under the
jth camera coordinate system are:

X(j)
ki = α

(j)
k4 q(j)

ki K−1
j m(j)

ki : i = 1, 2, 3, 4. (22)

By remark 2.1, the image points,v(j)
k1 = q(j)

k2 m(j)
k2 −q(j)

k1 m(j)
k1 and v(j)

k2 = q(j)
k3 m(j)

k3 −
q(j)

k1 m(j)
k1 , are the vanishing points of the two pair of parallel sides of the kth

parallelogram in the jth image plane. We can linearly determine the infinite
homography H1j between the 1st view and the jth view from the vanishing point
correspondences,{v(1)

k1 ↔ v(j)
k1 , v(1)

k2 ↔ v(j)
k2 , k = 1, 2...m}. Hence, we can obtain

the 5n-5 constraint equations on the IACs:

ωj = sjH−τ
1j �1H−1

1j , j = 2, 3...n, (23)

where sj is an unknown scale factor. On the other hand, by proposition 2.2, we
have the constraints on (ηk, �j):

ηk = tkjLτ
kj�jLkj , j = 1, 2...n; k = 1, 2...m, (24)

where tkj is an unknown scale factor.
Note that all the constraints (23) and (24) are nonlinear. However, using some

prior knowledge on the cameras, from the constraints (23) we can obtain linear
constrains on �1 (see Tab.1); using some prior knowledge on the parallelograms,
from the constraints (24) we can also obtain linear constrains on �1 (see Tab.2).

Intrinsic parameters and similar invariants. From the above discussions,
we can see that using some prior knowledge on the cameras or/and on the par-
allelograms, from a few images of the parallelograms we can linearly determine
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�1 up to a scale factor. Once �1 is obtained, �j can be obtained up to a scale
factor by the equations (23), and thus ηk can also be determined up to a scale
factor by the equations (24).

After �j and ηk are determined up to scale factors, we can compute the
intrinsic parameter matrix Kj from �j , e.g., using Choleskey decomposition;
and setting (ηk)11 = 1, we obtain the similar invariants {tk, θk}.

3D reconstruction and motion recovery. Let [Rj , tj ]be the motion from the
1st view to the jth view. By the equation (22), we have

α
(j)
k4 q(j)

ki K−1
j m(j)

ki = α
(1)
k4 q(1)

ki RjK−1
1 m(1)

ki + tj , i = 1, 2, 3, 4; k = 1, 2...m, (25)

RjK−1
1 (q(1)

ki m(1)
ki − q(1)

k1 m(1)
k1 ) = (α(j)

k4 /α
(1)
k4 )K−1

j (q(j)
ki m(j)

ki − q(j)
k1 m(j)

k1 ),
i = 2, 3, 4; k = 1, 2...m.

(26)

and thus, we can obtain (α(j)
k4 /α

(1)
k4 )2w(j)

ki = w(1)
ki , where:

w(j)
ki = (q(j)

ki m(j)
ki − q(j)

k1 m(j)
k1 )τ�j(q

(j)
ki m(j)

ki − q(j)
k1 m(j)

k1 ).

Then,

α
(j)
k4 /α

(1)
k4 =

√√√√(1/3)
4∑

i=2

(w(1)
ki /w

(j)
ki ) Δ= βkj k = 1, 2...m, (27)

Substituting (27) into (26), we have

RjK−1
1 (q(1)

ki m(1)
ki − q(1)

k1 m(1)
k1 ) = βkjK−1

j (q(j)
ki m(j)

ki − q(j)
k1 m(j)

k1 ),
i = 2, 3, 4; k = 1, 2...m.

(28)

Let

Bkj = [q(1)
k2 m(1)

k2 − q(1)
k1 m(1)

k1 , q
(1)
k3 m(1)

k3 − q(1)
k1 m(1)

k1 , q
(1)
k4 m(1)

k4 − q(1)
k1 m(1)

k1 ], (29)

Ckj = [q(j)
k2 m(j)

k2 − q(j)
k1 m(j)

k1 , q
(j)
k3 m(j)

k3 − q(j)
k1 m(j)

k1 , q
(j)
k4 m(j)

k4 − q(j)
k1 m(j)

k1 ]. (30)

Then, the equations (28) can be written as the matrix form:

RjK−1
1 [B1j ,B2j , ...,Bmj ] = K−1

j [β1jC1j , β2jC2j , ..., βmjCmj ].

Because there exist non-coplanar parallelograms, rank[B1j ,B2j , ...,Bmj] = 3,
and thus we have

Rj = K−1
j [β1jC1j , β2jC2j , ..., βmjCmj ][B1j ,B2j , ...,Bmj ]+︸ ︷︷ ︸

Dj

K1. (31)

Substituting (27) and (31) into (25), we can obtain the constraints on (α(1)
k4 , tj):

(q(1)
ki Djm

(1)
ki − βkjq

(j)
ki m(j)

ki )α(1)
k4 + Kjtj = 0. (32)
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Let

Ekj =

⎡⎢⎢⎣
q(1)

k1 Djm
(1)
k1 − βkjq

(j)
k1 m(j)

k1
...

q(1)
k4 Djm

(1)
k4 − βkjq

(j)
k4 m(j)

k4

⎤⎥⎥⎦ , k = 1, 2...m; j = 2, 3...n, (33)

Ej = diag[E1j ,E2j , ...,Emj ],C = [I3, I3, ..., I3︸ ︷︷ ︸
12m

]τ (I3 is the unit matrix of order 3).

Then, the equations (32) can be written as the matrix form:⎡⎢⎢⎣
E2 CK2
...

. . .
En CKn

⎤⎥⎥⎦
︸ ︷︷ ︸

E

[
α
τ

]
= 0, (34)

where α = [α(1)
14 , α

(1)
24 , ..., α

(1)
m4]

τ , τ = [tτ
2 , t

τ
3 , ..., t

τ
n]τ . Hence, the least squares

solution of the equations (32) is the unit right singular vector corresponding to
the smallest singular value of E, and denoted as

α̃ =
[
α̃

(1)
14 , α̃

(1)
24 , ..., α̃

(1)
m4

]τ

, τ̃ =
[̃
tτ
2 , t̃

τ
3 , ..., t̃

τ
n

]τ
. (35)

By the equations (22), the coordinates of the parallelograms’ vertices under the
1st camera coordinate system can be expression as

X(1)
ki = α

(1)
k4 q(1)

ki K−1
1 m(1)

ki , i = 1, 2, 3, 4; k = 1, 2...m.

Substituting α
(1)
k4 = α̃

(1)
k4 into the above equations, we can obtain an Euclidean

reconstruction of the parallelograms under the 1st camera coordinate system:

X(1)
ki = α̃

(1)
k4 q(1)

ki K−1
1 m(1)

ki , i = 1, 2, 3, 4; k = 1, 2, ...,m. (36)

4 Experimental Results

4.1 Synthetic Data

The case of parallelograms. This experiment is to study the performance
of the calibration using parallelograms. We only report the calibration from one
image. The used prior information on the camera was zero skew and known prin-
cipal point. The camera’s setting is (fu, fv, s, u0, v0) = (1000, 900, 0, 512, 512).
The image resolution is of 1024 × 1024 pixels. The parallelograms were gen-
erated as follows: At first, a parallelepiped was generated, then, we randomly
generated two parallelograms with the same similar invariants on one plane and
two parallelograms with the same side-lengths on the other plane. As [16], the
parallelepiped orientation varies from that shown in Fig.1 left (both of the two
planes are parallel to x axes of the camera) to that of Fig.1 right (a degen-
erate configuration, both of the two planes are parallel to the optical axes).
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Fig. 1. Parallelepiped orientations in the case of parallelograms

The continuous rotation between the two positions is parameterized by an an-
gle ranging from 0o (Fig.1 left) to 90o (Fig.1 right). In order to provide more
statistically meaningful results, we performed 100 trials. In each trial, Gaussian
noise of standard deviation 1 pixel was added to each vertex image of the paral-
lelograms. Calibration was considered to be failed if the estimated matrix ω was
not positive definite.
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Fig. 2. Calibration results with the change of the relative camera-parallelepiped rota-
tion angle. Left: the number of successful calibration; Right: the relative error of the
estimation of fu and fv .

The calibration method described here is compared with the traditional
method. The traditional method uses the 16 vertices of the parallelograms to
estimate the projection matrix, and determines intrinsic parameter by QR-
decomposition of the 3× 3 sub-matrix of the projection matrix. Fig.2 shows the
number of successful calibrations of the proposed method and the relative error
of the estimated intrinsic parameters for both the parallelogram-based approach
and the tradition approach, where the value at each pose is the mean of 100 in-
dependent trials (computed using only results of trails with valid calibration for
the proposed method). It can be seen from Fig.2 that the parallelogram-based
method is superior to the traditional method in general cases.

The case of parallelepipeds. This experiment is to study the performance
of the calibration, camera motion estimation and reconstruction using par-
allelepipeds. We only report the case of one parallelepiped in two views.
The two cameras’ settings are (fu, fv, s, u0, v0) = (1000, 900, 0, 512, 512) and
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Fig. 3. Results for case of parallelepipeds (dotted line: factorization-based method,
solid line: our method). left: the first camera parameters. middle: the second camera
parameters. left: camera motion parameters and similar invariants.

(900, 800, 0, 512, 512) respectively. The image resolution is of 1024 × 1024 pix-
els. The test data were generated by a random rigid transformation of a canonical
cube. We performed 1000 tests. In each test, Gaussian noise was added to each
image point of the parallelepiped vertices. The used prior information was: the
parallelepiped has three right angles and the cameras have zero skew.

Our proposed method is compared to M.Wilczkowiak’s factorization-based
method. Fig.3 shows the relative error of the estimated parameters for both
methods, where the value at each noise level is the mean of 1000 independent
tests. From the figure, we can see that the two approaches perform comparably
and the factorization-based method is slightly better.

4.2 Results on Real Scenes

Calibration object. Fig.4(up)shows the original image and the calibration
parallelograms. The two coplanar parallelograms are similar, and the other two
coplanar parallelograms are of same side-lengths. The image size is 2048× 1536.
The used prior information is zero skew and known principal point. The camera
parameters obtained by the traditional method and the proposed method are
(3723, 3715.7, 7.9, 1003.4, 759.4) and (3720.8, 3739.9, 0, 1024, 768) respec-
tively. The estimated parameters are used for our 3D reconstruction process for
comparing the calibration results of the two methods. The similar invariants of
the parallelograms estimated from the two methods are shown in Tab.3. The
estimated angle of the two calibration planes is 88.99o and 89.38o for the tradi-
tional method and proposed method respectively. From the comparison of the
estimated similar invariants and the estimated angle, we can see the result is

Table 3. The comparison of the similar invariants (t, cos θ)

parallelograms The 1th The 2th The 3th The 4th

real value 1 0 1 0 1.491 0.447 1.491 0.447
traditional method 1.01 0.004 0.982 0.019 1.501 0.442 1.497 0.472
proposed method 1.006 0.001 0.984 0.015 1.491 0.447 1.506 0.467
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Fig. 4. Left: the original image, middle: the 3D points, right: texture mapping result
from a different view

slightly better for the proposed method. Fig.4(up) shows the reconstructed 3D
points by our method and the texture mapping result from a different viewpoint.

Outdoor scene. The image and the calibration parallelepiped are shown in
Fig.4(low). The image size is 1024× 768. The used prior information is: the par-
allelepiped has right angles; the camera has zero skew and unit aspect ratio. The
intrinsic parameters obtained by our proposed method and by M.Wilczkowiak’s
method are (1354.6, 1354.6, 0, 586.3, 382) and (1359.5, 1359.5, 0, 588.5, 380)
respectively. The similar invariants obtained by the two methods are (t1, t2) =
(2.6285, 1.1403) (t1/t2 = 2.305) and (2.6303, 1.1421) (t1/t2 = 2.303) respec-
tively. The real value of t1/t2 is 2.5. We can see the similar invariants obtained
by the two methods are very close to the real value. Fig.4(low)shows the re-
constructed 3D points by our method and the texture mapping result from a
different viewpoint, where the estimated angle of the two calibration planes was
89.986o. By the comparison of the similar invariants and the camera parameters,
we can see the results are very close for the two approaches.

5 Conclusion

In this paper, a new affine invariant of parallelogram is introduced, by which the
projections of the parallelogram and parallelepiped, and the explicit constraint
equations between the camera’s intrinsic matrix and the similar invariants of
a parallelogram or a parallelepiped are obtained. From these constraints, we
presented an approach for camera calibration, motion estimation, and 3D recon-
struction from a few uncalibrated images based on some geometric constraints
on the scene. Commonly available constraints, such as parallelism, coplanarity,
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right angles, and length ratios, can be nicely modeled via parallelogram. The
approach can deal with the scene to contain parallelograms and parallelepipeds
simultaneously. Experimental results on synthetic and real images also validated
the presented theoretical results and algorithms.
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ence Foundation of China Grant No.60575019 and the National Key Basic Re-
search and Development Program (973) Grant No. 2004CB318107.
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Nonrigid Shape and Motion from Multiple
Perspective Views

René Vidal1,2 and Daniel Abretske2
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Abstract. We consider the problem of nonrigid shape and motion recovery from
point correspondences in multiple perspective views. It is well known that the
constraints among multiple views of a rigid shape are multilinear on the image
points and can be reduced to bilinear (epipolar) and trilinear constraints among
two and three views, respectively. In this paper, we generalize this classic re-
sult by showing that the constraints among multiple views of a nonrigid shape
consisting of K shape bases can be reduced to multilinear constraints among
K + �(K + 1)/2	, · · · , 2K + 1 views. We then present a closed form solution
to the reconstruction of a nonrigid shape consisting of two shape bases. We show
that point correspondences in five views are related by a nonrigid quintifocal ten-
sor, from which one can linearly compute nonrigid shape and motion. We also
demonstrate the existence of intrinsic ambiguities in the reconstruction of camera
translation, shape coefficients and shape bases. Examples show the effectiveness
of our method on nonrigid scenes with significant perspective effects.

1 Introduction

The past few decades have witnessed significant advances on the reconstruction of static
scenes observed by a moving camera under the assumption that the scene is Lambertian,
rigid and static. The Lambertian assumption is crucial to the problems of tracking,
optical flow and correspondences, because the intensity of a point is independent of the
view point. Given optical flow or point correspondences, the assumption of a rigidly
moving camera observing a static world enables us to both recover the camera motion
as well as reconstruct the rigid shape of the scene.

Recently, there have been attempts to relax each one of these assumptions. For exam-
ple, the generalized constant brightness constraint allows one to compute optical flow
for non Lambertian scenes. Likewise, the multibody fundamental matrix [11] allows
one to reconstruct dynamic scenes consisting of multiple rigid motions. As for the third
assumption, there have been two main approaches to dealing with nonrigid scenes. In
direct approaches [5, 12], a static camera observes a nonrigid scene whose temporal
evolution exhibits certain stationarity, e.g., water, foliage, steam, etc. These scenes are
called dynamic textures, and have been successfully modeled as the output of a time
invariant linear dynamical system. In feature-based methods [2, 3, 4, 9, 10, 13], a rigidly
moving affine camera observes a nonrigid shape that deforms as a linear combination of
rigid shapes with time varying coefficients. This assumption allows one to recover non-
rigid shape and motion using extensions of the classical rigid factorization algorithm

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 205–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[8]. For instance, [4] uses multiple matrix factorizations to enforce orthonormality con-
straints on camera rotations. [2] uses a non-linear optimization method called flexible
factorization. [10] uses a trilinear optimization algorithm that alternates the computa-
tion of shape bases, shape coefficients, and camera rotations. Unfortunately, all these
methods fail to reconstruct the correct shape and motion, because rotation constraints
are not sufficient to guarantee a unique solution. [13] not only provides a complete
characterization of the space of ambiguous solutions, but also proposes a closed form
solution by enforcing additional shape constraints on the shape bases.

A key assumption of these approaches is that the projection model is affine. Al-
though one can use nonlinear optimization to extend affine methods to the perspective
case, e.g., [1], it is well known that iterative schemes applied to multilinear problems
are very sensitive to initialization. The objective of this paper is to understand the al-
gebraic constraints among multiple views of a nonrigid shape and to develop algebraic
methods for nonrigid shape reconstruction that can be used for initializing optimization-
based schemes. To the best of our knowledge, there is no prior work addressing these
issues.

In this paper, we look at the problem of nonrigid shape and motion recovery from
multiple perspective views. We first study the geometry of the problem, particularly the
nature of the constraints among shape, motion and point correspondences. We show
that the constraints among multiple views of a nonrigid scene can be derived from a
rank constraint on the so-called nonrigid multiple view matrix. In the case of K shape
bases, we prove that these algebraic constraints can be reduced to multilinear constraints
among K + �(K + 1)/2�, · · · , 2K + 1 views of the image points,1 thus ruling out the
existence of epipolar or trilinear geometry for nonrigid scenes. We then show how to
exploit these multilinear constraints for reconstructing a nonrigid shape consisting of
K = 2 rigid shapes. We demonstrate the existence of a nonrigid quintifocal tensor,
which can be linearly estimated from the given point correspondences. We exploit alge-
braic properties of this tensor to compute nonrigid fundamental matrices among pairs of
views. This leads to a linear algorithm for computing camera rotation and point depths.
We also discuss the existence of intrinsic ambiguities in the reconstruction of camera
translations, shape bases and shape coefficients. We then present examples showing the
effectiveness of our method on nonrigid scenes with significant perspective effects.

2 Nonrigid Multiple View Geometry

Consider a nonrigid shape consisting ofK shape bases, i.e. each 3-D point Xf at frame
f is a linear combination of K rigid shapes {Bk ∈ R3}K

k=1

Xf =
K∑

k=1

(cfkBk), (1)

where {cfk} are the shape coefficients. Assume now that this nonrigid shape is observed
by a moving perspective camera whose pose in the f th frame is given by (Rf , Tf)

1 Classical multilinear constraints in structure from motion show up as the special case K = 1.
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∈ SE(3). Therefore, the projection xf ∈ P2 of Xf is related to its depth λf , the
camera motion (Rf , Tf), the shape bases {Bk} and the shape coefficients {cfk} by the
equation

λfxf = Rf

K∑
k=1

(cfkBk) + Tf . (2)

In this section, we show that one can algebraically eliminate depth and shape bases
from the above equations, and derive algebraic constraints relating image points {xf},
camera motion {Rf , Tf} and shape coefficients {cfk} only. Furthermore, we show that
the constraints among multiple views of a nonrigid shape can be reduced to multilinear
constraints among K + �(K + 1)/2�, · · · , 2K + 1 views.

2.1 One Shape Basis

For the sake of simplicity, we first review the well-known results in the case of one rigid
shape. We refer the reader to [7] for further details. Note that ifK = 1 we do not need to
consider shape coefficients, hence we can assume without loss of generality that cf1 =
1 and X = B1. Also, we assume without loss of generality that (R1, T1) = (I, 0).
Combining these observations with (2) we obtain λ1x1 = B1 and λfxf = λ1Rfx1 +
Tf for f = 2, 3, . . . , F . We can eliminate λf from this equation by multiplying by
x̂f on both sides, where x̂ ∈ so(3) is the skew-symmetric matrix generating the cross
product by x. This multiplication yields λ1x̂fRfx1 + x̂fTf = 0. Since this equation
holds for all f = 2, 3, . . . , F , we can write the motion equations for all frames in terms
of a single linear equation

M1

[
λ1
1

]
=

⎡⎢⎣ x̂2R2x1 x̂2T2
...

...
x̂FRF x1 x̂FTF

⎤⎥⎦[
λ1
1

]
= 0. (3)

The matrix M1 ∈ R3(F−1)×2 is called the multiple view matrix [7].
From (3), note that the vector

[
λ1
1

]
lives in the right null space of M1, hence

rank(M1) ≤ 1. (4)

The implication of this result is that the determinant of any 2 × 2 sub-matrix of M1
is equal to zero. By simply counting the ways we can choose two rows from M1, it
becomes immediately obvious that we can only select rows in such a way as to depend
on either two or three views: Two view constraints are obtained by considering two rows
from the same block of three frames, e.g., rows 1 and 2, while three view constraints are
obtained by considering two rows from two different blocks of three frames, e.g., rows
1 and 4. Two view constraints can be reduced to the well-known epipolar constraint as
shown in [7], while three view constraints are the well-known trilinear constraints [6].
This shows that the constraints among multiple views of a rigid scene are multilinear
and algebraically dependent on the constraints among two and three views.
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2.2 Multiple Shape Bases

Consider now a nonrigid shape consisting of K shape bases. Note that there is an ambi-
guity in the definition of the shape bases and coefficients, because for any invertibleL ∈
RK×K one can choose a new set of shape bases [B1 B2 · · ·BK ] → [B1 B2 · · ·BK ]L

and coefficients

[ cf1

...
cfK

]
→ L−1

[ cf1

...
cfK

]
that yield the same point in 3D space Xf .

[13] proposes to resolve this ambiguity by enforcing the following basis constrains

ckk = 1, k = 1, . . . ,K cjk = 0, j �= k = 1, . . . ,K. (5)

Combining the basis constraints with the motion equations in (2) for f = 1 . . .K leads
to λkxk = RkBk + Tk for k = 1, . . . ,K , hence we can solve for the shape bases as
Bk = R�

k (λkxk − Tk). After choosing the reference frame so that (R1, T1) = (I, 0),
we can express the motion equations for frames f = K + 1, . . . , F as

λfxf = λ1cf1Rfx1 +Rf

K∑
k=2

cfkR
�
k (λkxk − Tk) + Tf . (6)

We now proceed as before using the cross product with xf to eliminate the depths
{λf} for f = K + 1, . . . , F . The final result is a matrix equation of the following form

MKλK
.=

⎡⎢⎣x̂K+1QK+1x1 x̂K+1S
2
K+1x2 · · · x̂K+1S

K
K+1xK x̂k+1Vk+1

...
...

...
...

x̂FQF x1 x̂FS
2
F x2 · · · x̂FS

K
F xK x̂FVF

⎤⎥⎦
⎡⎢⎢⎢⎣
λ1
...
λK

1

⎤⎥⎥⎥⎦=0, (7)

where

Qf = cf1Rf , S
k
f = cfkRfR

�
k , Vf = Tf −

K∑
k=2

cfkRfR
�
k Tk.

The nonrigid multiple view matrix MK ∈ R3(F−K)×(K+1) has the vector of depths
λK in the first K frames in its right null space, hence it satisfies the rank constraint

rank(MK) ≤ K. (8)

Therefore, we can eliminate the vector of depths in the firstK frames, λK , by enforcing
that the determinant of each (K + 1) × (K + 1) sub-matrix of MK be zero. Since
each block of three rows of MK provides only two linearly independent equations,
in choosing K + 1 rows we need at least �K+1

2 � blocks. Therefore, the determinant
involving the minimum number of views contains K + �K+1

2 � views. Note that this
is much smaller than the minimum number of affine views, which is (3K2 + 3K)/2
[13]. On the other hand, if we choose one row per block, then the determinants involve
K + (K + 1) = 2K + 1 views. We have shown the following.
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Theorem 1 (Algebraic dependency of multiple view constraints for K shape
bases). Consider a moving camera observing a nonrigid shape consisting of K shape
bases. The equations relating camera motion, shape bases, shape coefficients and im-
age points can be reduced to a set of algebraic constraints that do not depend on the
shape bases and involve only K + �K+1

2 �, . . . , 2K + 1 views at a time.

Corollary 1. The constraints among multiple views of a rigid shape (K = 1) can be
reduced to constraints among two and three views.

The next step is to understand whether the multiple view constraints are multilinear on
the image points, as in the rigid case. To this end, note first that image points in one of
the firstK frames appear in only one column ofMK at a time, hence multiple view con-
straints are necessarily linear in each one of the first K views. However, the constraints
on a point in the remaining F −K frames can be either linear or quadratic, depending
on whether we choose one or two rows per block, respectively. This can be seen by
considering how one might choose rows from MK when forming the determinant of a
(K+1)× (K +1) submatrix. One can choose either one or two rows corresponding to
each frame. If a single row is chosen from a frame then the constraints must be linear
in points from that frame since that point only appears in a single row of the submatrix.
However, when two rows are chosen from a single frame, it may still be possible that
the resulting constraint remains linear and does not become quadratic on the point from
that frame. The following theorem shows that this is indeed the case.

Theorem 2 (Multilinear constraints for K shape bases). The algebraic constraints
among multiple views of a nonrigid shape consisting of K shape bases can be reduced
to a set of multilinear constraints onK+�K+1

2 �, . . . , 2K+1 views of the image points.
The coefficients of these multilinear constraints depend on the camera motion and the
shape coefficients, but not on the shape bases.

In what follows, we prove the theorem in the particular cases K = 2 and K = 3, to
then extend the proof to arbitrary K .

Multilinear constraints for two shape bases. We already know that in this case the
algebraic constraints among multiple views can be reduced to those among four and
five views. Moreover, we have already shown that the constraints among five views are
multilinear in the point correspondences, because all minors of M2 involve one row per
view. We are left with proving that the constraints among four views are also multilinear.

Without loss of generality, consider views 1 through 4, and choose two rows of M2
from the 3rd view and one from the 4th view. As choosing these three rows is equivalent
to choosing three lines �31, �32 and �4 such that ��31x3 = ��32x3 = ��4 x4 = 0, the
algebraic constraint among these four views can be written as

Δ2(x1,x2,x3,x4) =det

⎛⎝⎡⎣��31Q3x1 ��31S3x2 ��31V3

��32Q3x1 ��32S3x2 ��32V3

��4 Q4x1 ��4 S4x2 ��4 V4

⎤⎦⎞⎠ . (9)

Before proceeding further, we need the following technical lemma, whose proof
follows by direct calculation.
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Lemma 1. Let x = (x1, x2, 1)�, �1 = (1, 0,−x1)� and �2 = (0, 1,−x2)�. Then for
all a, b ∈ R3 we have that

det
( [

��1 a ��1 b

��2 a ��2 b

])
= b�x̂a. (10)

After expanding Δ2 along the bottom row of the matrix in (9) and applying Lemma 1
three times, we see that Δ2 is in fact equal to

Δ2 =��4 Q4x1(V �
3 x̂3S3x2)−��4 S4x2(V �

3 x̂3Q3x1)+��4 V4((S3x2)�x̂3Q3x1), (11)

which is multilinear in (x1,x2,x3, �4), hence in (x1,x2,x3,x4), as claimed.

Multilinear constraints for three shape bases. In this case, the multiple view matrix
M3 has four columns, hence one can form constraints on 5, 6 or 7 views. The case of 7
views is obviously multilinear, as one chooses a single row from each frame (4,5,6,7).

In the case of 6 views one must choose two rows from one frame and two more rows
from two other frames. Without loss of generality consider choosing two rows from the
4th frame, a row from the 5th frame and a row from the 6th frame. This is equivalent
to choosing lines �41, �42, �5 and �6 such that ��41x4 = ��42x4 = ��5 x5 = ��6 x6 = 0.
Such a choice leads to the following determinant

Δ3(x1,x2,x3,x4,x4,x6) = det

⎛⎜⎜⎝
⎡⎢⎢⎣
��41Q4x1 ��41S

2
4x2 ��41S

3
4x3 ��41V4

��42Q4x1 ��42S
2
4x2 ��42S

3
4x3 ��42V4

��5 Q5x1 ��5 S
2
5x2 ��5 S

3
5x3 ��5 V5

��6 Q6x1 ��6 S
2
6x2 ��6 S

3
6x3 ��6 V6

⎤⎥⎥⎦
⎞⎟⎟⎠ . (12)

We know thatΔ3 is linear in each of x1, x2, x3, x5 and x6. The question is whetherΔ3
is also linear in x4. Let x4 = (x4, y4, 1)�, �41 = (1, 0,−x4)� and �42 = (0, 1,−y4)�.
If we expand Δ3 along the last row of the matrix in (12), we obtain

Δ3 = (��6 Q6x1)Δ21(x2,x3,x4,x5) − (��6 S
2
6x2)Δ22(x1,x3,x4,x5)+

(��6 S
3
6x2)Δ23(x1,x2,x4,x5) − (��6 V6)Δ24(x1,x2,x3,x4,x5),

(13)

where each Δ2i is of the same form as the determinant seen in equation (9), thus mul-
tilinear in its entries. Therefore, Δ3 is also multilinear in (x1,x2,x3,x4,x5,x6).

In the case of 5 views, without loss of generality choose two rows from the 4th
frame and two rows from the 5th frame, and let xi = (xi, yi, 1)�, �i1 = (1, 0,−xi)�

and �i2 = (0, 1,−yi)�. Such a choice gives the following determinant

Δ̃3(x1,x2,x3,x4,x5) = det

⎛⎜⎜⎝
⎡⎢⎢⎣
��41Q4x1 ��41S

2
4x2 ��41S

3
4x3 ��41V4

��42Q4x1 ��42S
2
4x2 ��42S

3
4x3 ��42V4

��51Q5x1 ��51S
2
5x2 ��51S

3
5x3 ��51V5

��52Q5x1 ��52S
2
5x2 ��52S

3
5x3 ��52V5

⎤⎥⎥⎦
⎞⎟⎟⎠ . (14)

After expanding Δ̃3 along the first column of the matrix, we obtain

Δ̃3 = ��41cΔ25(x2,x3, �42,x5) − ��42cΔ25(x2,x3, �41,x5)

+��51dΔ26(x2,x3,x4, �52) − ��52dΔ26(x2,x3,x4, �51)
(15)
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where c = Q4x1, d = Q5x1, and Δ25(·, ·, ·, ·) and Δ26(·, ·, ·, ·) are determinants of 3
by 3 matrices that depend linearly on each of the quantities in the parentheses by direct
application of Lemma 1. Since Lemma 1 also implies that (��f1y)(�f2)−(�f2y)(�f1) =
ŷxf , the expression for Δ̃3 reduces to

Δ̃3 = Δ25(x2,x3, �
�
41c�42 − ��42c�41,x5) +Δ26(x2,x3,x4, �

�
51d�52 − ��52d�51)

= Δ3(x2,x3, ĉx4,x5) + Δ̃3(x2,x3,x4, d̂x5),

which is in fact linear in x4 and x5 as claimed.

Multilinear constraints for multiple shape bases. In the case of K shape bases, the
constraints among multiple views are simply minors of the multiple view matrix MK .
Each minor is formed by choosing K + 1 rows from MK . Without loss of generality,
assume we choose two rows from each one of the firstm blocks, and one row from each
one of the next K + 1 − 2m blocks. We obtain the following determinant

ΔK=det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��K+1,1QK+1x1 ... ��K+1,1S
K
K+1xK ��K+1,1VK+1

��K+1,2QK+1x1 ... ��K+1,2S
K
K+1xK ��K+1,2VK+1

... ...
...

��K+m,1QK+mx1 ... ��K+m,1S
K
K+mxK ��K+m,1VK+m

��K+m,2QK+mx1 ... ��K+m,2S
K
K+mxK ��K+m,2VK+m

��K+m+1QK+m+1x1 ... ��K+m+1S
K
K+m+1xK ��K+m+1VK+m+1

... ...
...

...
��2K−m+1Q2K−m+1x1...�

�
2K−m+1S

K
2K−m+1xK ��2K−m+1V2K−m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)

It is clear thatΔK is linear in each xi with i ≤ K , because each image point appears
only in one column of the matrix in (16). Similarly, it is clear that ΔK is linear in each
xi with i > K + m, because each image point appears in only one row of the matrix
in (16). The fact that ΔK is also linear in each xi with K + 1 ≤ i ≤ K + m follows
by repeated application of the following lemma since the upper portion of the matrix in
(16) is of the exact form called for by the lemma.

Lemma 2. Let aij ∈ R3, xi = (xi, yi, 1)�, �i1 = (1, 0,−xi)� and �i2 =
(0, 1,−yi)�. Then, for k even, Δk = det(Mk) is linear in each xi, where

Mk =

⎡⎢⎢⎢⎢⎢⎢⎣
��11a11 · · · ��11a1k

��12a11 · · · ��12a1k

... · · ·
...

��k
2 1a k

2 1 · · · ��k
2 ka k

2 k

��k
2 2a k

2 1 · · · ��k
2 2a k

2 k

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rk×k. (17)

Proof. The proof proceeds by strong induction. The example of three shape bases and
five views proves the case of k = 2. Now assume that this holds for up to k = n − 2 .
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We will proceed to show that it holds for k = n. Consider Mn and consider the result
of expanding det(Mn) along the first column of Mn. Without loss of generality we
may consider just minors associated with the last two entries of this column. If the result
holds for these minors then it must hold for all other minors since Mn is composed of
similar 2 by k blocks. These minors have the form

��
n2an1Δn−1(�n1, �(n−1)1, �(n−1)2, ..., �11, �12)−��

n1an1Δn−1(�n2, �(n−1)1, �(n−1)2, ..., �11, �12)

=Δn−1(xnan1, �(n−1)1, �(n−1)2 , . . . , �11, �12),

where the last equality follows from Lemma 1. By direct calculation it can be seen that

Δn−1(xnan1, �(n−1)1, �(n−1)2, ..., �11, �12)=
n

j=2

a�
n1xnanjΔn−2(�(n−1)1, �(n−1)2, ..., �11, �12).

By the induction hypothesis Δn−2 is multilinear, hence det(Mn) is multilinear as
claimed.

3 Reconstruction of Two Shape Bases

Given that the constraints among multiple views of a nonrigid shape are multilinear,
the next question is how to exploit such constraints in order to recover camera motion
and nonrigid shape. In this section, we show how to do so in the case of a nonrigid
shape consisting of two shape bases seen in five views. First, we demonstrate that the
quintilinear constraints can be expressed in terms of a single tensor, which can be lin-
early estimated from the given point correspondences. Next, we study properties of this
tensor that, surprisingly, demonstrate the existence of geometric entities analogous to
epipolar lines and fundamental matrices for nonrigid motions. We exploit such proper-
ties in order to linearly solve for camera motion. Finally, we demonstrate the existence
of ambiguities in the reconstruction of camera translation, shape coefficients and shape
bases. These ambiguities are intrinsic to the nonrigid shape and motion problem, in the
sense that they show up in the case of affine cameras as well. Surprisingly, they have
not received wide attention in the literature, being only briefly discussed in [1].

3.1 The Nonrigid Quintifocal Tensor

From the previous section, we know that in the case of 5 views, the multilinear con-
straints are determinants of 3×3 sub-matrices of the multiple view matrix M2 ∈ R9×3.
Furthermore, in the case of quintilinear constraints, each sub-matrix is formed by choos-
ing three rows from each one of the three blocks ofM2. Therefore, we can write a single
quintilinear constraint for a point-point-line-line-line correspondence as

T (x1,x2, �3, �4, �5) = det

⎛⎝⎡⎣��3 Q3x1 ��3 S3x2 ��3 V3

��4 Q4x1 ��4 S4x2 ��4 V4

��5 Q5x1 ��5 S5x2 ��5 V5

⎤⎦⎞⎠ = 0. (18)
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By expanding this determinant as a polynomial in x1, x2, �3, �4, �5, we may write the
quintilinear constraint as

3∑
ijkmn=1

Tijkmnx1ix2j�3k�4m�5n = 0, (19)

where Tijkmn are the coefficients of the polynomial. We define the nonrigid quintifocal
tensor T ∈ R3×3×3×3×3 as the collection of all these coefficients.

Note that each point correspondence provides 23 = 8 linear equations in the 242
unknowns in T , because we can choose two lines �f for each xf for f = 3, 4, 5.
Therefore, in order to determine T linearly, we need at least 31 point correspondences.

Notation. For ease of notation, we will drop the summation and subscripts in multi-
linear expressions such as

∑
Tijkmnx1ix2j l3kl4ml5n and write them as x1x2�3�4�5T .

We will also write the matrix whose (ij)th entry is
∑

kmn Tijkmnl3kl4ml5n as �3�4�5T
(or whichever indices are being considered), and the vector whose ith entry is given by∑

jkmn Tijkmnx2j l3kl4ml5n as x2�3�4�5T (similarly for other indices).

3.2 Recovering Camera Motion Via Nonrigid Epipolar Geometry

In this subsection, we present some algebraic and geometric properties of the quintifo-
cal tensor T . We show that even though epipolar geometry is not defined for nonrigid
shapes, there still exist algebraic entities that play the analogous role of geometric en-
tities such as epipolar lines and essential matrices, which are only defined for a single
rigid shape. These properties lead to a linear algorithm for recovering nonrigid epipolar
lines, nonrigid essential matrices, and camera rotations from the quintifocal tensor.

At the core of the proposed method, we find a set of rank constraints on slices of T ,
as stated in the following lemma.

Lemma 3 (Rank constraints on slices of the quintifocal tensor). Let T be a nonrigid
quintifocal tensor. Then, rank(x1x2�iT ) ≤ 2 for i = 3, 4, 5, and rank(�3�4�5T ) ≤ 2.

Proof. It follows by direct calculation that x1x2�3�4�5T = ��4 M�5, where

M = Q4x1(V �
5 (��3 S3x2) − x�

2 S
�
5 (��3 V3)) − S4x2(V �

5 (��3 Q3x1) − x�
1 Q

�
5 (��3 V3))

+V4(x�
2 S

�
5 (��3 Q3x1) − x�

1 Q
�
5 (��3 S3x2)).

Taking �5 as (V �
5 (��3 S3x2)−x�

2 S
�
5 (��3 V3))×(V �

5 (��3 Q3x1)−x�
1 Q

�
5 (��3 V3)) gives

the right null space of M = x1x2�3T . One may compute the left and right null spaces
of x1x2�4T , x1x2�5T and �3�4�5T in an analogous fashion.

It follows from Lemma 3 that x1x2�3T is of the form

x1x2�3T = a(x1)b(x2)� + c(x2)d(x1)� + ef (x1,x2)�, (20)

where f (x1,x2) must be a linear combination of b(x2) and d(x1) so that x1x2�3T
be rank 2. This implies that the null space of x1x2�3T is of the form b(x2) × d(x1).
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As the choice of x1 and x2 is arbitrary, we may fix x2 and compute the null space of
x1x2�3T for two different values of x1, say x11 and x12. Taking the cross product of
the two null space vectors gives the following linear combinations of V5 and S5x2:

(b(x2)×d(x11))× (b(x2)×d(x12)) ∼ b(x2) ∼ (��3 S3x2)V5 − (��3 V3)S5x2. (21)

By repeating the above procedure for another choice of �3, we obtain a second linear
combination of V5 and S5x2. The cross product of these two linear combinations is
V̂5S5x2, which is the nonrigid epipolar line of x2 in the 5th view according to the
nonrigid fundamental matrix V̂5S5 relating the 2nd and 5th views. This leads to the
following algorithm for recovering the camera rotations and the V vectors:

1. Choose x1, x2 and �3 and compute the right null space a1 of x1x2�3T . Repeat
for another choice of x1 to obtain a2. Set b1 = a1 × a2. The vector b1 is now
proportional to V �

5 (��3 S3x2) − x�
2 S

�
5 (��3 V3).

2. Repeat step 1 for a new choice of �3 to get b2. Set c = b1 × b2 ∼ V̂5S5x2.
3. Repeat steps 1 and 2 for multiple choices of x2 and linearly solve for the fundamen-

tal matrix V̂5S5 from c × V̂5S5x2 = 0. Subsequently solve for V5 and S5 using a
modified version of the 8-point algorithm that enforces λf > 0 for f = 1, 2, . . . , 5.2

4. Recover Q5 using steps 1-3, but allowing x2 to vary instead of x1.
5. Recover S4, Q4 and V4 from the left null space of x1x2�3T in an analogous way.
6. Recover Q3, S3 and V3 from the left null space of x1x2�5T in an analogous way.

3.3 Recovering Shape Coefficients and Depths Via Factorization

Once we have the rotations and the V vectors we can return to our original system of
equations (6) and solve for the shape coefficients and depths. To this end, let xfp be the
image of point p = 1, . . . , P in frame f = 1, . . . , 5 and let λfp be its depth. Also, let
γf be the unknown scale up to which Vf is recovered. From (7) we have that

[
x̂fpRfx1p x̂fpRfR

�
2 x2p x̂fpVf

]⎡⎣cf1λ1p

cf2λ2p

γf

⎤⎦ = 0, f = 3, 4, 5. (22)

We can solve these linear system for all f = 3, 4, 5 and p = 1, . . . , P and build
3 × P matrices W1 and W2 whose (f, p) entries are given by

W1(f, p) =
cf1λ1p

γf
and W2(f, p) =

cf2λ2p

γf
, (23)

2 Given V5S5, the 8-point algorithm for rigid scenes gives 4 solutions for (S5, V5). The correct
solution must satisfy λ2, λ5 > 0, which can be easily checked, because there are closed form
formulae for λ2 and λ5 given (S5, V5) and (x2, x5). In the nonrigid case, however, (x2, x5)
are not images of the same point in 3D space, hence one cannot obtain closed form formulae
for the depths. In fact, from the equation λfxf = λ1c1fRfx1 +λ2c2f RfRT

2 x2 +Vf , we see
that one can only solve for c1fλ1, c2fλ2, λ3, λ4 and λ5. In order to check if λ1, λ2 > 0, we
make the additional assumption that cif > 0, and look for the pair (S5, V5) that results in the
maximum number of positive depths. The assumption that cif > 0 corresponds to rearranging
the frames so that the 1st and 2nd frame form a convex basis for the 3rd, 4th and 5th frames.
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respectively. Notice that both W1 and W2 are rank-1 matrices, hence we can obtain
the depths {λ1p} and {λ2p}, each one up to a different scale factor, from the SVD of
W1 and W2, respectively. Similarly, we can obtain the vector (cf1, cf2)� up to a scale
factor γf , also from the SVD of W1 and W2.

3.4 Refining Shape Coefficients and Depths Via an Iterative Approach

The previous section detailed an algorithm for recovering the depths and shape coef-
ficients using only factorization. However, factorization algorithms can and often do
perform poorly in the presence of noise. To that end, we suggest the following iterative
method (initialized by the previous factorization approach). First notice that if one knew
the λfp’s or the cfi’s in (22), then it should be possible to recover the others. In fact, by
knowing the depths we can build a matrix G ∈ R3P×3 whose rows have the form

Gp =
[
λ1px̂fpRfx1p λ2px̂fpRfR

�
2 x2p x̂fpVf

]
∈ R3×3.

Similarly if we knew the coefficients, we could build a matrix H ∈ R3F×3 with rows

Hf =
[
cf1x̂fpRfx1p cf2x̂fpRfR

�
2 x2p x̂fpVf

]
∈ R3×3.

The null space of G or H gives the shape coefficients or the depths, respectively, in
the first two frames. Thus one can iterate between these two steps until convergence.
While this iterative method will give a correct estimate of the depths, we would like
to point out that it does not give accurate coefficients due to the existence of intrinsic
ambiguities which we discuss in the following section.

3.5 Ambiguities in Nonrigid Reconstruction

In this section, we discuss various ambiguities in nonrigid motion and shape recovery
from multiple perspective views and relate them to those discussed in previous works
such as [1]. It is important to understand that these ambiguities are not specific to our
algorithm, but rather intrinsic to the problem of nonrigid shape and motion recovery
under the assumption that a nonrigid shape is a linear combination of shape basis.

Scale ambiguity. It was very briefly discussed in [1] that there exists a scale ambiguity
between the bases. However, the implications of this scale ambiguity or the primary
cause of its existence were not discussed in any detail. We now refer the reader back
to (23) and point out that when recovering the λ1’s and λ2’s, each quantity is being
estimated independently from the other. Therefore, we can only recover the coefficients
and the depths up to an unknown scale factor for each of the five frames. In the case of
K shape bases, one may eliminate K + 1 of these scales (assuming a maximal number
of frames are used) by imposing the constraint that the coefficients sum to one. To a
degree this is a physically meaningful constraint which simply enforces that the shapes
in the scene be barycentric combinations of the shape bases. As a simple example one
can consider the case of rigid motion. Rigid motion can be thought of as a scene with
a single shape bases and in this case the shape coefficients must be one. Unfortunately,
we can only eliminate the scales of the frames after the Kth frame in this manner so
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we are left with K extra scale factors. The problem is that it is impossible to determine
the relative scale of one basis to another. Due to this inherent ambiguity, it is actually
impossible to recover the correct shape coefficients and thus the shape bases. Therefore,
our experimental results have focused upon the recovery of rotations, V vectors and
the depths of the first two frames. For ground truth comparison, however, the true V
vectors cannot be determined without knowing both the coefficients and the rotation
and translation of the second frame. Therefore, in our real world examples, we focus
solely on camera rotations.

Translational ambiguity. Note also that there is an ambiguity in the simultaneous
reconstruction of the translations Tf and bases Bk, because B

′
kp = Bkp + B, for

p = 1, . . . , P , and T
′
f = Tf −RfB

∑K
k=1 ckf are also valid solutions for all B ∈ R3.

4 Experimental Results

To evaluate our algorithm effectiveness, we tested it on random synthetic experiments,
a structured synthetic experiment similar to the two bases case in [13], and on a real
world video sequence. As per the preceding analysis of ambiguities, we focus on the
recovered rotations for the structured synthetic data and the real world experiments.

Random synthetic data. We randomly generated bases, coefficients, rotations and
translations for an image of size 1000 by 1000. We run the iterative algorithm with 135
iterations. The error in rotation is calculated as cos−1((trace(RR̂�) − 1)/2), and the
error in depth as the angle between true and estimated vector of all depths. Fig. 1 shows
the mean errors averaged over 400 trials, except for a small percentage of outliers.3
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Fig. 1. Mean error in depths, rotations, and V vectors after outlier removal

There are two primary sources of error: the noisy estimation of the tensor and the
scale check of the eight point algorithm. If one uses the correct tensor, even with noisy
data, the recovered estimates of rotation and the V vectors are virtually error free. The

3 Due to the ambiguities in reconstruction, the algorithm gives large errors in a small percentage
of trials. A trial was considered to be an outlier when the depth or rotation error was greater
that 20 degrees or when the error in the V vectors was greater than 25 degrees.
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Table 1. Rotation errors for a structured synthetic scene

R3 perspective error R4 perspective error R5 perspective error
Xiao’s approach 6.41◦ 4.43◦ 4.62◦

Our approach 0.00◦ 0.00◦ 0.00◦

primary cause of outliers would seem to be the scale check of the eight point algo-
rithm. This scale check can in some cases fail to choose the correct solution. When this
happens we generally see errors becoming quite close to 90 degrees.

Structured synthetic data. In this experiment we positioned 31 points in the following
manner: 7 points were positioned on the corners of a unit cube at the origin, the remain-
ing 24 points were divided into three groups of 8 points and then placed evenly along
each of the coordinate axes. The 7 points were held fixed while the points along the axes
translated in a positive direction along the axes and were perturbed by a small random
amount in the respective off-axes directions. The camera was initially positioned to be
at (20,20,20) facing the origin. The camera was then allowed to pan around the origin,
and translate towards and away from the origin as the structure of the scene deformed.
The data was projected in a perspective manner. We compared our algorithm to the one
proposed in [13]. The mean errors over 400 trials are displayed in Table 1.

Real world experiments. The sequence shown in Fig. 2 was used to test our algorithm.
32 points were chosen by hand to generate the tensor estimates and another 8 static
scene points were chosen in each frame to generate an 8-point algorithm estimate of the
rotations, which was then used as our ground truth. The 1st and 5th images were taken as
the reference, rather than the 1st and 2nd, hence rotations errors were measured for the
2nd, 3rd and 4th frame, relative to the 1st. The respective errors were 0.16◦, 5.94◦ and
2.55◦, which is expected, as frames 3 and 4 were the noisiest frames in the sequence.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

Fig. 2. Real world test sequence

5 Summary and Conclusions

We have presented a geometric approach to nonrigid shape and motion recovery from
multiple perspective views. We demonstrated that the constraints among multiple views
of a nonrigid scene are multilinear, and proposed an algorithm for the reconstruction of
two shape bases in five perspective views. We also examined the existence of intrinsic
ambiguities in the reconstruction of nonrigid scenes.
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Abstract. We describe a graph cut algorithm to recover the 3D ob-
ject surface using both silhouette and foreground color information. The
graph cut algorithm is used for optimization on a color consistency field.
Constraints are added to improve its performance. These constraints are
a set of predetermined locations that the true surface of the object is
likely to pass through. They are used to preserve protrusions and to
pursue concavities respectively in the first and the second phase of the
algorithm. We also introduce a method for dealing with silhouette uncer-
tainties arising from background subtraction on real data. We test the
approach on synthetic data with different numbers of views (8, 16, 32,
64) and on a real image set containing 30 views of a toy squirrel.

1 Introduction

We consider the problem of reconstructing the 3D surface of an object from
a set of images taken from calibrated viewpoints. The information exploited
includes the object’s silhouettes and its foreground color or texture. 3D shape
recovery using silhouettes constitutes a major line of research in computer vision,
the shape-from-silhouette approach. In methods employing silhouettes only (see
e.g. [1]), voxels in a volume are carved away until their projected images are
consistent with the set of silhouettes. The resulting object is the visual hull.
In general, the visual hull can be represented in other forms such as bounding
edges ([2]), and can be reconstructed in a number of different ways. The main
drawback of visual hulls is that they are unable to capture concavities on the
object surface ([3]).

A 3D surface can also be reconstructed using color or texture consistency
between different views. Stereo techniques find the best pixel matching between
pairs of views and construct disparity maps which represent (partial) shapes.
Combining from multiple stereo maps has been studied, but is quite complicated
([4]). Space carving ([5]) and recent surface evolution methods (e.g. [6], [7]) use
a more general consistency check among multiple views.

The combination of both silhouettes and foreground color to reconstruct an
object’s surface has been studied in a number of recent papers ([7], [8], [9]).
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Our work is motivated by [8] and [10] where the graph cut algorithm serves
as the underlying 3D discrete optimization tool. The near global optimality
properties of the graph cut algorithm are discussed in [11]. As noted in [8] and in
other works however, the graph cut algorithm usually prefers shorter cuts, which
leads to protrusive parts of the object surface being cut off. We overcome this
limitation with a two-phase procedure. In the first phase (phase I), protrusions
are protected during the optimization by forcing the solution to pass close to a set
of predetermined surface points called “constraint points”. In the second phase
(phase II), concavities on the object surface are aggressively pursued. Silhouette
uncertainties, which are important in practice but have been ignored in previous
research ([8], [9], . . . ) are also taken into account.

1.1 Related Works

The application of reliable surface points to constrain the reconstruction of a
surface appears in a number of recent papers ([2], [7], [9], . . . ). Isidoro et al ([7])
refine the shape and texture map with an EM-like procedure; the evolution of
the shape at each iteration is anchored around a set of locations called frontier
points. Cheung et al ([2]) use another set of points called color surface points
to align multiple visual hulls constructed at different times to obtain a closer
approximation to the object’s true surface. Usually, these points have no special
patterns on the surface. In some cases, however, they might lie on continuous
curves such as the rims in [9], where each (smooth and closed) rim is a contour
generator. The mesh of rims can be used to partition the surface into local
patches. Surface estimation is then performed individually for each patch, with
some interaction to ensure certain properties such as smoothness.

The identification of these surface points is typically based on the silhouettes
and color/photo consistency. A frontier point in [7] is the point with lowest
texture back-projection error among those on the evolving surface that project
onto a single silhouette point. Frontier points are recomputed at each iteration.
The rims in [9] are built with a rim mesh algorithm. In order for the mesh
to exist, certain assumptions have to be made, the most limiting one being no
self-occlusion. In [2], the colored surface points are searched for along bounding
edges which collectively represent the surface of the object.

Surface reconstruction methods that use color or texture such as [2], [8], [7],
[9] and most stereo algorithms involve optimization. The original space carving
algorithm ([5]) used a simple greedy algorithm. Other examples of local methods
include stochastic search ([7]) and, recently, surface evolution using level sets or
PDEs (e.g. [6]). Local techniques are often sensitive to initialization and local
minimum. Here, we use the 3D graph cut algorithm which is more global in scope
([11]). It was applied in [3] to solve the occupancy problem and in [10] for 3D
image segmentation. The work described in [7] has similar motivation to ours:
developing a constrained graph cut solution to object surface recovery. Their
constraints are based on the rim mesh mentioned above. Multiple interconnected
sub-graphs are built, with one for each rim mesh face. Our constraint points are
not required to form rims and we use only one graph; our formulation is most
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similar to [8], which is the departure point for our research. Section 2 describes
the basic steps of the formulation from [8].

2 Volumetric Graph Cuts

Following [8], we first construct the visual hull V from the set of N image
silhouettes, denoted {Sili}. V is used as the initial approximation to the object
shape. A photo consistency field for all voxels v ∈ V is constructed and used as
the graph on which a graph cut optimization is performed. Visibility for a voxel
v ∈ V , V is(v), is approximated with the visibility of the closest voxel to v on the
surface Sout of V . The consistency score for v, ρ(v) is the weighted normalized
cross correlation (NCC) between the pairs of local image patches that v projects
to in the different views:

ρ(v) =
∑

Ci,Cj∈V is(v)

w(pos(Ci, Cj))NCC(p(Ci, v), p(Cj , v)) (1)

where w(pos(Ci, Cj) is a weight depending on the relative position of the two
camera centers Ci and Cj (small when the difference between the viewing angles
of the i-th and j-th cameras is large and vice versa); p(Ci, v) is the local image
patch around the image of v in the i-th image Ii .

Fig. 1. a) a slice of the photo consistency field, yellow line denotes the true surface. b)
Nodes and edges in the graph G.

If the surface, Sout, of the visual hull, V , is not far from the actual surface
S∗, then with consistency computed this way, voxels that lie on S∗ would have
smallest ρ values (Figure 1.a). Therefore, finding S∗ can be formulated as an
energy minimization problem, where the energy is defined as

E(S) =
∫∫

S

ρ(x)dA (2)

A graph cut algorithm can be used to solve this problem in a manner similar
to [12] and [10]. Each voxel is a node in the graph, G, with a 6-neighbor system
for edges. The weight for the edge between voxel (node) vi and vj is defined as
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w(vi, vj) = 4/3πh2(ρ(vi) + ρ(vj))/2 (Figure 1.b), where h is the voxel size. Sout

and Sin − the surface inside V at a distance d from Sout − form an enclosing
volume in which S∗ is assumed to lie. Similar to [12] and [9], every voxel v ∈
Sin(Sout) is connected to the Sink (Source) node through an edge with very
high weight. With the graph G constructed this way, the graph cut algorithm is
then applied to find S∗.

3 Graph Cut with Surface Point Constraints

As mentioned in [8], the above procedure suffers from the limitation that the
graph cut algorithm prefers shorter cuts. This produces inaccurate surfaces at
protrusions, which are often cut off ([8]). We address this problem by constraining
the solution cut to pass through certain surface points. First we show how to
identify those points. Next, we show how to enforce the solution cut to pass
through or close to them. Finally, methods for dealing with silhouette uncertainty
are included.

3.1 Constraint on Surface Points

Assume, to begin with, that the set of silhouettes has absolute locational cer-
tainty. Every ray (Ci, p

j
i ) from a camera center Ci through a point pj

i on the
silhouette Sili has to touch the object surface at at least one point P ([2],
[9]) (Figure 2.a). In [2], the authors search for P along this ray. We, addi-
tionally, take into account the discretization of the silhouette and make the
search region not a single ray (Ci, p

j
i ) but a surface patch s ⊂ Sout where

s = {v | v ∈ Sout and v projects to pj
i through Ci}. Since every voxel on

Sout has to project onto some point on some silhouette {Sili}, the union of all s
is Sout. Therefore, Sout is completely accounted for when we search for all P ’s.
In [7], the authors also use the projection from object space to silhouettes to find
the search regions for their set of constraint points. However, these regions, and
therefore the resulting constraint points, lie on an evolving surface and have to
be recomputed at each step of their iterative procedure. Here, the determination
of P is done only once and is based on Sout, the surface of the original visual hull.

Fig. 2. a) Rays touch V ’s surface at p, b) Example of the set of constraint points, P
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Let P denotes the set of all such P ’s. To identify the location of each P ∈ P
within its corresponding search region, we use color or texture information from
the image foreground. Ideally, the images of such voxels should have zero consis-
tency score ρ or zero color variance. Practically, they are voxels whose projections
have the lowest ρ within a search region. Figure 2.b shows an example of the con-
straint points, P, for the synthetic face that is used in the experiments in section 5.
Note that their distribution is quite general and they do not obviously form rims.
This creates difficulties for approaches that assume exact silhouette information
such as [9] and [13] . By marking which sub-regions of Sout are produced by which
camera, P can be constructed in time linear in the number of voxels in Sout.

If the average number of points on a silhouette is ns, then the number of
points in P is N.ns. Many of them lie on protrusive parts of the object surface.
In general, P provides a large set of constraints for the graph cut optimization.

3.2 Graph Cut with Surface Constraint Points

Given the set of surface constraint voxels, P, we want to construct a cut that
passes through every voxel p ∈ P. Unfortunately, it is difficult to introduce
such constraints directly into the 3D graph cut algorithm. Instead, we adopt
an indirect approach by blocking the solution surface from cutting a continuous
region that connects p and Sin. Figure 3.a illustrates the blocking region: it is
a curve bl(p) from the surface point p ∈ P to Sin. More generally, a blocking
region can be represented as a blurred volume around the blocking curves using
a Gaussian blurring function. We next describe how to construct bl(p).

Let D(S) and ∇D(S) denote the 3D distance transform of a surface S and
the gradient of the distance transform, respectively. For each p ∈ P, the cor-
responding curve bl(p) is constructed using ∇D(Sout) and ∇D(Sin) as follows.
First, starting from p, we move along ∇D(Sout) for a small distance l. Second,
we follow −∇D(Sin) until Sin is met. Points are added into bl(p) as we move.
To avoid redundancy, if a point is met that has been added to some previously
constructed bl(p′), we stop collecting points for bl(p). This procedure is carried
out for all points in P.

Fig. 3. a) Blocking regions (curves). b) Locational uncertainties (gray areas) of the
contour extracted from a difference image.
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D(Sout) can be considered as an implicit shape representation with the zero-
level set being Sout; so, the normal of Sout at a surface point p is the gradient of
D(Sout), i.e. ∇D(Sout), evaluated at that point. Therefore, in the first step, we
initially move in the direction of the normal of Sout at p. Given that p is assumed
to be on the true surface, S∗, by moving this way, we will reduce the chance of
erroneously “crossing” S∗. After a small distance l, we could have continued to
move along ∇D(Sout). However, we switch to moving along −∇D(Sin) for the
following reasons. First, if we have a group of constraint points that are close
together, then their respective bl(p)’s built by using ∇D(Sout) will usually meet
and collapse into a single curve well before Sin is reached. Such a merge is not
desirable when the graph cut weight from a voxel v in bl(p) to the Sink node is
not set to infinity, but to some other smaller value. (This is necessary for dealing
with noise and discretization ambiguities - see below). Second, there are places
where the above gradient fields vanish, and we must either abandon constructing
the current bl(p) or need several bookkeeping steps such as making small random
jumps to take care of this issue. Of the two gradient fields, ∇D(Sin) is more
homogenous and this happens less frequently to it.

This procedure constructs the set of all blocking curves BL through which
the solution cut should not pass. This constraint might be incorporated into the
graph cut algorithm by setting the weights of the edges from each voxel in BL to
the Sink node to be infinity. However, the set P (and hence BL) often contains
false positives, so this strategy can lead to significant errors. Therefore, instead,
for every voxel v ∈ BL, we set w(v, Sink) = 4/3πh2, where h is the voxel size.
This is the maximum weight for the edges between any two neighboring voxels
in V . This uniform weight setting works well provided that the silhouette set is
accurate, as shown in experiments on synthetic data in section 5.

Incorporating silhouette uncertainties. When dealing with real image se-
quences, errors in background subtraction and from the morphological operations
typically employed to find silhouettes introduce artifacts ([3]). So, there is always
uncertainty in silhouette extraction. We would, of course, like our silhouette to
be as accurate as possible. But we still need to measure the local positional
uncertainty of the silhouette and incorporate this uncertainty into the surface
estimation algorithm. We extract silhouettes in the following way. First a back-
ground image, Ibgr , is subtracted from the image I, with �I = |I − Ibgr|. Then,
a small threshold θI = 2σnoise is applied to �I to get the largest connected com-
ponent BWobj , which is assumed to contain the object’s true silhouette. Next,
along the boundary of BWobj , we find the set Pfix - a set of high confidence sil-
houette points - wherePfix = {p | �I > ΘI} and ΘI is a large threshold. Finally,
an active contour method is applied to �I with points in Pfix being part of the
contour and fixed. So, we first identify boundary sections with high likelihood
of being on the silhouette and recover the rest of the silhouette with an active
contour. The associated uncertainties for points on contours are measured with
a quadratic function as described below.

The uncertainties on the location of the silhouette affect the process of finding
P. To account for them, we need to determine the probability that a point in P
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is really on S∗. It is estimated with a combination of cues from silhouette and
photometric consistency, i.e.

Pr(p ∈ P) ∼ Pr(PhotoConsistency(p), a ∈ Sili) (3)

where p projects to the point a on the silhouette Sili through the camera center
Ci. Assuming that photo consistency and silhouette uncertainty are independent,
we have

Pr(p ∈ P) ∼ Pr(PhotoConsistency(p))Pr(a ∈ Sili) (4)
∼ ρ(p)Pr(a ∈ Sili) (5)

where, similar to [3], Pr(a ∈ Sili) is a truncated linear function of |�I(a)|2.
(Figure 3.b illustrates uncertainty measure along the contour extracted from a
difference image).

The search region, s ⊂ Sout, for a constraint voxel p described in section 3.1
is now extended to a sub-volume around s with a thickness proportionate to
Pr(a ∈ Sili). Note that the extension is also outwards in addition to inwards. To
determine the color consistency value for the searched points that are outside
V which haven’t been computed so far, we dilate V with a small disk (e.g. a
disk of 5× 5 pixels) and proceed with the ρ computation described in section 2.
Instead of applying uniform weight to the edges connecting voxels in BL to the
Sink node, we now weight these edges for p ∈ P and for voxels that are in the
associated bl(p) using Pr(p ∈ P).

4 A Second Phase to Handle Concavities

As discussed in section 3.1, the set of surface constraint points, P, provides a
large set of constraints on surface recovery which tend to best capture protrusive
parts of the object’s surface. So, the surface reconstructed by the first stage of
recovery (phase I) is generally accurate over such areas. This is supported by
the experiments described in section 5. On the other hand, it is well known that
the silhouette does not contain information about concave regions of the surface
([3]). In addition, the graph cut algorithm, which prefers shorter cuts, will not
follow a concavity well unless we “aggressively” pursue it.

We propose the procedure in figure 4 as a second phase to correct the esti-
mation of the surface over concave regions.

We first (step 1) divide all of the voxels on the surface SI into three groups.
The first group,Psurf , has small ρ (or high photo consistency); the second group,
Poutside, consists of voxels with high ρ ; and the last group consists of the
remaining voxels. Percentile(S, θ) returns the ρ value which is the θ-th percentile
of the ρ score for SI . The parameters θ1 and θ2 determine the size of each group.
In general, their appropriate values depend on the properties of the surface under
consideration. Although as we observed, the final result is not very sensitive to
these parameters. For the experiments in section 5, θ1 and θ2 are set to 0.7 and
0.95 respectively.
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Let SI be the surface constructed by the algorithm in phase I.

Step 1. From SI , extract two sets of points Psurf and Poutside,

Psurf = {v | v ∈ SI and ρ(v) < Percentile(SI , θ1)} (6)

Poutside = {v | v ∈ SI and ρ(v) > Percentile(SI , θ2)} (7)

Step 2. Using the procedure in section 3.2 to find BLinside = ∪v∈Psurf bl(v).
Set the weight w(v, Sink) for all v ∈ BLinside using the previous method.

Step 3. Get BLoutside = ∪v∈Poutsidebl(v) with the procedure in section 3.2
For all v ∈ BLoutside and v �∈ BLinside

w(v, Source) = c.Pr(v is outside S∗) = c.
∞

d(v)
exp(−p2/σ2

surf )dp (8)

where c is a normalizing constant, d(v) is the distance from v to Sout.
The weights for all remaining voxels are set using photo consistency scores as
before.

Step 4. Perform the graph cut algorithm to extract the final surface, SII .

Fig. 4. The steps of the second phase

Since all voxels in Psurf lie on SI and have high photo consistency (small ρ),
we assume that they belong to or are very close to the true surface S∗. Therefore,
in step 2, we connect them and all the voxels in their associated BLinside to the
Sink node. Essentially, we treat Psurf in a similar way to the set of constraint
points, P, in phase I.

On the other hand, the voxels in Poutside have low photo consistency (high
ρ), so in step 3 we connect them to the Source node. By doing so, we effectively
assume that these voxels are outside the true surface S∗ (and hence do not belong
to the object’s occupancy volume). The reasons we do this are as follows. Any
such voxel is unlikely to lie on the actual surface S∗, so is either inside or outside
of it. If such a voxel were inside the true surface S∗, then the surface region
on S∗ that “covers” it would either be protrusive (case 1 - fig. 5) or concave
(case 2 - fig. 5). If this region were protrusive (case 1), then it would likely have
been captured by the constraint points, P, so would have been included in SI

by phase I. If that region were concave (case 2), then the phase I graph cut
algorithm would have included the region in SI , instead of Poutside, because it
would have incurred a smaller cutting cost. This is because voxels that lie on
that region would have low ρ, while the voxels in Poutside have high ρ and form
even more concave (or “longer”) surface regions. Therefore, voxels in Poutside

are assumed to be outside of S∗ (case 3 - fig. 5), the only remaining possibility.
Moreover, the region of S∗ that lies “under” Poutside is assumed to be concave.

Therefore, to better recover it, we bias the solution cut inwards by treating the
blocking curves BLoutside differently. Voxels on these curves are assumed to be
outside S∗ with a probability distribution that decreases as the distance of these
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Fig. 5. Possible displacements of SI and S∗. The solid curve represents SI with bold
segments for Psurf and thin segments for Poutside. Of these cases, only case 3 is likely.

voxels from Sout increases (note that we use Sout instead of SI). We model
the probability of the surface location as a Gaussian distribution N(Sm, σ

2
surf ),

where Sm is a “mean surface” midway between Sout and Sin. The variance
σ2

surf is set to be (1/4d)2 for the experiments in section 5, where d is the dis-
tance from Sin to Sout. This leads to approximating the probability that a voxel
v is outside of S∗ with the cumulative distribution of N(Sm, σ

2
surf ), and so

the weight from voxels in BLoutside to the Source node is computed using (8)
in step 3.

5 Experimental Results

We demonstrate the performance of our approach on both synthetic and real
data (640 × 480 images). Volumetric discretization are 256 × 256 × 256 for all

a b c d

e f g h

Fig. 6. Synthetic face reconstruction: a-c) Three of the images collected; d) visual hull
V ; e-f) using basic step, λ = .3 and .1; g) using constraint points P after phase I; h)
after phase II (bottom) as compared to after phase I (top)
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experiments. The synthetic experiment is with a textured head (figure 6.a-c).
Note that the nose is quite protrusive and the eye areas are concave. For the
results in figure 6, twenty images and the associated calibration information were
constructed. Figure 6.d shows the visual hull V obtained from the silhouettes.
Each colored patch of the surface Sout is “carved” by some camera. Patches
from any single camera may not be connected and so are rims ([9]). Moreover,
if self-occlusion occurs, some patches may not contain any true surface points
at all. Figure 6.e and 6.f show the result of using the basic algorithm from [8]
described in section 3.1 with different ballooning factors, λ, to overcome the
preference of the algorithm to shorter cuts. As can be seen, if λ is too high (0.3),
the protrusive parts (the nose) are preserved, but the concave regions (the eyes)
suffer. Lowering λ (0.1) helps to recover concave areas but at the price of losing
protrusive parts. Figure 6.g shows the result of phase I when constraint points
are used. Protrusive parts are well preserved now. However, the concave regions
still are still not accurately recovered: the eye areas are nearly flat. Figure 6.h
compares the results of phase I (the top part) and phase II (the bottom part),
where the eye areas are now improved.

In the second experiment, we measure the reconstruction errors of the syn-
thetic face when different numbers of views are used (8, 16, 32, and 64). In
generating images, the viewing direction of the camera is always towards the
center of the face. For every set of views, the camera is placed in positions that
are arbitrary, but distributed roughly even in front of the face. For the basic
algorithm, λ is set to 0.15 to get a balance between the recovery of protrusions
and concavities. Since the ground truth for the face is given as a cloud of points,
G0, we use the 3D distance transform to measure the recovery error E. Specif-
ically, for a surface S, E(S,G0) = (D(S,G0) + D(G0, S))/(|S| + |G0|), where
D(S,G0) is the sum of distances from all points in S to G0. E(S,G0) is thus the
average distance between points in S and G0 (in voxel units). Figure 7 shows the

Fig. 7. Recovery errors for different set of views. For each group, from left to right,
values are respectively for visual hull, basic algorithm and our phase I, II results. (A
unit along the y-axis corresponds to the size of a voxel).
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reconstruction errors. The visual hull V produces quite a large error with 8 views
but is noticeably better as the number of views increases. For the basic algorithm,
with λ = 0.15, some protrusions are cut off. Note that since the cutting off effects
can have unpredictable consequences, the reconstruction error can increase as
the number of views increases (although not significantly). Adding more views
in this case turns out to be “helping” the nose of the face to be more cut off. As
a result, the visual hull may produce better results for larger number of views.
Our methods behave consistently and produce better performance. Our result
with 8 views, although with no discernible improvement for more than 16 views,
is better than the visual hull with 64 views. The error of our method compared
to the basic algorithm, is reduced roughly 33%. Note that in term of average
error distance, phase II is not much better than phase I. This is because the
focus of phase II is only on small (concave) portions left by phase I (θ2 = 0.95,
section 4).

In the third experiment, 30 real images of a colored plastic squirrel were col-
lected. We imaged the object under natural lighting conditions with a cluttered
background, and moved the camera around the object. Due to self-shadowing
and the arrangement of the light sources, the object is well lit on one side and
poorly lit on the other side (see figures 8.a and 8.b for examples). The color
information from the poorly lit side is noisy and tends to saturate to black.
These 30 images are divided roughly even for both sides. The object’s actual
size is about 300 × 150 × 300 mm3 (width-length-height); this is also the size
of the discretized volume used. Camera calibration was done using a publicly
available tool box with the principal point’s uncertainty from 1.4 − 1.7 pixels.
Silhouette extraction is performed using the method described in section 3.2.
The silhouettes can be 1 to 5 pixels off from the “true” silhouettes. Figure 8.c
show the visual hull constructed from them. Assuming that these silhouettes
are exact leads to undesirable consequences. Figure 8.d shows the result of the
basic algorithm. Even when we add the set of constraint points, our algorithm
(phase I) still produces bad results: a number of incorrect bumps and dents
on the surface. Figure 8.e, top row, zooms in on some of them (the image are
smoothen for better visualization). Adding silhouette uncertainties (bottom row)
produce much improved results. To allow for comparison with the basic algo-
rithm, the dilated visual hull discussed at the end of section 3.2 is also used
for it.

For the well lit side of the object, figure 8.f shows the result of the basic
algorithm and figure 8.g shows the result of our methods (phase I). Figure 8.h
compares the two results on several places: the top row is for the basic algorithm
and the bottom row is for ours. The phase I and phase II give nearly the same
result. In other words, phase II has little effects on this well-illuminated side.

For poorly lit side of the object, figure 8.k shows the result of the basic algo-
rithm, figure 8.l is for phase I and figure 8.m is for phase II. Note the difference
between the two legs and along the tail.
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Fig. 8. Reconstruction of the squirrel object. a-b) two of the images collected; c) the
visual hull V ; d-e) the result of the basic algorithm and our phase I when silhouettes
are assumed exact (see text). Well lit area results: f) the basic algorithm; g) our phase
I algorithm; h) some detailed comparison between the basic algorithm (top row) and
the final result of phase I (bottom row). Poorly lit area results: k) the basic, l) phase
I and m) phase II algorithms. Note the differences inside the red circles.
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Abstract. The formulation of trace quotient is shared by many computer vision 
problems; however, it was conventionally approximated by an essentially dif-
ferent formulation of quotient trace, which can be solved with the generalized 
eigenvalue decomposition approach. In this paper, we present a direct solution to 
the former formulation. First, considering that the feasible solutions are  
constrained on a Grassmann manifold, we present a necessary condition for the 
optimal solution of the trace quotient problem, which then naturally elicits an 
iterative procedure for pursuing the optimal solution. The proposed algorithm, 
referred to as Optimal Projection Pursuing (OPP), has the following character-
istics: 1) OPP directly optimizes the trace quotient, and is theoretically optimal; 
2) OPP does not suffer from the solution uncertainty issue existing in the quotient 
trace formulation that the objective function value is invariant under any non-
singular linear transformation, and OPP is invariant only under orthogonal 
transformations, which does not affect final distance measurement; and 3) OPP 
reveals the underlying equivalence between the trace quotient problem and the 
corresponding trace difference problem. Extensive experiments on face recog-
nition validate the superiority of OPP over the solution of the corresponding 
quotient trace problem in both objective function value and classification  
capability. 

1   Introduction 

In recent decades, a large family of algorithms [19] supervised or unsupervised; 
stemming from statistical or geometry theory  has been proposed to provide different 
solutions to the problem of dimensionality reduction [2][4][12][15][16][19]. Many of 
them, such as Linear Discriminant Analysis (LDA) [1] and Locality Preserving Pro-
jection (LPP) [6], eventually come down to the trace quotient problem [17][20] as 
follows 

* ( )
( )W CW I

Tr W AW
Tr W BW

W arg max
Τ

ΤΤ =
= . (1) 

Here A, B, and C are all symmetric positive semidefinite; ( )Tr ⋅ denotes the trace of a 

matrix; I is an identity matrix and W is the pursued transformation matrix for dimen-
sionality reduction. Commonly, the null space of matrix C lies within the null space of 
both A and B, that is, ( ) ( ) ( )null C null A null B∈ . Due to the lack of a direct efficient 
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solution for Eq. (1), the quotient trace problem 1(( ) ( ))Tr W BW W AWΤ − Τ is often dis-

cussed instead and the generalized eigenvalue decomposition (GEVD) [20] approach is 
applied for a direct closed-form solution. 

If W is a vector, it is theoretically guaranteed that the optimal solution of (1) is the 
eigenvector corresponding to the largest eigenvalue of GEVD by using the Lagrange 
Multiplier method. GEVD can provide an optimal solution to the quotient trace prob-
lem, yet it is not necessarily optimal for the trace quotient problem when W is in the 
form of a matrix. Moreover, the solution from GEVD is unstable when matrix B is 
singular; and Principal Component Analysis (PCA) [14] is often used beforehand to 
avoid the singularity issue. However, it is often observed that the algorithmic per-
formance is extremely sensitive to the retained dimension of PCA. All these motivate 
us to pursue an efficient and theoretically sound procedure to solve the trace quotient 
problem. 

More specifically, our contributions are as follows. First, we prove that GEVD 
cannot provide an optimal solution to the trace quotient problem. Then, we present a 
necessary condition for the optimal solution of the trace quotient problem by taking 
into account the fact that the feasible solutions are constrained to lie on a Grassmann 
manifold. Finally, by following the necessary condition, an efficient procedure is pro-
posed to pursue the optimal solution of the trace quotient problem. As a product, the 
necessary condition indicates the underlying equivalence between the trace quotient 
problem and the corresponding trace difference problem. 

The rest of the paper is organized as follows.  In section 2, we introduce the trace 
quotient problem and the corresponding quotient trace problem, and then discuss the 
infeasibility of the GEVD method in solving the trace quotient problem.  In Section 3, a 
necessary condition for the optimal solution of the trace quotient problem is presented, 
which naturally elicits an iterative procedure to pursue the optimal solution. Extensive 
experiments on face recognition are demonstrated in Section 4 to show the superiority 
of our proposed algorithm over GEVD.  Finally, in Section 5, we conclude the paper 
and provide discussions of future work. 

2   Trace Quotient Problem 

Denote the sample set as matrix 1 2[ , , , ], m
N iX x x x x= ∈  is an m-dimensional vector. 

For supervised learning tasks, the class label of the sample ix  is assumed to be 

{1,2, , }i cc N∈ and cn  denotes the sample number of the c-th class.  

2.1   Trace Quotient Problem vs. Quotient Trace Problem 

A large family of algorithms for subspace learning [6] ends with solving a trace quo-
tient problem as in (1). Among them, the most popular ones are the Linear Discriminant 
Analysis (LDA) [17] algorithm and its kernel extension. LDA searches for the most 
discriminative directions that maximize the quotient of the inter-class scatter and the 
intra-class scatter  
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*

1 1

( )

( )

( )( ) , ( )( )
c

i i

b

w

N N

w i i
c i

W W I

b c c c c c

Tr W S
W arg max

S

S x x

W

Tr W W

S n m m m m m m

Τ

= =

Τ

Τ=

Τ Τ− −

=

= − − =
. (2) 

Here cm is the mean of the samples belonging to the c-th class and m is the mean of all 

samples; m kW ×∈ is the pursued transformation matrix for dimensionality reduction.  
The objective function of (2) has explicit semantics for both numerator and denomi-
nator and they characterize the scatters measured by the Euclidean distances in the low 
dimensional feature space 

1 1

2 2( ) || || , ( ) || ||
c

i

N N

i
c i

b c c w cxTr W S W n W m W m Tr W S W W W mΤ Τ Τ Τ

= =

Τ Τ −= − = . (3) 

A direct way to extend a linear algorithm to a nonlinear case is to utilize the kernel 
trick [5][9][18]. The intuition of the kernel trick is to map the data from the original 
input space to a higher dimensional Hilbert space as : xφ →  and then the linear 

algorithm is performed in this new feature space.  It can be well applied to the algo-
rithms that only need to compute the inner products of the data 
pairs ( , ) ( ) ( )k x y x yφ φ= ⋅ . For LDA, provided that 1 2[ ( ), ( ),..., ( )]NW x x x Mφ φ φ= , 

where N kM ×∈ and N NK ×∈  is the kernel Gram matrix with ( , )ij i jK k x x= , we have  

* ( )

( )
b

w
M KM I

Tr M S
M arg max

S

K KM

Tr M K KMΤ

Τ

Τ=
= . (4) 

Obviously, LDA and its kernel extension both follow the formulation of trace quotient 
as in (1); generally, there is no closed-form solution for (2) and (4) when k >1. 

Instead of directly solving the trace quotient problem, many researchers study an-
other formulation, called the quotient trace problem here, to pursue the most dis-
criminative features as follows 

* 1(( ) ( ))T T

W
W arg maxTr W BW W AW−= . (5) 

Notice that commonly there is no constraint on matrix W in the quotient trace problem 
and it is solved by the generalized eigenvalue decomposition (GEVD) method 

, 1,...,i i iA w Bw i kλ= = . (6) 

Here iw is the eigenvector corresponding to the i-th largest eigenvalue iλ . Despite 

extensive study of the quotient trace problem, it suffers the following disadvantages: 
1) it is invariant under any nonsingular linear transformation, which results in the un-
certainty of the Euclidean metric on the derived low dimensional feature space; and 2) 
unlike the trace quotient problem, there does not exist explicit semantics for the ob-
jective function of quotient trace problem. Therefore, compared with the quotient trace 
formulation, the trace quotient formulation is more reasonable; and in the following, we 
study the problem of how to directly solve the trace quotient problem. 
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2.2    Is Generalized Eigenvalue Decomposition Approach Feasible? 

Based on the constraint on the transformation matrix and the Lagrange Multiplier 
method, the trace quotient problem (1) is equivalent to maximizing 

( , ) ( ) ( ( ) )F W Tr W AW Tr W BW cλ λΤ Τ= − − . (7) 

Here, c is a constant and λ is the Lagrange Multiplier. When W is a vector, i.e. k = 1, the 

problem (1) is simplified to maximizing ( , ) ( )F W W AW W BW cλ λΤ Τ= − − . It is easy 

to prove that the optimal solution is the eigenvector corresponding to the largest ei-
genvalue calculated from the generalized eigenvalue decomposition method as in (6). 
Yet, when W is a matrix, i.e. k > 1, the problem is much more complex, and intuitively 
it was believed that the leading eigenvectors from GEVD were more valuable in dis-
criminating power than the later ones, since the individual trace quotient, namely ei-
genvalue, from the leading eigenvector is larger than those from later ones. However, 
no theoretical proof was ever presented to justify using GEVD for solving the trace 
quotient problem. Here, we show that GEVD is infeasible for the following reasons. 
For simplicity, we discuss the LDA formulation with the constraintW W IΤ = . 

Orthogonality: The derived eigenvectors from GEVD are not necessarily orthogonal. 
Let the Singular Value Decomposition of the final projection matrix W be  

W U V Τ= Λ . (8) 

The right orthogonal matrix V is free for the trace quotient, thus the derived solution is 
equal to U Λ in the sense of rotation invariance. In this point, GEVD does not find a set 

of unit projection directions, but weighted ones. The left column vector of U maybe is 
more biased when the original feature is transformed to the low dimensional space, 
which conflicts with the unitary constraint.  

Theoretical Guarantee: There is no theoretical proof to guarantee that the derived 
projection matrix can optimally maximize the trace quotient. Actually, the projection 
vector from GEVD is evaluated in an individual manner and the collaborative trace 
quotient will be easily biased by the projection direction with larger values 

of ( , )w Bw w AwΤ Τ . For example, for projection directions 1 2 3, ,w w w , if their trace 

values are as follows (e.g. A=diag{10.0, 100.0, 2.0} and B=diag{1.0, 20.0, 1.0}) 
 

 1w  2w  3w  

w AwΤ  10.0 100.0 2.0   

w BwΤ  1.0 20.0  1.0  

then the combination of 1w and 3w  (with trace quotient 6) is better than that of 1w  and 

2w (with trace quotient 5.24) although the single trace quotient from 2w  is larger than 

that from 3w . Thus, it is not true that the eigenvector corresponding to the larger ei-

genvalue of GEVD is always superior to that from a smaller one in the trace quotient 
problem. 
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Necessary Condition: It was commonly believed that the optimal solution of (1) 
should satisfy 

( , ) 0F W Wλ∂ ∂ = . (9) 

Yet, the solution may not exist at all if directly setting the gradient as zero,  

( , ) 2( ) 0F W W A B Wλ λ∂ ∂ = − = . (10) 

It means W is the null subspace of the weighted difference of matrix B and A, i.e. 
A Bλ− . In the LDA formulation, when cm N N< − , matrix B is of full rank, and for 

most λ , A Bλ−  is also of full rank; consequently there does not exist matrix m kW ×∈  
with independent columns that satisfies (7). As we will analyze later, the fundamental 
reason that GEVD fails to find the optimal solution is that it does not consider that the 
feasible solution of (1) is constrained to lie on a lower dimensional Grassmann mani-
fold (or a transformed one when matrix C is not equal to I), not the whole matrix space, 
and the derivative should also be constrained to lie on the Grassmann manifold, instead 
of the matrix space. 

All the above analyses show that the GEVD cannot provide an optimal solution  
for the trace quotient problem. In the following, we will present our solution to this  
problem.  

3   Optimal Solution to Trace Quotient Problem 

For the trace quotient problem (1), let the Singular Value Decomposition of matrix C be  

, ,m n
c c c cC U U U n kΤ ×= Λ ∈ ≥ . (11) 

Here cΛ only contains positive diagonal elements, and denote 1/ 2
c cQ U WΤ= Λ . As we 

have the assumption that ( ) ( ) ( )null C null A null B∈ , we can constrain the matrix W in 

the space spanned by the column vectors of cU  and we have 1/ 2
c cW U Q−= Λ , then 

*
1/2 1/2

1/2 1/2
( )
( )Q Q I

c c c c

c c c c

Tr Q U AU Q

Tr Q U BU Q
Q arg max

Τ Τ

Τ ΤΤ =

− −

− −
Λ Λ
Λ Λ

= . (12) 

It is still a trace quotient problem, yet with the unitary and orthogonal constraints; 
hence in the following, we only discuss the trace quotient problem with the unitary and 
orthogonal constraints.  

3.1   Necessary Condition for Optimal Solution 

When the solution of the trace quotient problem is constrained to be columnly or-
thogonal and unitary, the solution space is not the whole matrix space any more, in-
stead, mathematically, all the feasible solutions constitute a Grassmann manifold [3]. 
Before describing the procedure to solve the trace quotient problem, we introduce the 
concepts of the Grassmann manifold and its tangent space.  
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Fig. 1. The illustration of the relationship between the original matrix space, Grassmann mani-
fold, and the projection to the tangent space. Note that it is unnecessary for gradient vector Z to be 
zero, instead, only its projection to the horizontal space of the tangent space is required to be zero 
for the trace quotient problem. 

Grassmann Manifold [3]: All feasible matrices m kW ×∈ with unit and orthogonal 

column vectors, i.e. W W IΤ =  , constitute a continuous curved hyper-surface in the 
original matrix space, namely a Grassmann manifold, as shown in Figure 1. Com-
monly, a Grassmann manifold is associated with an objective function ( )F W , such as 

the objective function in (7), yielding ( ) ( )F WR F W=  for any orthogonal ma-

trix k kR ×∈ . 
If for two columnly orthogonal matrices 1W and 2W , there exists an orthogonal ma-

trix R so that 1 2W W R= , then we call 1W and 2W homogeneous, denoted as 1W ~ 2W . 

Thus, on the Grassmann manifold, the objective function ( )F W is invariant to all ma-

trices that are homogeneous.  

Projection on the Tangent Space [3]: As a curved hyper-surface, the movement of 
any point on the manifold always follows a direction in the tangent space as shown in 
Figure 1. All matrices M  in the tangent space at point W satisfy  

0W M M WΤ Τ+ = . (13) 

And for any matrix Z, its projection on the tangent space is defined as   

1
2( ) ( ) ( )TP Z W W Z Z W I WW ZΤ Τ Τ= − + − . (14) 

Considering the homogeneity condition, not all variations in tangent space will re-
sult in a change of the objective function. The tangent space is decomposed into the 
direct sum of a vertical space and a horizontal space, where only the directions in the 
horizontal space actually contribute to the change of the objective function. It is proved 
[3] that the projection of any vector Z on the horizontal space at W is  

( ) ( )HP Z I WW ZΤ= − . (15) 
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For the equivalent objective function (7) of the trace quotient problem, the gradient 
vector ( , ) / 2( )Z F W W A B Wλ λ= ∂ ∂ = − . Its projection on the tangent space directly 

lies within the horizontal space, since A and B are both symmetric and  

( ) ( ( ) ( ) ) ( ) 0 ( ) ( )T H H HP Z W W A B W W A B W P Z P Z P Zλ λΤ Τ Τ Τ= − − − + = + = . (16)  

Also, it is easy to prove that the function (7) satisfies the homogeneity condition  

  
( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( , )

F WR Tr R W AWR Tr R W BWR Tr WRR W A Tr WRR W B

Tr WW A Tr WW B Tr W AW Tr W BW F W

λ λ λ
λ λ λ

Τ Τ Τ Τ Τ Τ Τ Τ

Τ Τ Τ Τ

= − = −
= − = − =

  

                                                                                                                                           (17) 
The second and fourth steps are derived from the fact that, for any two matri-
ces 1 2,m k k mM M× ×∈ ∈ , we have 1 2 2 1( ) ( )Tr M M Tr M M= .  

As the solution space is constrained on a Grassmann manifold, the necessary condi-
tion for the optimality of the projection matrix is that the projection on the horizontal 
space at point W of the gradient vector ( , ) / 2( )F W W A B Wλ λ∂ ∂ = − is zero, i.e. 

( )( ) 0I WW AW BWλΤ− − = . (18) 

Then, the column vectors of the matrix AW BWλ− all lie in the space spanned by the 

column vectors of W, and there exists a matrix k kP ×∈ satisfying 

AW BW WPλ− = . (19) 

By multiplyingW Τ on the left side of (19), we have  

W AW W BW W WP PλΤ Τ Τ− = = . (20) 

Therefore, P is a symmetric matrix. Let its singular value decomposition be  

p p pP U U Τ= Λ . (21) 

Then, there exists a homogeneous solution p pW WU=  satisfying  

( ) p p pA B W Wλ− = Λ . (22) 

It means that the projection vectors are the eigenvectors of a weighted difference ma-
trix; consequently, we have the following claim. 

Theorem. (Necessary condition for the optimal solution) For the trace quotient prob-
lem, there exists an optimal solution whose column vectors are the eigenvectors of the 
corresponding weighted trace difference problem, i.e. ( ) p p pA B W Wλ− = Λ . 

The above theorem reveals a very interesting point that the trace quotient problem is 
equal to a properly weighted trace difference problem in objective function. However, 
these two problems are still different in some aspects. First, for the weighted trace 
difference problem, such as the work in MMC [8] for discriminant analysis, the solu-
tion is directly the leading eigenvectors, while in the trace quotient problem the optimal 
projection does not always consist of the leading eigenvectors. Secondly, there is no 



 Trace Quotient Problems Revisited 239 

criterion to guide selection of the weight in the trace difference problem; while in the 
trace quotient problem the weight can be determined by maximizing the trace quotient, 
which directly motivates our following procedure to pursue the optimal solution of the 
trace quotient problem. 

3.2   Procedure to Optimal Projection Pursuing 

From (22), the optimal solution can be directly determined by Lagrange Multiplier λ ; 

thus we can rewrite the optimal transformation matrix corresponding to λ as ( )W λ . 

Then, the objective function in (1) is changed to a function only related to λ , 

( ( ) ( ))
( ( ) ( ))( ) Tr W AW

Tr W BWG
λ λ
λ λλ

Τ

Τ= . (23) 

The objective function is nonlinear and it is intractable to directly compute the gra-
dient. However, the experiments show that the objective function is of a single peak, 
and some plots of the trace quotient distribution with respect to the Lagrange Multi-
plier λ are plotted in Figure 2. The observations encourage us apply multi-scale search 

to pursue the optimal weight. The details are listed in procedure-1.  
Note that in procedure-1, for each Lagrange Multiplier λ , the column vectors of the 

optimal projection matrix ( )W λ are not exactly the leading eigenvectors corresponding 

to the largest eigenvalues of (22). Thus we utilize a backward elimination method to 
search for the optimal solution for a given weight parameter, i.e. the eigenvector is 
omitted, if the remaining ones lead to the largest trace quotient, in each step until re-
duced to the desired feature dimension. 

Procedure to pursue optimal solution of trace quotient problem __________________________________________________________________ 

1. Set parameter range: Set a proper parameter range [ 0 0,a b ] for parameter 

search. In this work, 0a is set as 0, and 0b  is experientially set as the quotient of the 
largest eigenvalue of A and the smallest positive eigenvalue of B, which makes most 
eigenvalues of (22) negative. 

2. Multi-scale search: For t = 1, 2, … , Tmax, Do 
a) Segment 1 1[ , ]t ta b− − into L parts by 1 1 1( 1)( ) /( 1)t t t t

i a i b a Lλ − − −= + − − − , i=1,.., L. 

b) Compute the optimal ( )t
iW λ and the corresponding trace quotient t

iTr . 

c) From the left side, if 
a

t
iλ is the first point satisfying

1a a

t t
i iTr Tr

+
< and 

1 2a a

t t
i iTr Tr

+ +
≥ , 

then set 
a

t t
ia λ= ; from the right side, if

b

t
iλ is the first point satisfying

1b b

t t
i iTr Tr

−
< and 

1 2b b

t t
i iTr Tr

− −
≥ , then set 

b

t t
ib λ= . 

d) If t tb a ε− < (= 0.1 in this work), then exit.  

3. Output the final optimal solution from (22) by setting ( ) / 2
a b

t t
i iTr Trλ = + . 

__________________________________________________________________  

Procedure-1. Optimal Solution Pursuing of Trace Quotient Problem 
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Fig. 2. The trace quotient vs. the Lagrange Multiplier ( ) in the databases XM2VTS, PIE and 
AR.  Note that we plot the trace quotient of PCA+LDA (plotted as Fisher in the legends) as a line 
as its trace quotient value is fixed and free to the Lagrange Multiplier.  We can find that the 
maximum trace quotient of OPP is consistently larger than that from PCA+LDA; while the trace 
quotient comparison between PCA+LDA and MMC (namely 1= ) is not so clear, neither one is 
consistently better than the other one. 

4   Experiments 

In this section, three benchmark face databases, XM2VTS [10], CMU PIE [13] and AR 
[11] are used to evaluate the effectiveness of the proposed procedure to solve the trace 
quotient problem. The objective function of Linear Discriminant Analysis (2) is applied 
owing to its popularity; and the new procedure, referred to as OPP (Optimal Projection 
Pursuing), is compared with the popular PCA+LDA [1] and MMC [8], i.e. OPP 
with 1= . In all the experiments, the nearest neighbor method is used as a classifier for 
final classification based on the Euclidian distance. The trace quotient distributions 
with respect to the Lagrange Multiplier on the three databases are plotted in Figure 2. 
The results show that the derived optimal trace quotient from OPP is consistently larger 
than that from GEVD. In all the experiments, the parameter L in the procedure to 
pursue the optimal solution of the trace quotient problem is set to 8 and generally we 
need about three iterations to converge. 
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XM2VTS Database [10]: The XM2VTS database contains 295 persons and each 
person has four frontal images taken in four sessions. All the images are aligned by 
fixing the locations of two eyes and normalized in size of 64*64 pixels. In our ex-
periments, we use 295*3 images from the first three sessions for model training; the 
first session is used as a gallery set and the probe set is composed of the 295 images 
from the fourth session. Three sets of experiments are conducted to compare the  
performances of OPP, PCA+LDA and MMC. In each experiment, we use different 
combinations of Principal Component Analysis (PCA) [7][14] dimension ( cN N− , 
moderate and small number) and final dimension, denoted as Pm/Fn in all experiments. 
Note that actually OPP and MMC need no PCA step, so for a fair comparison with 
PCA+LDA, PCA is conducted before both OPP and MMC. Table 1 shows the recog-
nition accuracies of the three algorithms. The comparison results show that OPP out-
performs MMC and PCA+LDA in all cases. 

Table 1. Recognition rates (%) of PCA+LDA, MMC and OPP on XM2VTS database 

 P590/F294 P450/F294 P300/F200 
PCA+LDA 79.0 75.3 84.4 
MMC 83.7 83.4 82.0 
OPP 94.2 88.8 88.8 

CMU PIE Database [13 ] : The CMU PIE (Pose, Illumination and Expression) 
database contains more than 40,000 facial images of 68 persons. In our experi-
ment, five near frontal poses (C27, C05, C29, C09 and C07) and illuminations 
indexed as 08, 10, 11 and 13 are used. 63 persons are used for data incompleteness. 
Thus, each person has twenty images and all the images are aligned by fixing the 
locations of two eyes and normalizing to size 64*64 pixels. The data set is ran-
domly partitioned into the gallery and probe sets. Six images of each person are 
randomly selected for training and also used for the gallery set, and the remaining 
fourteen images are used for testing. We also conduct three experiments on the PIE 
database. Table 2 lists the comparison results and it again shows that OPP is 
consistently superior to the other two algorithms.  

Table 2. Recognition rates (%) of PCA+LDA, MMC and OPP on PIE database 

 P315/F62 P200/F62 P100/F50 
PCA+LDA 88.9 88.0 87.6 
MMC 88.1 87.8 85.0 
OPP 92.1 94.1 91.6 

AR Database [11]: The AR face database contains over 4,000 frontal face images of 
126 people. We use 90 persons with three images from the first session and another 
three images from the second session. All the images are aligned by fixing the locations 
of two eyes and normalizing in size to 72*64 pixels. The data set is randomly parti-
tioned into gallery and probe sets. Three images of each person are randomly selected 
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Table 3. Recognition rates (%) of PCA+LDA, MMC and OPP on AR database 

 P180/F89 P150/F89 P100/F50 
PCA+LDA 94.1 90.7 95.2 
MMC 78.9 78.5 76.3 
OPP 98.2  95.9 96.7 

Table 4. Recognition rates (%) of KDA, kernel MMC and OPP on three databases 

 XM2VTXS CMU PIE AR 
KDA 92.2 87.8 94.4 

KMMC 86.4 88.3 81.5 
KOPP 97.0 93.1 98.5 

for training and as the gallery set; and the remaining three images are used for testing. 
The experimental details are listed in Table 3. The results show that MMC does not 
obtain satisfactory performance and OPP is the best.   

We also apply the OPP algorithm to optimize the objective function of Kernel Dis-
criminant Analysis, compared with the traditional method as reported in [18].  The 
Gaussian kernel is applied and the final feature dimension is set to 1cN −  in all the 

experiments. Table 4 lists all the experimental results on the three databases. From the 
results, we can see that the solution from OPP is much better than the other two algo-
rithms in classification capability. 

From the above experimental results, we can have some interesting observations: 

1. The quotient value derived from OPP is much larger than that from PCA+LDA 
and MMC; meanwhile, the comparison between PCA+LDA and MMC is un-
clear, neither one is consistently superior to the other one.  

2. In all the experiments, the recognition rate of OPP is consistently superior to 
that of PCA+LDA and MMC in all the cases. Similar to the trace quotient value, 
the performances of PCA+LDA and MMC are comparable. 

3. All the results show that the trace quotient criterion is more suitable than the 
quotient trace criterion for feature extraction owing to its explicit semantics of 
the numerator and denominator. 

4. Recently, many other formulations of matrices A and B in the trace quotient 
problem were proposed [19]; the advantage of the OPP solution can be easily 
generalized to these new algorithms.  

5   Conclusions 

In this paper, we studied the problem of directly solving the trace quotient problem. 
First, we derived a necessary condition for the optimal solution based on the fact that 
the feasible solution is constrained to lie on a Grassmann manifold and the final solu-
tion is rotation invariant. Then, we presented a procedure to pursue the optimal solution 
based on the necessary condition. An interesting point is that the necessary condition 
reveals the underlying equivalence between the trace quotient problem and the  
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corresponding trace difference problem, which provides theoretical guidance on how to 
select the optimal weight for the trace difference problem. Moreover, the study of how 
to pursue a solution on the Grassmann manifold is general, and can be easily extended 
to optimize general objective functions with solutions constrained on the Grassmann 
manifold. 
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Abstract. There has been growing interest in developing nonlinear dimension-
ality reduction algorithms for vision applications. Although progress has been
made in recent years, conventional nonlinear dimensionality reduction algorithms
have been designed to deal with stationary, or independent and identically dis-
tributed data. In this paper, we present a novel method that learns nonlinear
mapping from time series data to their intrinsic coordinates on the underlying
manifold. Our work extends the recent advances in learning nonlinear manifolds
within a global coordinate system to account for temporal correlation inherent in
sequential data. We formulate the problem with a dynamic Bayesian network and
propose an approximate algorithm to tackle the learning and inference problems.
Numerous experiments demonstrate the proposed method is able to learn nonlin-
ear manifolds from time series data, and as a result of exploiting the temporal
correlation, achieve superior results.

1 Introduction

Dimensionality reduction algorithms has been successful applied to vision problems
for decades. Yet many tasks can be better approached with nonlinear methods, and re-
cently there has been growing interests in developing nonlinear dimensionality reduc-
tion (NLDR) algorithms for vision applications. Nonlinear dimensionality reduction
aims at representing high dimensional data with low dimensional intrinsic parameters.
For data assumed to be distributed along a low dimensional nonlinear manifold, solving
NLDR is equivalent to recovering their intrinsic coordinates. There exist two main ap-
proaches that transform data to their intrinsic parameters within a global coordinate sys-
tem. Embedding methods such as Isomap [1] and LLE [2] find the intrinsic coordinates
on the manifold from a set of samples. However, one limitation is that these algorithms
discover the underlying embeddings rather than mapping functions from observed data.
An alternative approach is to find a nonlinear mapping between the data and their intrin-
sic coordinates, either with a combination of local linear models [3][4][5], or a single
nonlinear function [6][7][8].

All the abovementioned methods assume that the observed data samples are station-
ary or independent, identically (i.i.d.) distributed. However, numerous real world ap-
plications, e.g., object tracking and motion synthesis, entail analyzing continuous data
sequences where strong temporal correlation inherent in samples should be taken into
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consideration. Consequently, it is essential to extend a conventional NLDR algorithm
to account for temporal dependence in the data, thereby discovering sample dynamics
along the manifold.

Few attempts have been made to tackle the NLDR problems for time series. Exam-
ples include [9] that extends the standard generative topographic mapping to handle se-
quential data within the hidden Markov model framework, [10] that modifies the Isomap
algorithm with heuristics to find the underlying embedding from data sequences, and
[8] which applies a semi-supervised regression model to learn nonlinear mapping from
temporal data. Nevertheless, these algorithms are mainly concerned with learning the
nonlinear embedding or mapping functions. Less effort is made to model the dynamic
process of the intrinsic coordinates on the manifold.

In this paper, we address both nonlinear dimensionality reduction with bidirectional
projection and the dynamics of time series data within a single statistical framework.
We propose a model that learns the nonlinear mapping from time series that is capa-
ble of performing dynamic inference. Building on the work on the global coordination
model [3] which provides a generative approach for the nonlinear mapping with a mix-
ture of factor analyzers, we extend this graphical model to a dynamic Bayesian network
(DBN) by adding links among the intrinsic coordinates to account for temporal de-
pendency. Although the exact inference of this model is intractable, we exploit unique
properties of nonlinear mapping within the global coordination model and propose an
efficient approximate algorithm. We show that by applying this approximate algorithm,
this DBN becomes a generalized Kalman filter for nonlinear manifold where model
parameters are constantly adjusted.

We take a variational learning approach to estimate model parameters. Given initial
values of the parameters, we use our approximate inference algorithm to estimate the
statistics of latent variables. Then based on these statistics, we update the model param-
eters in the DBN. With this iterative process, the learning algorithm converges to a local
optimum. For concreteness, we demonstrate the merits of this DBN with applications
such as object tracking and video synthesis in which it is essential to model the sample
dynamics on the underlying manifold.

The rest of this paper is organized as follows. We first briefly review the global
coordination model [3] in Section 2. Next, we present an extension of this model to
a DBN in which temporal correlation is taken into consideration in Section 3. Based
on this DBN, we propose an approximate inference method and a learning algorithm
for model parameters. Experimental results on synthetic and real world applications are
presented in Section 4. We conclude this paper with discussions on the proposed model
and future work in Section 5.

2 Global Coordination of Local Linear Models

The global coordination model is an extension of mixture of factor analyzers in which
latent variables are aligned in a global coordinate system. Denote y ∈ RD the observed
data, s the index of the selected linear model, and zs ∈ Rd the latent variables in the
s-th local linear model. The joint probability of these parameters is:

P (y, zs, s) = P (y|zs, s)P (zs|s)P (s) (1)
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in whichP (s) is the prior probability of local model s, P (zs|s) is a zero mean univariate
Gaussian, i.e., P (zs|s) = N (0, Id), and P (y|zs, s) is defined by a factor analyzer:

P (y|zs, s) =
1√

(2π)D|Ψs|
exp(−1

2
(y − Λszs − μs)TΨ−1

s (y − Λszs − μs)) (2)

Since the latent variable zs is defined within the local coordinate system of s-th local
model, the global coordination algorithm transforms zs to the corresponding intrinsic
parameter within a global coordinate system. Let g denote the global coordinate of data
y that is generated from s-th local linear model with zs, the transformation is defined by

g(s, zs) = Aszs + κs, P (g|s, zs) = δ(g −Aszs − κs) (3)

where As is a full ranked matrix to ensure a bidirectional mapping, and κs is an offset.
Given this model, the mapping from y to g is described by:

P (g|y) =
∑

s

P (g|y, s)P (s|y) (4)

where

P (g|y, s) =
∫
P (g|s, zs)P (zs|s, y)dzs (5)

and the mapping from g to y is defined as:

P (y|g) =
∑

s

P (y|g, s)P (s|g). (6)

Although P (g|y) and P (y|g) are in the form of mixture of Gaussians, the distributions
of P (g|y) and P (y|g) are expected to be unimodal since ideally the mapping between g
and y should be one to one. For example given two mixture components si and sj , the
posterior distributions for global coordinates of a data point computed by (6) should be
as identical as possible since g is the global coordinate of y. That is, P (g|y, si) should be
close to P (g|y, sj) as possible, i.e., P (g|y, si) ≈ P (g|y, sj). This unimodal constraint
is imposed in learning the global coordination of local linear models by Roweis et al.
[3], and we take a similar approach. For mappings between y and g, E[P (g|y)] and
E[P (y|g)] are used in this work.

Learning the global coordination model is equivalent to estimating parameters {(Λs,
μs, As, κs)} from a set of observed data. This is an ill-posed problem since global coor-
dinates of the data set are unknown. A few methods have been recently been proposed
to address this issue. Wang et. al. [5] apply Isomap [1] to obtain global coordinates
of the data, and learn the model parameters by solving a regression problem. Roweis
et. al. [3] present an algorithm in which a regularization term is introduced to enforce
the alignment constraints, and model parameters are estimated using variational algo-
rithms. Nevertheless, both approaches have limitations as the method in [5] requires
a good Isomap embedding, and the algorithm in [3] might have serious local minimal
problems. In addition, both methods assume observations are i.i.d. samples without tak-
ing the temporal dependence into consideration.



248 R.-S. Lin et al.

3 Dynamic Global Coordination Model

To account for the temporal relationship among data samples, we incorporate the global
coordination method into a dynamic model. Now observations {yt} are a temporal se-
quence generated from a Markovian process {gt} and the mapping from gt to yt is
based on (6). The resulting dynamic Bayesian network is depicted in Figure 1.

gt-1 gt+1gt

yt-1 yt yt+

st-1 st st+1

Fig. 1. Our dynamic Bayesian networks that is based on the temporal dependency among the
global coordinates

3.1 Inference

We now provide the inference algorithms for the model. Although the DBN shown in
Figure 1 is structurally complex, it becomes a simple state-space model if we marginal-
ize out st at each time step.

P (gt|y1:t) ∝
∑
st

P (yt|gt, st)P (st|gt)
∫
P (gt|gt−1)P (gt−1|y1:t−1)dgt−1

= P (yt|gt)
∫
P (gt|gt−1)P (gt−1|y1:t−1)dgt−1 (7)

Note that P (yt|gt) is composed of a mixture of Gaussians. If we compute (7) directly
for exact inference, the number of mixtures in the posterior distribution will grow ex-
ponentially as the time index increases, thereby making the problem intractable. As
discussed earlier, the ideal mapping between y and g at any time instance should be one
to one. For efficient inference, we apply the first order Generalized Pseudo Bayesian
(GPB) algorithm [11] to approximate P (yt|gt), which can be shown to be the best sin-
gle Gaussian approximation in the KL sense.

In this work, we compute P (yt|gt) with Bayes rule

P (yt|gt) =
P (gt|yt)P (yt)

P (gt)
(8)

and neglect the effect of P (gt) for the reason that will be explained in the next section.
That is, we approximate P (yt|gt) using the joint probability P (yt, gt). Since P (yt) is
a constant with known yt, we carry out GPB approximation using P (gt|yt).

Let (μt, Σt) denote the mean and the covariance matrix of the Gaussian that we use
to approximate P (gt|yt), and likewise P (gt|yt, st) ∼ N (μs

t , Σ
s
t ). From (4), (μt, Σt)

can be estimated by minimizing the weighted KL-distance:
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(μt, Σt) = argmin
μ,Σ

∑
s

P (st|yt)KL(N (μs
t , Σ

s
t )||N (μ,Σ)). (9)

and the analytic solution is

μt =
∑

s

P (st|yt)μs
t , Σt =

∑
s

P (st|yt)
(
Σs

t + (μt − μs
t )(μt − μs

t )
T
)
. (10)

In our work, the dynamic model is set to be P (gt|gt−1) = N (Cgt−1, Q̂) where C is
the system matrix. Since P (yt|gt) and P (gt|gt−1) are now both Gaussians, as a result
the posterior distribution P (gt|y1:t) in (7) is also a Gaussian.

Let P (gt|y1:t) ∼ N (gt
t , Σ

t
t) and P (gt|y1:t−1) ∼ N (gt−1

t , Σt−1
t ). It can be shown

that in our dynamic Bayesian network,

gt−1
t = Cgt−1

t−1, Σt−1
t = CΣt−1

t CT + Q̂, (11)

and

Σt
t =

(
(Σt−1

t )−1 +Σ−1
t

)−1
(12)

gt
t = Σt

t

(
(Σt−1

t )−1gt−1
t +Σ−1

t μt

)
(13)

Likewise, it follows that for the cases of smoothing and lag-one smoothing with our
model:

μT
t = μt

t + Jt(μT
t+1 − μt

t+1) (14)

ΣT
t = Σt

t + Jt

(
ΣT

t+1 −Σt
t+1

)
JT

t (15)

Jt = Σt
tC

T [Σt
t+1]

−1 (16)

ΣT
t,t−1 = ΣtJ

T
t−1 + Jt

(
ΣT

t+1,t − CΣt
t

)
JT

t−1 (17)

where ΣT
t,t−1 = E

[
(gt − μT

t )(gt−1 − μT
t−1)T |y1:T

]
.

It should be emphasized that although our filtering and smoothing procedures are
similar to the ones used in standard Kalman filter, our model is a generalized filter.
While Kalman filter performs dynamic inferences on a linear manifold, our model ex-
tends this framework and performs dynamic inference on a nonlinear manifold. There-
fore, unlike a standard Kalman filter which uses a fixed Gaussian for the measurement
function P (yt|gt), in our model μt and Σt are adaptively updated according to yt to
account for the nonlinearity on the manifold as in shown in (10).

3.2 Learning

We take a variational approach to learn the model parameters. Let θ = {(Λs, μs, As,
κs, Ψs ), C, Q̂} denote the set of model parameters. Using Jensen’s inequality,

logP (y1:T |θ) ≥ Φ =
∑
s1:T

∫
Q(g1:T , s1:T |θ) log

(
P (y1:T , g1:T , s1:T |θ)
Q(g1:T , s1:T |θ)

)
dg1:T

(18)
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We first define a proper function Q and then learn the model parameters using an
EM algorithm. Starting with the initial value θ(0), in the E-step we maximize Φ with
respect to Q(g1:T , s1:T |θ(0)). In the M-step we fix Q and update the model parameters
θ to maximize Φ. This iterative procedure continues until it reaches convergence.

In this work, we factorize Q(g1:T , s1:T |θ) into two components:

Q(g1:T , s1:T |θ) = Q(s1:T |θ)Q(g1:T |θ) (19)

ForQ(g1:T |θ), we want it to be close to P (g1:T |y1:T , θ) as possible. Let P̃ (g1:T |y1:T , θ)
denote the approximation of P (g1:T |y1:T , θ) computed by our inference algorithm dis-
cussed in Section 3.1, and set Q(g1:T |θ) = P̃ (g1:T |y1:T , θ). For Q(s1:T |θ), we further
factorize it to Q(s1:T |θ) =

∏T
t=1Q(st|θ), and define Q(st|θ) = qs,t where qs,t is a

scalar.
It follows that,

Φ =
T∑

t=1

S∑
s=1

qs,t

∫
P̃ (gt|y1:T , θ) logP (yt, gt, st|θ)dgt

+
T∑

t=2

∫
P̃ (gt, gt−1|y1:T , θ) logP (gt|gt−1)dgtdgt−1

−
T∑

t=1

S∑
s=1

qs,t log qs,t −
∫
P̃ (g1:T |y1:T , θ) log P̃ (g1:T |y1:T , θ)dg1:T (20)

Notice that in the E-step we do not compute P̃ (g1:T |y1:T , θ), but rather P̃ (gt|y1:T , θ)
and P̃ (gt, gt−1|y1:T , θ) for all t. With known P̃ (gt|y1:T , θ), the dynamic model is fac-
torized into T global coordination models at each time instance, and qs,t is:

qs,t =
exp(−Es,t)∑
s exp(−Es,t)

, Es,t =
∫
P̃ (gt|y1:T , θ) logP (yt, gt, st|θ)dgt (21)

In the M-step with known P̃ (gt|y1:T , θ) and qs,t, the model parameters are updated
as follows. Let qs =

∑
t qs,t,

P (s) = qs/
∑

s

qs (22)

κs = q−1
s

∑
t

qs,tμ
T
t (23)

μs = q−1
s

∑
t

qs,tyt (24)

Also denote ys,t = yt − μs, gs,t = μT
t − κs, Ms =

∑
t qs,tys,tg

T
s,t and Ns =∑

t qs,t[ΣT
t + gs,tg

T
s,t], we obtain the remaining model parameters in θ:

Λs = MsN
−1
s As (25)

[Ψs]i = q−1
s

∑
t

qs,t

{[
ys,t − ΛsA

−1
s gs,t

]2
i

+
[
ΛsA

−1
s ΣT

t A
−T
s ΛT

s

]
i

}
(26)

A−1
s = (I + ΛT

s Ψ
−1
s Λs)−1{AT

s qs + ΛT
s Ψ

−1
s Ms}N−1

s (27)
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As for the dynamic model, denote Dt,t−1 = ΣT
t,t−1+ (μT

t )(μT
t−1)

T and DT
t =

ΣT
t + (μT

t )(μT
t )T :

Cnew =

[
T∑

t=2

DT
t,t−1

][
T∑

t=2

DT
t−1

]−1

(28)

Q̂new =
1

T − 1

T∑
t=2

(DT
t − CnewDt,t−1) (29)

These equations bear similarities to the work by Roweis et al. [3], but at its core they
are rather different by design. In our model, the estimation of gt is conditioned on the
whole observation sequence y1:T , i.e., P̃ (gt|y1:T , θ), whereas in [3] the estimation of
gt is conditioned on a single, i.i.d. sample yt. That is, our model is developed within a
dynamic context in which temporal correlation is taken into consideration.

Note that in our algorithm, when factorizing P (y1:T , g1:T , s1:T ),

P (y1:T , g1:T , s1:T ) = P (g1)
T∏

t=2

P (gt|gt−1)
T∏

t=1

P (yt|st, gt)P (st|gt) (30)

we use joint probability P (st, gt) instead of P (st|gt). Neglecting P (gt) here makes the
model consistent with our inference procedure described in the previous section. As a

matter of fact, P (gt) has little effect on computing log
(
P (y1:T , g1:T , s1:T |)/P̃ (g1:T

|y1:T )
)

since P (gt) in P (y1:T , g1:T , s1:T ) and P̃ (g1:T |y1:T ) can be canceled out.

4 Experiments

We apply the proposed algorithm to learn nonlinear manifolds and sample dynamics
from time series for a few applications. Comparative studies are carried out to show the
merits of the proposed method that takes temporal dependence into design, thereby bet-
ter recovering the underlying manifold from time series data. More experimental results
are available on our web site (http://www.ifp.uiuc.edu/˜rlin1/dgcm.html).

4.1 Synthetic Data

We first test our algorithm with a synthetic data set generated from a 2D manifold and
embedded in a 3D space as shown in Figure 2. The data points are generated by a 2D
random walk, similar to the data set tested in [8], in a rectangle area [0, 5]× [−3, 3], and
then embedded in 3D by a mapping function f(x, y) = (x, |y|, sin(πy)(y2 + 1)−2 +
0.3y). Notice that this data set is challenging as it is difficult to estimate the neighbor-
hood structure around the neck where the manifold is folded.

The second and third columns of Figure 2 show the results using the method by
Roweis et al [3] and our algorithm. Notice that without taking the temporal informa-
tion into consideration, the random walk path on the 2D manifold cannot be recovered
correctly and thereby the 3D lifted points near the neck region are tangled together.
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Fig. 2. Synthetic data: (left column) ground truth data points generated from a random walk path
in 2D and its embedding in 3D space. (middle column ) recovered 2D manifold and its 3D lifting
using the method by Roweis et al. after 15 iterations [3]. (right column) recovered 2D manifold
and its 3D lifting using parameters after 15 iterations.

Compared to the ground truth on the first column, our method recovers the 2D man-
ifold better than the unsupervised nonlinear manifold learning algorithm without tak-
ing temporal dependence into consideration. In contrast to the semi-supervised method
presented in [8], our algorithm is able to discover the underlying 2D manifold from 3D
time series as the temporal correlation is exploited in estimating local neighborhood
structures without any supervision.

4.2 Object Tracking

We apply the proposed dynamic model to an object tracking problem based on appear-
ance. Images of an object appearance are known to be embedded on a nonlinear man-
ifold, and a sequence of observations is expected to form a smooth trajectory on the
manifold. Exploiting this strong temporal dependency, we can better track an object by
exploring the trajectory of the mapped global coordinates on the appearance manifold
from observed images. The graphical model for object tracking is shown in Figure 3
where xt is the video frame at time t, location parameters lt specifies the location of the
tracked object in xt, and gt is the global coordinates of the object’s appearance in xt.

The state vector includes the location parameters and the global coordinates of the
observed image, thereby making it ineffective to employ a simple particle filter for
tracking. However, we can factorize the posterior as:

P (lt, gt|y1:t) = P (gt|x1:t, lt)P (lt|x1:t) (31)

Using our inference algorithm (Section 3.1), P (gt|x1:t, lt) is approximated as an
Gaussian distribution. Therefore, our tracker can sample particles only on lt and model
P (gt|x1:t, lt) using an analytical distribution. That is, our tracker can use Rao-
Blackwellized particle filter (RBPF) [12] for efficient tracking.
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gt-1 gt+1gt

xt-1 xt xt+

st-1 st st+1

lt-1 lt+1lt

Fig. 3. Extension of our dynamic global coordination model for object tracking. Based on this
model, we apply Rao-Blackwellized particle filter for efficient tracking.

Fig. 4. Tracking results (left to right on each row): a target with large pose variation and moving
in close proximity of similar faces. Our algorithm is able to track the target person in different
pose, without confusing with other people.

We test our model on a face tracking experiment which undergoes large pose vari-
ations. In our tracking video, there are other faces around the target object. We first
test the video using a baseline tracker that tracks location parameters lt only, and use
a mixture of factor analyzers as the measurement function. The result shows that this
tracker might track the wrong target when the two faces are close. On the other hand,
our tracker is able to track the target well even though several similar objects appear in
close proximity because we exploit the temporal dependency in the appearance images
of the target (i.e., global coordinates). Figure 4 shows the tracking results using the
proposed method. More detail on incorporating a RBPF into our dynamic model and
experimental results are available on our web page.



254 R.-S. Lin et al.

4.3 Video Synthesis

We demonstrate merits of the proposed algorithm on a video synthesis problem. The
image sequences are taken from a database of textured motion [13] where most videos
have 170 by 115 pixel resolution and contain 120 to 150 frames. Such problem has
been referred to a dynamic texture problem where scene appearance is modeled in a
linear subspace [14]. However, scene appearance is usually complex and rarely linear. In
addition, for a short video, thus a sparse data set, temporal correlations between image
frames offer additional information to robustly learn its underlying low-dimensional
manifold.

In our experiment, we learn the nonlinear manifold of scene appearance using our
proposed algorithm by setting the system matrix C in our dynamic model to be an
identity matrix, i.e., P (gt|gt−1) = N (gt−1, Q̂). For each sequence, we model the un-
derlying scene dynamics as a continuous low-dimensional trajectory along a globally
coordinated manifold using a mixture of 20-dimensional factor analyzers. From each
learned trajectory, we then generate synthesized videos by drawing samples and map-
ping them back to the image space. Note that care needs to be taken in sampling points
along the learned trajectory to prevent drifts. Otherwise the synthesized images may not
look realistic.

Figure 5 shows the synthesized results of our method (a mixture of two factor ana-
lyzers for river sequence and a mixture of three factor analyzers for flag sequence) and

Fig. 5. Synthesized results by our method (first and third rows) and the dynamic texture algorithm
(second and fourth rows). Clearly the images synthesized by our method are significantly crisper
than the ones generated by the dynamic texture algorithm.
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the dynamic texture approach [14]. More videos and details of our sampling algorithm
can be found on our web page.

Clearly the images synthesized by our method (first and third rows) are significantly
crisper than the ones generated by the dynamic texture algorithm (second and fourth
rows). The results are not surprising as complex scene dynamics inherent in videos can
be better modeled on a globally coordinated nonlinear manifold rather than a linear
dynamic system (LDS). Although the closed-loop LDS approach [15] improves results
by [14], it also models scene appearance in a linear subspace and therefore cannot
synthesize high-quality videos of complex scenes such as our flag example.

5 Concluding Remarks

Numerous vision problems entail analyzing time series where the underlying nonlin-
ear manifold as well as strong temporal correlation among the data should be learned
and exploited. In this paper, we extend the global coordination model within a dynamic
context to learn the nonlinear manifolds and the dynamics inherent in time series data.
Positing this problem within a Bayesian framework, we present an approximate al-
gorithm for efficient inference and parameter learning. The proposed algorithm finds
numerous applications from which the merits are demonstrated. Our future work in-
cludes finding better initialization methods in learning model parameters, and applying
the proposed algorithm to other problem domains.
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Abstract. Mean shift is an iterative mode-seeking algorithm widely
used in pattern recognition and computer vision. However, its conver-
gence is sometimes too slow to be practical. In this paper, we improve
the convergence speed of mean shift by dynamically updating the sample
set during the iterations, and the resultant procedure is called dynamic
mean shift (DMS). When the data is locally Gaussian, it can be shown
that both the standard and dynamic mean shift algorithms converge
to the same optimal solution. However, while standard mean shift only
has linear convergence, the dynamic mean shift algorithm has superlin-
ear convergence. Experiments on color image segmentation show that
dynamic mean shift produces comparable results as the standard mean
shift algorithm, but can significantly reduce the number of iterations for
convergence and takes much less time.

1 Introduction

Mean shift is a nonparametric, iterative mode-seeking algorithm widely used in
pattern recognition and computer vision. It was originally derived by Fukunaga
and Hostetler [1] for nonparametric density gradient estimation, and was later
generalized by Cheng [2]. Recent years have witnessed many successful applica-
tions of mean shift in areas such as classification [3, 4], image segmentation [5, 6],
object tracking [7] and video processing [8].

In a general setting [2], there are two data sets involved in mean shift, namely,
the sample (or data) set S, and the “cluster centers” set T . In the standard
mean shift algorithm [2], T evolves iteratively by moving towards the mean, as
T ← mean(T ). Here, mean(T ) = {mean(x) : x ∈ T },

mean(x) =
∑

s∈S K(s− x)w(s)s∑
s∈S K(s− x)w(s)

,

K is the kernel and w is the weight function. The algorithm terminates when a
fixed point mean(T ) = T is reached.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 257–268, 2006.
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However, the mean shift algorithm often converges too slowly to be practical
on large-scale applications [9]. Works on improving its convergence are relatively
few. Recently, Fashing and Tomasi [10] showed that mean shift is closely related
to optimization methods, particularly Newton’s method and bound optimiza-
tion. They conjectured that information on the shape of the kernel K can be
used to tighten the bound for faster convergence. However, the difficulty is in
finding a bound which is computationally easy to maximize [10]. On a more
practical side, Yang et al. [9] proposed an improved mean shift algorithm based
on quasi-Newton methods. This leads to faster convergence. However, approxi-
mating the Hessian matrix and determining the search direction in each iteration
become more computationally expensive. Consequently, while the complexity of
the standard mean shift algorithm is only linear in the data dimensionality, that
of Yang et al. ’s method rises to cubic.

In this paper, we improve the convergence speed of the mean shift algorithm
by dynamically updating the sample set S, depending on its behavior in the it-
erations. In particular, we focus on the case where S is updated iteratively based
on the set of cluster centers T computed in the previous step. This modified pro-
cedure will be called dynamic mean shift (DMS), as opposed to the traditional,
static mean shift (SMS) algorithm. We will prove that, under certain conditions,
this procedure gradually shrinks the data set, and converges asymptotically to
the same density maximum as SMS, but with a higher convergence rate (to be
more specific, superlinear convergence instead of linear convergence). Besides,
the DMS algorithm is also very efficient in that its computational complexity is
only linear in the data dimensionality.

The rest of this paper is organized as follows. Section 2 gives a brief review
on the traditional mean shift algorithm. Section 3 then describes the dynamic
mean shift algorithm. A detailed discussion on its faster convergence properties
will be presented in Section 4. Experimental results on color image segmentation
are presented in Section 5, and the last section gives some concluding remarks.

2 Standard Mean Shift Algorithm

Let S = {x1,x2, . . . ,xn} be a set of samples in the d-dimensional space Rd.
Using kernel k, the kernel density estimator at x is given by [3]

f̂K(x) =
1
n

n∑
i=1

|Hi|−
1
2K(x − xi;Hi),

where Hi is a symmetric, positive definite d × d bandwidth matrix associated
with xi. Instead of referring to kernel K, it is often convenient to use its profile
k : [0,∞) → R defined by K(x;H) = k(x′H−1x). To emphasize its dependence
on H, we also sometimes write k(x′H−1x) as kH(x).

The mean shift vector is defined as [1, 2]

m(x) ≡ Hx ·
∑n

i=1 H−1
i xi|Hi|−

1
2 k′Hi

(x − xi)∑n
i=1 |Hi|−

1
2 k′Hi

(x − xi)
− x, (1)
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where H−1
x ≡

n
i=1 H−1

i |Hi|−
1
2 k′

Hi
(x−xi)

n
i=1 |Hi|−

1
2 k′

Hi
(x−xi)

. It can be shown that [3]:

m(x) =
c

2
Hx

∇̂fK(x)
f̂G(x)

, (2)

where f̂G(x) is the density estimator using kernel G(x;Hi) = −ck′(x′H−1
i x),

and c is a normalization constant such that G integrates to one. Equation (2)
shows that the mean shift vector m(x) points towards the direction of maximum
increase of the density. Therefore, if we initialize the cluster center set T (t) =
{y(t)

1 ,y(t)
2 , · · · ,y(t)

n } as the original sample set S, i.e., T (0) = S, then the iteration

y(t+1) = y(t) + m(y(t)), t = 0, 1, 2, . . .

can be used to locate the local maxima of the estimated density of S.
In this paper, we are particularly interested in the case where the data set

follows the normal distribution N (μ,Σ), with mean μ and covariance matrix
Σ. This is an assumption commonly used in the theoretical analysis of the mean
shift algorithm (e.g., [3]), and is expected to hold at least locally. As will be
shown in the sequel, this allows us to obtain the convergence rates explicitly for
both the standard and dynamic versions of the mean shift algorithm.

Suppose the use of the Gaussian kernel with fixed bandwidth H in the mean
shift algorithm. Under the normality assumption of the data distribution, the
estimated density f̂K will also be a Gaussian asymptotically, with mean μ and
covariance Σ + H [11]. Plug this into (2), then the mean shift vector m(x) at x
becomes (note that when K is Gaussian, we have c = 2 and K = G in (2) [3])

m(x) = H
∇̂fG(x)

f̂G(x)
= −H(H + Σ)−1(x − μ). (3)

3 The Dynamic Mean Shift Algorithm

In the standard mean shift algorithm, the data set S is fixed and only the
cluster center set T is updated. Each point in T will keep moving based on
the mean shift vector (1) at each step until it reaches a local maximum, and
then another point in T will be processed. In contrast, the dynamic mean shift
algorithm updates both S and T . In each DMS iteration, after moving all the
points in T along their mean shift vectors for one step, we then use the shifted
cluster center set T ′ to replace the data set S for the next iteration. More
formally, denote the sample set and the cluster center set at the tth iteration
by S(t) = {x(t)

1 ,x(t)
2 , . . . ,x(t)

n } and T (t) = {y(t)
1 ,y(t)

2 , . . . ,y(t)
n } respectively. They

are first initialized as T (0) = S(0) = S, the original set of samples. At the tth
iteration, we have

y(t+1)
i =

∑
x(t)

i ∈S(t) K
(
x(t)

i − y(t)
i

)
x(t)

i∑
x(t)

i ∈S(t) K
(
x(t)

i − y(t)
i

) , i = 1, 2, ..., n.
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The shifted cluster center set T (t+1) = {y(t+1)
1 ,y(t+1)

2 , . . . ,y(t+1)
n } then replaces

the sample set at the next iteration,

S(t+1) = T (t+1),

and the whole process is repeated until a fixed state S(t+1) = S(t), or equiva-
lently, T (t+1) = T (t), is reached.

In the following Sections, we study some properties of this dynamic mean
shift algorithm. As mentioned in Section 1, a key advantage of this dynamic
version over the standard one is its faster convergence. Hence, we will postpone
and dedicate its detailed discussion to Section 4.

3.1 Gradual Shrinking of the Samples

As mentioned in Section 1, we assume that the samples follow a d-dimensional
normal distribution, i.e., S = S(0) ∼ N (μ,Σ) with mean μ ∈ Rd and covari-
ance matrix Σ ∈ Rd×d. Recall that this assumption holds at least in the local
neighborhood of each sample in S. Moreover, we assume the use of a Gaussian
kernel with fixed bandwidth H (which is positive definite). Besides, the identity
matrix will be denoted I, vector/matrix transpose denoted by the superscript ′,
and the determinant of a matrix A by |A|.

Proposition 1. Assume that the sample set S(t) = {x(t)
i } at the tth iteration

follows N (μ,Σ(t)). After one dynamic mean shift iteration, the updated sample
set S(t+1) = {x(t+1)

i } still follows a normal distribution N (μ,P(t)Σ(t)(P(t))′),
where

P(t) = I − H(H + Σ(t))−1. (4)

Proof. After one iteration, sample x(t)
i will be moved, according to (3), to

x(t+1)
i = x(t)

i + m(x(t)
i ) =

(
I − H(H + Σ(t))−1

)
x(t)

i + H(H + Σ(t))−1μ

= P(t)x(t)
i + C(t), (5)

where P(t) = I−H(H + Σ(t))−1, and C(t) = H(H + Σ(t))−1μ. Hence, S(t) and
S(t+1) are related by a linear transform. Since S(t) follows N (μ,Σ(t)), S(t+1) also
follows a normal distribution with mean P(t)μ+C(t) = (I−H(H+Σ(t))−1)μ+
H(H + Σ(t))−1μ = μ and variance P(t)Σ(t)(P(t))′. �

Remark : In other words, after one dynamic mean shift iteration, the sample
mean will remain unchanged while the covariance is updated to

Σ(t+1) = P(t)Σ(t)(P(t))′. (6)

Moreover, as the original data set S is assumed to be a Gaussian, all the S(t)’s
will also remain as Gaussians.

Before a detailed study on how the covariance Σ(t) of the sample set S(t)

evolves in the DMS iterations, we first introduce two useful lemmas.
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Lemma 1. Given two symmetric, positive semi-definite matrices A and B, all
the eigenvalues of C = AB are non-negative.

Proof. Let the eigen-decompositions of A and B be A = Q1Λ1Q′
1, B = Q2Λ2Q′

2,
where the columns of Q1 and Q2 contain the eigenvectors of A and B, re-
spectively, and the diagonal matrices Λ1 and Λ2 contain their correspond-
ing eigenvalues. Let Q = Q′

1Q2 (which is orthonormal) and M = Q′
1CQ1,

then M = Q′
1Q1Λ1Q′

1Q2Λ2Q′
2Q1 = Λ1N, where N = QΛ2Q′ is positive

semi-definite. Let λ be an eigenvalue of M, i.e., Mv = λv. Note that M and
N ≡ Λ

1/2
1 NΛ

1/2
1 share the same eigenvalues as Mv = λv ⇒ Λ1Nv =

λv ⇒ (Λ1/2
1 NΛ

1/2
1 )(Λ−1/2

1 v) = λ(Λ−1/2
1 v), and M also has the same eigen-

values with C, therefore C must have the same eigenvalues with N. Moreover,
v′Nv = v′Λ

1/2
1 NΛ

1/2
1 v = (Λ1/2

1 v)′N(Λ1/2
1 v) ≥ 0 for all v’s as N is positive

semi-definite. Therefore, N is positive semi-definite, and all its eigenvalues will
be non-negative. So all the eigenvalues of C must be non-negative, too. �

Lemma 2. For the P(t) defined in (4), |P(t)| < 1 for all t.

Proof. From (4),

P(t) = I −
(
(H + Σ(t))H−1

)−1
= I−

(
I + Σ(t)H−1

)−1
. (7)

Let the eigen-decomposition of Σ(t)H−1 be

Σ(t)H−1 = U(t)Λ(t)(U(t))−1, (8)

where the columns of U(t) contain the eigenvectors of Σ(t)H−1, and Λ(t) =
diag(λ1, λ2, . . . , λd) contains its eigenvalues. Then P(t) can be decomposed as
(after some simplifications)

P(t) = I − (I + Σ(t)H−1)−1 = U(t)
(
I − (I + Λ(t))−1

)
(U(t))−1,

and its determinant can be written as

|P(t)| = |I − (I + Λ(t))−1| =
∣∣∣∣diag

(
λ1

1 + λ1
,

λ2

1 + λ2
, · · · , λd

1 + λd

)∣∣∣∣ (9)

Note that both Σ(t) and H (and hence H−1) are symmetric, positive semi-
definite. Therefore, using Lemma 1, the eigenvalues of Σ(t)H−1 must all be
non-negative, i.e., λi ≥ 0. Hence, except for the meaningless case where all λi’s
are zero, we always have |P(t)| < 1 according to (9). �

Proposition 2. |Σ(t)| decreases with t, and limt→∞ |Σ(t)| = limt→∞ |P(t)| = 0.

Proof. From (6), |Σ(t)| = |Σ(t−1)| · |P(t−1)|2. Since |P(t)| < 1 by Lemma 2, |Σ(t)|
will decrease with t. Suppose |P(τ)| = max

0≤τ≤t−1
|P(t)|. Note that |P(t)| < 1 for all

t ≥ 0, therefore |P(τ)| < 1. So we have
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|Σ(t)| = |Σ(0)| ·
t−1∏
j=0

|P(j)|2 < |Σ(0)| ·
t−1∏
j=0

|P(τ)|2 = |Σ(0)| · |P(τ)|2t → 0,

as t→ ∞. Using (8), we have |Λ(t)| = |Σ(t)H−1| = |Σ(t)|/|H|. Therefore,

lim
t→∞

|Λ(t)| = lim
t→∞

|Σ(t)H−1| = 0, (10)

and all the eigenvalues (λis) of ΣH−1 will also approach zero. Substituting this
into (9), we then have lim

t→∞
|P(t)| = 0. �

Remark : Note that |Σ(t)| can be used as a measure of the spread of the sample
set S(t) at the tth iteration. Hence, Proposition 2 implies that S(t) gradually
shrinks, and the amount of shrinkage is determined by |P(t)|.

Due to the data shrinkage, a fixed-bandwidth kernel will cover more and
more samples in S(t) as the algorithm proceeds. In other words, using a fixed
bandwidth here achieves the same effect as using a variable bandwidth in the
standard mean shift algorithm on the original sample set S. Note that the use
of variable bandwidth is often superior to the fixed bandwidth case [5].

On the other hand, as the amount of data shrinkage can differ significantly
along different directions, this can lead to both very small and very large variance
components. This can be problematic if the local covariance matrix of S(t) is
chosen as the bandwidth, as its inverse may be badly scaled. To avoid this
numerical problem, one can simply replace the very small eigenvalues of the
local covariance matrix by some small number.

3.2 Stopping Rule

The data shrinking behavior discussed in Section 3.1 also allows the design of
more efficient stopping rules. As the samples x(t)

i ’s move closer and closer towards
the density peaks, so once a group of samples have converged inside a small
window, they will converge to one point in the following iterations. From the
clustering point of view, we will then have enough information to decide their
class labels (as these samples must belong to the same class), and so the iterations
for these samples can be stopped early. By removing these converged clusters,
computations involved in the dynamic mean shift algorithm can be reduced. In
comparison, the stopping criterion in standard mean shift is often based on the
step length. Since samples usually move very slowly near the density peaks in the
standard mean shift algorithm [6], our stopping rule can be much more effective.

3.3 Time Complexity

The complexities of both the standard and dynamic mean shift algorithms are
O(dsN2), where d is the data dimensionality, s is the number of iterations re-
quired for convergence, and N is the number of samples. As will be shown in
Section 4.2, DMS has superlinear convergence while SMS only has linear conver-
gence. Hence, the number of iterations (s) required by DMS is typically much
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smaller than that by SMS. Moreover, the stopping rule discussed in Section 3.2
allows samples to be thrown away early near the end of the DMS iteration
process. Thus, the number of samples (n) “actively” involved in the remaining
computations gradually decreases, which further reduces the time complexity of
the DMS algorithm.

One may be concerned that DMS has to move all the samples in order to update
the data distribution, and this could be less efficient than the mean shift algorithm
that only moves a group of selected samples [12]. Indeed, the dynamic updating of
the sample distribution in DMS can be realized as well by only moving a small set
of “representative” samples. By decomposing the data set into disjoint, spatially
local subsets Z1, Z2, . . . , Zm, one can model the density at each local subset Zi by
a single Gaussian ni

n N (μi, h
2I), where ni and μi are the size and mean of subset

Zi respectively, and h is the bandwidth of the kernel used in the density estimator
[13]. The whole density distribution can then be modeled as a combination of
these Gaussians n1

n N (μ1, h
2I), n2

n N (μ2, h
2I), . . . , nm

n N (μm, h
2I). In this variant

of the DMS, we only have to shift the representatives μi’s, whose movement leads
to the update of the corresponding Gaussians Nis, and hence the whole density
function.

4 Convergence Properties of Dynamic Mean Shift

In Section 4.1, we will first show that both the original and dynamic mean shift
algorithms converge asymptotically to the same optimal solution, when the data
is locally Gaussian. We will then show in Section 4.2 that the dynamic mean
shift algorithm has superlinear (and thus faster) convergence while the standard
version only has linear convergence.

4.1 Asymptotic Convergence of Dynamic Mean Shift

In the following, we assume, as in Section 3.1, that the samples follow the
d-dimensional normal distribution N (μ,Σ). This holds at least in the local
neighborhood of each sample in S. We then have the following property:

Proposition 3. The dynamic mean shift procedure converges asymptotically to
the mean μ.

Proof. Using (3) and (7), we have

m(x(t)) = −H(H + Σ(t))−1(x(t) − μ(t)) = −(I + Σ(t)H−1)−1(x(t) − μ(t)).

Moreover, from (10) in Proposition 2, we have lim
t→∞

|Σ(t)H−1| = 0. Therefore

lim
t→∞

m(x(t)) = −(x(t) − μ). Since μ(t) = μ by Proposition 1, one mean shift

iteration will ultimately move all x(t)’s to x(t) + m(x(t)) = μ, the mean of the
original Gaussian. �

Remark : It is well-known that standard mean shift will find the mode of the
underlying density, which is μ in this case. Thus, both standard and dynamic
mean shift converge to the same optimal solution asymptotically.
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4.2 Convergence Rates

In this Section, we will show that DMS converges faster than the standard mean
shift algorithm. But first, we will provide additional insight on the convergence
of standard mean shift by the following 1-D example. Suppose that the data
set is the 1-D Gaussian N (μ, σ2), the bandwidth of the Gaussian kernel is h2,
and that the iteration starts from x(0). Using (3), m(x(0)) = −ρ(x(0) −μ) where
ρ = h2

h2+σ2 . Then x(0) will be shifted to x(1) = x(0) +m(x(0)) = x(0)−ρ(x(0)−μ).
At the next iteration, the mean shift vector becomes m(x(1)) = −ρ(x(1) − μ) =
−ρ(1 − ρ)(x(0) − μ), and x(1) is shifted to x(2) = x(1) + m(x(1)), and so on. It
is easy to show by induction that the mean shift vector is of the form m(t) =
m(x(t)) = −ρ(1−ρ)t(x(0)−μ). Note that {|m(t)|}t=1,2,··· is a geometric sequence
that decreases monotonically, indicating slower and slower convergence. This is
illustrated in Figure 1, where we set μ = 0, σ = 1, h = 0.1, and x(0) = 3. As
can be seen, the step length indeed decreases monotonically. The corresponding
step lengths for the dynamic mean shift algorithm are also shown in Figure 1.
Note that not only is its step length usually much larger than that for standard
mean shift, but it actually increases at the first few iterations.

In the following, we compare the convergence rates of DMS and SMS. In
the optimization literature, convergence can be measured by how rapidly the
iterates z(t) converge in a neighborhood of the (local) optimum z∗. If the error
e(t) = z(t)−z∗ behaves according to ‖e(t+1)‖2/‖e(t)‖p

2 → c, where c > 0 and ‖·‖2
denotes the (vector) two-norm, then the order of convergence is defined to be pth
order [14]. In particular, if p = 1, we have first order or linear convergence. Note
that linear convergence can be equivalently defined as ‖e(t+1)‖2/‖e(t)‖2 ≤ c.
Faster convergence can be obtained if the local rate constant c tends to zero,
i.e., ‖e(t+1)‖2/‖e(t)‖2 → 0. This is also known as superlinear convergence.

As in previous sections, we will again focus on the case when the samples are
normally distributed as N (μ,Σ). Recall that Section 4.1 has shown that both
DMS and SMS converge to the mean μ, and hence the optimum z∗ = μ here.
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Fig. 1. Step lengths taken by DMS and SMS on a 1-D data set. Note that DMS
converges in only 10 iterations.
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Theorem 1. SMS converges linearly, while DMS converges superlinearly.

Proof. At the tth iteration, both DMS and SMS shift the current x(t) to x(t+1) =
x(t) + m(x(t)). Using (3), we have

x(t+1) − x∗ = (x(t) − μ) − H(H + Σ)−1(x(t) − μ) = P(t)(x(t) − μ),

with P(t) defined in (4). Hence,

‖x(t+1) − μ‖2

‖x(t) − μ‖2
=

∥∥P(t)(x(t) − μ)
∥∥

2∥∥x(t) − μ
∥∥

2

≤ ‖P(t)‖2,

by definition of the matrix two-norm1 of P(t) [15]. In SMS, the sample set S keeps
unchanged. Therefore P(t)’s are all fixed at P = I−H(H+Σ)−1, implying linear
convergence for SMS. For DMS, we have limt→∞ |P(t)| → 0 by Proposition 2, so
all its eigenvalues will approach 0. Since ‖P(t)‖2 is the maximum singular value
of P(t), therefore ‖P(t)‖2 → 0, i.e., DMS converges superlinearly. �

Here, we give an illustration on the numbers of iterations required for conver-
gence in SMS and DMS. The data set follows the 1-D Gaussian N (0, 1), and
the bandwidth is chosen as h = 0.5. Figure 2(a) shows the number of itera-
tions N(x) when starting at different initial positions x’s. As can be seen, DMS
requires much fewer iterations than the standard mean shift algorithm. More-
over, since we know that the data set follows a normal distribution, we can also
compute the average number of iterations by integrating N(x) w.r.t. the (nor-
mal) density G(x). Figure 2(b) plots the density-weighted number of iterations
N(x)G(x). The average number of iterations required by DMS is calculated to
be roughly 70% less than that for SMS.
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Fig. 2. Number of iterations required for convergence when starting the standard /
dynamic mean shift algorithm at different positions

We now investigate the effect of the bandwidth on the number of iterations
required for convergence. Again, we use the same 1-D data set that follows

1 The matrix two-norm of a matrix A is defined as ‖A‖2 = maxx�=0
‖Ax‖2
‖x‖2

. It is

also equal to the maximum singular value of A.
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Fig. 3. The average number of iterations for convergence at various values of h2/σ2

N (0, 1). As can be seen from Figure 3, DMS needs much fewer iterations than
SMS when h2/σ2 varies from 0.1 to 2. In practice, h2/σ2 should be reasonably
small, or else serious misclassifications may occur near the class boundaries.

5 Image Segmentation Experiments

In this Section, we compare the performance of dynamic and standard mean
shift algorithms for color image segmentation. The segments are obtained by

Fig. 4. Segmentation results using SMS and DMS algorithms. Top: Original images;
Middle: SMS segmentation results; Bottom: DMS segmentation results.
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Table 1. Total wall time (in seconds) and the average number of iterations on the
various image segmentation tasks

SMS DMS
image size time # iterations time # iterations

plane 321×481 2.62 15.79 1.84 11.86
eagle 321×481 10.03 21.78 4.77 10.79
house 192×255 12.65 20.40 6.43 10.84

clustering in the RGB feature space. The sample size, which is equal to the
number of pixels in the image, can be very large (in the order of 100,000).
Hence, instead of using/moving all the samples in the mean shift iterations,
we only use a set of “representative” samples. As discussed in Section 3.3, the
whole data set is first divided into m local subsets, each of them is modeled by
a Gaussian γiN (ui, h

2
i I). This step can be performed efficiently. Moreover, the

number of clusters,m, is much smaller than the sample size. Only these m cluster
means, each weighted by the γi, are used in the DMS and SMS algorithms. In
the experiment, we use the Gaussian kernel with bandwidth h2I (h = 12). All
codes are written in VC++ and run on a 2.26GHz Pentium-III PC.

Figure 4 shows the segmentation results, and Table 1 shows the total wall
time (from finding the local cluster representatives to mean shift clustering) and
the number of iterations (averaged over all the cluster representatives). One can
see that DMS obtains comparable segmentation results as SMS, but converges
in much fewer iterations and takes much less time.

6 Conclusions

In this paper, we extend the mean shift algorithm by dynamically updating
the set of samples during the iterations. This has the interesting property of
gradually shrinking the sample set, and allows a fixed bandwidth procedure to
achieve the same effect as variable bandwidth mean shift. More importantly, it
allows faster convergence both in theory and practice. When the data is locally
Gaussian, it is shown that dynamic mean shift converges to the same optimal
solution as the standard version, but while standard mean shift can only converge
linearly, the dynamic mean shift algorithm converges superlinearly. Experiments
on color image segmentation show that dynamic mean shift produces comparable
results as the standard mean shift approach, but the number of iterations and
the elapsed time are both reduced by half.
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Abstract. Belief propagation (BP) has become widely used for low-level
vision problems and various inference techniques have been proposed for
loopy graphs. These methods typically rely on ad hoc spatial priors such
as the Potts model. In this paper we investigate the use of learned mod-
els of image structure, and demonstrate the improvements obtained over
previous ad hoc models for the image denoising problem. In particu-
lar, we show how both pairwise and higher-order Markov random fields
with learned clique potentials capture rich image structures that bet-
ter represent the properties of natural images. These models are learned
using the recently proposed Fields-of-Experts framework. For such mod-
els, however, traditional BP is computationally expensive. Consequently
we propose some approximation methods that make BP with learned
potentials practical. In the case of pairwise models we propose a novel
approximation of robust potentials using a finite family of quadratics. In
the case of higher order MRFs, with 2 × 2 cliques, we use an adaptive
state space to handle the increased complexity. Extensive experiments
demonstrate the power of learned models, the benefits of higher-order
MRFs and the practicality of BP for these problems with the use of
simple principled approximations.

1 Introduction

There are two current threads of research that are modernizing Markov random
fields (MRFs) for machine vision. The first involves new algorithms based on
belief propagation (BP) and graph cuts for performing approximate probabilistic
(e. g., maximum a posteriori) inference on MRFs [1, 2, 3, 4, 5, 6]. These methods
have extended the usefulness of MRFs by making inference tractable, but have
often relied on ad hoc or hand-tuned models of spatial image structure with a
limited spatial neighborhood structure (e. g., pairwise models). Such approaches
have lacked the representational power needed to capture the rich statistics of
natural scenes. The second line of research involves improving the expressive
power of MRFs with higher-order models that are learned from data [7, 8, 9].
These approaches better capture the rich statistics of the natural world and
� The first two authors contributed equally to this work, authorship order was deter-

mined randomly.
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provide a principled way of learning the model. Our goal is to combine these two
lines of research to provide efficient algorithms for inference with rich, higher-
order MRFs.

To that end we develop a series of principled approximations to the learned
MRF models and to belief propagation. Throughout the paper we develop and
test our solutions in the context of image denoising to illustrate the power of
learned MRFs and the applicability of BP to these models. In particular, we
exploit the recently proposed Field-of-Experts (FoE) model for learning MRFs
from example data [9]. We start with the case of pairwise MRFs, where pre-
vious work on efficient inference schemes has relied on ad hoc potentials such
as the Potts model [1] or the truncated quadratic [4]. While the FoE models
exploit robust potentials that better match the image statistics, these potentials
do not readily admit efficient inference. We develop an approximation method
that, for a pairwise MRF, represents such robust potentials as a finite family
of quadratics. With such a representation, the distance transform method of [4]
can be employed for efficient inference. We apply the method to image denois-
ing and find that the resulting algorithm is several times faster than regular
BP, achieves a lower energy state, and is considerably more accurate than the
ad hoc model proposed in [4]. We also note that in loopy graphs such as this,
convergence of BP depends on the message passing scheme employed. We show
that a randomized scheme helps achieve a lower energy state than synchronous
updates.

It is often observed that maximum a posteriori (MAP) estimates using MRF
models produce piecewise constant results. This is true in the case of pair-
wise cliques where the potential function is robust (i. e., it downweights out-
liers). Such results are due to the representational weakness of pairwise models,
which are too local to capture the richness of natural image statistics. To al-
leviate these effects we use the FoE framework to learn higher-order models
of images; in particular we learn an MRF with 2 × 2 cliques. While such a
model produces much more natural results that are no longer piecewise con-
stant, inference becomes much harder. Applying standard BP to MRFs with
2 × 2 cliques requires O(N4) operations to compute each message, where N
is the number of labels for each pixel. In case of image denoising, N = 256
making traditional BP algorithms impractical. Consequently we propose an ap-
proximate BP algorithm that uses an adaptive state space to reduce the number
of states for each pixel, as well as a further state quantization that speeds up
the message computations. Despite this approximation, the learned higher-order
model outperforms learned pairwise MRF models, both visually and quantita-
tively.

In the following sections we introduce Markov random fields and loopy belief
propagation along with our proposed approximations. We will review the related
work in the context of our methods and their applicability. We present the results
of experiments on image denoising that compare different MRF models as well
as different BP methods.
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2 Learning Markov Random Field Models of Images

In this paper we use two different types of Markov random fields to model the
prior probability of images: pairwise MRFs and higher-order MRFs with larger,
square-shaped cliques. The pairwise MRFs employed here are very similar to
models that have been popular for a long time [10]; the higher-order MRFs
follow the recently proposed Fields-of-Experts (FoE) approach [9]. Richer models
of natural images have also been proposed on the basis of MRFs with multiple
pairwise pixel interactions [11, 12]. We are not following this approach here, but
a comparison of the benefits of these approaches deserves further study.

We assume that pixels in an image are represented as nodes V in a graph
G = (V,E). In the pairwise case, the set of edges E connects all nodes that
are either horizontal or vertical neighbors. In the higher-order case, the set of
edges fully connects all nodes in all possible square m ×m image regions. The
probability of an image x under such a Markov random field can be written as
a product over all the maximal cliques C:

p(x) =
1
Z

∏
C

Ψ(xC), (1)

where xC is the image region corresponding to clique C, Ψ is a positive potential
function, and Z is a normalization term.

In the pairwise case, the potentials are typically defined as a function of
the grayvalue difference of the two neighboring pixels. The grayvalue difference
can be interpreted as a local approximation of the horizontal or vertical image
gradient. The MRF model penalizes large gradients and so models the fact that
images are often locally smooth. In the natural image statistics literature it has
been observed that the marginal distribution of the image gradient is highly
kurtotic [13]; marginal gradient histograms show substantial probability mass
in the tails. This results from the fact that images occasionally show significant
jumps in intensity that for example arise from object boundaries. In order to
model this behavior, the pairwise MRF we use here relies on robust potentials
based on Student t-distributions, which resemble the marginal statistics of the
image gradient. If xC,1 and xC,2 are the two pixels for the pairwise clique xC ,
then we use the potential

Ψpw(xC) =

(
1 +

1
2

(
xC,1 − xC,2

σ

)2
)−α

. (2)

We will learn two separate parameter sets (σH, αH) and (σV, αV) for horizontal
and vertical edges respectively, yielding a pairwise image prior ppw(x).

The Fields-of-Experts framework [9] used in the higher-order MRF case mod-
els the clique potentials using a so-called Product of Experts (PoE) [14]. The idea
behind the PoE is to model complex distributions as the product of several sim-
pler expert distributions that each work on a low-dimensional subspace, in this
case a linear 1D subspace. In the context of images, these linear 1D subspaces
can be interpreted as linear filters Ji applied to the image patch xC .
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It has been observed that, for a wide variety of linear filters, the statistics of
the filter responses are highly kurtotic[13]. Consequently, following [9] we take
the experts to be Student t-distributions. Assuming that we use K experts, we
can write the prior probability of an image under the FoE model as

pm×m(x) =
1
Z

∏
C

K∏
i=1

φ(JT
i xC ;αi), (3)

where φ is an unnormalized t-distribution with parameter αi:

φ(JT
i xC ;αi) =

(
1 +

1
2
(JT

i xC)2
)−αi

. (4)

Following [9], we trained both types of MRF models using a database of
natural images [15]. In the case of the pairwise model we learn the parameters
αH, αV, σH, and σV, while in the FoE case we learn the filters Ji as well as
the expert parameters αi. To make belief propagation inference tractable as
detailed in Section 3, we restrict ourselves to 2 × 2 models and use 3 experts.
We randomly cropped 2000 patches of 9 × 9 pixels out of the training database
and found suitable parameters by (approximately) maximizing the likelihood of
the data. The learning algorithm is based on stochastic gradient ascent, and
uses the idea of contrastive divergence [16] to make it more efficient. Since the
proposed pairwise MRF can be treated as special case of the FoE model, they
can both be trained in essentially the same way. The learning procedure follows
the description in [9], to which we refer the reader for more details.

3 Efficient Belief Propagation

Many low-level vision problems can be posed as problems of Bayesian inference,
and can be described in the following common framework: Given some observed
image I, the goal is to estimate a hidden state x according to a posterior dis-
tribution p(x | I). The hidden state may, for example, correspond to a smoothed
image in the case of image denoising, or to a dense disparity map in the case of
stereo (where I in fact represents two images). Here a set of discrete labels is used
to represent the state of each hidden variable. The posterior distribution of the
hidden state x given the input image I is modeled as p(x | I) = 1/Z ·p(I |x)·p(x),
where p(I |x) is the likelihood of the observed image given a hidden labeling and
p(x) is the prior probability over labelings. Rather than relying on ad hoc spatial
priors, we use the learned priors introduced above, a pairwise prior ppw(x) and
a higher-order prior p2x2(x). Because the normalization term Z is unknown and
intractable to compute in general, we will sometimes refer to the energy E(x; I)
of a labeling x; that is, the unnormalized log-posterior. The energy is related
to the posterior distribution through p(x | I) = 1/Z · exp {−E(x; I)}. Note that
maximizing the posterior probability is equivalent to minimizing the energy.

There are two basic ways of estimating this labeling, one of which is to com-
pute the expectation of the posterior p(x | I) and the other is to compute the



Efficient Belief Propagation with Learned Higher-Order MRFs 273

maximum (i. e., the MAP estimate). We consider both of these problems here,
but use the former as a running example for discussing the proposed algorithms.
In general finding exact solutions to these estimation problems is hard for loopy
graphs, but approximation approaches based on graph cuts [1, 3, 17, 18] and loopy
belief propagation [6, 18, 19] have been found to often work well in practice. The
focus of this paper is the family of loopy belief propagation algorithms. In order
to apply them to Bayesian inference problems, the posterior must factor into
products over relatively small numbers of variables in order to be computation-
ally feasible. In particular it is customary to require that the prior factor into a
product of functions Ψh over small subsets of nodes Ch (cliques in the underlying
hidden layer) and the likelihood factors into a product of functions Ψo over small
subsets of nodes Co (often individual nodes, e. g., in image denoising),

p(x | I) =
1
Z

∏
Co

Ψo(xCo ; I)
∏
Ch

Ψh(xCh
), (5)

where xCo corresponds to the cliques of the likelihood and xCh
corresponds to the

cliques of the spatial prior. In the description of the message passing algorithm
below, we will handle both types of cliques and potentials in a unified way, i. e.,
p(x | I) = 1/Z ·

∏
C ΨC(xC ; I).

Both pairwise and higher-order models can be considered in a common frame-
work using factor graphs [19]. A factor graph is a bipartite graph with edges
connecting two kinds of nodes, variable nodes and factor nodes. A variable node
corresponds to an individual random variable xi, while a factor node corresponds
to a subset (clique) of random variables xC , whose potential function ΨC(xC ; I)
is a specific term in the factorized form of the posterior distribution. Edges in
the factor graph connect each factor node to those variables that are involved
in its potential function. For models defined on the image grid, the xi and the
associated variable nodes can be seen as corresponding to image pixels, and the
xC and the associated factor nodes correspond to local neighborhoods (cliques)
in the image. See Figure 3 for examples of factor graph representations for a
pairwise MRF and a 2× 2 MRF on an image grid. These graphical illustrations
include nodes corresponding to the observed data at each pixel.

Belief propagation operates by passing messages between nodes until conver-
gence (which is generally not guaranteed but is usually observed in practice). All
message entries are usually initialized to the same value to represent an unin-
formative prior. We now turn to the message update rules for the sum-product
BP algorithm on a factor graph [6, 19], in which case each iteration contains two
types of message updates.

For the first type of message, a variable node i sends a message ni→C(xi) to
a neighboring factor node C. To do so it computes the product of the messages
received from its other neighboring factor nodes,

ni→C(xi) =
∏

C′∈N (i)\C

mC′→i(xi), (6)

where N (i) \ C denotes the neighboring factor nodes of i other than C.
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(a) (b) (c)

Fig. 1. (a) Factor graph structure of an image prior with 2 × 2 cliques. Red circles
correspond to variable nodes (image pixels) and black squares correspond to factor
nodes (cliques representing local neighborhood). (b) Message passing from a variable
node to a factor node (cf. Eq. (6)). (c) Message passing from a factor node to a variable
node (cf. Eq. (7)).

For the second type of message, a factor node C sends a message mC→i to
a neighboring variable node i. To do so it assembles all the messages received
from its other neighboring variable nodes weighted with its associated potential
function ΨC(xC ; I),

mC→i(xi) =
∑

xC\xi

ΨC(xC ; I)
∏

i′∈N (C)\i

ni′→C(xi′ ), (7)

where xC \xi denotes the variables of xC other than xi. That is, xC is the cross
product space of a set of random variables and the summation is done over all
the variables of that cross product space except xi. Recall that ΨC(xC ; I) is the
clique potential for clique C in Eq. (5).

We should note that in the pairwise case this factor graph approach results in
the same calculations as the loopy belief propagation algorithms on a 4-connected
grid that have recently been used by a number of researchers in computer vision
(e.g., [4, 5, 20]).

These message updates are iterated until an equilibrium point is reached, at
which point the belief of each individual variable node can be computed as

bi(xi) =
∏

C∈N (i)

mC→i(xi). (8)

Taking the belief as an approximation of the marginal posterior probability, we
can then estimate a state for each variable node by taking its expected value.

The sum-product technique that we have presented here approximates the
marginal posterior probabilities of the variable nodes. In contrast, the max-
product technique is used to approximately compute the MAP estimate. The
main differences are the replacement of sums by maximizations in the mes-
sage update equations, and the replacement of expectation by maximization to
compute a final label for each variable node. The max-product formulation has
often been used for pixel labeling problems such as stereo and image denoising,
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whereas the sum-product formulation may be more appropriate to interpolation
problems where non-integer solutions may be desired.

The running time for either the sum-product or max-product BP algorithm
on a factor graph is O(MNk), where M is the number of image pixels, N is
the number of possible labels for each pixel, and k is the maximum clique size.
For problems like image denoising with N = 256 labels corresponding to image
intensities, the computational cost is very large. In the next two subsections, we
introduce simple but effective techniques to speed up BP algorithms for learned
potentials of pairwise and 2 × 2 MRFs.

3.1 Pairwise MRFs

Standard belief propagation on a 4-connected grid for pairwise MRFs is in gen-
eral still a computationally demanding task, because it requires O(M ·N2) steps.
It has recently been shown [4] that max-product belief propagation can be car-
ried out more efficiently for pairwise MRFs with certain kinds of potentials by
exploiting a distance transform technique. In these cases, the time complex-
ity is linear rather than quadratic in the number of labels, i. e., O(MN). In
particular, if the negative log of the pairwise potentials can be expressed as
the lower envelope of (possibly truncated) quadratic or absolute value functions
of the pairwise pixel difference then the distance transform technique can be
applied.

We extend this work here by applying the distance transform technique to
MRFs where the potentials have been learned from data. To that end, we ex-
ploit the fact that a large set of robust error functions can be written as the
infimum over a family of quadratics as shown by Black and Rangarajan [21]. As
discussed earlier, we model the pairwise potentials using Student-t distributions
(see Eq. (2)). The t-distribution has the corresponding robust error function
ρ(y) = α log

(
1 + 1

2

(
y
σ

)2), where y is the grayvalue difference between neigh-
boring pixels. A derivation similar to the one in [21] reveals that this robust
function can be written as ρ(y) = infz E(y, z) with

E(y, z) =
y2

2σ2 z + z − α+ α log
α

z
, (9)

which is a quadratic function in y and where z is an “outlier process”. Instead
of writing the negative log of the potential as the infimum over all possible z
values in the range [0, α], we approximate it as the minimum (lower envelope)
over a fixed, discrete set of z values. Given a fixed number k of quadratics,
we find a good approximation by a simple local optimization of the Kullback-
Leibler divergence between the learned t-distribution and the probability density
corresponding to the lower envelope of the quadratics. We compute the KL di-
vergence using a discrete histogram with range [−255, 255] and 10 bins per gray
level. To improve numerical stability we modify the log of the z values and up-
per bound the z values with a simple penalty function so that z ≤ α. Figure 2
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Fig. 2. Approximation of the negative log of a Student-t distribution as the lower
envelope of 8 quadratics. (left) Full grayvalue range [−255, 255]. (right) Detail of the
same approximation over the range [−10, 10].

shows how the negative log of a t-distribution is approximated with 8 quadratics.
In the experimental results section, we compare these approximations using 4
and 8 quadratics (using the efficient linear-time distance transform algorithm)
with the actual t-distribution (using the conventional quadratic-time algorithm).
For details of the distance transform method the reader is referred to [4].

3.2 Higher-Order MRFs

Our experiments show that pairwise models as just described suffer from the
problem that the optimal solution is piecewise constant (see Figure 4). To over-
come this problem, we have to move to using higher-order MRF priors as intro-
duced in Section 2 and illustrated in Figure 1(a). Unfortunately, applying the
factor graph belief propagation algorithm directly is infeasible for such models.
For m×m maximal cliques the summation (or maximization in the max-product
case) in Eq. (7) is taken over Nm·m−1 terms, which is prohibitively expensive
even in the 2 × 2 case with N = 256 labels.

In order to alleviate this problem, we devised a simple, but effective adaptive
state space procedure. In many applications, we can fairly reliably estimate a
grayvalue range for each pixel that will contain the optimal solution as well as
most of the probability mass of the belief. To determine the working range for
denoising problems, we find the minimal and maximal grayvalue in a 3×3 search
window around each pixel. To avoid overestimating the range in the presence
of noise, we preprocess the image for the range determination step with a very
small amount of Gaussian smoothing (σ = 0.7); denoising is carried out on the
original image. When performing the sum-product or max-product operation
for a specific pixel i within a factor node C with size 2 × 2 (see Eq. (7)), we
discretize the label set for the other 3 member pixels into h bins over that range,
and only consider those h3 different combinations. Furthermore, we can reduce
the computation time for the message updates from Eq. (6) and Eq. (7) by
restricting them to the determined range. By using this adaptively quantized
state space, the time complexity of BP for a 2 × 2 MRF model decreases to
O(M ·N · h3).
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Fig. 3. Graphical model structure for image reconstruction. The round nodes represent
observed (blue) and hidden (light red) variables; the square nodes are the factor nodes
indicating the clique structure. (left) Pairwise Markov random field for image denoising.
(right) Field-of-Experts model for denoising with 2 × 2 cliques in the prior.

4 Belief Propagation and Image Denoising

To focus on the effects of the different models and our approximations we choose
an inference problem with a simple likelihood term: image denoising with known
additive noise. As it is common in the denoising literature (e. g., [22]) we assume
that images have been contaminated with artificial i. i. d. Gaussian noise, which
also facilitates quantitative evaluation. We furthermore assume that the standard
deviation σ is known; we use σ = 10 and σ = 20 here. We can thus write the
likelihood of noisy image I given the true image x as

p(I |x) ∝
M∏

j=1

e−
(xj −Ij)2

2σ2 . (10)

When we combine the Gaussian likelihood with the pairwise prior ppw(x), the
posterior distribution has the form of a pairwise Markov random field, where each
observed pixel Ij is connected to a hidden, true pixel xj , and the hidden pixels
are all connected to their horizontal and vertical neighbors. When combined with
the 2×2 prior, 2×2 patches of hidden variables are connected with a single factor
node, while the observed pixels Ij are still connected to their hidden counterparts
xj . Figure 3 illustrates these two structures.

For quantitative evaluation we use a set of 10 images from the test set of
the Berkeley segmentation dataset [15]. The images are reduced to half their
original size for efficiency reasons, and only the luminance channel is used. The
denoising performance is measured using the peak signal-to-noise ratio (PSNR)
averaged over all 10 images (PSNR = 20 log10(255/σe), where σe is the standard
deviation of the reconstruction error), as well as a perceptually-based image
similarity metric SSIM [23].

Learned pairwise models. We first compared the learned pairwise MRF to the
hand-defined MRF model from [4], which uses truncated quadratic potentials.
In both cases, the denoised image is computed with max-product belief propa-
gation using 20 iterations (equivalently implemented as the min-sum algorithm).
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Table 1. Average denoising performance of various inference techniques and models
on 10 test images

pairwise MRF
Model from [4] t-dist. 8 quad. 2 × 2 MRF

max-pr. max-pr. max-pr. max-pr. sum-pr.

σ = 10 PSNR 21.98dB 30.73dB 29.56dB 30.89dB 30.42dB

SSIM [23] 0.772 0.876 0.844 0.881 0.876

σ = 20 PSNR 20.82dB 26.66dB 25.92dB 26.85dB 27.29dB
SSIM 0.630 0.754 0.711 0.755 0.772

On a 3GHz Xeon, one BP iteration on a 256 × 256 image takes about 30 sec-
onds. We find that the model proposed here substantially outperforms the model
from [4] using the suggested parameters, both visually and quantitatively. As de-
tailed in Table 1, the PSNR of the learned model is better by more than 5dB.
Figure 4 shows one of the 10 test images, in which we can see that the denoising
results from the learned model show characteristic piecewise constant patches,
whereas the results from the hand-defined model are overly smooth in many
places. Even though the performance of the truncated quadratic model could
potentially be increased by hand-tuning its parameters, we refrained from doing
so to demonstrate how learned MRFs can lead to competitive denoising results
without requiring any manual parameter tuning. Nevertheless, we should note
that BP inference is several times slower in the learned MRF case.

Random message updates. Based on our observation that the beliefs would not
converge in case of the learned model and synchronous message updates (even
though the energy seemingly converged), we also applied asynchronous message
update schemes. A fixed, checkerboard-like update scheme led to some improve-
ment in the behavior, but we found that random message updates led to the
most reliable convergence behavior. At every iteration, each message is updated
with a fixed probability, otherwise the previous state is kept. Table 2 shows
that random updates led to a dramatic decrease in energy, but no considerable
change in PSNR. Moreover, faint checkerboard-like artifacts that were visible
before disappear after applying random updates. The update probability does
not seem to have any substantial effect on the results (as long as it is not 100%).

Approximate potentials. We then investigated how the approximations of the
learned potentials as a lower envelope of quadratics affect the denoising results
as well as the running time. We found that max-product BP with 8 quadrat-
ics is about 6 times faster in practice than when the Student-t potentials are
used. The approximation with only 4 quadratics is even faster by a factor of 2.
Table 2 shows that the PSNR deteriorates by about 1dB when the approximate
potentials are used (both with and without random updates); nevertheless, this
still considerably outperforms the hand-designed model from [4]. We also report
the average energy Ē of the reconstructed images in all cases computed using
the original model and normalized by the number of pixels. Surprisingly, the



Efficient Belief Propagation with Learned Higher-Order MRFs 279

Fig. 4. Image denoising. Top row: (left) Original image. (middle) Noisy image (σ =
10). (right) Max-product BP with model from [4]. Middle row: (left) Max-product BP
with t-distribution potentials. (middle) Max-product BP with approximate potentials
(8 quadratics). (right) Max-product BP with learned 2×2 model. Bottom row: Detail
view. From left to right: Model from [4], BP with t-distribution potentials, BP with
approximate potentials (8 quadratics), BP with learned 2 × 2 model.
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Table 2. Average denoising performance on 10 images for pairwise BP algorithms
with and without the use of approximate models. The update percentage denotes the
probability of each message being updated during a particular iteration.

Student-t potentials 8 quadratics 4 quadratics

Update percentage 25% 50% 75% 100% 50% 100% 50% 100%

σ = 10 Ē 1.595 1.594 1.594 2.071 1.348 2.687 1.347 2.681
PSNR in dB 30.73 30.73 30.73 30.74 29.56 29.60 29.54 29.57

SSIM [23] 0.876 0.876 0.876 0.876 0.844 0.842 0.843 0.841

σ = 20 Ē 1.189 1.182 1.182 2.606 1.025 2.892 1.024 2.907
PSNR in dB 26.64 26.66 26.67 26.67 25.92 25.96 25.90 25.95

SSIM 0.753 0.754 0.755 0.750 0.711 0.705 0.710 0.704

reconstructions using the approximate model have a lower energy than the re-
sults from the original model. We have not identified any intuitive interpretation
of this fact, except that this evidences that BP may not be able to find the global
optimum due to the loopiness of the graph.

Higher-order models. Next, we applied the learned higher-order MRF model
with 2 × 2 cliques to the denoising problem. We used the adaptive state space
approach as described above, and quantized the maximization with 8 graylevels;
the potential functions are not approximated in this case. One iteration takes
around 16 minutes for the setup described above. Since this approximation is
possible for both max-product and sum-product BP, we report results for both
algorithms. Table 1 compares both algorithms to a selection of pairwise MRFs
(always with 50% update probability). We can see that the higher-order model
outperforms the pairwise priors by about 0.15 − 0.2dB (with Student-t poten-
tials), and that the sum-product algorithm seems to be more appropriate with
large amounts of noise. The perceptual similarity metric exhibits the same rela-
tive performance. Visually, the results no longer exhibit any piecewise constancy.
Edges are preserved using both types of models, but smoothly varying regions
are preserved better using the richer, higher-order prior.

We have also compared the presented results to an implementation of a sim-
ple gradient descent inference algorithm as suggested in [9]. This algorithm at-
tempts to locally maximize the posterior density. We found that gradient descent
achieves comparable results in terms of PSNR and SSIM, in some cases perform-
ing better than BP, in others worse. For both noise levels, the average energy of
the max-product BP solution is slightly higher than that of the gradient descent
algorithm (possibly due to the state space adaptation).

5 Conclusions and Future Work

In this paper we have combined efficient belief propagation inference algorithms
with learned MRFs in order to solve low level vision problems. In particular, we
demonstrated the use of learned pairwise MRF models and 2 × 2 MRF models
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with robust potential functions that better capture the spatial properties of
natural images. In image denoising applications we found that BP based on
these learned models substantially outperforms BP based on previous ad hoc
MRFs, and that higher-order MRFs lead to both visually and quantitatively
superior results.

Naively applying standard BP inference algorithms on these learned MRF
models is difficult due to the non-convex functional form of the robust potential
function, as well as the exponential explosion of the number of computations for
the message updates in the case of 2 × 2 cliques. We introduced two effective
approximation techniques to address these difficulties. First, for the pairwise
case we used a finite family of quadratics to approximate the negative log of
the learned robust potential function. This permits the application of distance
transform techniques to speed up the running time from quadratic to linear in
the number of labels. This approximation technique is quite general and can
apply to graphical models in many contexts. Second, in the case of higher-order
models such as 2 × 2 MRFs, we avoid explicitly searching over the whole state
space by determining a plausible small set of configurations for a clique.

We observed that for the pairwise model a random message update scheme
can improve the convergence speed as well as result in a significantly lower
energy than a standard synchronous message update scheme. We also found
that approximating the robust pairwise potential function by a lower envelope of
quadratics results in a lower energy state than directly using the robust potential.
These results reinforce the need to develop a better understanding of BP in
computer vision research.

Comparing the BP results to a simple gradient descent inference technique,
we found that belief propagation yields competitive, but not superior results.
Our hypothesis is that this may be due to the likelihood being unimodal in the
denoising case for which simple inference techniques can perform well. Never-
theless, both the inference and learning techniques developed in this paper are
of general use beyond the application to image denoising. In the future, we plan
to apply these efficient belief propagation techniques to low-level vision applica-
tions with multi-modal likelihoods, such as stereo or optical flow, in which case
belief propagation may lead to superior results. Such problems often also have a
smaller labeling set, and may thus allow us to use models of even higher-order.

Acknowledgments. S.R. and M.J.B. were supported by Intel Research and NSF
IIS-0535075. This support is gratefully acknowledged.
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Abstract. In this paper we consider the problem of temporal texture
modeling and synthesis. A temporal texture (or dynamic texture) is seen
as the output of a dynamical system driven by white noise. Experimental
evidence shows that linear models such as those introduced in earlier
work are sometimes inadequate to fully describe the time evolution of
the dynamic scene. Extending upon recent work which is available in the
literature, we tackle the synthesis using non-linear dynamical models.
The non-linear model is never given explicitly but rather we describe a
methodology to generate samples from the model. The method requires
estimating the “state” distribution and a linear dynamical model from
the original clip which are then used respectively as target distribution
and proposal mechanism in a rejection sampling step. We also report
extensive experimental results comparing the proposed approach with
the results obtained using linear models (Doretto et al.) and the “closed-
loop” approach presented at ECCV 2004 by Yuan et al.

1 Introduction

Modeling of complex scenes such as texture has been subject of intensive research
in the past years. Models of physical phenomena are widely used in a number
of field such as Control, Econometrics, Bioengineering and so on; in computer
vision several tasks - such as synthesis, recognition, classification, segmentation
- connected to video sequences are facilitated when a model is available (see for
instance [3] for a specific example related to textures).

Statistical-based models appeared soon to be the useful tool to tackle the prob-
lem; this line of work was pioneered by Julesz (see [7]). After that, much work has
been done (see for instance [22, 19, 21, 6] just to cite a few references) which ad-
dresses the problem of modeling and synthesis of (static) textured images.

In this work we are interested instead in the “temporal” evolution of tex-
tured images which we call temporal or dynamic textures. “Temporal” textures
have been first studied in [15] while the terminology “dynamic textures” was
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introduced in [2]; there a “dynamic textures” was defined to be a sequence of
(textured) images {I(t), t = 1, .., T}, indexed by time t, which can be modeled
as the output of a (time-invariant) dynamical system of the form{

xt+1 = f(xt,wt)
yt = h(xt,vt)

(1)

where yt = vec{I(t)}, and wt, vt are zero mean independent white noise pro-
cesses. The vector xt is the “state” process and has dimension n as small as
possible.

To be precise, in [2] only identification of linear models have been discussed
(f(xt,wt) = Axt +Bwt) and the corresponding output I(t) was called a linear
dynamic texture.

Similar (model based) approaches can also be found in [5, 15]; interesting
results concerning temporal textures have been introduced [17, 18, 8]; recent de-
velopments have also been described in [14].

An extension of the methodology found in [2] which proposes to consider
“closed-loop” dynamical systems has been recently presented in [20].

In this paper we shall concentrate on models of the form (1). In particular we
shall see that linear-gaussian dynamical systems used in [2, 5] are often inade-
quate to represent and synthesize real-world sequences; this suggests that more
sophisticated models are needed.

To do so we shall assume that the output map h(·, ·) is linear, i.e. yt = Cxt +
vt, as was done in [2]; under this assumption the state can be directly constructed
using standard Principal Component Analysis. This is done in Section 2. Under
our assumption that the model is stationary, we can assume that there exists an
invariant density π(x) for the state vector x. Using a standard Kernel density
estimator π̂(x) we verify that π(x) departs sharply from a Gaussian density.
See Section 3. The estimated density π̂(x) provides, at the same time, (i) the
motivation for our study and (ii) the basic object which allows to construct a
non-linear texture model.

We shall provide experimental evidence showing that the new method yields
increased image quality; the estimated invariant density π̂(x) shall also provide
a tool to measure “quality” of texture sequences synthesized using different pro-
cedures. See figures 5, 6 and the related comments in the paper.

Notation

The following notation shall be used throughout: boldface letters x shall denote
random vectors. A discrete time random process, i.e. an indexed collection of
random vectors, shall be denoted as {xt}, t ∈ Z where t is the time index.
Lowercase letters shall denote the sample value of the corresponding random
vector (e.g. xt is the sample value of xt). Capital letters shall denote matrices;
X� denote the transpose of the matrix X , X(i, j) is the element in position i, j
of the matrix X . We shall use Matlab notation for row or column selections: e.g.
X(i : j, :) will be the matrix formed by the rows of X with indexes from i to j.
‖X‖F is the Frobenius norm of X , i.e. ‖X‖F =

√∑
i,j X(i, j)2.
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2 Stationary Dynamical Model

Consider a sequence of images {I(t)}, t = 1, .., T (the “data”); each image is
represented as an r × c matrix of positive real numbers denoting (gray-scale)
pixel intensity values. A straightforward extension can be done to deal with
color images.

We shall think that the images {I(t)} are samples from a stochastic process
{I(t)}; without loss of generality we shall assume that {I(t)} is zero mean; this
can always be obtained by simple data pre-processing. Defining the vectorized
images yt = vec(I(t)), we shall consider time invariant dynamical models of the
form (1) where the output equation is linear, i.e.:{

xt+1 = f(xt,wt)
yt = Cxt + vt

(2)

The state-update equation xt+1 = f(xt,wt) can also be modeled through a
transition kernel p(xt+1|xt) which models xt+1 conditionally on xt.

The dimension p of yt is equal to the product r ·c. Since the output dimension
is typically much larger that the number of data (images) available, i.e. p =
r · c >> T , it is necessary to perform a first dimensionality reduction step.

This step, which is borrowed from [2], is based on Principal Component
Analysis and can be formalized as follows. Let us define the data matrix Y �[
y1 y2 . . . yT

]
where recall that yi := vec{I(i)}.

Using the Singular Value Decomposition (SVD hereafter) algorithm we can
rewrite Y as the product of three matrices Y = USV � where U and V are
matrices with orthonormal columns , i.e. U�U = IT , V �V = IT while S is
diagonal S = diag(σ1, . . . , σT ), σi ≥ σj for i ≥ j .

Retaining the first n columns U(:, 1 : n), V (:, 1 : n) of the matrices U and V
respectively and the upper left block S(1 : n, 1 : n) of the matrix S provides the
best rank n approximation1 of the matrix Y ,

Y � U(:, 1 : n)S(1 : n, 1 : n)V (:, 1 : n)�;

in fact, as Yn ranges in the set of rank-n p × T , ‖Y − Yn‖F is minimized by
letting Yn = U(:, 1 : n)S(1 : n, 1 : n)V (:, 1 : n)�.

Now we define

X � S(1 : n, 1 : n)V (:, 1 : n)� , Ĉ � U(:, 1 : n) , xt � X(:, t), 1 < t < T

E � Y − ĈX , vt � yt − ŷt, ŷt � Ĉxt 1 < t < T

Observe that, being U unitary, xt = Ĉ�yt , 1 < t < T .
The matrix Ĉ = U(:, 1 : n) containing the first n “singular vectors” can be

seen as an estimate of the matrix C in (2); it provides an approximate basis
for the image space in the sense that ŷt = Ĉ · (Ĉ�yt) is an approximation of
the image yt which is expressed as a linear function of the columns of Ĉ. This

1 In the Frobenius norm.
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basis is “data driven” in the sense that it is tailored on the data itself. This is
extremely useful and results in a rather compact representation of the data, in
the sense that good approximations ŷt can be obtained with relatively small n.

Of course one may rise several critics to this approach; for instance the SVD
does not preserve positivity of the entries of each columns of Ĉ (i.e. the columns
of Ĉ are not themselves images). Furthermore the technique is linear in nature.
Several extensions are possible, starting from dimensionality reduction tech-
niques which preserve positivity based on Kullback-Leibler [9, 4] pseudo distance
(or I-divergence), to non-linear versions of SVD such as Kernel CCA [12, 10]. In
this paper we shall not discuss these issues which would take us far from our goal.

Instead, we now go back to model (2), and study its statistical properties. We
shall assume that the time invariant model (2) admits a unique invariant density
π(x), i.e. that,

1. the state evolution preserves the density π(x)
2. for any initial state density π0(x), the state density πt(x) (at time t) of the

system (2) initialized at π0(x) converges to π(x) as t grows.

We shall not discuss further this assumption nor enter into the mathematical
details which are out of the scope of this conference.

Having access to samples x̂t = Ĉ�yt of the state process xt one may try to
estimate the density π(x). Our purpose is twofold:

1. show that a linear model is, most of the times, inadequate
2. provide an algorithm to generate samples from a dynamical system of the

form (2) which admits π̂(x) as invariant density.

3 Non-parametric Density Estimator

Our purpose is to find an estimator for the state invariant density π(x). The
state xt lives in an n-dimensional space, where n ranges in the interval [20, 50]
in typical examples. Therefore we are after estimating a probability density in
a high dimensional space, which is known to be a rather difficult problem; see
[11]. In our setup the problem is made even more challenging by the fact that
usually a rather limited number T of samples is available. Typically, even for
long video sequences, T is of the order of 500.

We consider density estimators of the Kernel type:

π̂(x) =
1

Tkn

T∑
t=1

K (x− x̂t, Σk) (3)

where x̂t = Ĉ�yt is the estimated state at time t. K is a suitable kernel
parametrized by the matrix Σk and the positive number k which may be seen
as a “regularization” parameter which controls the “width” of the Kernel K. A
typical choice is the Gaussian kernel, where K (·, Σk) is a gaussian density with
zero mean and covariance matrix Σk = k2In.

For a complete discussion on kernel estimation, for the choice of Σk and of
the kernel K see [13] and [11].
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Fig. 1. Kernel estimation of a zero mean, unit variance Gaussian density with 40 (left),
80 (middle), 120 (right) samples. Solid: Gaussian density. Dotted: Kernel estimate.

Fig. 2. Estimated joint density of the first and second component of the state in the
temporal texture sequences (from left to right, top to bottom: beach, flame, river,
smoke, steam, waterfall). A white zone is a high probability zone and viceversa.

In order to help the reader to gain some intuition we report in figure 1 an ex-
ample of Kernel density estimators for a scalar Gaussian random variable using
respectively T = 40, 80, 120 independent samples.

For the sake of illustration we have computed the joint probability density of
the first two state components, which are also those corresponding to higher
“energy”. In figure 2 we show as a gray level image the value of the estimated
state density corresponding to several texture sequences (bash, flame river, smoke,
steam, waterfall) available in public databases2.

It should be clear from the plots that the joint density of the first two compo-
nents is rather far from being Gaussian. Therefore, a linear gaussian model such
that used in [2], represent only a rough approximation of the data.

A first modification has been proposed in [1] where a linear model forced by
non-gaussian noises was used. The noise densities were estimated using a version
of ICA. The results presented in [1] were encouraging; several artifacts obtained
by the linear Gaussian model were eliminated using the linear model with a non-
gaussian noise.

2 See http://www.cc.gatech.edu/cpl/projects/graphcuttextures/ and http:// vismod.
media.mit.edu/ pub/szummer/temporal-texture/
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In this paper we take a different approach. Instead than modifying the noise
density, we try to construct a transition Kernel p(xt+1|xt) which, at the same time:

1. captures the dynamic behavior and
2. admits π̂(x) as an invariant density

Static Texture Synthesis

In order to demonstrate the effectiveness of our approach we first show how the
invariant density estimate π̂(x) can be utilized to generate new textured images.

The invariant density π(x) induces through the map yt = Cxt a density p(y)
in the image space. In this sense x̂t = Ĉ�yt can be regarded as image features
extracted through the “filters” Ĉ� and π(x) is a density in the feature space.

Generating a “new” image y = vec(I) can be done by: (i) sampling a “feature
vector”x fromπ(x) and (ii) generating the image according to y = Cx. Please note
that we can only sample from π̂(x), the kernel estimate of π(x); given our choice of
a gaussian Kernel, π̂(x) turns out to be a mixture (with equal weights) of gaussian
densities; this makes particularly easy the sampling step which simply consists in:
(i) choose at random an index j ∈ [1, T ], (ii) sample from a gaussian with mean xi

and covariance matrix Σk.
We report in figure 3 images sampled according to this strategy compared with

images from the original sequence. The three images from the original sequence
are chosen somewhat arbitrarily and are only intended to visually represent three
“typical” images of the sequence.

Original images

Synthesized (static) images

Fig. 3. Three examples of original images vs. (static) synthesized images in a flame
sequence

4 Temporal Texture Synthesis

In the previous Section we have seen that the estimated invariant density can be
used as a tool to generate new static texture images with the same spacial statistics
of the original texture. However we are interested in generating sequences which
preserve both the spacial and the temporal statistics.

Of course there are infinitely many dynamical models of the form (2) which
admits π̂(x) as invariant density.
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As an example consider the simple linear dynamical system xt+1 = axt + bwt

where wt is zero mean, unit variance gaussian white noise. Assuming |a| < 1 there
exists a unique invariant density, which is gaussian with zero mean and variance
σ2

x = b2/(1− a2). Fixing the invariant density amounts therefore to fixing σ2
x. For

any given σ2
x one can choose any arbitrary a0 so that ‖a0‖ < 1 which, together

with b =
√

(1 − a2
0)σ2

x gives the desired invariant density.
The same happens in our situation; we are given (estimated) the invariant

density and want to choose a transition Kernel p(xt+1|xt) which: (i) has π̂(x) as
invariant density and (ii) describes well the temporal behavior of the data
sequence.

This appear to be a difficult task for general non linear dynamical models
f(xt,wt).

Since an “approximate model” is already available from “linear dynamic tex-
tures” of [2], we propose to consider the linear model{

xt+1 = Axt + wt

yt = Cxt + vt
(4)

as an “initial estimate” of the more general (nonlinear) model (2) which has to be
suitable refined in order to match the estimated invariant density π̂(x).

We shall not enter into the details of how A and the noise covariance Σw =
Var(wt) can be estimated. We refer the reader to [2] for the details and assume
that estimates Â, Σ̂w have been computed.

The basic idea (very simple to be honest) is to use a rejection sampling technique
(see [16]) to construct a dynamical model which admits π̂(x) as invariant density.

Let us denote with p(x;m,Σ) the density of a gaussian random vector with
mean m and variance Σ and define

Q(x) :=
∫
π̂(z)p(x; Âz, Σ̂w) dz

Note thatQ(x) would be the density of the state at time t+1 of the linear model
(4) if the state density at time t was π̂(x). Note that, if π̂(z) was the invariant den-
sity associated to (4) then Q(x) would be equal to π̂(x). As we have seen however
this is not true; our scope is to modify the transition kernel p(xt+1; Âxt, Σ̂w) so
that π̂(x) is in fact invariant for the new kernel.

The rejection sampling technique requires that one chooses a constant c so
that

π̂(x)
cQ(x)

≤ 1

Note that once π(x) and Q(x) are available, the constant c can be computed
numerically off-line3.

Assume that, at time s,
xs ∼ π̂(x). (5)

Repeat the following for t ≥ s.
3 For reasons of space we shall not enter into the details of this computation.
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Procedure 1 [Texture generation]

1. Sample4 xp
t+1 from a gaussian density p(x; Âxt, Σ̂w), i.e. generate a new sample

according to the linear dynamic texture model (4).
2. Accept the sample, i.e. set xt+1 = xp

t+1 with probability

π̂(xp
t+1)

cQ(xp
t+1)

otherwise go back to step one and repeat until a sample is accepted

It is possible to show that, provided (5) is satisfied, the samples xt, t ≥ s are all
distributed according to π̂(x).

Remark 1. Note that, if π̂(x) was the invariant density of the model (4), thenQ(x)
= π̂(x). It follows that choosing c = 1, π̂(x)

cQ(x) = 1 and in step 2 above each sam-
ple xp

t+1 would be accepted. This means that our procedure does not modify the
transition kernel if not needed.

Speeding up the Procedure

The proposal density used in step 1 of Procedure 1 while encoding the dynamical
properties captured by the linear dynamical model (4), may result in a very low
synthesis speed due to the low acceptance probability in step 2 of Procedure 1.

Therefore in our simulation examples we have used a modified proposal density
of the form

q(x|x̂t) ∝
1 + (αν − 1)p(x; Âx̂t, Σ̂w)

αν

T∑
i=1

p(x; x̂t, αΣ̂k) α ≥ 1, ν > 1 (6)

For large values of α (6) reduces to the linear model (4) used in step 1 of
Procedure 1, while when α is “small” (6) tends to π̂(x).

Therefore for small α’s, while the synthesis becomes faster since the proposal
density is “close” to the invariant density, the dynamical information gets lost. In
the extreme case of α = 1 one is left with a sequence of independent samples from
the invariant density π(x).

Choice of a reasonable value of α trading speed and dynamical coherence of the
sequence is outside of the scope of this paper and shall not be discussed here. The
results presented in the paper are obtained using α = 3 and ν = 5. Of courseQ in
step 2 of Procedure 1 needs to be modified accordingly.

5 Results

We compare synthesized sequences using procedure 1 with few frames from
the original sequences, see Figure 4. Unfortunately it is hard to judge the qual-
ity of the synthesized sequence from just few frames. Some movies showing the
4 The superscript p stands for “proposed”.
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Beach Sequence: original

Beach Sequence: synthesized

Fig. 4. Three frames from a beach sequence
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Fig. 5. Log-likelihood (top) and estimated density (bottom) of the first two components
of the state (flame sequence) synthesized using the linear algorithm [2](solid line), our
algorithm (dotted line) and Yuan et al. algorithm [20](dash-dotted line)

results on different texture sequences of the approach of this paper compared with
linear models [2] and closed-loop LDS [20] can be obtained upon request form
the authors. The visual quality of the sequence is improved with respect to linear
models, but at the price of an increased computational load due to the rejection
sampling step. The modified proposal described in (6) does indeed result in a
faster procedures which nevertheless remains far slower that those proposed in
[2, 20].

The estimated invariant density π̂(x) can also be used as a “likelihood func-
tion” to analytically measure the image quality. In figures 5 and 6 we compare the
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Fig. 6. Log-likelihood (top) and estimated density (bottom) of the first two components
of the state (grass sequence) synthesized using the linear algorithm [2](solid line), our
algorithm (dotted line) and Yuan et al. algorithm [20](dash-dotted line)

Table1. Kullback-Leibler divergence between the state density estimated from frames of
the original movie and that estimated from frames synthesized with, respectively, linear
dynamic texture [2], Yuan et al. [20] and our algorithm

movie linear dynamic texture Yuan ECCV 2004 our algorithm

flame 0.44915 0.18414 0.099459

grass 0.68545 2.1566 0.62835

pond 0.17316 0.059503 0.12853

river 0.30051 0.079848 0.050529

smoke 2.5953 12.9136 1.0732

waterfall 1.6501 1.7689 0.9594

likelihood π̂(xi), i = 1, .., T of a sequence xi generated using the approach of this
paper with the likelihood obtained from the linear Gaussian model in [2] and the
closed-loop LDS of [20]5.

In figures 5 and 6 we plot the state densities (first two components of the
state) estimated from the original (π̂(x)) and synthesized (π̂s(x)) sequences using

5 Of course the results depend on the particular choice of the user parameters (e.g. Ker-
nel width for our approach, past and future horizons in closed-loop LDS etc.). We have
optimized the parameters choice of each method so as to obtain the best results in the
particular examples we consider.
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linear models [2], the algorithm of this paper and closed-loop LDS [20]. In table 1
we also report the Kullback-Leibler pseudo-distance

KL(π̂‖π̂s) =
∫
π̂(x)log

π̂(x)
π̂s(x)

dx (7)

between π̂ and π̂s. Keep in mind that the densities π̂(x) and π̂s(x) are estimated
from data and also the integral in (7) had to be computed numerically. For instance
the poor results in the “smoke” sequence may be attributed to the fact that the
original clip is very short (about 50 frames). Note also that ideally our procedure
produce samples from the density π̂; as the length of the simulated clip goes to
infinity, π̂s - the estimated density from the synthesized sequence - becomes closer
and closer to π̂ and therefore the numbers in the third column of Table 1 should
tend to zero.

6 Conclusions

In this paper we have shown that linear gaussian models are often inadequate
to describe real word “dynamic texture” sequences. This conclusion stems from
the fact that the estimated invariant measure π̂(x) is rather far from being gaus-
sian. We therefore proposed to tackle dynamic texture synthesis using a class of
non-linear dynamical models; the method take advantage of results on linear
texture modeling which are available in the literature and borrows tools from
multivariate statistics (Kernel density estimators) and Monte Carlo methods
(Rejection Sampling). The simulation results show a considerable improvement
over linear methods of [2] and a slight improvement over closed-loop LDS of [20].

Furthermore, the estimated invariant density provides a data driven measure
of the image quality as a likelihood of synthesized states.

Unfortunately the proposed method suffers several drawbacks: first of all
the estimation of the invariant measure π̂(x) requires, in principle, a large amount
of data which are in practice hardly available. Second the computational load is
considerably increased due to the rejection sampling step.
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Abstract. We are interested in diffusion PDE’s for smoothing multi-valued im-
ages in an anisotropic manner. By pointing out the pros and cons of existing
tensor-driven regularization methods, we introduce a new constrained diffusion
PDE that regularizes image data while taking curvatures of image structures into
account. Our method has a direct link with a continuous formulation of the Line
Integral Convolutions, allowing us to design a very fast and stable algorithm for
its implementation. Besides, our smoothing scheme numerically performs with a
sub-pixel accuracy and is then able to preserves very thin image structures con-
trary to classical PDE discretizations based on finite difference approximations.
We illustrate our method with different applications on color images.

1 Introduction

Computing regularized versions of corrupted images has always been a desirable goal
in the field of computer vision. It is useful, either to restore degraded images, or - more
indirectly - as a pre-processing step that eases further data analysis. Since the pioneering
work of Perona-Malik [21], the framework of anisotropic diffusion PDE’s has partic-
ularly raised a strong interest for such a task : it has the ability to smooth data in a
nonlinear way, allowing the preservation of significant image discontinuities. PDE’s
are local formulations which are well adapted to deal with degraded images containing
local or semi-local data corruption sources : Gaussian noise, scratches or compression
artifacts are local degradations usually encountered in digital images. Important histor-
ical steps in PDE-based image regularization have been reached with the extension of
the classical heat flow to deal with anisotropic smoothing [21, 17, 25, 36], the interpre-
tation of diffusion PDE’s as gradient descents of energy functionals [2, 8, 10, 13, 24],
and the link between regularization PDE’s and the concept of non-linear scale spaces
[1, 18, 19]. Extensions of these techniques have been more recently tackled to deal with
general multi-valued images (including colors) [26, 31, 32, 37], fields of unit vectors
[14, 20, 29], orthonormal matrices [11, 31], positive-definite matrices [11, 31], or im-
age data defined on implicit surfaces [3, 9, 30]. Despite this wide range of existing for-
malisms, all regularization methods have something in common : they locally smooth
the image along one or several directions of the space that are different at each image
point. Typically, the principal smoothing direction is chosen to be parallel to the im-
age contours, resulting in an anisotropic regularization that do not destroy edges. As a
requirement, defining a correct smoothing behavior is one of the first aim of a good reg-
ularization algorithm, the second being the precision of the smoothing process itself :

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 295–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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it must respect the pre-defined smoothing geometry as much as possible. This general
principle has been recently adopted in [32, 36] with the proposal of regularization PDE’s
designed to fit a given (user-defined) underlying local smoothing geometry, modeled as
a field of diffusion tensors. Separating the smoothing geometry from the regularization
itself allows to unify a lot of previously proposed equations into generic formulations,
and generally provides a local geometric interpretation of the corresponding processes.

Here, we first propose a quick analysis of these unifying methods, then introduce
a comparable tensor-driven diffusion PDE that regularizes multi-valued images while
respecting specific curvature constraints. We show that this general formalism, which
is naturally positioned between the two previous ones, has interesting smoothing prop-
erties. Moreover, it is directly related to the framework of LIC’s (Line Integral Convo-
lutions, firstly proposed by Cabral & Leedom [6]). This analogy leads to the proposal
of an efficient LIC-based scheme that implements our proposed method. It allows the
preservation of thin image structures, thanks to its sub-pixel accuracy and runs up to
three times faster than classical explicit scheme thanks to its high stability. Results are
finally illustrated with applications on color images, including denoising, inpainting and
non-linear resizing.

2 Anisotropic Smoothing of Images with PDE’s: A Review

2.1 Local Geometry and Diffusion Tensors

We consider a noisy multi-valued image I : Ω → Rn (n = 3 for color images), defined

onΩ ⊂ R2. Ii denotes the particular vector channel i of I : I(X) =
(
I1(X), ..., In(X)

)T
.

PDE-based regularizations act as local smoothers of I along defined directions depend-
ing themselves on the local configuration of the pixel intensities : one wants to smooth
I mostly along directions of the edges if there are any. Naturally, this means we need
first to retrieve the local geometry of I. As pointed out in [12, 36], it may be seen as the
definition of these important features at each image point X = (x, y) ∈ Ω :

• Two orthogonal directions θ+
(X) , θ

−
(X) ∈ S1 (unit vectors of R2) directed along

the local maximum and minimum variations of image intensities at X. The direction
θ− corresponds to the edge direction, when there is one.

• Two corresponding positive values λ+
(X) , λ

−
(X) that measure the effective varia-

tions of image intensities (local signal contrast) along θ+
(X) and θ−(X) respectively.

This geometry can be retrieved by the field G of structure tensors, which is a natural
tensor-valued extension of the gradient field for multi-valued images [12] :

∀X ∈ Ω, G(X) =
∑n

i=1 ∇Ii(X)∇IT
i(X) where ∇Ii =

(
∂Ii

∂x
∂Ii

∂y

)T

(1)

A Gaussian-smoothed version Gσ = G ∗ Gσ is usually computed to retrieve a more
coherent geometry (the standard deviation σ being proportional to the noise scale [36]).
Then, the spectral elements of Gσ(X) give at the same time the contrast (eigenvalues
λ−, λ+) and the orientations (eigenvectors θ−⊥θ+) of the local image structures.
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Once the local geometry Gσ of the image I has been determined, authors of [32, 36]
propose to design a particular field T : Ω → P(2) of diffusion tensors which specifies
the local smoothing geometry that should drive the regularization process. T naturally
depends on the spectral elements λ−, λ+ and θ−, θ+ of Gσ :

∀X ∈ Ω, T(X) = f−
(λ+,λ−) θ

−θ− + f+
(λ+,λ−) θ

+θ+T (2)

Basically, the functions f+/− : R2 → R set the strengths of the desired smoothing
along the corresponding directions θ+/−. Several choices for f+/− are possible, de-
pending on the considered application. For image denoising, a possible choice is (pro-
posed in [10, 31, 32]) : f+/−

(λ+,λ−) = 1
(1+λ++λ−)p± , with p− < p+.

Intuitively, if a pixel X is located on an image contour (λ+
(X) is high) then

the smoothing must be performed mostly along the contour direction θ−(X) with a
strength inversely proportional to the local contrast. Conversely, if X is located on
a flat region (λ+

(X) is low), the smoothing must be performed in all possible direc-
tions (isotropic behavior), leading then to T � Id (identity matrix). Modeling the
local smoothing geometry as a field T of diffusion tensors is the first stage pro-
posed both in [32, 36]. The desired smoothing must be applied then, using a possi-
ble choice of diffusion PDE’s, as detailed below. Most existing regularization PDE’s
[1, 2, 3, 4, 8, 10, 13, 18, 19, 21, 24, 25, 26] may be seen as particular cases of such diffu-
sion equations with different tensor fields T.

2.2 The Divergence-Based PDE

A corrupted multi-valued image I : Ω → Rn can be anisotropically regularized “along”
a diffusion tensor field T : Ω → P(2) by the following divergence PDE :

∀i = 1, .., n, ∂Ii

∂t = div (T∇Ii) (3)

This tensor-driven regularization equation has been introduced in [36], and adapted for
color/multi-valued images in [37]. Note that T is the same for all image channels Ii,
ensuring that the Ii are smoothed along a common multi-valued geometry, contrary
to an uncorrelated channel-by-channel approach. Despite its popularity, the PDE (3)
does not strictly respect the geometry T, since the smoothing performed is not always
the one that could be expected. Particularly, consider the case of choosing T1(X) =(

∇I
‖∇I‖

)(
∇I

‖∇I‖

)T

or T2(X) = Id (identity matrix). For scalar images, these different

fields both lead to the well known heat flow equation ∂I
∂t = ΔI that is equivalent to

the convolution of the image I by a normalized Gaussian kernel (isotropic smoothing
[15]), despite the pure anisotropic form of T1(X). The divergence is indeed a differential
operator which makes the PDE (3) implicitly depending on the spatial variations of T.
It is actually not conceivable to easily define a pointwise smoothing behavior T with a
divergence equation (3).

2.3 The Trace-Based PDE

In order to better respect the local smoothing geometry T, we have proposed in [31, 32]
a tensor-driven PDE, similar to (3), but based on a trace operator :
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∀i = 1, .., n, ∂Ii

∂t = trace (THi) (4)

Hi stands for the Hessian of Ii. As noticed in [31, 32], the evolution of (4) has an
interesting geometric interpretation in terms of local image filtering with spatially vary-

ing short-time Gaussian kernels GT
t (X) = 1

4πtexp
(
−XT T−1 X

4t

)
, locally oriented by

the tensor T(X). It particularly ensures that the smoothing is truly done along the pre-
defined smoothing geometry T. As trace() is not a differential operator, the spatial
variation of T does not trouble the diffusion directions here and two differently shaped
tensors necessarily lead to distinct smoothing behaviors.

Unfortunately, this analysis also points out one important drawback of the trace-
based formulation. On curved structures (like corners), the Gaussian behavior of the
smoothing is not desirable : when the local variation of the edge orientation θ− is high,
a Gaussian filter tends to round corners, since an oriented Gaussian kernel is not curved
itself. This classical behavior is also best known as the “mean curvature flow” effect,
characterized by the equation ∂I

∂t = ∂2I
∂θ−2 . This is illustrated on Fig.1b where (4) has

been applied on a real color image and T has been defined as (2) (then f− �= 0). Here,
the mean curvature flow effect results in blending parallel thin curved structures. To
avoid this over-smoothing, one usually try to vanish f+/− on curved structures (cor-
ners). But the detection of such structures on noisy images is a hard task. Conversely,
image under-smoothing on edges may occur when one wants to limit the diffusion too
much. There is a difficult trade-off between complete noise removal and preservation of
curved structures, when using trace-based PDE’s (4). This kind of regularization pro-
cess does not care about the curvature of the smoothing directions, and by extension,
of the curvature of the image contours. Taking this curvature into account is a very

(a) Image of a fingerprint
(b) Applying trace-based PDE (4),
with p1 = 0.5, p2 = 1.2.

(c) Applying our constrained PDE
(11), with p1 = 0.5, p2 = 1.2.

Fig. 1. Comparisons between trace PDE (4) and our proposed curvature-preserving PDE’s (11)
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desirable goal and has motivated the work presented in this paper. For illustration pur-
poses, results of our proposed curvature-preserving equation is shown on Fig.1c.

3 The Framework of Curvature-Preserving PDE’s

3.1 The Single Direction Case

We introduce now the general idea of curvature-preserving PDE’s, focusing first on
image regularization along a vector field w : Ω → R2 instead of a tensor field T. We
consider then a local smoothing everywhere along a single varying direction w

‖w‖ , with a

strength ‖w‖. The two spatial components of w are denoted by w(X) = (u(X) v(X))T .
We define the curvature-preserving regularization PDE that smoothes I along w by :

∀i = 1, . . . , n,
∂Ii
∂t

= trace
(
wwT Hi

)
+ ∇IT

i Jww (5)

where Jw stands for the Jacobian of w , and Hi the Hessian of Ii.
Let us study more closely how (5) is related to w. We consider the curve CX

(a) defining
the integral curve of w, starting from X and parameterized by a ∈ R (Fig.2a) :

CX
(0) = X and

∂CX
(a)

∂a = w(CX
(a)) (6)

We denote by F the family of integral curves of w. A second-order Taylor development

of CX
(a) around a = 0 is CX

(h) = CX
(0) + h

∂CX
(a)

∂a |a=0 + h2

2
∂2CX

(a)

∂a2 |a=0 +O(h3), i.e :

CX
(h) = X + hw(X) +

h2

2
Jw(X)w(X) +O(h3)

with h → 0, and O(hn) = hn εn. Then, we can compute a second-order Taylor de-
velopment of Ii(CX

(a)) around a = 0, which corresponds to the variations of the image

intensity near X when following the integral curve CX :

Ii(CX
(h)) = Ii(X) + h∇Ii

T
(X) (w(X) +

h

2
Jw(X)w(X)) +

h2

2
trace w(X)w

T
(X)Hi + O(h3)

The second derivative of the function a→ Ii(CX
(a)) at a = 0 is then :

∂2Ii(CX
(a))

∂a2 |a=0
= lim

h→0

1
h2

[
Ii(CX

(h)) + Ii(CX
(−h)) − 2Ii(CX

(0))
]

= trace
(
w(X)wT

(X)Hi(X)

)
+ ∇IT

i Jw(X)w(X) (7)

This is exactly the right term in our curvature-preserving PDE (5). Actually, (5) can be
seen individually for all integral curves of F instead of each point X ∈ Ω : consider
another point Y ∈ CX. Then, there exist ε ∈ R such that Y = CX

(ε). Indeed, CX and CY

describe the same curve (6) with different parameterizations : ∀a ∈ R, CY
(a) = CX

(ε+a).
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(a) Integral curve of a vector field w.
(b) Example of integral curves CX

(a) when w is the lowest eigenvector
of the structure tensor Gσ of a color image I.

Fig. 2. Integral curve CX of vector fields w : Ω → R2

As (5) is verified on Y, then
∂Ii(CX

(a))
∂t |a=ε

=
∂2Ii(CX

(a))
∂a2 |a=ε

. This is obviously true for

ε ∈ R since (5) is verified for all points Y lying on the integral curve CX. Then, the

PDE (5) may be also written as : ∀C ∈ F , ∀a ∈ R,
∂Ii(C(a))

∂t = ∂2Ii(C(a))
∂a2 .

We recognize thus a one-dimensional heat flow constrained on C. This is very dif-
ferent from a heat-flow oriented by w, as in ∂Ii

∂t = ∂2Ii

∂w2 since the curvatures of integral
curves of w are now implicitly taken into account. In particular, the velocity of our
constrained equation has the interesting property to vanish when image intensities are
locally constant on C, whatever the curvature of C is. In this context, defining a field w
that is tangent everywhere to the image structures allows the preservation of these struc-
tures, even if they are curved (this concerns corners particularly, Fig.2b and Fig.1c).
This is not the case with divergence (3) or trace-based PDE’s (4).

The existence and unicity of the solutions of (5) are not directly approached in this
article, although we show below that these solutions can be approximated by the line
integral convolution technique, which is a well-posed analytical approach [6].

3.2 Curvature-Preserving PDE’s and Line Integral Convolutions

Line Integral Convolutions (LIC) have been first introduced in [6] as a technique to
create a textured image ILIC that represents a vector field w : Ω → R2. The idea
consists in smoothing an image Inoise - containing only noise - by averaging its pixel
values along the integral curves of w. Actually, a continuous formulation of a LIC is :

∀X ∈ Ω, ILIC
(X) = 1

N

∫ +∞
−∞ f(p) Inoise(CX

(p)) dp (8)

where f : R → R is an even function (strictly decreasing to 0 on R+) and CX is
defined as the integral curve (6) of w through X. The normalization factor N allows
the preservation of the average pixel value along CX and is equal toN =

∫ +∞
−∞ f(p) dp.

As noticed in previous section, our curvature-preserving PDE (5) can be seen as the one-

dimensional heat flow
∂Ii(C(a))

∂t = ∂2Ii(C(a))
∂a2 constrained on the integral curve CX ∈ F .
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Using the variable substitution L(a) = I(CX
(a)), this PDE becomes ∂L

∂t (a) = L
′′
(a). The

solution L[t] at time t is known to be the convolution of L[t=0] by a normalized Gaussian

kernel Gt (see [15]) : L[t]
(a) =

∫ +∞
−∞ L[t=0]

(p) Gt(a−p) dp with Gt(p) = 1√
4πt

exp
(
− p2

4t

)
.

Substituting L with a = 0, and remembering that CX
(0) = X and Gt(−p) = Gt(p) :

∀X ∈ Ω, I[t]
(X) =

∫ +∞
−∞ I[t=0](CX

(p)) Gt(p) dp (9)

Thus, the equation (9) is a particular form of the continuous LIC-based formulation
(8) with a Gaussian weighting function f = Gt. Here, the normalization factor is
N =

∫ +∞
−∞ Gt(p) dp = 1. Intuitively, the evolution of our curvature-preserving PDE (5)

may be seen as the application of local convolutions by normalized one-dimensional
Gaussian kernels along integral curves C of w, which is a possibly curved filtering
instead of an oriented one. Applying this setting on a multi-valued image I, with w
being the lowest eigenvector of the structure tensor field G (i.e. the contour direction)
allows the preservation of curved image structures. This is illustrated on Fig.2b, where
few integral lines CX are shown, around a typical T-junction structure. Note how the
streamlines rotate when arriving at the junction.

Note that (9) is an analytical solution of (5) when w does not evolve over time. This is
generally not true when dealing with general nonlinear regularization PDE’s, where the
smoothing geometry is re-evaluated at each time step. We can anyway perform several
iterations of our LIC scheme (9), where the vector field w is updated at each iteration,
exactly as it is done in explicit PDE implementations, where the smoothing geometry
w is considered as constant between two successive time steps t and t+ dt.

3.3 Between Traces and Divergence Formulations

It is worth to notice than our curvature-preserving PDE (5) is naturally positioned be-
tween the trace and divergence formulations. We can express div

(
wwT ∇Ii

)
as

div
(
wwT ∇Ii

)
= trace

(
wwT Hi

)
+ ∇IT

i Jww + div(w)∇IT
i w

The first term corresponds to the trace PDE (4) (that smoothes locally I along w),
the two first terms correspond to our curvature-constrained regularization PDE (5),
(that smoothes locally I along w while taking the curvature of integral curves C of
w into account), and the three terms together correspond to the classical divergence
PDE (3) that performs local diffusions of I along w. In our point of view, the last term
div(w)∇IT

i w is responsible for the perturbations of the effective smoothing direction
(as described in section 2.2) and is not desirable for image regularization purposes.
Our proposed curvature-constrained PDE (5) allows at the same time the full respect
of the pre-defined smoothing directions w, while preserving images structures which
are curved along w. Note also that we can also see our curvature-preserving PDE (5)
as the corresponding divergence-based equation minus the term div(w)∇IT

i w. Thus,
where w is a divergence-free field, the divergence and curvature-preserving approaches
are strictly equivalent.
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3.4 Extension to Multi-directional Smoothing

Here, we extend our single-direction smoothing PDE (5) so that it can deal with
a tensor-valued geometry T : Ω → P(2), instead of a single vector-valued ge-
ometry w. Indeed, a diffusion tensor can describe much more complex smoothing
behaviors (isotropic and anisotropic) than single directions (only anisotropic). This ex-
tension is not straightforward : curvatures and integral curves of tensor-valued fields
T are not easily defined. Instead, we propose to locally decompose a tensor-driven
smoothing process by several vector-driven smoothing processes along different orien-

tations. We first notice that
∫ π

α=0 aαa
T
α dα = π

2 Id with aα =
(
cosα sinα

)T
. Then,

any 2 × 2 tensor T may be written as : T = 2
π

√
T
(∫ π

α=0 aαa
T
α dα

)√
T where√

T =
√
f+uuT +

√
f−vvT stands for the square root of T. One can easily ver-

ify that (
√

T)2 = T and (
√

T)T =
√

T. Thus, the tensor T may be written as :

T = 2
π

∫ π

α=0(
√

Taα)(
√

Taα)T dα (10)

We have split the tensor T into a sum of atomic tensors (
√

Taα)(
√

Taα)T , each be-
ing purely anisotropic and directed only along the vector

√
Taα ∈ R2. The equa-

tion (10) naturally suggests to decompose any tensor-driven regularization PDE into
a sum of single direction smoothing processes, each of them respecting the over-
all geometry T. For instance, if T = Id (identity matrix), the tensor is isotropic
and ∀α ∈ [0, π],

√
Taα = aα. The resulting smoothing will be then performed in all

directions aα of the plane with the same strength, while if T = uuT (where u ∈ S1),
the tensor is purely anisotropic and : ∀α ∈ [0, π],

√
Taα = (uT aα)u. The resulting

smoothing will be then performed only along the direction u of the tensor T.
Then, considering that each single direction smoothing must be done with a

curvature-preserving PDE (5), we define the following constrained regularization
PDE, acting on a multi-valued image I and driven by a tensor-valued smoothing
geometry T :

∂Ii

∂t = 2
π

∫ π

α=0 trace
(
(
√

Taα)(
√

Taα)T Hi

)
+ ∇IT

i J√
Taα

√
Taα dα,

which can be simplified as :

∀i = 1, . . . , n, ∂Ii

∂t = trace(THi) + 2
π∇IT

i

∫ π

α=0 J√
Taα

√
Taα dα (11)

where aα = (cosα sinα)T , and J√
Taα

stands for the Jacobian of the vector field

Ω →
√

Taα. A similar idea of smoothing decomposition along all orientations of the
plane can be also found in [35]. As in the single direction case, (11) may be seen as
a trace-based equation (4), where an extra term has been added in order to respect the
curvature of all integral lines passing through the tensor-valued geometry T.

4 Implementation and Applications

The implementation of our regularization method (11) benefits from the LIC-based in-
terpretation of curvature-preserving PDE’s presented in section 3.2. Indeed, we can ex-

plicitly discretize (11) by the Euler scheme : I[t+dt] = I[t] + 2dt
N

(∑N−1
k=0 R(

√
Taα)

)



Curvature-Preserving Regularization of Multi-valued Images Using PDE’s 303

(a) Noisy color image.
(b) Regularization using a fi nite-
difference scheme (stopped at t = 100).

(c) Regularization using our LIC-based
scheme (stopped at t = 100).

Fig. 3. Comparison between traditional and LIC-based implementations of our PDE (11)

(a) Denoising of the “baboon” color image (19.3s). (b) Watered effect suppression in a color image (11s).

(c) Suppression of JPEG compression artifacts in the “Lena”
image (6.4s).

(d) Suppression of quantification artifacts in a 8bits color im-
age (12.8s).

(e) Denoising of a digital photograph with digital noise (5.6s). (f) Creating painting effects with over-smoothing procedures
(26s).

Fig. 4. Results of color image regularization using our curvature-preserving PDE’s (11)
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(a) Inpainting a cage (middle) in a color image (left). Inpainted in 4m11s (right).

(b) Removing subtitles from a movie frame (11s).

(c) Left : Zoom of (b). Right : Reconstruction of a color image where 50% of the pixel values have been suppressed

(1m01s).

From left to right : First row : Original color image, bloc-resizing, bicubic resizing, PDE-based resizing.

Fig. 5. Result of our curvature-preserving PDE (11) for interpolation of color images. (More
results at http://www.greyc.ensicaen.fr/ d̃tschump/greycstoration/ ).

where α = kπ/N (in the interval [0, π]), dt is the usual temporal discretization
step and R(w) represents a discretization of the curvature-preserving PDE (5) that
preserves curvatures along the single direction w. If we write this expression as :
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I[t+dt] = 1
N

(∑N−1
k=0 I[t] + 2dt R(

√
Taα)

)
, we can express it as the averaging of

different LIC’s along vector fields
√

Taα :

I[t+dt] = 1
N

(∑N−1
k=0 I[t]

LIC(
√

Taα)

)
The only difficult part here is the LIC implementation which needs the computation of
integral curves. A classical second-order Runge-Kutta integration [23] has been used
with success for our implementation. On one hand, our scheme allows the preservation
of thin image structures from a numerical point of view : the smoothing is performed
along integral curves of w, with a sub-pixel accuracy (see comparisons with a classical
finite difference discretization, Fig.3). On the other hand, this scheme is unconditionally
stable and allows to choose very large time steps dt, without visible artifacts in the ob-
tained regularization (dt � 50 in our experiments). As a result,the algorithm performs
very fast (� ×3) compared to traditional diffusion PDE implementations.

Fig.4 and 5 present different application results of our curvature-preserving PDE
(11), implemented by the LIC-based scheme and applied on 24bits RGB color images
I : Ω → [0, 255]3. All experiments have been performed on a single-CPU PC 2.8 Ghz
running Linux. Possible application range covers color image regularization (PDE is
applied on the entire image), inpainting (PDE is applied only inside regions to inpaint),
and non-linear resizing (similar to inpainting with a sparse mask). See [31, 32] for more
precisions on how diffusion PDE’s are used in these contexts. Processing time is dis-
played for each example. Other results, as well as the C++ source code of the proposed
algorithm can be found at : http://www.greyc.ensicaen.fr/˜dtschump/
greycstoration/.
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Higher Order Image Pyramids�
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Abstract. The scale invariant property of an ensemble of natural im-
ages is examined which motivates a new early visual representation
termed the higher order pyramid. The representation is a non-linear gen-
eralization of the Laplacian pyramid and is tuned to the type of scale
invariance exhibited by natural imagery as opposed to other scale invari-
ant images such as 1/f correlated noise and the step edge. The trans-
formation of an image to a higher order pyramid is simple to compute
and straightforward to invert. Because the representation is invertible
it is shown that the higher order pyramid can be truncated and quan-
tized with little loss of visual quality. Images coded in this representation
have much less redundancy than the raw image pixels and decorrelating
transformations such as the Laplacian pyramid. This is demonstrated by
showing statistical independence between pairs of coefficients. Because
the representation is tuned to the ensemble redundancies the coefficients
of the higher order pyramid are more efficient at capturing the variation
within the ensemble which leads too improved matching results. This is
demonstrated on two recognition tasks, face recognition with illumina-
tion changes and object recognition which viewpoint changes.

1 Introduction

It has been argued for some time that the problem of early vision is to determine
the most efficient method for representing images. Early formulations of this the-
ory were given by Atteneave and Barlow who argued for redundancy reduction
through the efficient coding hypothesis [2] [3]. The rational is rooted in informa-
tion theory: if later visual processes are to perform probabilistic inference the
input should be as statistically independent as possible The implication for early
vision is that images should be coded to match the expected input, the ensemble
of natural images (for examples see Fig. 1). Since, considerable advances have
been made in understanding this ensemble by studying the statistics of natural
images and arguably the most important feature to emerge is scale invariance
(see [4] for a recent review). While multi-resolution representations such as the
Laplacian, steerable, and wavelet pyramids are motivated by scale invariance
they are not necessarily tuned to the type of scale invariance found in images.

In this paper we present a novel method for representing images which is
motivated by the type of scale invariance found in the ensemble of natural im-
ages. This representation is a non-linear transformation based on the Laplacian
� This work was supported by a NSF ITR award no. IIS-0219078.
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Fig. 1. Examples of natural images from the Van Hatteren database [1]

pyramid of Burt and Adelson [5] and is referred to as the higher order image
pyramid. Because the transformation is invertible it is shown that the higher
order pyramid can be quantized and truncated with little loss of visual quality.
Once an image is coded the bits of the higher order pyramid exhibit far less
redundancy than the raw image pixels and linear transformations such as the
Laplacian pyramid. This is shown by demonstrating that the mutual information
between pairs of coefficients is near zero.

Tuning a representation to the ensemble redundancies implies the represen-
tation efficiently captures the variation within the ensemble. Capturing this
variation leads to improvements in recognition tasks. This is demonstrated by
showing improved matching using the higher order pyramid on an object recog-
nition task with varying viewpoint and a face recognition task with varying
illumination.

2 Scale Invariance

The first statistical evidence of scale invariance was found by Field who discov-
ered a 1/f power law in the amplitude spectra of natural images indicating that
spatial correlations are scale invariant [6]. Further evidence was found by Ruder-
man and by Zhu and Mumford who demonstrated that histograms of derivative
filtered images are consistent across scale indicating scaling in the higher order
statistics [7] [8]. Although the presence of scale invariance in images is clear, no
method exists for fully taking advantage of this property. One reason for this
is the lack of a simple model that suggests how to represent the type of scale
invariance found in images. Next, we develop such a model.

The type of scale invariance seen in images is examined by considering the
behavior of each particular image as the scale is reduced. Once particular images
are considered the range of intensities is fixed, hence the moments are finite. Then
scale invariance appears in the expected value of the moments of the distribution
of intensity as scale is reduced which is
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Fig. 2. The variance in intensity as a function of scale (the number of times the images
are downsampled) for a pure step edge, a set of natural images, 1/f noise, and iid noise.
The step edge, 1/f noise, and natural images all exhibit scale invariance indicated by
a slow linear decay.

E{|I(x/s)|k}, (1)

where I(x) is an image, s is the spatial scale, and the expectation E is taken
over an ensemble of images. We assume the mean intensity is subtracted from
each image so k is a central moment.

Fig. 2 shows the result of estimating (1) for k = 2 using 40 images selected
from the van Hateren database [1]. A scale change of I(x) is implemented by
smoothing and downsampling. Each image is repeatedly blurred, downsampled
and a variance (k = 2) is estimated. For each scale the variances of all 40 images
are averaged. The plot shows the reduction in variance as a function of scale and
compares the behavior of images to that of a pure step edge, 1/f noise, and iid
noise. All plots are normalized to 1 at the first scale. The step edge, the images,
and 1/f noise all exhibit scale invariance because the variance falls linearly. The
same result is found for the higher moments implying

E{|I(x/s)|k} = E{|I(x/(2s))|k} +K. (2)

The actual value of the constant K is unimportant. However, for images K lies
somewhere between that of a step edge and 1/f noise,

K1/f < Kimages < Kstep. (3)

What differentiates images is the rate at which the moments decay with scale.
Multi-resolution representations such as the Laplacian pyramid are motivated

by the fact that images exhibit scale invariance. These representations code
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Fig. 3. The variance of the Laplacian magnitude as a function of scale for a pure
step edge, a set of natural images, and 1/f noise. Only the natural images are scale
invariant.

L(x/s) = I(x/s) − I(x/(2s)),

which is the prediction error between scales. However, such representations do
not explicitly differentiate between step edges, 1/f noise, and natural images. To
describe the type of scale invariance that images exhibit, L must be examined.

Although L, the levels of a Laplacian pyramid, are no longer scale invariant
according to eq. (2) they still resemble images which suggests a hidden scale
invariance. Indeed, if a new image (the Laplacian magnitude) is defined

I(2) = log |L| (4)

which is independent of the sign then scale invariance reappears. The log function
is used to reduce the sensitivity of the statistics to the extreme values. The fact
that redundancy exists in the magnitude is well known and has been documented
by Simoncelli et al [9] [10] [11]. Here it is shown that the form of the redundancy
is scale invariance. Next, the same experiment is repeated except using I(2) for
each of the 40 natural images, the step edge, the 1/f noise, and the iid noise.

Fig. 3 shows the result of the experiment. Now the behavior of images is very
different. The Laplacian magnitude of a step edge is a line edge and the Lapla-
cian magnitude of 1/f noise is similar to iid noise neither of which have scale
invariance. For natural images the Laplacian magnitude appears scale invariant.
Furthermore, if we start from a lower scale and include the data from Fig. 2 the
same pattern emerges as in the first experiment (see Fig. 4). Thus I(2) for nat-
ural images behaves like I meaning both (2) and (3) hold. Therefore, we define
the following sequence
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Fig. 4. The plot for the natural images from Fig. 3 is combined with the plot for the
other images from Fig. 2. The rate of decay for the Laplacian magnitude of the natural
images is similar to that of the intensity images.

I(1)(x/s) = I(x/s)
I(n)(x/s) = log |I(n−1)(x/s) − I(n−1)(x/(2s))|,

and assume that if (2) and (3) are true for I(n) they are true for I(n+1). Just
as the Laplacian pyramid is a representation that assumes I is scale invariant,
the higher order pyramid is a representation that assumes I(1), I(2), I(3) . . . are
scale invariant. The implication is that the higher order pyramid is tuned to the
type of scale invariance of natural images and not that of other scale invariant
images such as 1/f noise and the step edge. In the next section the construction
of the higher order image pyramid is described.

3 Higher Order Pyramids

We begin with a description of the Laplacian pyramid on which higher order
pyramids are based. The Laplacian pyramid is motivated by the scale invariance
of I(1) and only codes the information at each scale that is not predicted by the
lower scale. The transformation L constructs a Laplacian pyramid for an image
I and is defined by the set,

L(I) = {L1, L2, . . . , Ls, G}, (5)

where Li = I(x/2i−1) − I(x/2i) are levels of the pyramid. L1 is the finest scale,
Ls is the coarsest scale and G is the lowpass residual. Using Li to refer to the
ith member of the set L, it is straightforward to invert L by

I = L−1 =
s+1∑
i=1

Li (6)

where upsampling and convolution are implicit (for details see [5]).
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A higher order pyramid is motivated by the scale invariance of
I(1), I(2), I(3) . . . where the prediction error is Li/|Li| which are the sign bits.
However, the sign operation introduces aliasing and is not rotationally invariant
which is why scale invariance does not appear until the lower scales (see the
abscissa axis of Fig. 3). Rather than coding the sign bits we code

C(I) = {L1(x)/M1(x/2), . . . , Ls(x)/Ms(x/2), G} (7)

where Mi = |Li|. The operation Li(x)/Mi(x/2) is accomplished by dividing a
level of the Laplacian pyramid by its magnitude after blurring, downsampling,
and upsampling. Thus, C constructs a pyramid on the input image I and divides
each level by a reduced resolution version of the magnitude at that level. The
result is a contrast normalized Laplacian pyramid. The higher order pyramid
differs from other contrast normalized image representations by explicitly repre-
senting the magnitudes as well via additional pyramids [7] [12]. The higher order
pyramid is recursively defined by the set

H(1)(I) = {C(I), {logM1(x/2), . . . , logMs(x/2)}} (8)
H(n)(I) = {C(I), {H(n−1)(logM1(x/2)), . . . ,H(n−1)(logMs(x/2))}}. (9)

Because this is a doubly recursive representation there are two notions of depth,
s the number of times the scale is reduced when building the pyramids and
n the number of times pyramids are built on the images I(1), I(2), I(3) . . .. We
refer to n as the order of the pyramid. A first order pyramid, H(1), is a contrast
normalized Laplacian pyramid along with I(2) the residual magnitude images.
A second order pyramid, H(2), constructs a first order pyramid on each of the
residual magnitudes and keeps the I(3) residuals . For higher orders this process
is repeated. Fig. 5 demonstrates a higher order pyramid built up to order 3.
Each time the order is increased the residual magnitudes decrease in scale by a
factor of 2. It is straightforward to show that the total number of coefficients is
twice the number of pixels. Hence, the representation is twice overcomplete.

H is a set with two elements each of which is a set. The notation H1,i refers
to the ith member of the first set and H2,i refers to the ith member of the second
set. Using this notation it is straightforward to invert the pyramid by

H(n)−1
=

s∑
i=1

H1,i exp
(
H−1

2,i

)
+ H1,s+1, (10)

H(1)−1
=

s∑
i=1

H1,i exp (H2,i) + H1,s+1, (11)

which recursively collapses all of the pyramids and multiplies back in the magni-
tudes. Like the Laplacian pyramid, there is no loss of information when inverting
the higher order pyramid.

For any order, the pyramid can be inverted without the residual magnitudes
which we refer to as a truncated pyramid. This is done by redefining eq. 11 to

H(1)−1
=

s∑
i=1

H1,i + H1,s+1. (12)
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Laplacian pyramid Higher order pyramid  n = 1

Higher order pyramid  n = 2 Higher order pyramid  n = 3

Fig. 5. A higher order pyramid is built from a Laplacian pyramid which in this example
is three levels deep along with a lowpass residual. A first order pyramid, n = 1, is a
contrast normalized pyramid with a residual magnitude shown below each level. A
second order pyramid, n = 2, builds first order pyramids on the magnitudes that are
larger than the lowpass residual. A third order pyramid repeats the process.

Although the result is a loss of information, the visual quality of the recon-
structed images rapidly improves as n increases. The transformation is also sta-
ble with respect to quantization in that visual quality also rapidly improves with
the size of the quantization bins. Fig. 6 demonstrates examples of reconstructed
images from truncated pyramids with coefficients quantized to integer values
resulting in an average entropy of 2.2 bits per coefficient.

4 Experiments

Three experiments are performed. The first is application independent and mea-
sures the degree to which pairs of coefficients are independent. The reason for
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original image second order pyramid first order pyramid

Fig. 6. The images are examples of inverting the higher order pyramid after truncat-
ing (removing the residual magnitudes) and quantizing the coefficients. The residual
magnitude becomes significantly less important as the order increases. Furthermore,
the transformation is stable with respect to quantization of the coefficients.

this test is that the efficiency of a representation is reflected by the lack of re-
dundancy or independence in the coefficients of the representation. The second
and third experiments are recognition tests. A good representation should lead
to improved matching. The rational is that a less redundant representation is
a better space in which to perform matching in the presence of uncertainty. In
our experiments two types of uncertainty are considered, face recognition with
illumination changes and object recognition with viewpoint changes. In all of our
experiments the Laplacian and higher order pyramids are implemented using a
7-tap binomial filter and image borders are handled via reflection.

4.1 Redundancy

To test for redundancy the joint distribution for a pair of coefficients is measured
from a set of 40 natural images. For each image, statistics are gathered for all
pairs of coefficients displaced by 5 pixel positions in the diagonal direction. This
is done for the raw image pixels, for a level in the Laplacian pyramid, and for
a level in the higher order pyramid. A distance of 5 is chosen to ensure the
coefficients are not within the support of the convolution filter.

The distributions are displayed as conditional distributions in Fig. 7 where
intensity represents the likelihood of y conditioned on the value of x. The Lapla-
cian pyramid has the familiar bowtie shape documented by Simoncelli [9]. This
is indicative of the fact that the magnitudes are correlated. Meanwhile the coeffi-
cients of the higher order pyramid are clearly independent because the likelihood
of x is the same for all values of y. This is also reflected by the mutual informa-
tion shown below each plot. Similar results are found for different spatial offsets
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Fig. 7. Conditional distributions for pairs of coefficients at the same spatial offset. In
the pixel domain the coefficients are correlated. In the Laplacian pyramid they are
decorrelated but still dependent because the variance of y scales with x. In the higher
order pyramid they are independent. Below each graph is M the measured mutual
information between the coefficients for each representation.

both within and between different levels of the higher order pyramid. Indepen-
dence has also been demonstrated after applying contrast normalization [12].
However because the higher order pyramid is invertible we can be sure that the
independence does not arise from destroying information. It is important to note
that correlations exist for neighboring pairs of coefficients within and between
levels however these are not due to redundancy in natural images but arise from
the convolution. Hence, they exist even for noise images.

4.2 Face Recognition with Illumination Changes

Using the Yale illumination face database and experimental setup reported
in [13], we test the ability of higher order pyramids to perform face recogni-
tion in the presence of illumination changes. The database contains 10 faces
each under 64 different illuminants. They are grouped into 5 subsets according
to the severity of the direction of illumination. Example are shown in Fig. 8(a).
Each face is cropped and downsampled to a resolution of 96 × 80 pixels. We
compared the matching performance of the representations shown in Fig. 8(b).
The pyramids are constructed 3 levels deep and the lowpass residual and the
residual magnitude images are not used. Because the levels of the pyramids are
subsampled each level is weighted by 4(s−1) so that all levels contribute equally.
Then each representation is treated as a vector of coefficients and matching is
done with normalized cross correlation. One image of each persons face is used
as the training image and the remaining 630 images are used as test images. For
all representations log intensities are used.

The results are reported in Fig. 9 and demonstrate a clear advantage for
the higher order pyramid as compared to the Laplacian pyramid and the raw
image pixels. For further comparison the results from Chen et al. are also in-
cluded [13]. It should be pointed out that all of the other methods with the
exception ofGradient Angle use all of the images in Subset 1 and 2 for training.
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image pixels

Higher order pyramid, n=1

subset 1&2 subset 3

subset 4 subset 5

Laplacian pyramid

Higher order pyramid, n=2

illumination changes

(a) (b)

Fig. 8. (a) Examples from the Yale illumination face database. Recognition is done
using normalized cross correlation with the representations in (b).

Furthermore, Subset 5, the one with the most sever illumination directions, is
not used in any of the other experiments.

The Gradient Angle method learns, from a database of images, an illumination
insensitive weighting of the magnitude of the gradient. Because the magnitudeis

Face recognition error rate (%) vs. Illumination

Subset Subset Subset Subset
Method 1&2 3 4 5

Eigenfaces 0 16.7 69.3 –

Linear subspace 0 1.7 12.9 –

Cones-attached 0 0.8 9.3 –

Gradient Angle 0 0.0 1.4 –

Cones-cast 0 0.0 0.0 –

Image pixels 0.6 15.0 47.9 46.3

Laplacian pyramid 0 1.7 10.0 24.2

Higher order pyramid, n=1 0 0 8.6 11.6

Higher order pyramid, n=2 0 0 0 0

Fig. 9. Face recognition error rates. The methods in bold are experiments we per-
formed using normalized cross correlation and the other results are from [13]. The
images are grouped into subsets according to the severity of the illuminant direction.
Subset 5 is the most severe and is not included in the results reported by the other
methods. Out of 630 test images the second order pyramid had no errors.
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sensitive to illumination the Gradient Angle method is a form of contrast nor-
malization thus bears a resemblance to the first order pyramid. However, the
perfect performance of the second order pyramid indicates that representing the
magnitude (in a less redundant space) rather than normalizing the magnitude
is important.

4.3 Object Recognition with Varying Viewpoint

Using the recently available Amsterdam object database [14], we test the ability
of higher order pyramids to perform recognition in the presence of viewpoint
changes. This is a large database containing 1000 small objects. Each object is
imaged on a rotational stage from 72 positions at 5◦ increments. We used the
grey scale dataset at quarter resolution which was further downsampled to a
resolution of 72 × 96 pixels. In addition log intensities are used. Examples of
some of the objects are shown in Fig. 10.

For each object, N evenly spaced training views are used. Each test image is
matched between all training views. Again we tested the performance of match-
ing using the image pixels, the Laplacian pyramid, and the higher order pyramid
where each representation is treated as a vector of weighted coefficients. The
depth of the pyramids is the same as the face recognition experiment except the
lowpass residual images are included this time. In the face recognition experi-
ment the lowpass residual is too dependent on illumination. Furthermore, sum
of squared distances (SSD) is used rather than normalized correlation due to the
use of the lowpass images. One important difference between the object images
and the face images is the background. In order to avoid the background biasing
the results the mean vector is computed for the entire set of training views. This
mean vector is then subtracted from each training vector and from each test
vector prior to computing the SSD.

Due to the size of the database 10 trials are performed on subsets of 100
randomly selected objects. For each trial N training images are used for each of
the 100 chosen objects and 5000 test images are randomly chosen from among

Fig. 10. Example of objects from the Amsterdam library of object images (ALOI)
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the 7200 images of the chosen objects. Below are the recognition error rates
averaged over the 10 trials for N = 6, 8, 12. In all cases the second order pyramid
outperforms the other representations.

Object recognition error rate (%) vs. number of training views
6 views 8 views 12 views

Representation
Image pixels 6.90 3.72 1.56

Laplacian pyramid 5.83 2.81 1.01
Higher order pyramid, n=1 4.10 2.08 0.63
Higher order pyramid, n=2 3.74 1.50 0.31

5 Discussion

The scale invariant properties of natural images leads to the higher order pyra-
mid as an early visual representation which is simple to compute and straight-
forward to invert. Images coded in the space of higher order pyramids exhibit
far less redundancy than the raw image pixels and decorrelating transformations
such as the Laplacian pyramid. This is demonstrated by showing the indepen-
dence between pairs of coefficients and improved matching in two recognition
experiments. The recognition experiments are only intended to demonstrate the
potential for redundancy reduction as a goal for the representation of visual pat-
terns and the higher order pyramid as a step in this direction. The real benefit
is the further processing of the higher order pyramid and the incorporation of
learning techniques.

It is interesting to note that the representation is not oriented. Because a
Laplacian pyramid is used to construct the higher order pyramid the basis
functions are all circularly symmetric Gaussian functions albeit combined in
a non-linear way. This might seem strange given the wide spread use of oriented
filters such as Gabor functions and steerable derivatives throughout computer
vision. In addition, oriented receptive fields are commonplace in computational
models of human vision. Furthermore, it is well known that the optimal linear
basis in which to represent natural images is made up of oriented basis func-
tions [6] [15] [16]. If we assume that scale invariance as defined in this paper is
a natural description of images then we must ask why use oriented basis func-
tions. We briefly speculate on some possible answers. (1) The model proposed
here does not fully capture the scale invariance of images. (2) Other statistical
properties of images that are not implied by scale invariance are more important.
(3) Oriented basis functions are simply the best way to represent scale invariance
when restricted to a linear framework. However, in a non-linear framework they
may no longer be needed.
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Abstract. Calculating a reliable similarity measure between pixel fea-
tures is essential for many computer vision and image processing applica-
tions. We propose a similarity measure (affinity) between pixel features,
which depends on the feature space histogram of the image. We use
the observation that clusters in the feature space histogram are typi-
cally smooth and roughly convex. Given two feature points we adjust
their similarity according to the bottleneck in the histogram values on
the straight line between them. We call our new similarities Bottleneck
Affinities. These measures are computed efficiently, we demonstrate su-
perior segmentation results compared to the use of the Euclidean metric.

1 Introduction

Calculating a similarity measure between pixels is a fundamental step in many
computer vision and image processing algorithms. Many of these algorithms
depend on a reliable affinity (or distance measure) between pixels for their cal-
culations. The affinities are either measured between different pixels of the same
image in case of segmentation and edge detection, or between pixels from neigh-
bouring frames in case of optical flow calculation, motion segmentation and
tracking.

In most of these applications, pixel affinity is calculated as a simple function of
the Euclidean distance between the pixels’ features (usually e−distance2

) in some
feature space. Common feature spaces are the one-dimensional gray scales feature
space, two or three dimensional colour spaces and higher dimensional (∼ 50D)
texture feature spaces. Different researches suggest using different feature spaces
for achieving optimal results in various applications, but no particular feature
space is considered optimal by the whole community (A survey of the properties
of different colour spaces for image segmentation can be found in [1], while [2]
provides a basic survey of different texture features). Other approaches include
learning pixel affinity and feature space clustering.

Fowlkes et al. suggested a high level approach for learning pixel affinity cal-
culations using a dataset of human segmented images as ground truth [3]. Their
approach for affinity calculation uses the combination of several feature spaces
and information from the image itself (edges) through a high level learning
mechanism. While the approach is suitable for segmentation and similar time
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consuming applications, it is less suitable for online applications or other com-
putationally efficient applications. Another drawback is the generalization of the
method, which is not straightforward. For example, generalizing the approach to
handle affinity calculations between pixels in successive frames requires massive
human assistance.

A different approach for providing pixel affinity is by using feature space
clustering [4]. This approach tries to exploit image specific characteristics rather
than learn a general rule for the affinities calculations. Although this approach
can be efficient and easy for generalization, it implies clustering of the feature
space (hard or soft) which is prone to errors due to noise and other difficulties.

We claim that given two feature points, u and w, with equal Euclidean dis-
tances from a third feature point v, it stands to reason that if w and v share the
same cluster, while u is located within another cluster, the affinity of w and v is
larger than the affinity of u and v.

The motivation for our approach is obvious when looking at the synthetic one-
dimensional feature histogram in Figure 1. Our main observation is that the his-
togram provides us with the additional knowledge that the feature values belong
to two different Gaussian distributions. While v and w are very likely belong to
the same source and should be considered similar, v and u seem to belong to two
different sources and should be considered dissimilar.

feature value
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f
 
p
i
x
e
l
s

Fig. 1. (a) An example of a one-dimensional features histogram. Given the above his-
togram, it stands to reason to claim that a pixel having a feature value of v is similar
to a pixel having a feature value of w and dissimilar to a pixel having a feature value
of u although the Euclidean distance between the feature values v and w is identical
to that of v and u.

This work suggests a straightforward and efficient approach to affinity cal-
culations that exploits image specific attributes while not explicitly applying
clustering of the feature space. We do so by introducing the Bottleneck Affini-
ties - a simple mechanism for estimating the likelihood that two feature points
belong to the same cluster in the feature space. We estimate this likelihood by
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analyzing the histogram values on the straight line connecting the two feature
points in the feature space histogram. A sparsely populated region along this line
(in the histogram domain) is considered a “bottleneck” and indicates that the
two points probably belong to two different clusters. We therefore decrease their
affinity measure. Similarly, a densely populated line indicates that the points
belong to the same cluster and we therefore increase their affinity measure.

Our approach utilizes the typical smooth and convex structure of clusters
in the RGB histogram of images. This structure is the result of scene prop-
erties and the (digital) image acquisition process. We discuss the structure of
the clusters in the next section (section 2). Section 3 describes our algorithm
and discusses implementation issues. The results are shown in section 4, while
section 5 summarizes and suggests possible extensions to this work.

2 Histogram Clusters

This section discusses the physical properties that affect cluster structure in an
image feature space histogram.

Figure 2 shows a simple image, containing a small number of dominant colours
along with a two-dimensional projection of its RGB histogram. The difficulty in
modelling the clusters in the histogram domain is evident from this example.
The clusters have no particular shape, and methods like the Gaussian Mixture
Model are not suitable for this kind of problem. The large amount of noise makes
the task of clustering a difficult one even for this simple scene. Nevertheless, it is
obvious that the histogram contains different clusters. For most pairs of feature
points, the problem of estimating a likelihood measure for the points to belong
to the same cluster seems significantly easier than the actual clustering problem.
Our algorithm is aimed at utilizing this observation.
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Fig. 2. (a) Sample image and (b) its RG histogram (a projection of the RGB histogram
upon the RG axis), darker colour represents a denser histogram bin
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For the sake of simplicity, this discussion refers to three-dimensional colour
features (RGB values). We will address the generalization of the discussion to
other feature spaces at the end of this section.

Our algorithm takes advantage of three well studied image properties. The
first property is the piecewise smooth world assumption which has been used be-
fore in many computer vision and image processing applications such as bound-
ary detection [5], image segmentation [6], noise reduction [7] and more. The
second property is that monochromatic scene objects create nearly convex elon-
gated clusters in the RGB histogram [8]. The third property is image blur due
to the optics of the camera and the finite size of the pixel [9].

The first and second properties imply that for two feature points belonging
to the same monochromatic object, all the bins along the line connecting them
(in the histogram domain) are populated. Due to the third property, the same
holds for textured objects as well. The justification for the last claim lies in the
following fact: While locally, in the image plain, there is no difference between
the blurring of edges due to texture and due to boundaries, globally - in the
histogram domain there is a big difference between these phenomena. Boundaries
between objects are scarce and therefore produce a small number of interpolated
values. The line in the histogram between pixels from neighbouring objects is
therefore scarcely populated. In textured regions the same texture components
(texels) are blurred repeatedly. The line between pixels from two different texels
(of the same texture) in the histogram is well populated.

Figure 3 demonstrates the difference in the histogram domain between edges
due to object boundaries and edges due to texture. In the figure we show real
images of a synthetic scene along with their GB histogram (a projection of their
RGB histogram upon the GB plane). There are only a few pixels with interpo-
lated values in figure (a) and the two clusters are well separated in the histogram
domain (b). In figure (c) many of the pixels have interpolated values and the re-
gion between the two clusters in the histogram domain (d) is densely populated.
Figure 4 shows an image along with the edge maps according to the Euclidean
metric (b) and to our bottleneck distance measure (c). For visualization purposes
we show the square root of the edge maps (the difference is visually prominent
when looking at the squared root). Both edge maps were normalized to the range
of [0..1]. Notice how in the bottleneck edge map boundaries between objects are
maintained while the intensity of edges due to texture (the sculptures surface)
is decreased.

Refining Our Assumption: In order for our approach to separate feature points
only when they belong to different clusters in the feature space histogram, the
cluster should be convex. In real life, these clusters are usually not entirely con-
vex as can be seen if figure 2, and one could claim that our heuristic should
fail. Fortunately, although not entirely convex, the clusters are usually convex
in a small neighborhood in the feature space histogram and are therefore locally
convex. Since most applications calculate affinity only in limited neighborhoods
around pixels, our heuristic rarely fails. The justification lies in the smoothness
assumption. Due to this assumption, neighboring pixels that belong to the same
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Fig. 3. (a) An image of a synthetic scene containing two objects and its GB histogram
(b). (c) An image of a synthetic scene containing a texture (two texels) and its GB
histogram (d).

(a) (b) (c)

Fig. 4. (a) An image with the squared root of its Euclidean edge map (b) and of its
bottleneck edge map (c) (the differences are more easily seen when looking at the
squared root). The values in both maps are normalized to the range of [0..1]. Notice
how the bottleneck edge map maintains edges between objects while the edge values
inside the sculptures are significantly lowered.
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object (or piece) have similar features (the changes are smooth within the ob-
ject) and therefore reside in the same locally convex region of the cluster. Our
empirical results support this claim.

Although in the entire section we referred to RGB features, we would like
to point out that our main argument, smoothness due to scene and camera
properties, is a fundamental property of natural images and is not related to a
specific set of features. Our experimental results support this observation as we
clearly show in the results section.

3 Defining and Computing the Bottleneck Affinities

We implemented a simple and efficient algorithm that utilizes our observation
of the typical structure of clusters in the feature space histogram for calculating
the bottleneck affinities. Given two feature points, our distance measure is the
Euclidean distance between the points multiplied by a Bottleneck factor (bnf).
This factor receives a low value (bnf < 1) for points which our algorithm decided
are likely belong to the same cluster and, a high value (bnf > 1) for points which
our algorithm decided belong to different clusters.

Given two feature points p1 and p2, a feature space histogramH , and L(p1, p2)
- the straight line connecting the two feature points in the histogram domain,
we calculate the bnf according to the following formula:

bnf(p1, p2) =
2min(H(p1), H(p2))

2min(H(L(p1, p2))) +min(H(p1), H(p2))

Where H(p) is the histogram value at the bin whose coordinates are given by the
feature point p and min(H(L(p1, p2))) is the minimum histogram value along the
line connecting the two points in the histogram domain (excluding the value at
the two end points). The term min(H(p1), H(p2)) was added to the denominator
for stabilization reasons. We chose the exact criteria for calculating the bnf due
to its simplicity. Our experience shows that other, similar formulas produce very
similar results.

A more thorough analysis of the histogram values along the line may produce
yet better results, the exact formula may depend on the sparseness/denseness
of the histogram, the amount of noise and other factors, but as we show in our
results section, even this simple criterion yields very good results.

We believe that the main contribution of this paper is in introducing a
new approach to computing the affinities rather than in the specific formula
suggested.

We implemented the algorithm as a C routine that is called from Matlab
(mex file). Since Matlab is our development environment, our implementation
is only suitable for algorithms that calculate affinities or distance measures for
the original input image like Normalized Cuts (Ncut) [10] and other spectral
clustering algorithms. The implementation is not suitable for algorithms that
iteratively change pixel values like the MeanShift algorithm [11] since we can
not efficiently update our histogram dynamically in each iteration. Nevertheless
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we are confident that given a dynamic implementation of the histogram (for
example in C++) iterative algorithms may benefit from our affinity calculations
as well.

Since high dimensional histograms are extremely sparse, our method can not
be applied directly for modifying affinity calculations of texture features. Tex-
ture is usually represented as a feature vector, holding the response of the pixel’s
neighbourhood to a large number of filters (typically, around 50). Even using a
quantization, allowing only four possible values for each coordinate we get a fea-
ture histogram with 450 bins and we hardly ever get two pixels in the same bin.
We address this problem by projecting the high dimensional feature vectors onto
their first three principal components. Even with this drastic dimensionality re-
duction, using our affinity measures with the projected histogram dramatically
improves the segmentation results compared with those achieved by using Eu-
clidean affinities in the full dimensional space (using Euclidean distance in the
projected subspace produced poor results).

Computationally, calculating the histogram distance between two points, p1
and p2, in the feature space is linear in n - the number of bins along the line
connecting the points in the histogram domain. Since most of the applications
calculate distances (or affinity) only in a small neighbourhood, and neighbouring
pixels tend to be similar, in average, n is very small. The average computational
time for computing the affinity between one pixel and the rest of the image in
a 480*320 image is 2 seconds on a Pentium4 2.4Ghz computer. Constructing
a Matlab sparse matrix with histogram affinity scores of 11*11 neighbourhood
around each pixel in an image of the same size took an average of 200 seconds, 80
of which were spent on the actual affinity calculations. For comparison, building
the same matrix with Euclidean affinity scores took around 140 seconds, 24
of which were spent on the actual affinity calculations. In addition, the actual
segmentation process (given the affinity matrix) took at least twice that time
(∼ 7 minutes), the computational overhead due to our method is therefore nearly
negligible.

When calculating affinities between texture features, our approach even proved
marginally more efficient than calculating the Euclidean distance, since we work
in a projected three dimensional subspace, while the Euclidean distance was cal-
culated in a much higher dimension.

4 Results

We demonstrate the competence of our pixel affinity through the results of seg-
mentation algorithms using both color and texture features. We chose the Ncut
algorithm for our demonstration since it is a well known image segmentation
algorithm that is easily adopted to use with various affinity measures, affinities
were computed in an 11*11 neighbourhoods around each pixel. We ran the algo-
rithm twice over the Berkeley segmentation dataset, once using Euclidean affini-
ties and the other using our bottleneck affinities. We provide both the Berkeley
segmentation benchmark results for both runs and a few qualitative examples.
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Fig. 5. Benchmark results of the Ncut algorithm using color features and Euclidean
affinities: (a) precision/recall segmentation results (mean precision/recall in red circle),
(b) F-measure histogram and (c) recall histogram. Benchmark results of the Ncut algo-
rithm using color features and bottleneck affinities: (d) precision/recall segmentation
results (mean precision/recall in red circle), (e) F-measure histogram and (f) recall
histogram.

The Berkeley segmentation dataset contains 100 test images. All images in
the dataset were manually segmented by humans and these segmentations are
considered as ground truth. Berkeley’s benchmark tool calculates precision, re-
call and F-measure (the harmonic mean of the precision and recall scores) for the
automatically segmented images according to these human segmented images.
Figure 5 provides benchmark results for images segmented by the Ncut algo-
rithm using color (RGB) features. The results in the figure are: Precision/recall
graph (a,d), the F-measure histogram (b,e) and the recall histogram (c,f). Using
our affinity measure improved the F-measure from 0.33 to 0.41 - an improve-
ment of 24%. The recall rate improved from 0.26 to 0.37 - an improvement of
42%. The improvement in precision was only marginal, from 0.49 to 0.50 - an
improvement of 2%. Using bottleneck affinities produced better segmentation
results (compared to using the Euclidean metric) for 82 out of the 100 images in
the dataset. Figure 6 provides benchmark results for images segmented by the
Ncut algorithm using texture features. The texture features used are the Leung-
Malik filter bank [12] (a total of 48 filters). We also tried using the Schmidt filter
bank [13] (a total of 13 filters) but received inferior results. The code for both
filter banks was obtained from [14]. The results in the figure are: Precision/recall
graph (a,d), the F-measure histogram (b,e) and the recall histogram (c,f). Using
our affinity measure improved the F-measure from 0.2 to 0.28 - an improvement
of 39%. The recall rate improved from 0.15 to 0.24 - an improvement of 56%.
The precision rate has improved from 0.34 to 0.39 - an improvement of 13%.
Using bottleneck affinities produced better segmentation results (compared to
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Fig. 6. Benchmark results of the Ncut algorithm using texture features and Euclidean
affinities: (a) precision/recall segmentation results (mean precision/recall in red cir-
cle), (b) F-measure histogram and (c) recall histogram. Benchmark results of the Ncut
algorithm using texture features and bottleneck affinities: (d) precision/recall segmen-
tation results (mean precision/recall in red circle), (e) F-measure histogram and (f)
recall histogram.
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Fig. 7. Segmentation results of the Ncut algorithm using texture features in 15*15
neighbourhoods (each cluster is colored using its mean intensity) according to Euclidean
affinities (second row) and to our bottleneck affinities (third row)
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Fig. 8. Segmentation results of the Ncut algorithm using texture features in 15*15
neighbourhoods (each cluster is colored using its mean intensity) according to Euclidean
affinities (second row) and to our bottleneck affinities (third row)

using the Euclidean metric) for 92 out of the 100 images in the dataset. It is
important to mention that these results were achieved for the filter responses
alone, without incorporating gray-scale information, hence they are not high.

Figure 7 provides a comparison of segmentation results achieved using the
Ncut algorithm using RGB features. Results achieved using the Euclidean met-
ric are shown in the second row, while those achieved using bottleneck affinities
are in the third. Figure 8 provides a comparison of segmentation results achieved
using the Ncut algorithm using texture features. Results achieved using the Eu-
clidean metric are shown in the second row, while those achieved using bottleneck
affinities are in the third.

We used Matlab’s graph-partitioning algorithm for providing an additional
evaluation of our bottleneck affinities. Graph vertices represented image pixels
and edge weights were calculated as the sum of distance in the image plane
and color-features dissimilarity (according to the Euclidean metric and to the
bottleneck affinities). The algorithm is computationally expensive in terms of
both time and memory, since it requires building a full graph. We therefore do
not provide full benchmark results for that algorithm, rather we provide a few
examples. The results are found in Figure 9. All the images in this experiment
were segmented to up to 8 segments.

We did not compare our algorithm to the Fowlkes et. al. algorithm because the
approaches are entirely different; our approach is a low level one that works on a
single feature space, while Fowlkes et. al. use a high level approach that combines
cues from several feature spaces and from the image plane itself. Moreover, their
approach can use our algorithm as a subroutine. We also did not compare our
approach to that of feature space clustering since this approach is rarely used
and our past experience with it produced inferior results.



Image Specific Feature Similarities 331

Original Euclidean Bottleneck

Fig. 9. Segmentation results of Matlab’s average-link graph partitioning algorithm us-
ing RGB features. Results achieved using the Euclidean metric are in the second col-
umn. Results achieved using the bottleneck affinities are in the third column. All images
were automatically segmented into up to 8 (not necessarily continuous) segments.
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5 Discussion and Future Work

We introduced bottleneck affinities, a straightforward and efficient approach that
utilizes image specific characteristics for calculating similarity measures between
pixel features. Our algorithm decreases the affinity between two feature points
when it estimates that they belong to two different clusters, while increasing
their affinity when estimating they belong to the same cluster. We do so without
explicitly clustering the data and with only weak assumptions on the structure
of these clusters.

Although we have justified our approach with the claim that the data is both
smooth and nearly convex in nature, we believe that for most applications the
smoothness requirement is the important of the two, since for smooth data, lin-
earity in a small neighbourhood is obtained automatically according to Taylor’s
theorem and most applications calculate affinity only in a small neighbourhood
around pixels.

We demonstrated the advantages of our affinities compared to the Euclidean
distance measure for segmentation both in a three-dimensional color space and
in a high dimensional texture space. The improved segmentation results were
achieved for only a small additional computational cost, compared with the use of
the Euclidean metric, in the case of the three-dimensional colour features. In the
case of the high-dimensional texture features our algorithm proved slightly more
efficient than the Euclidean metric. We are confident that other applications
that rely on pixel affinity measures will benefit from our algorithm.

Better results may be obtained through using a more thorough analysis of the
feature space and allowing for more general paths between the feature points
(and by this, giving up the convexity requirement). Representing the feature
space using a graph, where vertices store density measurement of the neighbor-
hood around each feature point and edges represent Euclidean distance between
neighboring features enables calculating (dis)similarities using shortest path al-
gorithms that consider both the paths’s length (distance) and the density along
the path in the feature space. We are currently working in this direction and
already achieve better results but for the cost of a larger computational time.
We currently studying how to combine the density information with the distance
information and seeking for an efficient algorithm to do so. The graph represen-
tation has other advantages as well, probably the most important of which is
that it enables working in an arbitrary high dimension without difficulties, which
is useful for calculating affinities between texture features.

We further believe that the method may be applied to clustering and affinity
measuring for different kinds of data and we intend to try it in different domains.
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Abstract. Although color is commonly experienced as an indispensable
quality in describing the world around us, state-of-the art local feature-
based representations are mostly based on shape description, and ignore
color information. The description of color is hampered by the large
amount of variations which causes the measured color values to vary sig-
nificantly. In this paper we aim to extend the description of local features
with color information. To accomplish a wide applicability of the color
descriptor, it should be robust to : 1. photometric changes commonly
encountered in the real world, 2. varying image quality, from high qual-
ity images to snap-shot photo quality and compressed internet images.
Based on these requirements we derive a set of color descriptors. The set
of proposed descriptors are compared by extensive testing on multiple
applications areas, namely, matching, retrieval and classification, and on
a wide variety of image qualities. The results show that color descriptors
remain reliable under photometric and geometrical changes, and with
decreasing image quality. For all experiments a combination of color and
shape outperforms a pure shape-based approach.

1 Introduction

There exists broad agreement that local features are an efficient tool for object
representation due to their robustness with respect to occlusion and geometri-
cal transformations [1]. A typical application based on local features starts with
the detection phase, in which features are localized. If desired the patches are
transformed to be invariant with respect to orientation, scale, and affine trans-
formations (see Fig. 1). Invariant representations are subsequently extracted by
a descriptor. The descriptor should robustly represent both the shape and the
color of the features. A considerable amount of research has been dedicated to ro-
bust local shape descriptors. An extensive study by Mikolajczyk and Schmid [2]
reported the SIFT descriptor [3] to perform best. The description of local color
has received relatively little attention, and as a result most local features-based
methods [3],[4],[5] use only luminance and ignore color information. The aim of
this article is to enrich local feature-based methods with color information.

A lot of work has been dedicated to global color features for color object
recognition. Ballard and Swain [6] described objects by their color histograms.
Moreover, to obtain invariance with respect to lighting geometry the use of nor-
malized rgb histograms was advocated. This method remained however variant
with respect to illuminant changes. To tackle this problem Funt and Finlayson

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 334–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Overview of a local feature-based method divided in a feature detection and a
feature description phase. The aim of this article is to enrich the local feature descrip-
tion with color information.

[7] proposed an illuminant invariant indexing method, which was however vari-
ant with respect to lighting geometry. Finlayson et al. [8] combined the theories
of [6] and [7] and proposed a indexing method which is both invariant to shad-
ing and illuminant changes. All methods remained however variant with respect
to specularities. Gevers and Smeulders [9] propose invariants for specularity, in
combination with illuminant and lighting geometry. The work was later extended
to the derivative structure of images in [10], [11], leading to e.g. photometric
invariant edge and corner detection. Furthermore, Gevers and Stokman [12] ob-
served that instabilities, caused by the non-linear transformation to compute the
photometric invariants, hamper practical use of photometric invariance theory.
Based on an error analysis robust photometric invariants are proposed.

We extend local feature descriptors with color information, by concatenating
a color descriptor, K, to the shape descriptor, S, according to

B =
(
F̂, λK̂

)
(1)

where B is the combined color and shape descriptor and λ is a weighting pa-
rameter, and .̂ indicates that the vector is normalized. For the shape description
we rely on the SIFT descriptor [3]. Since the color descriptor is to be used in
combination with a shape descriptor it does not need to contain any spatial in-
formation, which leads us to use local histograms. From the analysis of the color
literature, discussed above, we deduce the following criteria to which these local
color histograms should adhere:

1. photometric robustness: the descriptor should be robust to photometric vari-
ations such as shadow, shading, specularities and changes of the light source.

2. geometric robustness: the descriptor should be invariant with respect to geo-
metrical changes, such as viewpoint, zoom, and object orientation variations.

3. photometric stability: the descriptor should adequately handle the instabil-
ities introduced by photometric invariant transformations.
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4. generality: the color descriptor should be applicable to a wide variety of
applications such as matching, retrieval and classification. Furthermore, it
should be robust to variations in image quality, from high quality images to
compressed snapshot quality images.

After discussing a physical reflectance model in section 2, we design several color
feature descriptors in accordance with the four criteria, in section 3. In section
4 experimental results are given and section 5 contains concluding remarks.

Related to the research proposed in this paper is the work of Mindru et al. [13].
They propose a combined color and shape description of the local neighborhood
based on color moments, which are invariant to illuminant color. Since, we aim
for a color description, which will be used in combination with the SIFT shape
description, we have not pursued this path. Furthermore, in [14] local moments-
based descriptors were found to be relatively unstable. Matas et al. [15] describe
a method which, based on the modes in the local histogram, computes invariant
signatures. The method uses fixed scales, and seems hard to use as an extension
to a scale invariant feature detector, where the number of modes for a single
feature is often higher than the two or three discussed in [15].

2 Color Preliminaries

In this section the color theory needed for the design of the color descriptors
is summerized. We assume that the scene consists of inhomogeneous materials
(including e.g. papers and plastics) and we exclude homogeneous materials such
as metals. Furthermore, we model the light source locally, i.e. for the extend
of a single feature, as a single light source, e (λ), where λ is the wavelength.
For multiple light sources we assume that the combination can be approximated
as a single light source for the local feature. In this case, the measured values,
C ∈ {R,G,B}, of the camera with spectral sensitivities fC , are modelled [16]
by integrating over the visible spectrum ω,

C (x) = mb (x)
∫
ω

b (λ,x) e (λ)fC (λ) dλ+mi (x)
∫
ω

i (λ) e (λ)fC (λ) dλ. (2)

The reflection of the light consist of two parts: 1. a body reflection part, which de-
scribes the light which is reflected after interaction with the surface albedo b, and
2. the interface reflection which describes the part of the light that is immediately
reflected at the surface, causing specularities. We assume neutral interface re-
flection, meaning that the Fresnel reflectance i is independent of λ. Accordingly,
we will omit i in further equations. The geometric dependence of the reflectance
is described by the terms mb and mi which depend on the viewing angle, light
source direction and surface orientation. x denotes the spatial coordinates, and
bold face is used to indicate vectors.

Ambient or diffuse light, i.e. light coming from all directions, is not modelled
by Eq. 2 [16]. Diffuse light occurs in outdoor scenes where there is next to the
dominant illuminant, i.e. the sun, diffuse light coming from the sky. Similarly,
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it occurs in indoor situations where diffuse light is caused by reflectances from
walls and ceilings. Shafer [16] models the diffuse light, a, by a third term

C (x) = mb (x)

ω

b (λ,x) e (λ)fC (λ) dλ + mi (x)

ω

e (λ)fC (λ) dλ +

ω

a (λ)fC (λ) dλ

(3)

The camera sensitivities, fC , can be approximated as delta functions, thereby
simplifying the reflection function to

C (x) = mb (x) bC (x) eC +mi (x) eC + aC . (4)

This function together with its derivative,

Cx (x) = mb
x (x) bC (x) eC +mb (x) bCx (x) eC +mi

x (x) eC , (5)

will be used in the following sections to derive photometric invariants. Through-
out the paper we will use a subscript to indicate spatial differentiation, and we
use boldface to indicate vectors over the three channels, e.g. C = {R,G,B}.

3 Color Feature Description

In this section we derive a set of color descriptors in accordance with the require-
ments put forward in section 1. Robustness with respect to photometric variation
is discussed in section 3.1 and 3.2. The second criterion, geometrical robustness
is handled in section 3.3. Photometric stability issues raised by criterion 3 are
handled in section 3.4.

3.1 Photometric Robustness: Color Constancy

In section 2 we derived how the measured sensor values depend on both the
color of the illuminant interacting with the object, and the color of the diffuse
illuminant. In this section two simple algorithms [17], [18] are described for color
illuminant normalization (see method overview in Fig .1).

We first consider the case for which there is no diffuse illuminant present
(aC = 0). The relation between two images of the same scene, C1 and C2, taken
under different illuminants, is modelled by a scalar multiplication, since

C2 (x) =
(
mb (x) bC (x) +mi (x)

)
eC
2 = λCC1 (x) (6)

where λC = eC
2
/
eC
1 . The colors in the two scenes are hence related by a diagonal

matrix C2 = ΛC1. This diagonal matrix relation is well-known and is a conse-
quence of assuming delta functions for the sensitivities of the cameras. Although
the delta function assumption seems rather blunt it describes reality surprisingly
well [19]. From Eq. 6 it is easily proven that, in the absence of diffuse light, in-
variance with respect to the illuminant can be obtained, by a normalization of
each color channel:

C∗ (x) =
C (x)
C (x)

(7)
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where the bar indicates a spatial average: a =
∫
S

adx

/∫
S

dx, and S is the surface

of the patch. The Grey-World hypothesis [17], assuming average reflectance in
the world to be grey, leads to a similar correction for the illuminant.

Let us now consider the case where there is, next to a dominant illuminant,
diffuse light present. For this case Eq. 6 does not hold, instead the images are
related via C2 = ΛC1 + a. However, a relation similar to Eq. 7 exists between
the derivatives of these images, since from Eq. 5 it follows that

C2
x (x) = λCC1

x (x) . (8)

Invariance with respect to the dominant illuminant, Λ, can hence be obtained
by normalization of the color channels with their average derivative

C∗ (x) =
C (x)

|Cx (x)|
. (9)

The absolute is taken to avoid division by zero. Since C (x) is dependent on
the diffuse illuminant, the resulting image, C∗, is also. However, its derivatives,
C∗

x, are no longer dependent on either the dominant illuminant or the diffuse
illuminant. The recently proposed Grey-Edge hypothesis [18], assuming average
reflectance of differences in the world to be grey, leads to a similar correction for
the illuminant.

3.2 Photometric Robustness: Color Invariance

This section will discuss the photometric invariants on which the color descrip-
tors will be based. With color invariance we refer here to scene incidental varia-
tions such as shadows, shading and specularities. A brief overview of photometric
invariants known from literature is given here (for more details see e.g. [9], [20]).

Zero-order invariants. Let us first consider the case of a matte surface
(mi = 0) and no diffuse lighting (aC = 0). For this case normalized rgb can
be considered invariant with respect to lighting geometry and viewpoint, mb.
Since,

r =
R

R+G+B
=

mbbReR

mb (bReR + bGeG + bBeB)
. (10)

Similar equations hold for normalized g and b.
Furthermore, in the case of a white illuminant (eR = eG = eB = e) and

specular reflectance (mi �= 0), opponent colors [9] can be proven to be invariant
with respect to specularities, mi. Since,

O1 = 1√
2

(R −G) = 1√
2

(
mbe

(
bR − bG

)
+mie−mie

)
O2 = 1√

6
(R +G− 2B) = 1√

6

(
mbe

(
bR + bG − 2bG

)
+ 2mie− 2mie

) , (11)
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are invariant for mi. The opponent colors are still variant for lighting geometry
variations. Invariance with respect to both the lighting geometry and speculari-
ties is obtained by hue,

hue = arctan
(
O1
O2

)
= arctan

( √
3
(
bR − bG

)
(bR + bG − 2bG)

)
(12)

First-order invariants. We continue by describing two photometric invariant
derivatives [20]. Again consider a matte surface (mi = 0). For this case, changes
caused by lighting geometry variation (mb

x �= 0) are equal to

Cx =
mb

x

mb
C, (13)

meaning that all lighting geometry changes of Cx occur in the direction of the
object color, C. Changes in the two direction perpendicular to object color are
hence invariant with respect to geometry variations. These directions are equal
to the angular derivatives after a spherical coordinate transformation,

ang1x =
GxR−RGx√

R2 +G2
, ang2x =

RxRB +GxGB −BxR
2 −BxG

2√
(R2 +G2) (R2 +G2 +B2)

. (14)

If we subsequently consider specular reflection, the derivatives of the opponent
colors,

O1x = 1√
2

(Rx −Gx) , O2x = 1√
6

(Rx +Gx − 2Bx) (15)

can be proven to be invariant with respect to specular variations, similarly as
in Eq. 11. If the opponent derivative is computed after applying the illuminant
normalization of Eq. 9 the opponent derivative is the only invariant insensitive
to a diffuse illuminant.

A combined illuminant and geometric invariant. In [8] a method, called
comprehensive color image normalization (CCIN), is proposed as a global image
feature. We will here apply it as a local image feature. The method proposes
an iterative use of Eq. 10 and Eq. 7, and hence is invariant for both lighting
geometry and illuminant color.

3.3 Geometric Robustness: Color Angles

The third criterion requires geometrical robustness with respect to changes
caused by viewpoint, zoom, and object orientation. Invariance with respect to
these transformation is allready partially obtained by affine invariant feature
detection, however special care should be taken when working with derivative
based invariants. This problem is usually overlooked in derivative-based invari-
ance literature [7], [10], [20]. We will clarify the problem by investigating the
influence of edge-sharpness for the opponent derivative. In Fig. 2a an edge is
depicted. White is increasingly added to the blue patch along the y-axis (mim-
icking a transformation similar to specularities). The opponent derivative, O1x,
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(a) (b) (c)

Fig. 2. (a) a red-blue edge. For the blue patch white light is added along the y-axis.
(b) same as (a) but with varying smoothing along the y-axis. (c) the filter responses
on the center vertical line of the images (a) and (b) of the opponent angle and the
opponent derivative along the x-axis.

is invariant with respect to this phenomenon as can be seen by the constant re-
sponse of the dashed black line in Fig. 2c. If we look at the opponent derivative
response on the same image, but now with decreasing spatial smoothing along
the y-axis, the response changes drastically. This behavior is undesired, since
edge-sharpness changes occur a lot due to geometrical variation, or acquisition
parameters such as zoom and focus. To overcome this problem we propose two
new invariants, called color angles.

Assume that an edge can locally be modelled as a smoothed step edge

C (x) = αCu (x) ⊗Gσ (x) , (16)

where αC indicates the amplitude of the step edge u for the different channels
C. Its derivative is equal to

Cx (x) = αC ∂
∂x

(u (x) ⊗Gσ (x)) = αC
((

∂
∂x

u (x)
)
⊗Gσ (x)

)
= αCGσ (x) (17)

where we used that the derivative of a step edge is equal to the delta function(
∂
∂x

u (x)
)

= δ (x). It is now straightforward to prove that the angles between
the color channels are invariant to this smoothing and are only dependent on
αC , since

φ = arctan
(
Rx

Gx

)
= arctan

(
αR

αG

)
. (18)

We can now add the geometrical invariance to the photometrical invariant deriva-
tives derived in section 3.2. This leads to the opponent angle, angO

x , and the
spherical angle, angS

x , with

angO
x = arctan

(
O1x

O2x

)
, angS

x = arctan
(
ang1x

ang2x

)
. (19)
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Table 1. Overview of the physical events to which the photometric invariants are in-
sensitive. Prior illuminant normalization is assumed by either Eq. 7 or Eq. 9. Invariance
with respect to the diffuse lighting for the opponent angle is obtained with Eq. 9.

lighting geometry specularities illuminant variations diffuse lighting

rgb × - × -

hue × × × -

spher.ang. × - × -

opp.ang. - × × ×
CCIN × - × -

In Fig. 2c the results for angO
x are given in red. The smoothing does not influ-

ence the response, thereby demonstrating the robustness with respect to geo-
metrical changes of the opponent angle. Note that in [21] color angles are also
mentioned. They refer however to angles of color distributions, while in this pa-
per we study the distribution of color angles of color derivatives. In Table 1 an
overview of the invariants is given. The results assume that the invariants are
applied in combination with the illuminant normalization method provided in
section 3.1.

3.4 Photometric Stability: Robust Local Histograms

We are now in the final stage of the construction of the descriptor. In this
section we describe how the derived invariants are transformed into a robust local
histogram. Photometric invariants are known to have inherent instabilities [12],
which we do not want to significantly influence the final histogram. Here, we
propose to adjust the weight of a color value in the histogram according to its
certainty. We discuss the computation of the weight for every invariant discussed
in section 3.2. For CCIN -method we apply the parameters as indicated in [8].

rgb-histogram. We partition the rgb plane in triangles of equal size.To cope
with the instability for low intensities we follow [22] and consider points below
a threshold intensity as being grey.

hue-histogram. The hue is known to be unstable around the grey axis. We
follow [12] and apply an error analysis to the hue:

(∂hue)2 =
(
∂hue

∂O1
∂O1

)2

+
(
∂hue

∂O2
∂O2

)2

=
1

O12 +O22 =
1

sat2
, (20)

where sat is the saturation (a similar results was derived for derivative of the hue
in [20]). The certainty of the hue is hence inversely proportional to the saturation,
which is what we expect. The smaller the saturation the more uncertain the hue
estimation. We will use this relation to robustify the histogram construction, by
weighting each sample by its saturation.
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Opponent and spherical angle. Similarly as for the hue we apply an error
analysis to the color angle equations of Eq. 19, which yield the following results

∂angO
x =

1√
O12

x +O22
x

, ∂angS
x =

1√
ang12

x + ang22
x

. (21)

Hence, we will use ∂angO
x as a weight for the opponent angle, and ∂angS

x as a
weight for the spherical angle when converting them to a local color histogram.
It is interesting to note that Lowe [3] intuitively arrives at the same conclusion.
The orientation histogram of the SIFT descriptor is weighted with the gradient
strength, which is exactly the result which would follow from an error analysis
of the orientation parameter, θ = arctan (fy/fx).

4 Experiments

The experiments test the color and the combined color and shape descriptor on
the criteria put forward in section 1: 1. photometric robustness, 2. geometric
robustness 3. photometric stability 4. generality. Although the first three cri-
teria are tested by all experiments, the emphasis shifts: experiment 1 focusses
on photometric robustness, experiment 2 demands geometrical robustness, and
experiment 3 requires geometrical and photometrical robustness, and photomet-
ric stability to cope with the low quality internet images. The fourth criteria,
generality, is illustrated by testing the descriptors for multiple tasks.

Experimental setup. For all the experiments we use the schema as given
in Fig. 1. We use an affine invariant Harris-Laplace detector [2]. In the shape
normalization step the images are reduced to 20 by 20 neighborhoods. The SIFT
is computed from this shape normalized patch. For the color descriptors first
color normalization is applied. Next the color descriptors, being the histograms
of rgb (Eq. 10), hue (Eq. 12), opponent angle (Eq. 19), and spherical angle
(Eq. 19), CCIN [8], are computed, with the weights as proposed in section
3.4. Furthermore, λ = .6 (see Eq.1) was experimentally found to give good
results, and the descriptor lengths are 128 bins for SIFT, for the one-dimensional
descriptors hue, opponent angle and spherical angle the histogram is divided
in 37 bins, for the two-dimensional descriptor rgb 121 bins are used.

4.1 Matching: Free Illumination - Controlled Geometry

To test the color descriptors with respect to photometric variations, the descrip-
tors are compared on a matching task on three sequences (see Fig. 3). The first
sequence tests the robustness with respect to color illuminant changes. It consists
of a Mondrian composition captured under 11 different illuminants (the images
are from the Simon Frasier data set [23]). The second sequence [2], of six images,
is an outdoor scene, taken with varying exposure times. This not only provokes
an intensity change but also changes the amount of diffuse light captured by the
camera (as modelled in Eq. 3). The third sequence [2] contains six images and
tests the descriptors with respect to geometry variations.
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matching COLOR

rgb hue opp. ang. sph.ang. CCIN

color const. - 0 1 - 0 1 - 0 1 - 0 1 ×

Mondrian 6,9 46,7 45,1 3,5 58,0 45,0 12,8 55,4 56,3 29,0 62,0 56,4 40,0

cars 2,4 2,2 2,3 15,0 13,1 6,0 9,1 12,6 20,2 11,0 12,5 11,8 7,7

matching shape color shape & color

SIFT rgb hue opp.ang. sph.ang. CCIN rgb hue opp.ang. sph.ang. CCIN

Mondrian 100 46,7 58,0 56,3 62,0 40,0 97,5 100,3 101,0 101,8 87,2

cars 100 2,2 13,1 20,2 12,5 7,7 91,6 80,5 103,6 94,3 87,5

graffiti 100 28,8 48,1 53,9 53,6 28,8 107,2 119,5 118,2 121,4 103,6

Fig. 3. Top: example images, Mondrian, cars, and graffiti. Middle: relative matching
scores for various color normalization methods:- = no normalization, 0 = zero-order
normalization, and 1 = first-order normalization. Bottom: relative matching scores for
shape, color, and shape & color.

For all sequences we compute the matching score, defined in [2] as: the ratio
between the number of correct matches and the smaller number of detected
regions in the pair of images. A match is the nearest neighbor in the descriptor
space (using Euclidean distance). For both color and color & shape we give
the matching score relative to the matching score obtained by a unique shape
descriptor. Values smaller than 100 indicate a performance worse than the shape
descriptor and above 100 a performance better than the shape descriptor.

We start by selecting for each of the invariants the most appropriate color
illuminant normalization method. This is done by comparing the matching scores
for the two sequences with illuminance changes. In Fig. 3 the matching scores of
descriptors for: 1. no illuminant. 2. zero-order illuminant normalization (Eq. 7)
and 3. first-order (Eq. 9) illuminant normalization are given. The necessity of
color illuminant normalization becomes clear from the results on the Mondrian
sequence, where a significant gain in performance is achieved. The results on the
car sequence show the importance of invariance with respect to diffuse light. Due
to varying exposure times the amount of diffuse light entering the camera varies.
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Hence for this sequence, the opponent derivative based descriptor outperforms
the others significantly, since it is the only one which is invariant with respect
to diffuse light changes. Based on these results we will, in the remainder of the
experiments, apply zero-order illuminance invariance to the descriptors rgb, hue,
and spherical angle, and first order illuminance invariance to the opponent angle.
The CCIN explicitly uses a zero order illuminance normalization.

In Fig. 3 bottom the matching scores are summarized. Only for the graffiti
sequence a substantial gain is obtained by adding color to the descriptor. Fur-
thermore, for the car sequence, the descriptors which are not robust to diffuse
lighting fail, and the combined performance of shape and color drops below a
solely shape approach. For these sequences, where the assumption of an affine
transformation between the images is not broken, the shape description performs
outstanding, and relatively small gains are obtained by adding color.

retrieval shape color shape & color

SIFT rgb hue opp. ang. sph.ang. CCIN rgb hue opp. ang. sph.ang. CCIN

objects 21 24 36 20 29 27 27 34 30 33 30

Fig. 4. Two instantiations of five example objects from the data set, with recall scores
for shape, color and color & shape

4.2 Retrieval: Controlled Illumination - Free Geometry

Robustness with respect to geometrical variations in a relatively stable photo-
metric environment is tested with a retrieval task on a data set containing 55
objects 1, see Fig. 4. Each object is captured 5 times under varying viewpoint,
and object orientations. Because retrieval based on the entire image is close to
perfect on this database, we assess the usefullness to retrieval of single features.
Each single features was asked to retrieve the four most probable images (there
are four relevant images for each query). To measure the descriptor performance
we compute the recall, defined as the number of relevant images retrieved to the
total number of relevant images in the database.

In Figure 4 the average recall over all local features is given, e.g. for shape a
single feature alone obtains a recall of 21 percent. On this data set a unique color
description outperforms the shape description. This has two causes. Firstly, the

1 The authors lost the origin of this data set and would appreciate any suggestions.
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objects have relatively saturated colors and photometric conditions are rather
stable. Secondly, the shape variations are not constrained to affine transforma-
tion as in section 4.1, thereby complicating the shape matching task. Further-
more, the domination of specular reflectances on both objects and background
in combination with the spatial variation of the lighting geometry, results in
the best performance for the hue color descriptor, which is the only descriptor
robust to both lighting geometry and specularities.

4.3 Classification: Free Illumination - Free Geometry

This experiment tests the descriptors on an image classification task. Based on
the descriptors in the image, a decision is made wether the image is a mem-
ber of the class or not. The multi-class classification is performed on two data
sets. A bird data set [4] containing 6 classes of bird species, with 100 instanti-
ations each (see Fig. 5). The classes are divided in 50 training and 50 testing
images. For the second data set we collected images from 7 soccer teams, con-
taining 40 images per class, divided into 25 training and 15 testing images per
class 2. Although, players of other teams were allowed to appear in the images,
no players being a member of the other classes in the database were allowed.
Both databases consist of low-quality internet images. We use a bag-of-keypoints
scheme [24]. The descriptors are clustered by a K-means algorithm which forms
a set of visual words. Subsequently, each image is represented by a frequency
histogram of the visual words. Based on these histograms, one-against-all classi-
fiers are trained with a linear SVM. A test image is subsequently classified with
all classifiers, and is appointed to the class for which it obtained the highest
score.

In Fig. 5 the multi-class classification results for the birds data set are given. In
all cases the combination of color and shape performs best. Only small gains are
obtained with the zero-order invariants, rgb, hue, and CCIN . The derivative-
based methods, the opponent and spherical angle, give considerably better re-
sults. For the soccer team data set the necessity of color information is especially
apparent. Although, two of the teams have no color, and three of the teams have
red as their main color, the color description performs considerably better than
the solely shape-based description. The combination of color and shape further
improves the results, and the 43% correct classification of shape is increased to
a 73% for the combined descriptor. For these highly saturated colors, the results
for the different color descriptors do not differ greatly.

The difference in performance for both the birds and the soccer teams can
be explained by the different properties of the data sets. The soccer players
are not only colorful, they have also undergone considerable non-affine shape
transformations, reducing the performance of the SIFT descriptor. On the other
hand, the non-saturated colors of the bird data set complicate the task to collect
reliable color information, whereas the birds shape is relatively stable compared
to the large variability encountered in the soccer team data set.

2 The data set is available on http://lear.inrialpes.fr/people/vandeweijer/data
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Fig. 5. Examples and multi-class classification results for the birds and soccer database

5 Conclusions

In this paper, we have taken a principled approach to extend the SIFT shape
descriptor with a color descriptor. Based on four criteria, namely photometric
robustness, geometric robustness, photometric stability and generality, we de-
rive a set of photometric invariant color histograms, which are used as a color
descriptor. We propose a solution to dependance of derivative-based invariants
to the edge-sharpness. The descriptors are tested on a matching, a retrieval,
and a classification task. For the colorful objects a pure color-based approach
outperforms a shape-based approach. And for all reported data the combination
of shape and color outperforms a pure shape-based approach, with gains going
up as much as 70 percent. Depending on the data set different color descriptors
obtain the best results. However, in general we would advice to use the robust
hue descriptor for scenes with saturated colors, such as the object data set and
the soccer teams. For scenes with less saturated colors, such as the bird data
set, and especially in the presence of diffuse lighting, as for the cars sequence,
we would advice the color descriptor based on the opponent angle.
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Abstract. In this paper, we propose a method to restore a single image affected
by space-varying blur. The main novelty of our method is the use of recurring
patterns as regularization during the restoration process. We postulate that re-
stored patterns in the deblurred image should resemble other sharp details in the
input image. To this purpose, we establish the correspondence of regions that are
similar up to Gaussian blur. When two regions are in correspondence, one can
perform deblurring by using the sharpest of the two as a proposal. Our solution
consists of two steps: First, estimate correspondence of similar patches and their
relative amount of blurring; second, restore the input image by imposing the sim-
ilarity of such recurring patterns as a prior. Our approach has been successfully
tested on both real and synthetic data.

1 Introduction

In many instances, images contain recurring patterns that are similar up to some trans-
formation group. For example, the image of a tree may contain multiple instances of the
same leaf at different locations, scales and orientations. In more specific applications,
such as corneal imaging, one may find repeated patterns of cells or clusters of cells (see
Figure 1). Due to the large aperture of the microscope, cells are not only similar up to
an affine transformation, but also up to defocus. In other words, there may be cells in
some locations that are blurred version of other cells. Then, one could think of restor-
ing those cells by using the corresponding ones that are less blurred. More in general,
if we are interested in restoring images belonging to a specific domain, such as corneal
imaging, then one can exploit more than the lone input image. One could also use a
database of corneal images to find more recurring patterns. This kind of approach is
very similar in spirit to “hallucination” methods [1] which have been applied to faces
with success. Our approach can be seen as an extension to these methods, which are
limited to a single recurring pattern (e.g. a face) and whose position is known. In this
paper, however, to keep the method focused, we consider the restoration problem in the
simple case when the database is made of a single image. The extension to multiple
images is straightforward.

Exemplar-based methods for inpainting [2] are also similar to our approach. As in
[2], we look for exemplars that can be used to restore the input image. However, while

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 349–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Oftentimes, images exhibit recurring patterns. For example, in natural images such pat-
terns may be the leaves of a plant or the petals of a flower (left image). In more specific domains,
such as in corneal imaging, the recurring pattern is made of cells of the cornea (right image).
Notice how both the examples contain regions that are not only similar up to translation, rotation
and scale, but also up to the amount of defocus.

we share the general idea of these popular methods, we do not use the same procedural
methods to recover the missing information. Rather, we perform restoration by simulta-
neously considering all the corresponding patterns and their relative amount of defocus.
This simultaneous integration allows us to automatically take into account the overlap
of patterns and find the best tradeoff between them and the original input image.

In this paper, we propose a solution to the problem of deblurring a single image af-
fected by defocus blur. Our main contribution is the formulation of a novel regulariza-
tion method, which is based on the input data. As such, we relate to image restoration in
the field of image processing [3] and blind deconvolution in the field of signal process-
ing [4], which belong to the larger class of inverse problems [5]. Most of these problems
are formulated as a linear model (either in discrete or continuous form), where the task
is to infer the unknown object by inverting the model. The main challenge is that such
inversion is ill-posed, as it may lead to multiple solution, or have no solution, or be
such that small variations in the input data may cause large variations in the recovered
unknown. The general recipe to solve ill-posed problems is to introduce regularization
[6]. Regularization has been applied to the inverting operator [6, 7] and/or directly to
the restored image. The latter approach is also known as Tikhonov regularization [6].
Our approach falls within this type of regularization methods, as we directly operate on
the unknown unblurred image. Furthermore, our main strength is that we regularize the
restoration of the image by using only the image itself, thus introducing texture that is
familiar to the scene.

When the input image is made only of recurring patterns, our algorithm can be used
to infer a depth map of the scene. This is reminiscent of shape from texture methods
[8, 9], where one recovers the local orientation of an image patch. In our case, rather
than using orientation, we consider the local amount of blur as a cue for shape as it
has been done in shape from defocus [10, 11, 12, 13, 14]. Indeed, a byproduct of our
algorithm is the estimation of the relative amount of blur between two similar regions,
which can be directly related to depth.
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In the next section, we will introduce our model of blurred images with recurring
patterns. Then, we will formalize the problem of image restoration, so that it has a non-
trivial and unambiguous solution (section 3). We show that despite the complexity of
the model and the unknowns, the restoration problem can be solved into two steps: First,
we determine the correspondences between recurring patterns and their relative amount
of blur (section 4), and second, we integrate this information to restore the input image
into a global optimization scheme (section 5).

2 Modeling Defocus and Recurring Patterns

In this section, we will introduce the image formation model for scenes with recurring
patterns and captured by a real aperture camera. Let us start by defining the image
formation model of a blurred image I : Ω ⊂ R2  → [0,∞)

I(y) =
∫
Kσ(y,x)f(x)dx + n(y) ∀y ∈ Ω (1)

where Kσ : Ω × R × [0,∞) is called the point spread function (PSF) [15], f : R  →
[0,∞) is the unblurred texture of the scene and n : Ω  → R collects noise and distortions
that are not captured by the linear term in eq. (1). The PSF Kσ depends on the amount
of defocus encoded by the variable σ : Ω  → [0,∞), which is related to the depth of the
scene s : Ω  → [0,∞) via [14]

σ(x) =
Dv

2

∣∣∣∣1v +
1

s(x)
− 1
F

∣∣∣∣ (2)

whereD is the diameter of the lens, v the distance between the lens and the image plane
and F is the focal length of the lens.

We now formalize the notion of recurrence of a pattern within a blurred image and
propose a suitable representation for it. Suppose that two regions of the unblurred image
f ,O ⊂ Ω andO′ ⊂ Ω withO

⋂
O′ = ∅, are identical to each other. Define T : Ω  → Ω

the mapping of points x ∈ O to points x′ ∈ O′, so that T (x) = x′. Then, we model a
recurrence as

f(x) = f(T (x)) ∀x ∈ O. (3)

More in general, let us define the mapping T for all recurrences and let us call T the
correspondence map. In other words, T (x) tells us where to find the location of a region
similar to the one around x. When patterns are unique, then we simply have T (x) = x
∀x ∈ O, i.e. a self-reference. Notice that a generic correspondence map may generate
loops. For example, there may be points x �= y such that T (x) = y and T (y) = x.
In our context such loops are unnecessary and undesirable. Hence, we will enforce that
the correspondence map has only two types of mappings:

1. a self-reference, i.e. T (x) = x
2. a link to a self-reference, i.e. T (T (x)) = T (x).

For clarity, see Figure 2.
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(a) (b)

Fig. 2. The two types of links admitted by the correspondence map T . On the left we have a
self-reference, while on the right we show a link to a self-reference.

The correspondence map T just defined is very general and captures any type of de-
formation of one region to another. For instance, local affine deformations are captured
by using

T (x) = Ax + b ∀x ∈ O (4)

where A is a 2 × 2 matrix and b a 2-dimensional vector. Later on, we will restrict the
class of parametric deformations modeled by T to simple translations, i.e. such that A
is the identity matrix in eq. (4), and we will show how to recover the translation b from
a blurred image.

So far, the model that we have introduced can be summarized as:

f(x) = f(T (x))

I(y) =
∫
Kσ(y,x)f(x)dx (5)

where we have neglected the term n for simplicity. We assume that the blurring is
locally constant, and therefore it can be modeled by a shift-invariant PSF Kσ, and that
the PSF is Gaussian, i.e. such that

Kσ(y,x) =
1√

2πσ2(y)
exp− ‖y−x‖2

2σ2(y) . (6)

We will now show in the next section how to pose the problem of deblurring with
recurring regions.

3 Maximizing Deblurring

Suppose that O ⊂ Ω is a recurring region. Then, according to eq. (5) we have that

I(y) =
∫
Kσ(y,x)f(x)dx =

∫
Kσ(y,x)f(T (x))dx. (7)

If now we allow the correspondence map to capture only translations, then we have
T (x) = x + b. By substituting the explicit expression of T in the equation above, and
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using the assumption that blurring is locally constant and Gaussian, it is easy to derive
that

I(y) =
∫
Kσ(y + b,x)f(x)dx =

∫
KΔσ(y,x)I(x + b)dx (8)

where Δσ is called relative blur and it satisfies Δσ2(y) = σ2(y) − σ2(y + b),
∀y ∈ O. Since relative blur is meaningful if and only if Δσ(y) ≥ 0, we impose
that the correspondence map T maps regions to regions that are less blurred, i.e. such
that σ2(x) ≥ σ2(T (x)). Hence, by definition, regions that are self-referencing will be
subject to no blurring (Δσ = 0).

The main advantage of eq. (8) is that it does not depend on the unblurred image f ,
as eq. (5), but only on the the relative blur Δσ and the correspondence map T . Hence,
by using eq. (8) one can decouple the problem of simultaneously estimating all the un-
knowns into two problems where one first recovers the relative blur and the correspon-
dence map and then restores the unblurred image f . In this section, we will introduce
the problem of recovering the first two unknowns, while we will devote section 5 to the
restoration of the unblurred image f .

Now, recall eq. (8). It is easy to see that this equation is satisfied by Δσ = 0 and
T (x) = x. This means that given a blurred image I , a correspondence map T that is
always admissible is the one such that all regions are unique and hence their mapping
is a self-reference. As a consequence, the relative blur will be null everywhere. Such
T and Δσ do not give any advantage with respect to previous methods for deblurring.
To avoid this situation, we pose the problem of finding the solution with largest relative
blur. Hence, to recover Δσ and T we pose the following maximization problem

Δσ, T = arg max
Δσ

∫
Δσ2(x)dx

subject to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I(y) =

∫
KΔσ(y,x)I(x + b)dx

T (x) = x ∀x|Δσ(x) = 0
T (x) = x + b,b �= 0 ∀x|Δσ(x) > 0
T (T (x)) = T (x)

(9)

where the first constraint corresponds to eq. (8); the second one corresponds to hav-
ing no relative blur between self-references; the third one corresponds to imposing the
translational model whenever there is relative blur between two regions; finally, the
fourth constraint imposes that T satisfies only the two types of mappings shown in
Figure 2. This equation can also be interpreted as the maximization of the amount of
deblurring that we will be able to perform in the second part of the algorithm (section 5).

4 Localization of Recurring Regions

In order to solve the problem in eq. (9), we need to recall the representation of the
correspondence map T . The map T is defined jointly with the relative blur Δσ as being
either

T (x) = x ∀x|Δσ(x) = 0 (10)
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or
T (x) = x + b,b �= 0 ∀x|Δσ(x) > 0. (11)

In other words, the relative blur defines a partition of Ω into regions where T is equal
to a constant vector b (Figure 3). Given this representation, we propose the following
approximate algorithm to solve eq. (9):

– Initialize the map T such that T (x) = x ∀x ∈ Ω
– Quantize the relative depth into L levels
– for each level l from L to 0

• for each translation b
∗ Compute the region where all the constraints in eq. (9) are simultaneously

satisfied; in particular, where eq. (8) is satisfied and whereΔσ(x+b) = 0
• Merge the new correspondences to the current map T so that the resulting map

is admissible, i.e. such that T (T (x)) = x ∀x ∈ Ω. Indeed, although the
new correspondences and the current map T are admissible on their own, when
merging them there may be links with two hops. Since we start from the highest
depth level and proceed to the lowest, such multiple hops are not possible and
we set them to be self-references.

Once both Δσ and T have been computed, we can proceed with the restoration of the
unblurred image f . In the next section, we call such restoration defocus inpainting as
we are filling in blurred regions with the corresponding sharp ones.

Fig. 3. A partition of the image domain Ω into regions where the relative blur is 0 (b0) and where
it is strictly positive (b1, b2, b3, b4). Notice that multiple partitions may be in correspondence
with the same region.

5 Defocus Inpainting

Image restoration is well-known to be an ill-posed problem [5]. To eliminate the ill-
posedness, one can introduce regularization during the restoration process. Since we
pose image restoration as an energy minimization problem, regularization can be added
in the form of an additional energy term E2, so that our solution can be found by mini-
mizing

f̂ = arg min
f

∫
Ω

(
I(y) −

∫
Kσ(y,x)f(x)dx

)2

dy + μE2 (12)
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where μ is a scalar that regulates the amount of regularization. Typically, the term E2
is a prior that is introduced independently of the input image. For example, one could
use a measure of sharpness of local patches such as the structure tensor [16].

In our approach instead, we exploit the recurrence of regions as a regularization term.
We define E2 to be

E2 =
∫

Ω

(
I(y) −

∫
KΔσ(y, z)

∫
Kσ(z + b,x)f(x)dx

)2

dy. (13)

Notice that in eq. (12) one has to recover both the depth map s (encoded by the amount
of blur σ) and the unblurred image f . Furthermore, such reconstruction is possible only
if one knows the camera parameters. In many instances, however, such parameters are
not available. In this case, we propose a method to improve the restoration of the input
image I , by introducing the following constraints:

f(x) = I(x) ∀x|T (x) = x
f(x) = f(T (x)) ∀x|T (x) �= x. (14)

The two equations above formalize the following procedure: if a region is self-
referencing, then no restoration is performed; if a region maps to another region, since
such region is sharper by construction of the correspondence map T (see section 3),
then the latter one is used in place of the first one. Hence, the regularization term in this
case becomes simply:

E2 =
∫

Ω

(f(x) − I(T (x)))2 dx (15)

and the data term in eq. (12) has to be computed on the known relative blur Δσ rather
than σ resulting in

f̂ = arg min
f

∫
Ω

(
I(y) −

∫
KΔσ(y,x)f(x)dx

)2

dy + μ

∫
Ω

(f(x) − I(T (x)))2 dx.

(16)

The computation of the unknown unblurred image f can then be done by performing a
gradient descent on eq. (16) with the following energy gradient:

∇fE(x)=−2
Ω

I(y) − KΔσ(y,x′)f(x′)dx′ KΔσ(y,x)dy+2μ (f(x) − I(T (x))) .

(17)

6 Experiments

We test our algorithm on both synthetic and real data. In the case of synthetic data, we
show the average performance of the method on 50 experiments with fixed shape and
variable texture. In Figure 4 we show one example of the texture that has been employed
in the generation of the synthetic images (a), together with the corresponding blurred
image (b). In (c) we show the true depth map which can be compared to the recovered



356 P. Favaro and E. Grisan

a b c d

e f g h

Fig. 4. One example of synthetic defocus inpainting. (a) The true unblurred image. (b) The input
image. (c) The true depth map. (d) The recovered depth map. (e) and (f) the true correspondence
map T where (e) corresponds to the x coordinates and (f) to the y coordinates. (g) and (h) the
recovered correspondence map.

depth map in (d). In (e) and (f) we show the true correspondence map T where (e)
corresponds to the x coordinates and (f) to the y coordinates; in (g) and (h) we show the
recovered correspondence map. In Figure 5 we show a few snapshots of the restoration
of one example (shown in Figure 4). On the leftmost image we show the given blurred
image, while on the rightmost image we show the true unblurred texture.

We find that the mean restoration error is of 0.1441 with standard deviation of
0.0116, which, once compared to the error between the input image and the true un-
blurred image 0.3183 with standard deviation of 0.0177, shows an improvement of
more that 2 times.

In the case of real experiments, we run our algorithm on images of the endothelium
cell layer, that were acquired from several corneas at the Cornea Bank Berlin using
an inverse phase-contrast microscope (CK 40, Olympus Co. Japan) at 100x and 200x
magnification, and thus are subject to a substantial amount of defocus. The corneas
were kept in hypotonic BSS for a better microscopy visualization of the endothelial

Fig. 5. Snapshots of the restoration process. For comparison, on the leftmost image we show the
input image, while on the rightmost image we show the true unblurred image. In the middle we
show the evolution of the gradient descent presented in section 5. Iteration time increases going
from left to right.
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Fig. 6. (top row - left) Image of a cornea. Notice that in some portions of the image the cells are
more defocused than in other locations due to the change in depth of the surface. (right) Restored
image of the cornea. Notice that cells that were blurred in the original image are now restored and
resemble other cells in the same image (data kindly provided by Fondazione Banca degli Occhi
di Venezia. Italy). (second row) Visualization of the estimated correspondence map. (left) image
showing the x coordinates of T . (right) image showing the y coordinates of T . Dark intensities
correspond to lower values of the coordinates and vice versa for light intensities. Recall that the
map T (x) assigns a sharp patch at T (x) to the blurred patch at x. (bottom row) Visualization
of the reconstructed blur map. Light intensities correspond to large amounts of blur, while dark
intensities to low amounts of blur.

cells by osmotic stimulation of their cell membranes. In Figure 6 on the top row we
show the input image (left) and the restored image (right). Notice that in the input
image some location are more blurred than others due to changes in the depth of the
cornea. Furthermore, notice that in the restored image most of the blurred cells are
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Fig. 7. Examples of defocus inpainting on various images. (left) Input image. (right) Restored
image.

restored and resemble the appearance of similar cells that are sharper. In Figure 6, sec-
ond row, we show the estimated correspondence map T . For ease of visualization, the
coordinates of this map are shown as two grayscale images. Notice that the algorithm
detects that most sharp patches are located on the right of the input image, and that
most of the blurred patches are located on the left. In Figure 6, third row, we show the
estimated blur map of the scene. Notice that light intensities correspond to regions that
are subject to a large amount of blur, while dark intensities correspond to regions that
are subject to small amounts of blur. By visual inspection it is possible to verify that the
recovered blur map correctly assigns high values to regions that are blurred in the input
image.

In Figure 7 we show a number of examples where the left images are the input
images, and the right images are the restored ones.
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7 Conclusions

We introduced a novel paradigm for image restoration, where regularization is extracted
directly from data. We exploit the assumption that the image contains recurrences of
patterns that are similar up to translation and amount of defocus, and show how to
model them in the context of defocused images. Then, we propose a novel solution to
identify the recurring patterns, to estimate their difference in amount of blur and finally
to restore the unblurred image. Our method can also be readily extended to work with
multiple images, and we are currently working on handling similarity up to scale and
rotations in addition to translations.
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Abstract. We study the set of domain deformations induced on im-
ages of three-dimensional scenes by changes of the vantage point. We
parametrize such deformations and derive empirical statistics on the pa-
rameters, that show a kurtotic behavior similar to that of natural image
and range statistics. Such a behavior would suggest that most defor-
mations are locally smooth, and therefore could be captured by simple
parametric maps, such as affine ones. However, we show that deforma-
tions induced by singularities and occluding boundaries, although rare,
are highly salient, thus warranting the development of dedicated de-
scriptors. We therefore illustrate the development of viewpoint invariant
descriptors for singularities, as well as for occluding boundaries. We test
their performance on scenes where the current state of the art based on
affine-invariant region descriptors fail to establish correspondence, high-
lighting the features and shortcomings of our approach.

1 Introduction

This work is concerned with the design of viewpoint-invariant discriminative
local features, i.e. local image statistics whose dependency on viewpoint can
be made arbitrarily small while maintaining non-trivial dependency on other
properties of the scene, such as its shape and reflectance. This problem has been
largely solved under the assumption that the scene is locally planar, Lambertian,
viewed under ambient illumination and moderate changes in viewpoint. Under
these conditions, local deformations can be approximated by a similarity or affine
transformation, and the resulting local invariant features (see [1, 2, 3, 4, 5, 6, 7, 8]
and references therein) have proven to be a powerful tool in the recognition of
individual objects as well as object categories [9, 10, 11, 12, 13, 14, 15, 4, 1, 16, 17].
But what happens when such conditions are not satisfied?

Changes of illumination can have minor or drastic effects depending on the
reflectance of the scene [18] and we will not address them here; we will continue
to assume that the scene is Lambertian and viewed in ambient light, leaving
illumination out of the scope of this work. Drastic changes in viewpoint could be
handled by concatenations of small changes if intermediate views are available
[11, 14]. However, we will not make that assumption and allow large viewpoint
changes which can induce visibility artifacts such as occlusions. The local pla-
narity assumption is violated in two cases: At singularities (e.g. ridges or corners),

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 360–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and at occluding boundaries. Here the assumption of affine deformation is vio-
lated in a neighborhood of any size, and similarity/affine invariants often (but
not always) fail.1 But how important are singularities and occlusions? How much
weight do they carry in the recognition process? We will show that singularities
and occluding boundaries are few compared to interior regular points, but they
carry significant weight in that they often correspond to photometrically salient
regions (as also shown indirectly by [18], Sect. 5).

Now, assuming that we agree that singular regions and occlusions are
important, can we characterize the deformations they induce on the image un-
der changes in viewpoint? Can we exploit this knowledge to design viewpoint-
invariant features for such intrinsically non-planar portions of the scene?

As we will show, in order to design a viewpoint invariant feature for singular-
ities and occlusions we need to attach a curvilinear (or multi-linear) local frame
to the image. This is still an open area of research, which we cannot address in
the limited scope of this paper. We will therefore tap onto existing techniques
that allow the extraction of some discrete representation (a graph) from local
analysis of the image, such as [19, 10, 12] and their variants. We will discuss their
role and their limitations in generating viewpoint invariants.

1.1 State of the Art

The literature on feature extraction is too extensive to review in the limited scope
of a conference paper. The reader is encouraged to consult [20] and references
therein. At one end of the spectrum of work on on feature-based recognition
are simple parametric deformations, e.g. affine transformations yielding a pro-
crustean density on feature constellations (see [21] and references therein). At
the opposite end are “bags of features” that retain only feature labels regard-
less of their mutual position (see [22, 23, 24] and references therein). Viewpoint
changes induce transformations more general than affine, but far less general
than an arbitrary scrambling of feature positions. Our work concentrates on the
case in between, following the steps of [25, 4, 26, 27, 28].2 More specifically, [29, 30]
have proposed region descriptors for salient regions detected at or near occluding
boundaries. While feature selection is traditionally addressed as a representation
issue, different from the final goal of recognition, the two processes are beginning
to come together [31, 32, 33]. Since viewpoint variations (under the assumptions
discussed) only induce changes in the domain of the image, this work generically
relates to deformable templates [34] and deformable models [35]. Our attempt
to characterize the “natural deformation statistics” follows the lead of [36, 37]
and others that have characterized natural image and range statistics.3 Specific
relationships with other work will be pointed out throughout the manuscript.
1 Part of the art of designing a descriptor is to give it slack to absorb violations of the

underlying assumptions.
2 Even work that allows arbitrary reordering of features relies on individual features

being matched across views, and therefore the affine model restricts this approach
beyond its ideal generality.

3 Including [38] that has appeared while this manuscript was under review.
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1.2 Notation and Formalization of the Problem

An image is a function I : Λ → R+; x  → I(x) with local domain Λ ⊂ R2

and range in the positive reals. Under the assumptions of Sect. 1, the value of
the image at a pixel x is approximately equal to the radiance ρ of the scene
at a point p on a surface S ⊂ R3, I(x) = ρ(p), p ∈ S. In fixed coordinates, p
projects onto x = π(g0p) where π : R3 → P2 is a canonical perspective projection
and g0 ∈ SE(3) is the position and orientation of the camera. We say that x
is the image of p, and p is the pre-image of x. These notions extend to sets;
for instance, the pre-image of a ball of radius σ around x0, Bσ(x0), is the set
{p ∈ S : π(g0p) ∈ Bσ(x0)}. If we consider multiple images of the same scene
under changing viewpoint, we can choose one of the camera reference frames as
the fixed frame, and parameterize the surface S relative to it. Then, with an
abuse of notation, we can write p = S(x) and we have that the generic image is
given by {

I(x̂) = ρ(S(x))
x̂ = π(gtS(x)) .= w(x), x ∈ Ω.

(1)

Can we characterize the structure and statistics of the function w : Ω ⊂ R2 →
R2? Can we use it to design viewpoint invariant features?

2 Natural Warping Statistics

The structure of w : Ω → R2 obviously depends on the structure of S. We
distinguish between three classes of points : x0 is an interior regular point (IR)
if there exists an σ and a neighborhood Bσ(x0) whose pre-image S(Bσ(x)) is
simply connected and smooth. x0 is an interior singular point (IS) if its pre-
image is a C1(Bσ(x0)) discontinuity, i.e. the scene is continuous around the
pre-image of x0 but not differentiable on it. An IS point can be the image of a
wedge (the locus of singularities is a one-dimensional submanifold of S, locally
approximated by a line), or an image of a corner (the locus of singularities is the
tip of a generalized cone). Finally, x0 is an occluding boundary (OB) if the pre-
image of any neighborhood Bσ(x0) is not simply connected, for any choice of σ.
In this case, the occluding boundary could correspond to a singularity (OBS), as
is the case for polyhedra, or it could correspond to regular points on S (OBR), as
is the case for the silhouette of a smooth surface . Note that viewpoint variations
can change the labeling of points. For instance, an IR point can become OB and
vice-versa. However, if a point is IR there will always exist a neighborhood and
a set of viewpoints (depending on σ) such that the point remains IR.

2.1 Deformation Statistics Around Interior Points

The goal here is to determine the distribution of the homeomorphism w : Ω ⊂
R2 → R2; x  → π(gS(x)) defined in (1). In order to make the notation explicit we
writeΩ .= x0+Bσ, with x0 a location on the image domain and Bσ a ball of radius
σ centered at the origin, discretized into N points: Bσ = {x1, . . . , xN}. Therefore,
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Fig. 1. Camera motion statistics depend heavily on the application. Ground vehicle
navigation induces strongly non-Gaussian velocity distributions, as the statistics of
Golem 2 driving in the DARPA Grand Challenge show (a) forward and lateral one-
second displacements (b) one-second orientation variation (c) scatter plot of the vehicle
relative displacement after one second (top view, restricted to fast parts of the track).
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Fig. 2. Statistical dependencies in a generative model of viewpoint warping. Camera
motion g and global shape S are rendered independent by conditioning on a local patch
Ω. Local conditioning generates a dependency on x0, σ and N , displayed as “observed”
variables. The distributions p(g0|λx0, ν, v), p(S|Ω|g0, κ1, κ2, x0) and p(w|S|Ω , g) encode
deterministic functions resulting from simple geometrical and optical considerations
(Sect. 1.2-2.1). The statistics of the other variables are determined empirically.

Ω
.= Ω(x0, σ,N). We then call wi

.= w(x0 + xi) − x0 − xi the displacement of
the pixel i = 1, . . . , N , so that we can characterize the distribution of w via the
vectors w1, . . . , wN :

p(w|x0, σ,N) .= p([w1, . . . , wN ]|x0, σ,N). (2)

Here x0, σ and N are parameters of the distribution, the first indicating the
position on the image plane, the second the scale at which the statistics are
computed, the third the sampling of the discretization. We will now attempt to
decompose the density above to elucidate its structure. The statistical depen-
dencies are highlighted in Fig. 2.

The first step, following (1), would be to marginalize with respect to the
scene S and the motion g. Done globally, this would be a tall order since g and
S are not independent: One’s motion within a scene depends on its shape. For
instance, one typically walks on the floor while avoiding obstacles that are part
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of the scene S. However, since we are considering regions away from occluding
boundaries, w does not depend on the entire scene S, but only on its visible
portion.4 Therefore, we condition on the pre-image of the patch Ω and only
consider the local dependency of w on S:

p(w|x0, σ,N) =
∫
p(w|g, S|Ω)dP (g, S|Ω|x0, σ,N). (3)

The advantage is that g and the local pre-image S|Ω are to first approximation
independent, which yields

p(g, S|Ω|x0, σ,N) = p(g)p(S|Ω|x0, σ,N).

Note that local conditioning introduces the dependency of S|Ω from x0, σ and
N , so empirical studies must take it into consideration.

The first factor p(g) is the viewer motion density, which is crucially dependent
on the application. For human motion (or hand-held cameras), the statistics have
been computed in [38]. These are rather different than those for ground vehicle
navigation: Fig. 1 shows statistics of displacement and rotation of the vehicle
“Golem 2” during the DARPA Grand Challenge. Rotational and translational
degrees of freedom are strongly correlated due to non-holonomic constraints. At
the other end of the spectrum one can imagine a tumbling robot where the motion
density is (improper and) close to uniform p(g) ∼ U(SE(3)).

The second factor can be further decomposed by locally approximating the
scene S|Ω using the Darboux frame g0, and the two principal curvatures, κ1 and
κ2, that encode local shape:

p(S|Ω|x0, σ,N) = p(κ1, κ2, g0|x0, σ,N) (4)

The Darboux frame g0 is determined by the normal ν, the principal direction
v, and the position of the point λx0 ∈ R3 where x0 is written in homogeneous
coordinates and λ ∈ R+ is the depth along the corresponding ray.

The first observation is that the dependency of this density on x0 is non-
trivial: On the top portion of an image we usually observe the ceiling (indoor) or
the sky outdoor, on the bottom we usually have a flat ground; these significantly
bias the pose statistics as shown in Fig. 4. There are also dependencies on the
geometry of the sensor: The shape of the pre-image of Ω for a flat sensor, or
for a cylindrical or conical mirror, depends on the location x0 on the image.
These, however, are second-order effects that can be easily compensated for.
Having observed these effects, we then resort to computing aggregate statistics
by marginalizing over x0. So, we are left with having to estimate the density

p(κ1, κ2, ν, v, λ|σ,N) = p(κ1, κ2|σ,N)p(v|ν, σ,N)p(ν|σ,N)p(λ|σ,N) (5)

4 Strictly speaking this assumption is incorrect, as a camera motion g can turn an in-
terior point into an occluding boundary. However, here we assume that most interior
points will remain so during motion.
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Fig. 3. A few samples from the synthetic dataset [39]. (Bottom-left) A range map
computed from the model, with details (middle) showing fine-scale details (e.g. surface
cracks) that are part of the geometry (shaded surface, right) and not just “painted”
onto smooth surfaces.

0 1.5708 3.1416 4.7124 6.2832
7

6

5

4

3

2

1

0

Lo
g 

fr
eq

.

(a) Azimuth

0 1.5708 3.1416 4.7124 6.2832
4

3.5

3

2.5

2

1.5

1

0.5

Lo
g 

fr
eq

.

p(az|top)
p(az|middle)
p(az|bottom)

(b) Disaggregated

0 0.7854 1.5708 2.3562 3.1416
6

5

4

3

2

1

0
Lo

g.
 fr

eq
.

(c) Elevation

Fig. 4. Pose statistics. (a) Histogram of the orientation of the normal vector relative
to the optical axis. The peaks are due to horizontal and vertical surfaces. (b) The same
statistics vary significantly if restricted to the top, middle and bottom third of the
images. (c) Elevation of the normals relative to the optical axis.

which we do empirically. In order to have full control of sampling issues, we have
decided to derive these statistics from simulated (ray-traced) images. While this
choice presents potential dangers due to shortcuts often employed in ray-traced
images, extensive sets of realistic images can be found, for which “ground truth”
S is available. In our experiments we have used the datasets [39] that contains
extremely detailed and realistic models (see Fig. 3).

We have observed that σ does not affect the nature of the statistics as long as
S(Ω) can be approximated up to second order (recall that we are looking away
from occluding boundaries). The choice of N is more delicate. Since the images
are given to us at a fixed sampling rate, N and σ are naturally related. We have
chosen σ corresponding to small windows of 5 × 5 pixels, and then implicitly
chosen N by matching the scale of the mesh of S with the sampling of the image
patch. We have done so by anisotropically smoothing the mesh proportionally to
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Fig. 5. Shape statistics. (a) Joint histogram of the principal curvatures κ1, κ2. (b)
Marginal histograms. (c) Histogram of the orientation of the principal direction (pro-
jected onto the image plane).

the area of the pre-image S(Ω(x0, σ,N)), while preserving occluding boundaries
and sharp discontinuities. Curvatures and principal directions are computed us-
ing discrete differential operators [40] on the regularized meshes. The resulting
marginal and joint histograms are shown in Fig. 5. As one can expect, these
statistics exhibit high kurtosis, indicating that regions of high curvature are
rare. Most non-planar structures are wedges (κ2 ≈ 0) and, interestingly, saddles
(κ2 < 0), consistent with the observations of [37].

2.2 Occlusion Statistics

Empirical distributions on the frequency of occluding boundaries can be obtained
directly from range images. These have already been studied in [37], and show
a kurtotic behavior similar to that of curvature, indicating that occlusions are a
rare event.

2.3 Saliency of Singularities and Occlusions

Although occlusions and singularities are rare events, in the sense that they
represent a zero-measure subset of the scene and project onto a small subset of
the image (by area), they are salient in that such geometric discontinuities often
correspond to photometric discontinuities that are selected by feature detectors.
For the case of occlusions, this is obvious since at occluding boundaries an arbi-
trarily small neighborhood contains the image of different objects. For the case
of singularities, Chen et al. [18] have argued that in homogeneous materials they
yield photometrically salient profiles, that they have measured empirically. To
validate these results, we have tested a standard edge detector (Canny) on ray-
traced images and we have examined the co-location of their responses to the
curvature of the local pre-images (Fig. 6). This experiment illustrates that occlu-
sions and singularities, although rare, are photometrically salient, and therefore
there remains the need to study feature descriptors for regions that include dis-
continuities. We now move on to that problem.
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Fig. 6. Saliency of singularities. A Canny edge detector is implemented at a scale com-
parable to the scale of the patches used for the statistics (5 × 5 pixels). In (a) we show
how the histogram of the principal curvature κ1 varies if restricted to those patches
that contain an edge (we discarded patches that contain an occluding boundary): On
average, “Canny patches” have higher curvature. In (b) we sorted the patches in in-
creasing curvature (log scale) and computed the fraction that contains an edge. We
repeated this computation for all patches and the patches that contain an occluding
boundary. The fraction increases significantly with the curvature and is even higher for
occluding boundaries.

3 Designing Viewpoint Invariant Descriptors

The empirical evidence in the previous section suggests that image regions with
discontinuities or occluding boundaries are photometrically salient, which in turn
suggests that they may be distinctive and therefore useful for recognition. In
this section we illustrate how to construct viewpoint invariant features for such
regions. We first show how a general methodology has been used before for
the case of interior-regular points and singularities, and extend it to occluding
boundaries.

We will assume that we have a mechanism available to establish the ori-
gin of a local reference frame. This is the role of a feature detector that can
pool statistics from regions of various shape and size. Detectors may localize
a point on the image, or select entire regions (in case the pooled statistics are
constant), which in turn can be used to establish a local frame. Around the
origin we will construct a local viewpoint invariant region statistic, or feature
descriptor.

From the image formation model (1) it is immediate to see that the equiva-
lence class of image deformations, i.e. the set φ(I,Ω) .= [I(w(x)), x ∈ Ω ∀ w]
is a viewpoint invariant. Indeed, it is the maximal viewpoint invariant, in the
sense that any other invariant is a function of it. Unfortunately, comparing such
invariants could be difficult because it entails a search over w. Since φ(I,Ω) is
an equivalence class, any element can represent it. Therefore, one can seek a
mechanism to associate a canonical warping ŵ to the local image structure, as
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(a) Image (b) Sketch (c) Frames

Fig. 7. Local image structure as extracted in the pre-processing step. The image in the
middle shows the structures extracted by the sketch. On the right we show some of the
star-like subgraphs that we manually select as candidate feature frames. The subgraphs
are centered on junctions and have linear branches. Whenever no natural termination
of a branch is found, a nominal value (established by looking at the maximum of a
Laplacian operator centered at the junction) is used.

well as a canonical domain Ω̂, and use [I(ŵ(x)), x ∈ Ω̂], or any function of it,
as the invariant descriptor.5

3.1 Interior Regular and Singular Points

The program sketched above has been carried out successfully by many re-
searchers for the case of affine warps: w(x) = Ax+ b. Note that the linear terms
in the local approximation can be written out, spelling explicitly the rotational
and translational components of g, as w(x) = (R+TνT )x, and the homography
(R+ TνT ) can be approximated with an affine transformation [A b]. Therefore,
the transformation induced by any IR point can be annihilated by an appropriate
affine transformation: The scene is a plane, S = R2, the translational term b is
fixed by a feature detector (e.g. Harris [42], so without loss of generality we can
assume b = 0), and the second moment matrix, or other local intensity statistic
[43], can be used to determine A. The transformation that inverts A can be
interpreted as a warping of a canonical circular neighborhood [I(ŵ(x)), x ∈ S1],
or ŵ can be though of as the transformation of a detected elliptical region Ω̂
into a circle S2 = ŵ−1(Ω̂), as in [2].

The same ideas can be easily extended to non-planar scenes [41]. In this case,
the reference frame we seek to normalize using intensity statistics is not affine, but
curvilinear and possibly known only up to symmetries, when the image presents
regular textures or homogeneous regions [41]. The deformation induced by changes
in viewpoint can be represented by a piecewise affine transformation, with as many
components as connected elements of the singularity. For instance, an edge has 2

5 Invariance is achieved through a local homeomorphic deformation of the image do-
main into a canonical configuration tailored to the local image structure. While fixing
a homeomorphism of the image domain forces viewpoint invariance, the converse is
not necessarily true; i.e. image domain deformations induced by changes of viewpoint
do not cover the set of all possible homeomorphisms [41], unless the scene is planar.
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affine components, a 3-D corner has 3, etc. with the tip of a cone with smooth sec-
tion as a limiting case. Naturally these affine transformations are not independent
because they have to satisfy compatibility constraints (see [41] for details).

3.2 Occluding Boundaries and Unilateral Descriptors

It is easy to show that the deformation induced by the motion of an arbitrary
shape does not preserve any geometric or topological property of the silhouette
[44, 45]. Indeed, given two curves, one can construct objects that, under suitable
viewpoints, have the curves as silhouettes. This is not true when the object has
symmetries, or when it has a particular structure, for instance a polyhedron. In
the former case one can derive case-by-case invariants, which is beyond our scope
here. In the latter case, occluding boundaries correspond to singularities, and
we can build a unilateral descriptor following the lines of the previous section.
We proceed with a detector in the exact same way as we did in Sect. 3.1, since
a-priori we do not know whether edges in the image are due to albedo or shape.
Then for each local neighborhood we construct not one, but several descriptors
based on masking different sectors of the local graph, followed by rectification.
Whether a given region is a singularity or an occluding boundary will only be
clear at matching: If matching all N regions independently produces similarly
small residuals, the singularity hypothesis is accepted, and the entire region is
normalized and matched. If at least one of the N matches yields a low residual,
the occlusion hypothesis is accepted, and matching is based on one sector only
Figs. 8-9 illustrates few representative examples.

Once the local structure in a neighborhood of the image is extracted by a
low-level feature detector, one could build a discrete representation (local graph)
and compare regions by comparing their graphs. Unfortunately, such graphs are
highly unstable with respect to changes of viewpoint, as failure to detect local

(a) (b)

Fig. 8. Background resilience. Feature A: To achieve insensitivity to the background,
we generate two unilateral SIFT descriptors, one for each side of the local frame. (a)
and (b) show three patches on which the three descriptors are computed (scale is 1/6
of the radius). These features have been added to the pool of features detected by SIFT
to see whether they enable correct discrimination. Of these, two do not match correctly
(red lines) because they cover the background, while the other (green line) does as it
covers only the foreground. Feature B: Both the bilateral and unilateral descriptors
match because the background does not change substantially.



370 A. Vedaldi and S. Soatto

(a) (b)

Fig. 9. Occlusion resilience. We generate several descriptors for each selected corner
structure of Fig. 7, then add them to the pool detected by SIFT/Harris-Affine. (top)
Due to visibility effects, SIFT (green) and Harris-Affine (orange) fail to match all
four corners (red lines). (bottom) The unilateral descriptors that cover the foreground
portion of the object are matched correctly, while the others fail. Eventually each
feature is associated to its best matching descriptor (green lines). Columns (a) and (b)
show the three and four descriptors extracted in the two images for the feature denoted
as A (in green the matching descriptors).

(b)(a)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Comparing discrete structures through a generative process. Pictures (a) and
(c) show two images of the same structure re-projected by means of the normalized
graph: They look similar as expected. Pictures (b) and (d) show the patches obtained
when the weak structure (the central edge) is removed from the graph. Despite the
graph topology changing drastically (a 3-junction becomes a corner), the re-projected
patches look quite similar. Unfortunately this does not work in all cases, as depicted in
pictures (e-h). Here normalization is inconsistent because the detector only considers
edge-like structures.
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structures results in changes of topology of the corresponding graph. Since we
compare intensity statistics in a normalized frame, one could argue that if a local
structure is not stable enough with respect to changes of viewpoint, that struc-
ture should not matter for matching. We illustrate this in Fig. 10 (left) where
the instability in inferring local image structure is anihilated by the synthesis of
the normalized patch. Indeed, since the canonical configuration is arbitrary, one
can choose it to compensate for failures of the low-level feature detector.

This, however, does not always work, since missed detection changes the can-
onization procedure, as we illustrate in Fig. 10 (right). This is the weakest point
of our method, which can be improved with mid-level processing and grouping
procedures that are beyond the scope of this paper.

4 Discussion

We have derived a statistical characterization of the deformations of the im-
age domain induced by changes of viewpoint. This shows that, while occlusions
and surface singularities are rare, they are photometrically salient, which moti-
vates their use for recognition. This prompts us to develop dedicated viewpoint
invariant descriptors.

For singularities, we rely on existing methods to extract local image structure,
and construct an invariant descriptor by normalizing such structure and gener-
ating a canonical radiance from it. Although the technique is general, it relies
on pre-processing steps that, with the current state of the art, are problematic.
Alternatively, one could use region-based segmentation approaches as a means
to extract local structure ahead of computing invariant statistics. For the case
of occlusions, we have developed unilateral descriptors based on masking por-
tions of the detected regions. We have shown a few representative examples of
the behavior of such descriptors for cases where existing affine invariants fail to
establish correspondence. Note that we do not advocate the descriptors in Sect.
3.1-3.2 as an alternative to existing descriptors. They are designed to cover con-
ditions that current descriptors are not designed for, hence be complementary.
Note also that the best affine descriptors can tolerate a great deal of violation
of the assumptions they are designed for, therefore many of the cases where our
approach would be best suited is already covered by, say, SIFT or Harris-affine.

Considerable work remains to be done to design robust and stable low and
mid-level detection schemes, but we hope that this study illustrates a general
methodology that can be used to design viewpoint invariant descriptors for non-
planar portions of the scene.
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Abstract. This paper addresses the problem of how to learn an ap-
propriate feature representation from video to benefit video-based face
recognition. By simultaneously exploiting the spatial and temporal in-
formation, the problem is posed as learning Spatio-Temporal Embed-
ding (STE) from raw video. STE of a video sequence is defined as its
condensed version capturing the essence of space-time characteristics of
the video. Relying on the co-occurrence statistics and supervised signa-
tures provided by training videos, STE preserves the intrinsic temporal
structures hidden in video volume, meanwhile encodes the discriminative
cues into the spatial domain. To conduct STE, we propose two novel
techniques, Bayesian keyframe learning and nonparametric discriminant
embedding (NDE), for temporal and spatial learning, respectively. In
terms of learned STEs, we derive a statistical formulation to the recog-
nition problem with a probabilistic fusion model. On a large face video
database containing more than 200 training and testing sequences, our
approach consistently outperforms state-of-the-art methods, achieving a
perfect recognition accuracy.

1 Introduction

As still image-based recognition accuracy is still too low in some practical ap-
plications comparing to other high accuracy biometric technologies, video-based
face recognition has been proposed recently [15][12][6][16][7][9][13]. One major
advantage of video-based techniques is that more information is available in a
video sequence than in a single image. Naturally, the recognition accuracy could
be improved if the abundant information can be properly exploited.

It has been demonstrated that modeling temporal dynamics is very useful to
the video-based problems. Hence, recent video-based face recognition research
employs them to improve recognition performance. Using the statistical coher-
ence over time, Zhou et al. [16] model the joint probability distribution of identity
and head motion using sequential importance sampling, which leads to a generic
framework for both tracking and recognition. Liu et al. [9] analyze video se-
quences over time by HMMs, each of which learns the temporal dynamics within
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a video sequence. Comparing likelihood scores provided by the HMMs, the iden-
tity of a testing video sequence is yielded with the highest score. Because learning
temporal dynamics during the recognition stage is very time-consuming, above
statistical models can not suffice for the real-time requirement of automatic face
recognition systems. Lee et al. [7] approximate a nonlinear appearance manifold
which stands for one subject (person) as a collection of linear submanifolds, and
encode the dynamics between them into the transition probability. The manifold
learning algorithms in [7] are subject-specific and lack the discriminating power,
so they do not adapt well to the face recognition scenario which is a supervised
classification problem.

Opposite to face hallucination techniques [1][8][10] which try to infer the lost
image content of a facial image, the video-based face recognition scenario is
confronted with the abundance of consecutive frames in face videos. Hence it is
crucial to efficiently exploit the spatial and temporal information.

In this paper we present a novel spatio-temporal representation for each
video sequence that we call “Spatio-Temporal Embedding” (STE). The STE
of a video sequence is its miniature, condensed version containing the intrinsic
spatio-temporal structures inherent in the space-time video volume. Based on
STEs, we develop a statistical face recognition framework from video by integrat-
ing several novel techniques including Bayesian keyframe learning for learning

Fig. 1. The framework of our video-based face recognition approach. (a) Training stage:
learn keyframes from video sequences and then arrange them into K groups of homoge-
neous keyframes which will be input to NDE; (b) testing stage: construct a statistical
classifier in terms of learned spatio-temporal embeddings.
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temporal embedding, Nonparametric Discriminant Embedding (NDE) for learn-
ing spatial embedding, and statistical classification solution. This framework
takes full advantage of the effective amount of potential information in videos
and at the same time overcomes the processing speed and data size problems.
The detailed diagram of the proposed framework is plotted in Fig. 1.

The rest of this paper is organized as follows. In Section 2, we propose to
learn temporal embedding “keyframes” which are robust to data perturbation.
In Section 3, we develop NDE to further learn spatial embedding of keyframes.
A statistical classifier is designed in Section 4. Experimental results on the
largest standard video face database, the XM2VTS database [11], are reported in
Section 5. Finally, we draw conclusion in Section 6.

2 Temporal Embedding

Recent literature proposes to extract the most representative frames called “ex-
emplars” or “keyframes” from the raw videos. Keyframes extracted from a video
sequence just span the temporal embedding of the video. However, previous ap-
proaches for extracting keyframes only consider the temporal characteristics of
individual video, the extracted keyframes thus tend to differ in describing the
temporal structures. In this section, we present our approach for automatically
learning the homogeneous keyframes used to support discriminant analysis.

2.1 Previous Work

Krueger and Zhou [6] apply radial basis functions to select representative images
as exemplars from training face videos, and this facilitates both tracking and
recognition tasks. Our previous work [13] uses information in audio signals of
video to locate maximum audio amplitudes of temporal segments to find the
corresponding video keyframes. We [13] have demonstrated that audio-guided
keyframes well represent a video sequence, and reach a satisfactory video-to-
video matching level using subspace approaches.

For videos of varying frame contents, a simple matching of two video se-
quences frame-by-frame will not help much to video-to-video matching, since we
may be matching a frame in one video with a frame of different expression in
another video. This may even deteriorate the face recognition performance. The
key to the performance improvement is that face frames in each sequence are
in a consistent order of temporal dynamics, so that neutral face matches with
neutral face and smile face matches with smile face. The consistent order implies
synchronized pose, orientation, and expression variations of face images in each
video sequence. Therefore, in order to make use of keyframes to boost recognition
performance, keyframes across different video sequences should be extracted in
a synchronized way. We call this “frame synchronization” as we will guarantee
that keyframes extracted from different videos are temporally synchronized from
each other.

In literature [6], the best keyframes (exemplars) are sought such that the ex-
pected distance between them and frames in the raw video sequence is minimized.
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Due to the mentioned synchronization criterion for keyframe extraction, the al-
gorithm proposed in [6] fails to generate “good” keyframes because it only works
on individual video. Our work [13] succeeds in learning synchronized keyframes
by utilizing audio signals in videos. Specifically, when recording video data in the
XM2VTS database, each person is asked to recite two sentences “0,1,2,. . . ,9” and
“5,0,6,9,2,8,1,3,7,4” which span a video sequence of 20 seconds. Since the audio
signals are in the same order over time and approximately reflect the temporal
structures of videos, the audio-guided method guarantees frame synchronization.
Nevertheless, in some applications, it may be difficult to get audio signals con-
tained in videos. In addition, the method is vulnerable to data perturbation. For
example, if a person reads the digit sequence “0,1,2,. . . ,9” in a random order,
skips one digit, or repeats one digit, then the audio-guided method will fail the
frame synchronization and a wrong frame match may appear.

Beyond the audio limitation, we should design a novel keyframe learning ap-
proach which could comply with frame synchronization with only the image
information of video data adopted.

2.2 Synchronized Frame Clustering

A prelude to learning keyframes is clustering on video frames. Previous clus-
tering on videos only focuses on spatial (e.g. appearance) correlations and skip
temporal correlations that also play an important role in clustering. For exem-
plars provided by XM2VTS, when one reads one particular digit, the associated
frames should be mapped to the same cluster that corresponds the digit. Due to
concerns of spatial and temporal continuity inherent in video data, we propose
a synchronized clustering method which incrementally outputs aligned clusters
across all video sequences based on K-means clustering [4].

Let V = {x1, · · · ,xt, · · · ,xN}(xt ∈ "d) represent a set of video frame samples
belonging to the same video sequence. In this work we assume temporal coher-
ence on the order in which data points arrive one-by-one. Let V be a stream
of data, its temporal ordering specified by the corresponding subscript. For the
training video set {V (i)}M

i=1, we cluster each one V (i) into K clusters {C(i)
k }k

at one time, and then merge these formed clusters {C(i)
k }i into a larger one

Ck =
⋃

i C
(i)
k .

For clustering the sequence V (i), we promote the classical K-means algorithm
[4] using the following spatio-temporal objective function to assign k∗ to x(i)

t

k∗ = arg min
k∈{1,···,K}

(x(i)
t − x̄k)T Q(x(i)

t − x̄k)
λ1

+
(t− time(x(i)

t , C(i)
k ))2

λ2
, (1)

where x̄k is the average of frames in cluster Ck; Q is an adaptive distance metric
which will be updated after each sequence clustering; function time(x(i)

t , C(i)
k )

computes the temporally nearest order in the cluster C(i)
k for frame x(i)

t ; scaling
parameters λ1, λ2 control the trade-off between spatial and temporal similarity.
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Table 1. Synchronized frame clustering algorithm

Step 1: PCA. To reduce the high dimensionality of images, we project the training

frame ensemble {x(i)
t }t,i into the PCA subspace. For brevity, still use x to

denote the frames in the PCA subspace in the following steps.

Step 2: Initialization. For the first video sequence V (1), randomly select K frames
as the initial cluster center x̄1, · · · , x̄K , then perform K-means clustering

on V (1) by eq. (1). K small clusters {C(1)
k }K

k=1 are obtained, with which

large clusters {Ck}K
k=1 are generated as Ck = C(1)

k (k = 1, · · · , K). So the
initial metric Q can be computed using eq. (2) in terms of initial {Ck}K

k=1.
Step 3: Synchronized clustering.

For i = 2, · · · , M

use current cluster centers {x̄k}K
k=1 to conduct K-means clustering on

sequence V (i) resulting in new small clusters {C(i)
k }K

k=1;

update Ck ←− Ck

⋃ C(i)
k (k = 1, · · · , K);

update x̄k ←− ∑
x∈Ck

x/|Ck| (k = 1, · · · , K);

update Q with updated {x̄k} and {Ck};
End.

Outputs: Synchronized clusters {C(i)
k }i=1,···,M

k=1,···,K across all video sequences {V (i)}M
i=1.

Motivated by Relevant Component Analysis (RCA) [2] which gives a good
metric with contextual information among samples explicitly encoded, a stepwise
update for the metric is done absorbing the current context of clustering

Q ←−
(

K∑
k=1

1
|Ck|

∑
x∈Ck

(x − x̄k)(x − x̄k)T + rI

)−1

. (2)

r is an regularization constant, which is often necessary when Ck contains a small
number of frames. As long as {Ck} expand further, Q will become more accurate
and reliable, even need not regularization.

To overcome the problems incurred by disordered video data, we propose a
synchronized frame clustering algorithm plotted in Tab. 1. As we take centers of
large clusters Ck as K means for clustering individual sequence, small clusters
C(i)

k across different video sequences within the same large cluster Ck tend to
be homogeneous. What’ more, historical clustering results provide the reference
order for following sequence clustering. Consequently, our clustering algorithm
guarantees frame synchronization and outputs synchronized and aligned clusters
{C(i)

k }k,i across all training video sequences {V (i)}i.

2.3 Bayesian Keyframe Learning

Since the audio-guided method is sensitive to disordered video sequences, we
thus propose an automatic keyframe learning method and make it robust to
disordered video sequences. The learning method enables us to select not only
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synchronized but also distinctive keyframes spanning the temporal embeddings
of videos. The intuition of this method is that excellent keyframe extraction
should be pursued jointly in temporal and spatial domains.

After synchronized frame clustering, each video sequence has at most K clus-
ters C(i)

k (k = 1, · · · ,K) with the consistent order. Our purpose is to select the
keyframes, i.e most representative exemplars, from each particular cluster C(i)

k

in each sequence. Given the synchronized property of clusters Ck = {C(i)
k }i , we

model the co-occurrence statistics among all video frames in the constructed
cluster Ck as the joint probability distribution

p(x, Ck) ∝ exp

(
−‖Λ−1/2

k UT
k (x − x̄k)‖2

2

)
, (3)

in which the eigensystem (Uk,Λk) is solved by performing PCA on frames in
cluster Ck, and keeping the leading eigenvectors retaining 98% of the energy.

Given each sequence V (i)(i = 1, · · · ,M), candidates e in small cluster C(i)
k

with maximum likelihood to Ck are selected as keyframes. In practice, the frames
with the m greatest conditional probabilities p(e|V (i), Ck) to each cluster Ck are
selected as top-m keyframes. By Bayesian law, we choose the optimal exemplar
e∗ such that (the deviation parameter δk can be evaluated using data in Ck)

e∗ = argmax
e

p(e|V (i), Ck) = argmax
e

p(e, V (i), Ck)

= argmax
e

p(V (i)|e, Ck)p(e, Ck) = arg max
e

∏
x∈C(i)

k

p(x|e)p(e, Ck)

= argmax
e

exp

⎛⎜⎝−
∑

x∈C(i)
k

‖x− e‖2

2δ2k
− ‖Λ−1/2

k UT
k (e − x̄k)‖2

2

⎞⎟⎠ . (4)

Substituting all possible frames e ∈ C(i)
k into eq. (4) and maximizing eq. (4),

we accomplish learning the optimal K keyframes. The top-m keyframes can also
be learned by adopting eq. (4) as the keyframe score. The keyframe selection
strategy supported by eq. (4) is termed Bayesian keyframe learning, which ef-
fectively coordinates the co-occurrence statistics and individual representative
capability of selected keyframes. So far, we have learned the temporal embedding
of video sequence V (i), which we denote as T (i). Its k-th component in cluster
Ck is denoted as T (i)

k , and its constituent top-m keyframes are represented by
e(i)

kj (k = 1, · · · ,K, j = 1, · · · ,m). Within the same cluster Ck, keyframes are well
synchronized and highly homogeneous.

3 Spatial Embedding

We will further learn the spatial embedding over the learned temporal embedding
to achieve the final STE according to each video. This is achieved by perform-
ing a novel supervised dimensionality reduction algorithm called Nonparametric
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Discriminant Embedding (NDE). We show that NDE is superior to PCA and
LDA, two well-known linear dimensionality reduction algorithms. Hence, NDE
endows STEs with much greater discriminating power.

3.1 Nonparametric Discriminant Embedding (NDE)

LDA is a popular feature extraction technique which aims to maximize ratio of
the determinant of the between-class scatter matrix to that of the within-class
scatter matrix. Assume there are c different classes, let μi, μ be the class mean
and overall mean, and ni the number of samples in class Ci, the within-class
scatter matrix and the between-class scatter matrix are defined as

Sw =
1
c

c∑
i=1

1
ni

∑
j∈Ci

(xj − μi)(xj − μi)T

Sb =
1
c

c∑
i=1

(μi − μ)(μi − μ)T . (5)

The LDA algorithm seeks to determine the optimal projection W which max-
imizes the ratio between the between-class matrix and the within-class matrix
|WT SbW|/|WT SwW|.

Until now, numerous LDA-based methods have been proposed for face recog-
nition [3][14]. However, an inherent problem with LDA arises from the parametric
form of the between-class scatter matrix, which leads to several disadvantages.
Firstly, LDA is based on the assumption that the discrimination information is
equal for all classes. Therefore, it performs well under Gaussian class distribu-
tions, but not under non-Gaussian distributions. Secondly, the number of the
final LDA features, f , has an upper limit of c-1 because the rank of the between-
class matrix Sb is c-1 at most. It is not sufficient for complex data distribution
if only c-1 features are used. Thirdly, due to the presence of outliers, the be-
tween class matrix Sb in LDA cannot capture the information of the boundary
structure effectively, which is essential for different classes.

To overcome the above drawbacks, we propose a Nonparametric Discriminant
Embedding (NDE) algorithm motivated by nonparametric discriminant analy-
sis (NDA) [5]. The original NDA algorithm only deals with two-class pattern
recognition tasks, whereas the proposed NDE algorithm is generalized to tackle
multi-class pattern classification problem. The difference between NDE and LDA
is in the definition of the scatter matrices. In NDE, we define the within-class
and between-class scatter matrix as

SN
w =

1
c

c∑
i=1

1
ni

ni∑
t=1

(xi
t − μi(xi

t))(x
i
t − μi(xi

t))
T

SN
b =

1
c(c− 1)

c∑
i=1

c∑
j=1, j �=i

ni∑
t=1

λ(i, j, t)(xi
t − μj(xi

t))(x
i
t − μj(xi

t))
T , (6)

where xi
t denotes the t-th sample of class i, and μj(xi

t) is the mean of local
z-NNs, defined as μj(xi

t) =
∑z

p=1 nj
p(x

i
t)/z where nj

p(x
i
t) is the pth nearest
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neighbor from class j to sample xi
t, and λ(i, j, t) is a weighting function which

is defined as

λ(i, j, t) =
min

{
dβ(xi

t,n
i
z(x

i
t)), d

β(xi
t,n

j
z(x

i
t))

}
dβ(xi

t,ni
z(xi

t)) + dβ(xi
t,n

j
z(xi

t))
, (7)

where β is a control parameter that can be empirically chosen between zero
and infinity, and d(v1,v2) is the Euclidean distance between two vectors v1 and
v2. The weighting function is used to place more emphasis on the boundary
information.

The NDE algorithm seeks to determine the optimal projection Wopt ∈ "d×f ,
which maximizes the ratio between the generalized between-class matrix and
within-class matrix

Wopt = [w1,w2, · · · ,wf ] = argmax
W

|WT SN
b W|

|WT SN
w W| . (8)

The NDE projection contains eigenvectors of the matrix
(
SN

w

)−1 SN
b . From

eq. (6) we have a few observations: (1) If we select z = ni and set all the
weighting functions to unit value, μj(xi

t) will become μj . It means the NDE
is indeed a generalized version of LDA. (2) As opposed to the conventional
LDA algorithms which usually can only extract c-1 discriminative features at
most, the NDE algorithm does not suffer from such limitation. The number
f(< d) of extracted discriminative features can be specified as desired. (3) The
NDE algorithm is more effective in capturing the information of the boundary
structure for different classes in contrast to the conventional LDA algorithms.

We illustrate the power of NDE with a toy problem where 3D data points
are sampled from two half-spheres. The data points with 2 labels are shown in
Fig. 2. Since the problem is binary classification, PCA, LDA and NDE all reduce
the dimensions of raw data to 2 dimensions. Note that the LDA embedding is
intrinsically in 1 dimension, for the comparative purpose we add the second
dimension with the same coordinates to the intrinsic one. From the embedding
results shown in Fig. 3 - Fig. 5, we can clearly observe that the PCA and LDA
embeddings of two classes of points partially overlap with each other, while
points from different classes are well separated with each other in the embedding
results provided by NDE (Fig. 5). This demonstrated that NDE can find a better
subspace than LDA or PCA in the case of abundant training data. Better results
can be achieved by nonlinear methods, but most of these nonlinear methods only
work on training data. NDE can be generalized outside the training points to
the entire input space.

3.2 Multiple NDE

Due to the fact that NDE has an advantage over LDA when encountering with
abundant training data, we will apply NDE to handle the video-based face recog-
nition scenario which is just the classification problem with many samples. In
details, we conduct multiple NDE to extract discriminative features for training
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videos. That is to run NDE on K slices slicek = {T (i)
k }M

i=1 (M is the total num-
ber of training video sequences), under which homogeneous keyframes belonging
to synchronized and aligned clusters Ck = {C(i)

k }i are input to NDE. We collect
keyframes from different training videos presenting the same human identity to
form one class in each slice. Ultimately, applying NDE on K slices leads to the
target STEs, as well as K NDE projections Wk ∈ "d×f(k = 1, · · · ,K).

4 Statistical Recognition

In the testing stage, for any unidentified video frame x ∈ "d, we try to compute
its statistical correlation to video sequences V (i)(i = 1, · · · , c) in gallery which
often has one video sequence for one human subject. Let the learned spatio-
temporal embedding according to V (i) be L(i) = {y(i)

kj = WT
k e(i)

kj ∈ "f |k =

1, · · · ,K, j = 1, · · · ,m}, and define L(i)
k = {y(i)

kj |j = 1, · · · ,m}. The statistical
correlation is expressed as the posterior probability p(Li|x).

Intuitively, we exploit the probabilistic fusion scheme to construct a MAP
(maximum a posterior) classifier in terms of learned STEs, which settles on a
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solution to the image-to-video face recognition problem. The MAP classifier is
derived as follows

max
i∈{1,···,c}

p(L(i)|x) = max
i

K∑
k=1

p(L(i), Ck|x) = max
i

K∑
k=1

p(L(i), Ck,x)
p(x)

= max
i

K∑
k=1

p(L(i)|x, Ck)p(x, Ck)
p(x)

= max
i

K∑
k=1

p(L(i)
k |x, Ck)p(Ck|x). (9)

Since p(x, Ck) has been modeled as eq. (3) through frame clustering on train-
ing videos, p(Ck|x) is calculated by p(Ck|x) = p(x, Ck)/

∑
k p(x, Ck). Only the

conditional probability p(L(i)
k |x, Ck) is left to be inferred. To achieve that, we

start by computing the asymmetric probabilistic similarity Sk(y,x)

Sk(y,x) = exp
(
−‖y − WT

k x)‖2

2σ2
k

)
, (10)

where WT
k x is the k-th NDE, and parameter σk can be predefined or computed

with respect to data distribution in the embedding space. Now we can formulate
p(L(i)

k |x, Ck) under the following stochastic selection rule

p(L(i)
k |x, Ck) =

∑m
j=1 Sk(y(i)

kj ,x)∑c
t=1

∑m
j=1 Sk(y(t)

kj ,x)
. (11)

Once substituting eq. (10) and eq. (11) into eq. (9), we accomplish the image-
to-video recognition task. It is noticeable that p(L(i)

k |x, Ck) essentially behaves
like a local analyzer Fk(x, i) as similarities given by eq. (10) are conducted.
Specifically, Fk(x, i) correlates the testing frame x with the kth segment of
spatio-temporal embedding of person i in subspace Wk. Our recognition so-
lution eq. (9) merges these local analyzers into a global analyzer G(x, i) using
the probabilistic fusion model G(x, i) =

∑
k p(Ck|x)Fk(x, i) which statistically

fuses multiple NDEs of testing frame x with the probabilistic “weights” p(Ck|x).
Naturally, we can perform the probabilistic voting strategy to recognize a

video sequence V = {xt}N
t=1 in the probe videos. In details, combining the recog-

nition confidences {G(xt, i)}i in every frame xt to decide on the person identity
i∗ of probe video V , we thus realize video-to-video recognition as follows

i∗ = arg max
i∈{1,···,c}

p(L(i)|V )

= argmax
i

N∑
t=1

p(L(i)|xt) = argmax
i

N∑
t=1

G(xt, i). (12)
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5 Experiments

In this section, we conduct experiments on the XM2VTS face video database [11].
We select 294 ∗ 4 video sequences of 294 distinct persons across four different
sessions. 294 ∗ 3 video sequences from the first three sessions are selected for
training. The gallery set is composed of 294 video sequences from the first session.
The probe set is composed of 294 video sequences from the fourth session. The
persons in the video are asked to read two number sequences, “0 1 2 3 4 5 6 7 8
9” and “5 0 6 9 2 8 1 3 7 4”.

5.1 Keyframes

In this paper we propose the Bayesian keyframe learning method for learning
the temporal embeddings of videos, which complies with frame synchronization.
In this section we will evaluate their performance on the XM2VTS face video
database. Firstly we compare our keyframe learning method with the audio-
guided keyframe extraction method proposed in [13]. The audio-guided method,
called as “A-V Frame Synchronization”, exploits the maximum points of audio
information and strongly depends on the order of audio sentences which are
spoken in video sequences. A-V synchronization extracts frames each of which
corresponds to the waveform peak of audio signals.

Fig. 6(a) shows 10 cropped 72 × 64 keyframes learned by our method, which
are the most likely frames, i.e. top-1, in K = 10 clusters provided by syn-
chronized clustering on video frames without any additional information. From
Fig. 6(a), we observe that keyframes extracted by our method bear rather dis-
tinct expression information, which will benefit face recognition as more expres-
sion variations are covered in the training data. An important advantage of our
keyframe learning method is that it is fully automatic without relying on audio
signals, which makes our recognition framework more general.

Fig. 6(b) illustrates our keyframe extraction from the audio-temporal per-
spective. It is surprising that these keyframes learned by our method correlate
closely with the results obtained by A-V synchronization. 7 keyframes nearly lie
on the peaks of audio signals, while the rest 3 frames are in the intermediate
places between peaks. We thus conclude that our keyframe learning method is
comparable to the audio-guided method confronted with orderly video data, but
still robust to disordered video data.

5.2 Evaluate NDE

The first group of experiments is to compare the performance of the proposed NDE
with the conventional LDA algorithm. For each video sequence, top-1 keyframes
are selected for the experiments. So, the training set is composed of 294*3 facial
images from the first three sessions. The gallery set contains 294 images from the
first session and the probe set comprises 294 images from the fourth session. For
the parameters z and β associated with NDE, we set z = 1 and β = 2 empirically.

The comparative results are shown in Fig. 7. The cumulative matching score is
used for the performance measure. Instead of asking “is the top match correct”,
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(a)

(b)

Fig. 6. Keyframes learned from one video sequence in XM2VTS. (a) Top-1 keyframes,
each of which stands for a cluster in the sequence. (b) 10 keyframes shown in the
temporal axis, compared with the speech signal.
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Table 2. Comparison of recognition results with existing video-based approaches

Video-Based Face Recognition Approaches Recognition Rate

mutual subspace 79.3%

nearest frame 81.7%

nearest frame using LDA 90.9%

nearest frame using
unified subspace analysis 93.2%

temporal embeddings +
multi-level subspace analysis 98.0%

spatio-temporal embeddings +
statistical classifier 99.3%

the cumulative matching score answers the questions of “is the correct answer in
the top-n matches?”, where the number n is called the rank. This lets one know
how many images have to be examined to get a desired level of performance.
The results clearly show the superiority of NDE over LDA.

5.3 Evaluate Statistical Recognition Performance

After 20 keyframes (top-2 keyframes from 10 clusters) are selected by means of
synchronized frame clustering and Bayesian keyframe learning, we perform NDE
on each slice containing 2*3*294 frames across 3 sessions from 294 persons and
acquire 10 local analyzers with 6 training samples each person. Finally, based on
the learned spatio-temporal embeddings (STEs), all these STE-based local ana-
lyzers are integrated using the probabilistic fusion model eq. (9) to accomplish
image-to-video recognition followed by the probabilistic voting strategy eq. (12)
which leads to the final video-to-video recognition results .

We compare our statistical recognition framework with existing video-based
face recognition approaches. Here all approaches directly use image gray scale
values as facial features. Using temporal embeddings learned by our keyframe
learning method, we can perform multi-level subspace analysis proposed in our
recent paper [13]. It is evident that both of our proposed approaches, temporal
embeddings combined with multi-level subspace analysis and spatio-temporal
embeddings incorporated into the statistical classifier, significantly outperform
the existing video-based recognition approaches in Tab. 2. Further, our statistical
recognition framework integrating STEs and statistical classification achieves
the best recognition accuracy of 99.3%. Compared with the best performance
of other recognition approaches, the error rate is still reduced by 65%, which
is quite impressive and well validates the robustness and effectiveness of our
framework.

6 Conclusion

This paper explores to seek a “good” spatio-temporal representation for each video
sequence so that it could support the face recognition process. Considering both
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co-occurrence statistics and representative capability of video frames, the tem-
poral embedding spanned by synchronized keyframes is first learned for each se-
quence. Furthermore, the powerful NDE enforces discriminative cues over the
learned temporal embeddings. So, learning in space-time gives rise to the intrinsic
spatio-temporal embeddings (STEs). In this paper, we develop a statistical frame-
work integrating several novel techniques including Bayesian keyframe learning,
NDE, and the statistical classifier, all of which depend on each other and yield
a synergistic effect. The success of the framework originates from not only syn-
chronized but also discriminative spatio-temporal representations and statistical
recognition.
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Abstract. Super-resolution is a technique to restore the detailed infor-
mation from the degenerated data. Lots of previous work is for 2D images
while super-resolution of 3D models was little addressed. This paper fo-
cuses on the super-resolution of 3D human faces. We firstly extend the 2D
image pyramid model to the progressive resolution chain (PRC) model in
3D domain, to describe the detail variation during resolution decreasing.
Then a consistent planar representation of 3D faces is presented, which
enables the analysis and comparison among the features of the same fa-
cial part for the subsequent restoration process. Finally, formulated as
solving an iterative quadratic system by maximizing a posteriori, a 3D
restoration algorithm using PRC features is given. The experimental re-
sults on USF HumanID 3D face database demonstrate the effectiveness
of the proposed approach.

1 Introduction

The rapid development of multimedia techniques has more impact on human life.
The problem of super-resolution, arising in a number of real-world applications,
has recently attracted great interest of researchers. Super-resolution literally
means to generate images, 3D models, or other data representation forms of
higher resolution, compared with the relatively rough inputs.

1.1 Previous Work

In real applications, the problem of resolution insufficiency generally emerges in
two cases. 1) The first case is to magnify the existing images for better demon-
stration when only the ones of a small size are available, e.g. thumbnail images
in the web pages[1]. The key issue in this case is to get rid of blur effects and
fill in as many lost details as possible. There are typical approaches such as
tree-based[2], level-set[3], example-based HMM[4], and neighbor embedding[1].
2) In another case, we may require a more detailed or clearer image from a set
of images or a frame sequence of poor quality, which might be obtained under
noise, deformation or limitation of capturing conditions. The most widely-used
model is Bayesian framework[5, 6, 7], and ML, MAP, POCS are also employed
in [8, 9].
� The authors are grateful for the grants from NSF of China (60503019, 60525202)
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When it comes to the way in which the problem is solved, the super-resolution
technique could be classified into the reconstruction-based and the learning-
based methods. The reconstruction-based algorithms are based on the fundamen-
tal constraints to model the image formation process that the super-resolution
image should generate the low-resolution input images when appropriately
warped and down-sampled[10]. And then the process of reconstruction falls into
a fusion-like problem. Therefore it is especially suitable for multi-view case as in
[5, 8, 6, 9]. However, the reconstruction-based method has its theoretical limit of
the magnification factor beyond which the high-resolution image deviates signif-
icantly from the ground truth, no matter how many low-resolution images are
offered[10, 11]. In the other aspect, the learning-based algorithms seem to be cus-
tomized for single-view case since the learned priors provide the lost details[2, 4].
It has a better performance when the training samples are similar to the target,
such as human face[12, 10, 13].

1.2 Motivation

Three dimensional models are much more expressive than 2D images. Generally,
images lay stress on appearance in visual spectrum while 3D models convey
the additional topological and geometrical information of the object. However,
super-resolution in 3D domain has been little addressed.

Super-resolution of 3D models really makes sense. Firstly, it could reduce the
data volume for fast transmission over Internet. 3D models are usually of a large
size, which is a big drawback restricting their application in many aspects, e.g.
the web application. Although the storage is becoming a non-serious problem
with the help of the large-volume storage devices, the fast transmission of 3D
data over Internet still remains critical, especially under an unstable network
condition. The time consumption for downloading the whole model is sometimes
intolerable. Though the level-in-detail technique could reduce the response time,
the total transmission time virtually is not saved if we want to view the detailed
model. Therefore, we can only transfer the the simplified version of the original
data and rebuild the high-resolution version at the remote end.

Secondly, super-resolution of 3D models could generate a more detailed 3D
model when only the low-resolution version is available. Currently 3D acquisition
is becoming easy. However the high-resolution 3D data are still hard to obtain
in some cases. On the one hand, the data acquired by the cheap devices and
fast acquisition systems are generally of low-resolution. On the other hand, the
high-resolution data is hard to acquire when the object is not well-cooperative.
And sometimes we could get only the damaged version the the original data.

Thirdly, 3D face models are playing an important role in face recognition
[14, 15, 16], however, the low-resolution data, acquired under an incooperative
condition, are often not suitable for the direct use of the recognition task, for
detail insufficiency and incompleteness. Human faces have a lot of mutual fea-
tures similar to each other on the whole, from which the learning-based algo-
rithms benefit. The super-resolution of the 3D face models may be helpful for
recognition task, with the improvement of the visual quality as well.
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1.3 Problem Statement and the Proposed Approach

We propose a solution to the new problem of super-resolution of human faces
in the triangulated mesh domain. Given a mesh ML of low-resolution, we need
to generate the high-resolved version MH . In this paper, we only consider the
low-resolution caused by down-sampling and blur, which are the most com-
mon cases in 3D models. Actually, other cases can be dealt with in the similar
way. I.e. ML could be either (1) blurred, which means ML has the same topol-
ogy as the original true mesh but with the distorted vertex positions, or (2)
down-sampled, which means ML has a regular topology with less number of
vertices than the original mesh. In both cases, we calculate the MH with more
detailed information in order to be as similar to the original true model as
possible.

In this paper we set up a Progressive Resolution Chain (PRC) model to con-
nect MH and ML. The PRC between MH and ML acts as the relationship be-
tween the neighboring resolution levels, and provides the essential information for
the subsequent restoration algorithm, described in Section 2. A consistent planar
representation of 3D faces is proposed in Section 3. This procedure includes fix-
ing the mesh boundary into the edges of the unit planar square according to the
symmetrical features of the human face, and applying the intrinsic parametriza-
tion to map the ROI(region of interest) face mesh onto the plane. Then the
planar parametrization establishes the correspondence among face meshes, and
such correspondence is used by both the calculation of PRC features and the
learning algorithm. Section 4 gives the restoration algorithm, which is to maxi-
mize a posteriori (MAP) by solving an iterative quadratic system based on the
PRC features. Diagram of the whole approach is given in Section 5, and Sec-
tion 6 shows the experimental results on the USF HumanID 3D face database.
Finally the conclusion is drawn in Section 7.

2 Progressive Resolution Chain

Given high-resolution modelMH , some low-resolution versionML could be easily
figured out through a certain degenerator Degen(·) which is specifically designed
for the specified detail level, or to emulate some information damaged effects.

ML = Degen(MH) (1)

But the inverse process, which is the main and key part of the high-resolution
task, is much more difficult to solve, even in a simple 2D context with a linear
degenerator[13]. The main difficulty is that the degeneration Degen is usually
an entropy losing procedure so that there is not a unique inverse regenerator
Degen−1. Even though we put restraints at the high-resolution end to restrict
the solution space, it is still hard to solve since there is a huge search space.

Inspired by the pyramid model, we propose a Progressive Resolution Chain
(PRC) model to describe the detail-fading procedure, which is very suitable
for the learning based restoration method. The main idea is to decompose the
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degeneration procedure Degen into progressive steps, which is an iteration of
some meta-degenerator Degen1. And the midway results compose a PRC, which
starts from MH and passes through ML. Equally important, the PRC could
sequentially extend beyond ML to provide extra information for the consequent
learning based method. The PRC is defined as

Cl(MH) =
{
MH if l = 0
Degen1(Cl−1(MH)) if l > 0

For a sub-problem, the meta-degenerator Degen1 is defined accordingly. In
the blur case, it could be a neighboring filter, i.e. a local linear vertex convolution:

Degen1
b(M)(x) =

∑
u∈Neighbor(x)

‖u− x‖2

S(x)
∗M(u) (2)

S(x) =
∑

u∈Neighbor(x)

‖u− x‖2 (3)

and in the down-sampling case, it could be a sampling filter. Different data
formats correspond to different forms. Take the range data for example,

Degen1
d(M)(x, y) =

sx+s−1∑
u=sx

sy+s−1∑
v=sy

1
s2

∗M(u, v) (4)

where s is the down-sampling rate, which is 2 in this paper, and M(x, y) is the
depth. For other cases of low resolution, the meta-degenerator could be instanced
individually, and the restoration could be dealt with in the similar way.

The restoration procedure acquires knowledge from the training set. PRC
could transfer the prior knowledge of the path to the high-resolution end to
reduce the search space. Figure 1 illustrates the concept of PRC.

Fig. 1. Progressive Resolution Chain in six levels. The upper row is the down-sampling
case, and the bottom row is the blur case.
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3 Consistent Planar Representation of 3D Faces

Both PRC-building and the learning-based restoration need the correspondence
among the face meshes. This task is quite similar to the traditional image align-
ment, but there are still some differences between them. For 2D face image,
the correspondence is usually done by aligning the images in the class-based
approach to fulfill the assumption that the same part of the face appears in
roughly the same part of the image[17], and can be simply performed through
affine warp[12]. But such a scheme could be hardly transferred smoothly into 3D
mesh field, due to the irregular and loose structure of the mesh.

Fig. 2. The cylindrical coordinate unfolding vs the consisten planar representation

At the same time, uniformly sampling within the meshed manifold is also
a problem that most fundamental sampling methods could hardly solve, even
though the mesh is well-distributed. As is shown in Fig.2, the widely-used cylin-
drical coordinate unfolding method maps the 3D face model onto a planar area
with the obvious distortion, which brings about the nonuniform sampling. There-
fore the mesh parameterization methods are taken into consideration. We adopt
the intrinsic parameterization method in [18], which is fast and effective. By
mapping the ROI face meshes onto a unit planar square with the consistent pa-
rameterization domain, we construct the consistent planar representation of 3D
faces, meanwhile establish the correspondence among the different face models.

3.1 Intrinsic Parameterization

Given a triangulated mesh S, an isomorphic planar parameterization U and the
corresponding mapping Ψ : S  → U is defined to preserve the original, discrim-
inative characteristic of S. The function E is defined to measure the distortion
between S and U . The minimal distortion corresponds to the minimum E(S,U).
For compact expression, let S′ be a simple patch consisting of a 1-ring neighbor-
hood in 3D space, and U ′ be an planar isomorph to S′ in Fig. 3. For any fixed
mapping boundary, the 2D 1-ring distortion is only related to the center node
ui. Two distortion metric measures EA and Eχ are chosen for angle-preserving
and area-preserving respectively. Gray[19] shows that the minimum of Dirichlet
energy EA is attained for angle-preserving.

EA =
∑

j∈N(i)

cotαij |ui − uj|2 (5)
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Fig. 3. Illustration of the flattening for the intrinsic parameterization

And in [18], the authalic energy Eχ is attained for area-preserving,

Eχ =
∑

j∈N(i)

cotγij + cotδij

|xi − xj |2
(ui − uj)2 (6)

Where |ui − uj | is the length of the edge (i, j) in U ′ while |xi − xj | in S′. α,β,γ
and δ are the angles shown in Fig.3.

The energy EA and Eχ are continuous and quadratic. Thus

∂EA

∂ui
=

∑
j∈N(i)

(cotαij + cotβij)(ui − uj) (7)

∂Eχ

∂ui
=

∑
j∈N(i)

(cotγij + cotδij)
|xi − xj |2

(ui − uj) (8)

Then the general distortion measurement E is defined and achieves its minimum
when ∂E/∂ui = 0.

E = αEA + (1 − α)Eχ 0 ≤ α ≤ 1 (9)

Given the distortion measures above and a fixed planar boundary, the param-
eterization is accomplished by solving a linear system as follows,

MU =
[
M

0 I

] [
Uinternal

Uboundary

]
=

[
0

Cboundary

]
where Uinternal is the variable vector of the parameterization of internal vertices
in the original mesh while Uboundary is of the boundary, and Cboundary is the
constant vector to provide a fixed planar boundary. And,

M = αMA + (1 − α)Mχ 0 ≤ α ≤ 1 (10)

MA
ij =

⎧⎨⎩
cotαij + cotβij if j ∈ N(i)
−
∑

k∈N(i)M
A
ik if i = j

0 otherwise

Mχ
ij =

⎧⎨⎩
(cotγij + cotδij)/|xi − xj |2 if j ∈ N(i)
−
∑

k∈N(i) M
χ
ik if i = j

0 otherwise



Super-Resolution of 3D Face 395

3.2 Building the Consistent Planar Representation

Calculation of ROI. To build the consistent planar representation, the region
of interest (ROI) of the face model needs to be extracted first. In [12], the feature
points are manually labelled on 2D images for the affine warp. However, for lack
of texture information and the discrete topology of mesh representation, the
manual work on 3D models is of low precision and low efficiency.

The ROI of a human face should contain the most facial features. Since the
consequent mapping from the mesh field onto the planar square is conformal
and authalic, we had better calculate the ROI according to the geodesic metric.
Thus, we define the ROI as the region of:

ROI = {p|dist(p, n) ≤ R} (11)

where n is the nose tip, dist(·, ·) is the geodesic distance, and R is the constant
radius that ensures the ROI contains the most facial features. We apply the fast
marching method [20] to compute the geodesic paths on triangulated manifold.

Mapping Using Intrinsic Parametrization. We build the the consistent pla-
nar representation by mapping them onto a unit planar square. This is achieved
through fixing the mesh boundary to the edges of the unit planar square and car-
rying out the intrinsic parameterization described above. The further alignment
within the planar domain is to specify a consistent in-plane rotation. Considering
the symmetry feature of the human face, we choose the symmetry axis as the
y-axis and the upside direction as the positive direction. The orientation of the
symmetry axis is calculated based on the symmetry metric of the depth value,
which is sampled on the ROI face meshes in the polar coordinates.

4 Bayesian MAP Based Restoration

Based on the maximum a posteriori criterion, instead of maximizing the posterior
probability p(MH |ML), we set up an optimal solution,

M ′
H = argmaxMHp(ML|MH)p(MH) (12)

Firstly, we derive the formulation of p(ML|MH). As mentioned above, the
super-resolution image should generate the low-resolution input images when ap-
propriately warped and down-sampled to model the image formation process[10].
We adopt this principle to define p(ML|MH). According to the PRC model, the
chain should pass through ML. But actually ML might be not exactly a node
on the chain, and the resolution level of ML is also unknown. So we choose the
node Ck(MH) closest to ML in the chain as the approximation of ML. k is the
supposed resolution level of ML and therefore is not specific. We try different
k values while solving the problem to find the best result. Then the similarity
metric between Ck(MH) and ML could be used to define p(ML|MH),

p(ML|MH) = exp(−‖Ck(MH) −ML‖2) (13)
= exp(−‖Degenk(MH) −ML‖2) (14)
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The remaining part is to calculate p(MH). Since Equ. 14 partly determines the
spacial location of vertices on ML, here we adopt a metric based on the norm
vectors, which are related to the local geometry. Let n(x) be the norm vector
at x on the surface of MH , while n(x) is the reference learnt from the training
samples. We define p(MH) as

p(MH) =
1
V

∑
x∈MH

〈n(x),n(x)〉 (15)

where V is the number of vertices on MH and 〈·, ·〉 is the inner product operator.
To calculate n(x), we carry out a learning based method. And for the conve-

nience of expression, we use the notations as follows. Given a certain mesh M ,
for each vertex x on M , let

u(x): the parameter of x in the unit planar sqaure.
n(x): the surface norm vector at x on mesh M .
(·)M : e.g. xM , uM , nM , means the features of mesh M .
(·)l : e.g. xl, ul, nl, means the features of the resolution level l.

Now we define the Tail Structure starting from level k of the PRC as

TSk = (nk,nk+1,nk+2, · · ·) (16)

and the directed similarity metric function STi

k (x) between TSMH

k and TSTi

k ,
which is the Tail Structure of the training sample Ti, is defined as

STi

k (x) =
∑

l=k,k+1,···
〈nMH

l (xMH

l ),nTi

l (u−1Ti

l (uMH

l (xMH

l )))〉2 (17)

where 〈·, ·〉 is the inner product function.
With the directed similarity metric STi

k (x), the learning process of calculating
n(x) is implemented with N training samples through the following loop:

for each x on MH

try i := 1 to N
calculate STi

k (x) and let j := argmaxiS
Ti

k (x)
let n(x) := nTj

0 (xTj

0 )

In fact, TSMH is just an abstract form and we could not get its practical value
since MH has not been calculated yet. But according to the previous analysis,
we could use TSML

0 for approximation of TSMH

k .
Thus, the original super-resolution problem is transformed into solving a sys-

tem consisting of Equ. 12, 14 and 15. Considering Equ. 14 and 15 are not poly-
nomial, we reformulate the MAP as

M∗
H = argminMH{−β ∗ ln[p(ML|MH)] − (1 − β) ∗ p(MH)}, 0 ≤ β ≤ 1 (18)

where β is the balance weight for global optimization, and adopt an iterative
method so that in each iteration the system is quadratic.
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5 Algorithm Diagram

The algorithm diagram is shown in Fig.4, taking the blur case for example. We
firstly extract the ROI of a severely blurred face model ML by applying fast
marching method on its supporting mesh manifold. The sequent steps are:

– Step (1): calculate the extended part beyond ML in PRC , containing the
models at lower resolution levels.

– Step (2): map the extended part of the PRC onto the unit planar squares
respectively by the intrinsic parametrization.

– Step (3): the tail structure (d) of ML mentioned in Equ. 16 is calculated.
– Step (4): the restoration using PRC features database (e) is performed ac-

cording to the tail structure. There is a chosen training model for each vertex
x. We show only the tail structure of only one of them (f) for illustration.

– Step (5): is to solve the iterative quadratic system, and get the mesh (g).
– Step (6): is for noise removal, and obtain the final super-resolved version (h).

Fig. 4. Diagram of our method. (a) the input low-resolution model ML, (b) the ex-
tended part of PRC beyond ML, (c) the consistent planar representation of (b), (d) the
extended part of PRC features of ML, (e) the PRC features database of the training
samples, (f) the PRC features selected from (e) according to (d), (g) the high-resolved
version, (h) the final output. The steps (1)-(6) are described in Section 5.

6 Experimental Results

Our experiments are conducted with the USF Human ID 3D face database[21]
consisting of 136 individuals with only one 3D model for each individual, which
are recorded by Cyberware 3030PS laser scanner. There are more than 90,000
vertices and 180,000 faces for each model. It is too detailed to carry out the
experiments, since the huge data amount is so time and space consuming. Thus
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we simplify the mesh first to reduce the load of calculation, while preserving as
many essential details as possible. We use the mesh simplification method in [22]
with an error tolerance of 10−7.

The “leave-one-out” methodology is adopted to test the performance of our
super-resolution method, i.e. for each test, one model is selected from the
database as the probe, and the remainder of the database acts as the train-
ing set. Since each person has just one model in the database, for each test, the
person whose model acts as the probe does not appear in the training set.

For the blur case, the blurred version is generated as the probe by applying
a Gaussian filter 30 times to the 3D model (Equ. 2), and one resolution-level in
PRC is defined as applying a Gaussian filter 10 times. For the down-sampling
case, the 16x16 down-sampling version (Equ. 4) acts as the probe and the 64x64
down-sampling version is as the high-resolution samples. For both cases, the
whole PRC consists of five levels.

Table 1. σ2 and RMS indicate the improvements comparing the output super-resolved
version with the input low-resolution meshes

avg. min. max.

input/original 0.749 0.664 0.810
σ2 output/original 0.977 0.899 1.051

output/input 1.305 1.167 1.496

RMS of distance |input − original| 2.834 2.401 3.489
|output − original| 2.498 1.604 4.073

(a) (b) (c) (a) (b) (c)

Fig. 5. Super-resolution results for the blur case, shown in the half-side view for the
better illustration. (a) the blurred faces, (b) restoration by our method, (c) the true
high-resolution 3D faces.
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(a) (b) (c) (a) (b) (c)

Fig. 6. Super-resolution results for the down-sampling case, shown in the half-side view
for the better illustration. (a) 16x16 down-sampled face mesh, (b) restoration by our
method, (c) the true high-resolution 3D faces (64x64).

We use two measurements RMS from the original model and σ2 of the re-
sulting surface to depict the significant improvement over the input, shown in
Tab. 1. The similar σ2 to the original model and less RMS than the input model
indicate the remarkable shape and details restoration.

Some results are shown in Fig.5 and Fig.6 for the blur case and the down-
sampling case respectively. In each group, the three columns are the input low
resolution model (left), the super-resolved model (middle), and the original one
(right). The results are all rendered in half-side view for clearly showing .

7 Conclusions and Future Work

The different data form usually represents the different underlying characteris-
tic of the object. The image lays stress on the appearance in visual spectrum
and the 3D triangulated mesh carries the additional geometrical information. In
this paper, after analysis of the generality and difference of the super-resolution
problems in 2D and 3D domains, we proposed an effective algorithm for the
super-resolution on triangle-meshed human face models, demonstrated by the
experiments on USF HumanID 3D face database.

Actually, both the PRC and the consistent planar representation method
proposed in this paper are not only for 3D super-resolution. We are trying to
apply them to the 3D object recognition.



400 G. Pan et al.

It should be pointed out that in this work we do not take the texture informa-
tion into consideration in our algorithm, which might trigger a new topic on the
fusion of 2D and 3D super-resolution. Moreover, the investigation of contribution
of the 3D super-resolution method to the 3D face recognition is an interesting
issue. Both of these are ongoing in our research group.
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Abstract. In this paper we describe a new method for automatically
estimating where a person is looking in images where the head is typically
in the range 20 to 40 pixels high. We use a feature vector based on skin
detection to estimate the orientation of the head, which is discretised into
8 different orientations, relative to the camera. A fast sampling method
returns a distribution over previously-seen head-poses. The overall body
pose relative to the camera frame is approximated using the velocity of
the body, obtained via automatically-initiated colour-based tracking in
the image sequence. We show that, by combining direction and head-pose
information gaze is determined more robustly than using each feature
alone. We demonstrate this technique on surveillance and sports footage.

1 Introduction

In applications where human activity is under observation, be that CCTV surveil-
lance or sports footage, knowledge about where a person is looking (i.e. their gaze)
provides observers with important clues which enable accurate explanation of the
scene activity. It is possible, for example, for a human readily to distinguish be-
tween two people walking side-by-side but who are not “together” and those who
are acting as a pair. Such a distinction is possible when there is regular eye-contact
or head-turning in the direction of the other person. In soccer head position is a
guide to where the ball will be passed next i.e. an indicator of intention, which
is essential for causal reasoning. In this paper we present a new method for auto-
matically inferring gaze direction in images where any one person represents only
a small proportion (the head ranges from 20 to 40 pixels high) of the frame.

The first component of our system is a descriptor based on skin colour. This
descriptor is extracted for each head in a large training database and labelled
with one of 8 distinct head poses. This labelled database can be queried to find
either a nearest-neighbour match for a previously unseen descriptor or (as we
discuss later) is non-parametrically sampled to provide an approximation to a
distribution over possible head poses.

Recognising that general body direction plays an important rôle in deter-
mining where a person can look (due to anatomical limitations), we combine
direction and head pose using Bayes’ rule to obtain the joint distribution over
head pose and direction, resulting in 64 possible gazes (since head pose and
direction are discretised into 8 sectors each, shown in figure 1).

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 402–415, 2006.
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Fig. 1. The figure on the left shows the images which result from the mean-shift image
patch tracker (col. 1 ) (with an additional step stabilise the descriptor by centering the
head in the window), subsequent background subtraction (col. 2 ), the weight image
which represents the probability that each pixel in the head is skin (col. 3 ) and non-
skin (col. 4 ) (non-skin is significant as it captures proportion without the need for
scaling). Thie concatenation of skin and non-skin weight vectors is our feature vector
which we use to determine eight distinct head poses which are shown and labelled
on the right. Varying lighting conditions are accounted for by representing the same
head-pose under light from different directions in the training set. The same points on
the “compass” are used as our discretisation of direction i.e. N, NE, E, etc.

The paper is organised as follows. Firstly we highlight relevant work in this,
and associated, area(s). We then describe how head-pose is estimated in sec-
tion 2. In section 3 we provide motivation for a Bayesian fusion method by
showing intermediate results where the best head-pose match is chosen and, by
contrast, where overall body-direction alone is used. Section 3 also discusses how
we fuse the relevant information we have at our disposal robustly to compute a
distribution over possible gazes, rejecting non-physical gazes and reliably detect-
ing potentially significant interactions between people. Throughout the paper we
test and evaluate on a number of datasets and additionally summarise compre-
hensive results in section 4. We conclude in section 5 and discuss potential future
work in section 6.

1.1 Previous Work

Determining gaze in surveillance images is a challenging problem that has re-
ceived little or no attention to date, though preliminary work in this specific
problem domain was reported earlier by the authors [22].

Most closely related to our work is that of Efros et al. [6] for recognition of
human action at a distance. That work showed how to distinguish between hu-
man activities such as walking, running etc. by comparing gross properties of mo-
tion using a descriptor derived from frame-to-frame optic-flow and performing an
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exhaustive search over extensive exemplar data. Head pose is not discussed in [6]
but the use of a simple descriptor invariant to lighting and clothing is of direct rel-
evance to head pose estimation and has directly inspired aspects of our approach.

Dee and Hogg [5] developed a system for detecting unusual activity which
involves inferring which regions of the scene are visible to an agent within the
scene. A Markov Chain with penalties associated with state transitions is used
to return a score for observed trajectories which essentially encodes how directly
a person made his/her way towards predefined goals, typically scene exits. In
their work, gaze inference is vital, but is inferred from trajectory information
alone which can lead to significant interactions being overlooked. In fact, many
systems have been created to aid urban surveillance, most based on the notion
of trajectories alone. For example [9] reports an entirely automated system for
visual surveillance and monitoring of an urban site using agent trajectories.
The same is true in the work of Buxton (who has been prominent in the use of
Bayesian networks for visual surveillance) [2], Morellas et al. [17] and Makris [14].
Johnson and Hogg’s work [12] is another example where trajectory information
only is considered.

In contrast, there has been considerable effort to extract gaze from relatively
high-resolution faces, motivated by the press for better Human/Computer In-
terfaces. The technical aspects of this work have often focused on detecting the
eyeball primarily. Matsumoto [15] computes 3-D head pose from 2-D features and
stereo tracking. Perez et al. [20] focus exclusively on the tracking of the eyeball
and determination of its observed radius and orientation for gaze recognition.
Gee and Cipolla’s [8] gaze determination method based on the 3D geometric
relationship between facial features was applied to paintings to determine where
the subject is looking. Related work has tackled expression recognition using
information measures. Shinohara and Otsu demonstrated that Fisher Weights
can be used to recognise “smiling” in images.

While this approach is most useful in HCI where the head dominates the im-
age and the eye orientation is the only cue to intention, it is too fine-grained for
surveillance video where we must usually be content to assume that the gaze direc-
tion is aligned with the head-pose. In typical images of interest in our application
area (low/medium resolution), locating significant features such as the eyes, irises,
corners of the mouth, etc as used in much of the work above is regularly an im-
possible task. Furthermore, though standard head/face-detection techniques [24]
work well in medium reolution images, they are much less reliable for detecting,
say, the back of a head, which still conveys significant gaze information.

The lowest level of our approach is based on skin detection. Because of
significant interest in detecting and tracking people in images and video, skin
detection has naturally received much attention in the Computer Vision commu-
nity [3, 10, 11]. Skin detection alone, though, is error-prone when the skin region
is very small as a proportion of the image. However, contextual cues such as
body-direction can help to disambiguate gaze using even a very coarse head-
pose estimation. By combining this information in a principled (i.e. probabilistic,



Estimating Gaze Direction from Low-Resolution Faces in Video 405

Bayesian) fashion, gaze estimation at a distance becomes a distinct possibility
as we demonstrate in this paper.

2 Head Pose Detection

2.1 Head Pose Feature Vector

Although people differ in colour and length of hair, and some people may be
wearing hats, beards etc. it is reasonable to assume that the amount of skin that
can be seen, the position of the skin pixels within the frame and the proportion
of skin to non-skin pixels is a relatively invariant cue for a person’s coarse gaze
in a static image. We obtain this descriptor in a robust and automatic fashion
as follows. First, a mean-shift tracker [4] is automatically initialised on the head
by using naive background subtraction to locate people and subsequently mod-
elling the person as distinct “blocks”, the head and torso. Second, we centre the
head within the tracker window at each time step which stabilises the descriptor
ensuring consistent position within the frame for similar descriptors (the head
images are scaled to the same size and, since the mean-shift tracker tracks in
scale-space we have a stable, invariant, descriptor). Third, despite claims in the
literature to the contrary, there is no specific region of colour-space which repre-
sents skin in all sequences and therefore it is necessary to define a skin histogram
for each scenario by hand-selecting a region of one frame in the current sequence
to compute a (normalised) skin-colour histogram in RGB-space. We then com-
pute the weights for every pixel in the stabilised head images which the tracker
automatically produces to indicate how likely it is that it was drawn from this
predefined skin histogram1. Using the knowledge of the background we segment
the foreground out of the tracked images. Every pixel in the segmented head
image is drawn from a specific RGB bin and so is assigned the relevant weight
which can be interpreted as a probability that the pixel is drawn from the skin
model histograms. So for every bin i (typically we use 10 bins) in the predefined,
hand-selected skin-colour histogram q the histogram of the tracked image p is
a weight is computed wi =

√
qi

pi
. Every foreground pixel in the tracked frame

falls into one of the bins according to its RGB value and the normalised weight
associated with that pixel is assigned to compute the overall weight image, as
shown in figure 1. The non-skin pixels are assigned a weigh that the pixel is not
drawn from the skin histogram. This non-skin descriptor is necessary because it
encodes the “proportion” of the head which is skin which is essential as people
vary in size not only in the sense of scale within the but physically between
one another. Each descriptor is scaled to a standard 20 × 20 pixel window to
achieve robust comparison when the head sizes vary. Finally, in order to provide
temporal context to our descriptor of head-pose we concatenate individual de-
scriptors from 5 consecutive frames of tracker data for a particular example and
this defines our instantaneous descriptor of head-pose.
1 This will be recognised as a similar approximation to the Battacharyya coefficient

as implemented in the meanshift algorithm [4].
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Fig. 2. Automatic location of the head is achieved by segmenting the target using
simple background subtraction (top-left) and morphological operations with a kernel
biased towards the scale of the target to identify objects. The head is taken as the top
1/7th of the entire body (top-right). The head is automatically centred in the bounding
box at each time step to stabilise the tracking and provide an invariant descriptor for
head pose, as shown in the second row.

2.2 Training Data

We assume that we can distinguish head pose to a resolution of 45o. There is no
obvious benefit to detecting head orientations at a higher degree of accuracy and
it is unlikely that the coarse target images would be amenable in any case. This
means discretising the 360o orientation-space into 8 distinct views as shown in
figure 1. The training data we select is from a surveillance-style camera position
and around 100 examples of each view are selected from across a number of

Fig. 3. Detecting head pose in different scenes using the same exemplar set. The main
image shows the frame with the estimated gaze angle superimposed, the pair of images
directly beside each frame shows the input image that the head-pose detector uses
(top) and the best (ML) match in the database with corresponding label (bottom).
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Fig. 4. (Top) The distribution over head-poses resulting from 10 queries of the database
for this input frame is shown in the graph above. The leaf nodes of the database
contain indices into matching frames and the matching frame images and assigned
probabilities of a match are shown below the graph. (Bottom) Fusing head-pose and
direction estimates improves gaze estimation. Here, the ML match for head pose would
be incorrectly chosen as “back”. The body-direction is identified as “S” which, since
it is not possible to turn the head through 180o relative to the body, this gaze has
a low (predefined) prior and is rejected as the most likely at the fusion stage. The
MAP gaze is identified as “Face” which is a very good approximation to the true gaze.

different sequences and under different lighting conditions (i.e. light from left,
right and above). The head was automatically tracked as described above and
the example sequence labelled accordingly. The weight image for 5 consecutive
frames are then computed and this feature vector stored in our exemplar set.
The same example set is used in all the experiments reported (e.g. there are no
footballers in the training dataset used to compute the gaze estimates presented
in figure 9).

2.3 Matching Head Poses

The descriptors for each head pose are (20×20×5 =)2000 element vectors. With
8 possible orientations and 100 examples of each orientation, rapidly searching
this dataset becomes an issue. We elect to structure the database using a binary-
tree in which each node in the tree divides the set of exemplars below the node



408 N. Robertson and I. Reid

into roughly equal halves. Such a structure can be searched in roughly logn time
to give an approximate nearest-neighbour result. We do this for two reasons: first,
even for a modest database of 800 examples such as ours it is faster by a factor
of 10; second, we wish to frame the problem of gaze detection in a probabilistic
way and Sidenbladh [23] showed how to formulate a binary tree (based on the
sign of the Principal Components of the data) search in a pseudo-probabilistic
manner. This technique was later applied to probabilistic analysis of human
activity in [21]. We achieve recognition rates of 80% (the correct example is
chosen as the ML model 8/10 queries) using this pseudo-probabilistic method
based on Principal Components with 10 samples. An illustrative example of
such a distribution in this context is shown in figure 4. Results of sampling from
this database for a number of different scenes are shown in figure 3. In order
to display where the person is looking in the images angles are assigned to the
discretised head-poses shown in figure 1 according to the “compass” e.g. N : 0o

etc. The angles are then corrected for the projection of the camera at each time
step (depending on the location of the person on the ground-plane in the image)
as defined in figure 5.

c

v

p

image

Hc

Hp

Camera centre

ground−plane

theta

Fig. 5. When assigning angles to the matched discretised head-poses one must com-
pensate for the camera projection since “North” (see figure 1) does not in general
correspond to vertical in the image plane. In order to choose the correct frame of refer-
ence we do not perform full camera calibration but compute the projective transform
(H : image→ground-plane) by hand-selecting 4 points in the image. The vertical van-
ishing point (v, left) is computed from 2 lines normal to the ground plane and parallel
in the image. The angle theta between the projection of the optic-rays through the
camera centre (Hv, right) and the image centre (Hc, left) and the point at the feet
of the tracked person ((Hp, right) is the angle which adjusts vertical in the image to
“North” in our ground plane reference frame i. e. cos−1[(Hc × Hv).(Hv × Hp)].

3 Gaze Estimation

3.1 Bayesian Fusion of Head-Pose and Direction

The naive assumption that direction of motion information is a good guide as
to what a person can see has been used in figure 6. However, it is clear the



Estimating Gaze Direction from Low-Resolution Faces in Video 409

crucial interaction between the two people is missed. To address this issue we
compute the joint posterior distribution over direction of motion and head pose.
The priors on these are initially uniform for direction of motion, reflecting the
fact that for these purposes there is no preference for any particular direction in
the scene, and for head pose a centred, weighted function that models a strong
preference for looking forwards rather than sideways. The prior on gaze is defined
using a table which lists expected (i.e. physically possible) gazes and unexpected
(i.e. non-physical) gazes.

We define g as the measurement of head-pose, d is the measurement of body
motion direction, G is the true gaze direction and B is the true body direc-
tion, with all quantities referred to the ground centre. We compute the joint
probability of true body pose and true gaze:

P (B,G|d, g) ∝ P (d, g|B,G)P (B,G) (1)

Now given that the measurement of direction d is independent both true and
measured gaze G, g once true body B pose is known, P (d|B,G, g) = P (d|B) and
similarly that the measurement of gaze g is independent of true body pose B
given true gaze G, P (g|B,G) = p(g|G), then we have

P (B,G|d, g) ∝ P (g|G)P (d|B)P (G|B)P (B) (2)

We assume that the measurement errors in gaze and direction are unbiased
and normally distributed around the respective true values

P (g|G) = N (G, σ2
G), P (d|B) = N (B, σ2

B) (3)

(actually, since these are discrete variables we use a discrete approximation).
The joint prior, P (B,G) is factored as above into P (G|B)P (B) where the

first term encodes our knowledge that people tend to look straight ahead (so the
distribution P (G|B) is peaked around B, while P (B) is taken to be uniform,
encoding our belief that all directions of body pose are equally likely, although
this is easily changed: for example in tennis one player is expected to be pre-
dominantly facing the camera).

While for single frame estimation this formulation fuses our measurements
with prior beliefs, when analysing video data we can further impose smoothness
constraints to encode temporal coherence: the joint prior at time t is in this case
taken to be P (Gt, Bt|Gt−1, Bt−1) = P (Gt|Bt, Bt−1, Gt−1)P (Bt|Bt1) where we
have used an assumption that the current direction is independent of previous
gaze2, and current gaze depends only on current pose and previous gaze. The
former term, P (Gt|Bt, Bt−1, Gt−1), strikes a balance between between our belief
that people tend to look where they are going, and temporal consistency of gaze
via a mixture Gt ∼ αN (Gt−1, σ

2
G) + (1 − α)N (Bt, σ

2
B).

2 Although we do recognise that, in a limited set of cases, this may in fact be a poor
assumption since people may change their motion or pose in response to observing
something interesting while gazing around.
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Now we compute the joint distribution for all 64 possible gazes resulting
from possible combinations of 8 head poses and 8 directions. This posterior
distribution allows us to maintain probabilistic estimates without committing
to a defined gaze which will be advantageous for further reasoning about overall
scene behaviour. Immediately though we can see that gazes which we consider
very unlikely given our prior knowledge of human biomechanics (since the head
cannot turn beyond 90o relative to the torso [19]) can be rejected in addition to
the obvious benefit that the quality of lower-level match can be incorporated in
a mathematically sound way. An illustrative example is shown in figure 4.

4 Results

We have tested this method on various datasets (see figures 6, 7, 8, 9 and 10).
The first dataset provided us with the exemplar data for use on all the test
videos shown in this paper. In the first example in figure 6 we show signifi-
cant improvement over using head-pose or direction alone to compute gaze. The

Body−direction only

Body−direction and Head−pose combined

Head−pose only

Angle errorHead angles

Fig. 6. In this video there is an interaction between the two people, and the fact they
look at each other is the prime indicator that they are “together”. On the first row
we estimate gaze from body direction alone, on the second row using head-pose alone,
which is improved but prone to some errors. We see that (third row) fusing the head-
pose and body-direction estimates gives the correct result.
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Fig. 7. Two people meeting could potentially be identified by each person being in the
other’s gaze (in addition to other cues such as proximity), as we show in this example

Frame 101

Frame 4 Frame 23

Frame 163

Fig. 8. Second surveillance sequence. The same training data set as used to obtain
the results above is used to infer head pose in this video without temporal smoothing.
The ground truth has been produced by a human user drawing the line-of-sight on the
images. The mean error is 5.64o, the median 0.5o.

Fig. 9. This example demonstrates the method in soccer footage. The skin histogram
is defined at the start of this sequence to compensate for lighting changes, but the
exemplar database remains the same as that constructed initially and used on all the
sequences i.e. it contains no examples from this sequence.
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Fig. 10. This figure shows the method tested on a standard sequence (see http://
groups.inf.ed.ac.uk/vision/CAVIAR/). The errors are exacerbated by our discretisation
of gaze (accurate to 45o) compared to the non-discretised ground truth (computed to
10o from a hand-drawn estimate of line-of-sight which we take to be the best-estimate a
human can make from low-resolution images) and tend to be isolated (the median error
is 5.5o). In most circumstances it is more important that the significant head-turnings
are identified, which they are here, as evidenced by the expanded frames.

crucial interaction which conveys the information that the people in the scene
are together is the frequent turning of the head to look at each other. We reli-
ably detect this interaction as can be seen from the images and the estimated
head angle relative to vertical. The second example is similar but in completely
different scene. The skin histogram for online skin-detection in the input im-
ages is recomputed for this video. The exemplar (training) database remains the
same, however. Once more the interaction implied by the head turning to look
at his companions is determined. We demonstrate the method on sports video in
figure 9 and on a standard vision sequence in figure 10. It is shown in figure 7
how useful this technique can be in a causal-reasoning context where we identify
two people looking at one another prior to meeting. Finally we discuss the failure
mode in figure 11 which is found to be where the size of the head falls below 20
pixels and the gaze becomes ambiguous due to the small number of skin pixels.
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Fig. 11. We show an example here where our method can fail. The mean body direction
of the player (in the frames prior to the frame for which we estimate the gaze) is East,
since he is moving backwards as his head rotates. The ML match is clearly not correct
because the neck has been detected and there is no representation of gaze where the
neck is visible in the training dataset. Fusing the direction and head-pose estimate
results in the MAP gaze ”side-LR”, as expected, but incorrect. The reasons for failure
are clear: body direction is not a good guide to gaze in this case and there is an unusual
input which results in an incorrect match. Either of these can be compensated for on
their own with the Bayesian representation we devised but a scenario which combines
both is likely to fail. Additional contextual information (e.g. silhouette) could improve
this result, however.

5 Conclusions

In this paper we have demonstrated that a simple descriptor, readily computed
from medium-scale video, can be used robustly to estimate head pose. In order
to speed up non-parametric matching into an exemplar database and to main-
tain probabilistic estimates throughout we employed a fast pseudo-probabilistic
binary search based on Principal Components. To resolve ambiguity, improve
matching and reject known implausible gaze estimates we used a simple applica-
tion of Bayes’ Rule to fuse priors on direction-of-motion and head-pose, evidence
from our exemplar-matching algorithm and priors on gaze (which we specified
in advance). We demonstrated on a number of different datasets that this gives
acceptable gaze estimation for people being tracked at a distance.

The Bayesian fusion method we have used in this work could be readily ex-
tended to include other contextual data. We used body direction in this paper
but information such as the silhouette is equally interesting. Moreover the de-
scriptor for head-pose could be extended to include information from multiple
cameras. The work reported here would be most useful in a causal reasoning
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context where knowledge of where a person is looking can help solve interesting
questions such as, “Is person A following person B?” or determine that person C
looked right because a moving object entered his field-of-view. We are currently
combining this advance with our reported work on human behaviour recognition
[21] to aid automatic reasoning in video.
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Abstract. 3D image data provide several advantages than 2D data for
face recognition and overcome many problems with 2D intensity images
based methods. In this paper, we propose a novel approach to 3D-based
face recognition. First, a novel representation, called intrinsic features,
is presented to encode local 3D shapes. It describes complementary non-
relational features to provide an intrinsic representation of faces. This
representation is extracted after alignment, and is invariant to transla-
tion, rotation and scale. Without reduction, tens of thousands of intrinsic
features can be produced for a face, but not all of them are useful and
equally important. Therefore, in the second part of the work, we intro-
duce a learning method for learning most effective local features and
combining them into a strong classifier using an AdaBoost learning pro-
cedure. Experimental results are performed on a large 3D face database
obtained with complex illumination, pose and expression variations. The
results demonstrate that the proposed approach produces consistently
better results than existing methods.

1 Introduction

Biometric identification has received much attention recent years. Face is among
the most common and most accessible modality. Over the past decades, most
work has been focusing on 2D images [1]. Since 2D-based face recognition suffers
from variations in pose, expression, and illumination, it is still difficult to develop
a robust automatic face recognition system using 2D images.

With the rapid development of 3D acquisition equipment, 3D capture is be-
coming easier and faster, and face recognition based on 3D information is at-
tracting more and more attention. The existing methods mainly focus on three
categories: 3D to 3D, 2D aided by 3D, and 2D combined with 3D. 3D to 3D
means that the gallery and the probe examples are both 3D data, such as range
images, and feature extraction and representation are both in 3D space. 2D aided

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 416–427, 2006.
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by 3D means that 2D face recognition is done with the assistant of 3D model
[9, 12]. 3D model is explored to overcome the pose, expression and illustration
variations in 2D recognition. 3D combined with 2D means that features are ex-
tracted from both 3D images and 2D color or intensity images [13, 14, 15]. This
paper mainly pays attention to the first category and summarizes the existing
methods as follows.

Regarding feature representation, research has been focused mainly on how to
extract and represent 3D features. Some earlier methods on curvature analysis
[2, 3, 4] have been proposed for face recognition based on high-quality range
data from laser scanners. In addition, recognition schemes based on 3D surface
features have been developed. Chua et al. [5] treat face recognition as a 3D
non-rigid surface matching problem and divide the human face into rigid and
non-rigid regions. The rigid parts are represented by point signatures to identify
an individual. They have obtained a good result in a small database (6 persons).
Beumier et al. [6] propose two methods of surface matching and central/lateral
profiles to compare two instances. Both of them construct some central and
lateral profiles to represent an individual, and obtain the matching value by
minimizing the distance of the profiles. Tanaka et al. [7] treat the face recognition
problem as a 3D shape recognition problem of rigid free-form surfaces. Each face
is represented as an Extended Gaussian Image, constructed by mapping principal
curvatures and their directions. In more recent work, Hesher et al. [8] use a 3D
scanner for generating range images and registering them by aligning salient
facial features. PCA approaches are explored to reduce the dimensionality of
feature vector. Lu et al. [11] use the hybrid ICP algorithm to align the reference
model and the scanned data, and adopt the registration error to distinguish the
different people.

Despite of the efforts mentioned above, a number of problems remain to be
solved for 3D face recognition:

– Only local features have so far been used to represent unary properties of
individual points. These ignore relationships between points in a reasonably
large neighborhood while such relationships may play important roles in
object recognition.

– These local features have been so far considered independent of each other
for different points. However, they are not so in practice.

– Because these features are correlated, sophisticated and even nonlinear.
Methods are needed for constructing good classifiers. The current research
in 3D face recognition has not looked into this challenge.

In this work, we attempt to address the above issues. The main contributions
of this paper are as follows:

– We propose a novel feature, called associative features, based on Gaussian-
Hermite moments [20], to encode relationships between neighboring mesh
nodes. They are combined with complementary non-relational features to
provide an intrinsic representation of faces.

– The resulting intrinsic features are likely to be correlated for nearby nodes,
and an individual face may have non-convex manifold in the features space.



418 C. Xu et al.

We introduce a learning mechanism to deal with the problems. AdaBoost
learning [22] is adopted to select most effective features and to combine these
features to construct a strong classifier. This provides a new way to improve
the performance of 3D face recognition.

For testing the proposed approach, we collect a large 3D face databases. The
proposed approach is shown to yield consistently better results than existing
methods including the benchmarking PCA methods [8, 14], the point signature
based methods [5] and the curvature based method [2, 3, 4].

The rest of this paper is organized as follows. Section 2 describes associa-
tive features and the resulting intrinsic feature representation used in this work.
Section 3 describes the use of AdaBoost learning for feature selection and clas-
sifier construction. Section 4 reports the experimental results and gives some
comparisons with existing methods. Finally, Section 5 summarizes this paper.

2 Intrinsic Feature Representation

A vector of intrinsic features is a concatenation of scattered features and asso-
ciative features. They are extracted after preprocessing.

2.1 Preprocessing

Our preprocessing includes three steps, namely, nose tip detection, alignment
and meshing. We aim to exactly align the range images and approximate the
original range image with a simple and regular mesh, which prepares for the
feature extraction and representation.

In the facial range data, the nose is the most distinct feature. We have pro-
posed a robust method to localize the nose tip, which is described in detail in
[18]. According to the experiments in our database, the correct detection rate
is over 99%. Aided by the detected nose and the classic method of the Iterative
Closest Point (ICP) [21], alignment is done by our previous method [17]. We
select a front 3D image as the fixed model, and all the other 3D images are
rotated and translated to align with it.

The original images usually consist of considerable dense and irregular points
in 3D space. It is very difficult to efficiently extract the corresponding features.
Here a simple and regular mesh approximates the original range images by the
multi-resolution fitting scheme. The meshing procedure is shown in Fig.1. During
meshing, we only regulate the Z coordinate of each mesh node, which not only
speeds up the meshing process but also keeps the correspondences of the gener-
ated meshes. In this paper, we use a mesh with 545 nodes and 1024 triangles to
balance the resolution of the facial mesh and the cost of time and space. This
constructed mesh is of great benefit to feature representation and extraction.

All these meshes have the same pose and corresponding nodes, which have
the same position in an X-Y plane and different values along a Z-axis. Thus a
vector of depth features can then be formed as follows

D = {Z(v1), Z(v2), · · · , Z(vn)} (1)
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 1. The fitted meshes of different levels. (a) Basic mesh. (b)-(e) Level one to four.

where Z(vi) is the Z-coordinate of the mesh node vi. They can be directly used
for characterizing faces.

2.2 Cosine Signature Features

Here, we define a new metric, called cosine signature as a descriptor of local
shape of each mesh node, as illustrated in Fig.2. Since a mesh well approximates
the range image, we can obtain the following local information of each mesh
node, pe, that is, its spatial direct neighboring triangles, {T1, T2, · · · , Tn}, its
normal, Npe and neighboring points in the range image within a small sphere.
Due to the regularity of our mesh, the number of neighboring triangles of the
common node (not the edge node) is usually six. The initial radius of the local
sphere to decide the neighboring points is set as half of the length of one mesh
edge in our work.

Further, the neighboring points canbe classified inton categories, {C1, · · · , Cn}.
Which category one point belongs to depends on which triangle the point’s projec-
tion falls in the same direction as the normal,Npe. For each classCk, we can define
its surface signal as follows:

dek =
1

2
+

1

2m

m

i=1

cos(qki − pe, Npe) (2)

with
cos(qki − pe, Npe) =

(qki − pe) · Npe

‖ qki − pe ‖ · ‖ Npe ‖ (3)

where qki is the neighboring point belonging to class Ck, m is the number of
points in Ck, and dek ∈ [0, 1].

θθ

Fig. 2. Cosine signature of one mesh node
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Then we can describe the local shape of each mesh node using the following
vector:

se = {de1, de2, · · · , den} (4)

where dek is the surface signal. This vector describes the shape near this node,
and we call it as cosine signature.

According to this metric, we can describe the shape of each row in the mesh
with a combination of cosine signature of all nodes in this row respectively.

Si = {si1, si2, · · · , sir} (5)

where Si is the shape vector of the ith row and sij is the cosine signature of the
jth vertex in the ith row. Further, from S1 to Sn, we connect them in turn to
form a long shape vector, S, in the alternate way of head and tail connection.
The vector, S, is used to describe the shape of one face.

2.3 Associative Features

In the above, neither depth features or cosine signature features encode rela-
tionships in neighboring mesh nodes. In the following, we use Gaussian-Hermite
moments (G-H moments) [20] to describe derivative or relational property of a
local shape in a neighborhood, as a richer representation. Because such features
describe the relational property of neighboring mesh nodes, we call it associative
features.

It is well-known that moments have been widely used in pattern recognition
and image processing, especially in various shape-based applications. More re-
cently, the orthogonal moment based method has been an active research topic
in shape analysis. Here, Gaussian-Hermite moments (G-H moments) are used for
feature representation due to their mathematical orthogonality and effectiveness
for characterizing local details of the signal [20]. They provide an effective way
to quantify the signal variation. The nth order G-H moment Mn(x, S(x)) of a
signal S(x) is defined as [20]:

Mn(x) =
∞

−∞
Bn(t)S(x + t)dt n = 0, 1, 2, · · · (6)

with

Bn(t) = g(t, σ)Hn(t/σ)

Hn(t) = (−1)nexp(t2)
dnexp(−t2)

dtn

g(t, σ) = (2πσ2)−1/2exp(−x2/2σ2) (7)

where g(t, σ) is a Gaussian function and Hn(t) is a scaled Hermite polynomial
function of order n. G-H moments have many desirable properties such as in-
sensitiveness to noise generated during differential operations.

In fact, the face surface is smooth on the whole, and high order moments
usually describe the intense variation. So it is not necessary to calculate higher
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order moments. In our experiments, we use the 0th-2nd order G-H moment with
σ = 2.0 to represent the associative features.

To the constructed shape vector in the above, S, we calculate its nth order
G-H moments, thus obtaining moment vectors, SMn, which are called nth order
associative features. They describe the relational property of neighboring mesh
nodes.

2.4 Intrinsic Feature Vector

A vector of intrinsic features is a concatenation of scattered features and associa-
tive features. In our work, the scattered features include depth features, D (545
dimensions), and cosine signature, S (2814 dimensions). Associative features
consist of 0th-2th order moments of cosine signature features, i.e., SMn (2814
dimensions, n=0,1,2). The total dimension of intrinsic features is 11,801. These
features represent not only the non-relational features but also the relationships
between the neighboring mesh nodes. They provide a complete information to
reveal the intrinsic property of facial surface. Their complementarity is effective
to improve recognition accuracy, which will be further proved in the following ex-
periments. In addition, since all these features are extracted after fine alignment,
they are invariant to translation, scale and rotation.

3 Feature Selection and Classification

There are a total number of 11,801 such intrinsic features for a face image. They
are likely to be correlated for nearby nodes, and an individual face may have non-
convex manifold in the features space. In this work, AdaBoost learning algorithm
with the cascade structure [22] is used for selecting most effective features and
combining them to construct a strong classification.

The AdaBoost algorithm essentially works for a two-class classification prob-
lem. While face recognition is a multi-class problem, we convert it into one of
two classes using the representation of intra-personal vs. extra-personal classes,
following [23]. The intra-personal examples are obtained by using difference of
images of the same person whereas the extra-personal examples are obtained by
using difference of images of the different persons.

After this preparation, the AdaBoost-based learning procedure in [22] is used
to learn a cascade of strong classifiers with N layers, each of which contains one
or multiple weak classifiers.

During recognition stage, for one given probe sample, the different with each
gallery example forms the vector, x. To each vector, x, the ith layer of the
strong classifier returns the similarity measure, Si. The larger this similarity
value, the more this sample belongs to the intra-personal space. If Si < 0, this
layer rejects the sample. According to the multiple classifiers, we can obtain its
total similarity:

S =
L

i=1

Si (8)
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where L is the number of layers and Si is the similarity of the ith layer. Thus we
can obtain its similarity with each gallery example. Then the nearest neighbor
scheme is used to decide which class the test sample belongs to.

In our training set, there are 23 persons and 33 images each person, and
thus we obtain 12,144 positive examples and 275,517 negative examples. Every
face image is represented as a vector of 11,801-dimensional intrinsic features, as
explained above. Using the above learning procedure, we obtain a cascade of 20
classifiers with a total of 193 features.

4 Experiments

In this section, we demonstrate the excellent performance of our proposed scheme
by comparing experiments in the terms of different features, different schemes
and different combinations.

4.1 Databases

A large 3D face database has been collected to test the proposed algorithm. It
was collected indoors during August and September 2004 using a non-contact
3D digitizer, Minolta VIVID 910, working on Fast Mode. This database contains
123 subjects, with each subject having 37 (without glasses) or 38 (with glasses)
images. During the data collection, we consider not only separate variation of
expressions, poses and illumination, but also combined variations of expressions
under different lighting and poses under different expressions.

For the following experiments, images with large facial pose (80-90 degrees)
and with glasses are excluded. The reasons are the following: (1) Our focus here is
to compare different algorithms with images of approximate front faces whereas
side view face recognition is too challenging for any methods. (2) The range scan
quality was bad at glasses areas. Therefore, the actual database contains a total
of 4059 images.

The database of 4059 images is divided into three subsets, that is, the training
set, the gallery set and the probe set. The last 23 of the 123 subjects are used as
the training set. The first images of the other 100 subjects (under the condition
of front view, office lighting, and neutral expression) are used as the gallery set.
The other images of the 100 subjects are used as the probe set.

There are 3200 images in the probe set. They are further divided into seven
subsets:

– IV (400 images): illumination variations.
– EV (500 images): expression variations, including smile, laugh, anger, sur-

prise and eye closed.
– EVI (500 images): expression variations under right lighting.
– PVS (700 images): small pose variations, views of front, left/right 20-30

degrees, up/down 20-30 degrees and tilt left/right 20-30 degrees.
– PVL (200 images): large pose variations, views of left/right 50-60 degrees.
– PVSS (700 images): small pose variations under smile.
– PVSL (200 images): large pose variations under smile.
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4.2 Experiments with Different Features

In this experiment, we test the recognition performance using the different fea-
tures. The considered features include surface curvature (SC) [2, 3, 4], point sig-
nature (PS) [5], COSMOS shape index (CO) [10, 11] and three kinds of features
used in this paper, that is, depth features (DEP), cosine signature (COS) and
associative features (ASS).

In our experiment, after the regular mesh is constructed following the schemes
in Section 2.1, the different features are extracted for each node to characterize
an individual. Then, we use one simple classifier to test the recognition perfor-
mance, that is, PCA for reducing dimension and Euclidian distance for similarity
measure. Table 1 shows the rank-one recognition accuracy (CCR, Correct Classi-
fication Rate) in different probe sets. In this table, the best recognition accuracy
is emphasized. Fig.3 shows CMS (Cumulative Match Score) curves in the EV
probe set.

From these result, we can obtain the following conclusion. (1) On the whole,
the three features that we used have better performance than the other three;
(2) In the probe sets related to expression and illumination variations, the

Table 1. CCR(%) using different features in the different probe sets (100 persons)

Probe sets SC PS Co DEP COS ASS

IV 97.6 87.0 89.0 98.5 99.0 99.0
EV 71.9 66.0 53.3 85.0 81.4 85.2
EVI 74.6 65.9 56.6 85.0 86.4 87.0
PVS 79.1 61.2 67.1 85.1 83.0 84.7
PVL 51.6 38.2 41.1 70.0 51.0 51.5
PVSS 63.7 53.3 44.5 81.9 75.4 76.9
PVSL 47.2 34.6 26.8 65.0 43.0 46.5

Fig. 3. CMS curves using different features in the EV probe set
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proposed associative feature are more robust than depth information. This may
be reasonably explained by the following reason. Depth information using the
absolute range value is prone to shape variation, such as expression, whereas
associative features use the relative information between reference nodes. These
results also encourage us to improve the recognition performance by combining
these complementary information.

4.3 Experiments with Different Schemes

In this section, we will test the different performances when using different clas-
sification methods, i.e., fusion scheme and AdaBoost learning.

Scattered features and associative features are of the different properties. Fu-
sion rules [16] and AdaBoost learning [22] are two kinds of method to combine
them. We test their performance by experiments. Using depth features, cosine
signature and associative features, we construct the three single classifiers, re-
spectively. After obtaining the matching score from each single classifier, the
weighted sum rule [14] is used to combine them. The first row in Table 2 shows
the rank-one recognition accuracy. In other way, from the intrinsic features con-
sisting of scattered features and associative features, one cascade classifier is
built following the scheme in Section 3. The CCR is shown in the second row in
Table 2.

Table 2. CCR(%) of the different test sets in our face database (100 persons)

Probe sets IV EV EVI PVS PVL PVSS PVSL

Fusion 99.5 88.0 90.2 96.1 73.5 88.3 67.5

AdaBoost 99.5 90.8 90.6 96.7 76.5 87.9 70.0

Comparing this result with Table 1, we can see that the recognition accu-
racy is better when combining the different features using the fusion scheme or
AdaBoost learning. This verifies the conclusion in the last section.

From this result of Table 2, we also see that AdaBoost learning outperforms
the fusion rule in all probe sets except the PVSS set. Further, we test the verifi-
cation performance when using these two methods. Compared with single clas-
sifiers, the classifier by AdaBoost learning largely decreases the EER (Equal
Error Rate) in all the probe sets. However, the classifier using the fusion scheme
decreases the EER weakly. Fig.4 shows the ROC curves using single classifiers,
fusion rule and AdaBoost learning in the EV probe set. On the whole, AdaBoost
learning distinctly outperforms the fusion scheme.

4.4 Experiments with Different Combination

In [14], they evaluate the recognition performances of different combination of 2D
and 3D images and draw the conclusion that multi-modal 2D+3D has the best
performance. Their conclusion is very limited since they only explore the depth
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Fig. 4. ROC curves using single classifiers, fusion scheme and AdaBoost learning in
the EV Probe set

Table 3. Rank-one recognition accuracy (%) with different combination (100 persons)

Probe sets IV EV EVI PVS PVL PVSS PVSL

Depth+ intensity 97.0 84.6 89.0 85.6 86.0 82.9 73.5
Intrinsic features 99.5 90.8 90.6 96.7 76.5 87.9 70.0

information of 3D images. Here, we compare the recognition performance using
the different combination, that is, depth+intensity vs. scattered+associative.

After registration of different 3D images, depth and intensity images are gen-
erated. Using AdaBoost learning [22], a strong classifier is constructed based on
depth and intensity images. The rank-one recognition accuracy is showed in the
first row of Table 3. Another classifier is constructed using intrinsic features by
AdaBoost learning (see Section 3). The CCR is showed in the bottom row of
Table 3.

From this result, we can see that combination of intrinsic features outperform
the combination of depth and intensity in five probe sets. This result suggests
that it is a promising way to extract 3D shape information for improving recogni-
tion information. Some effective 3D shape features even have better performance
than multi-modal 2D+3D. In addition, it is noted that the latter is more robust
than the former in large pose variations.

5 Conclusions

Personal identification based on 3D information has recently been gaining more
and more interest. We have proposed a novel representation, called associative
features, based on Gaussian-Hermite moments, to encode relationships between
neighboring mesh nodes. It is integrated by complementary non-relational fea-
tures to provide an intrinsic representation of faces. Then, a powerful learning
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algorithm, i.e., AdaBoost, is used for feature selection and classification. One
large 3D face database with complex illumination, expression and pose variations
has been collected to test the proposed algorithm. The experimental results and
the comparisons with some existing methods have demonstrated the excellent
performance of the proposed method for 3D face recognition.
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Abstract. Detecting humans in films and videos is a challenging problem
owing to the motion of the subjects, the camera and the background and to varia-
tions in pose, appearance, clothing, illumination and background clutter. We de-
velop a detector for standing and moving people in videos with possibly moving
cameras and backgrounds, testing several different motion coding schemes and
showing empirically that orientated histograms of differential optical flow give
the best overall performance. These motion-based descriptors are combined with
our Histogram of Oriented Gradient appearance descriptors. The resulting de-
tector is tested on several databases including a challenging test set taken from
feature films and containing wide ranges of pose, motion and background vari-
ations, including moving cameras and backgrounds. We validate our results on
two challenging test sets containing more than 4400 human examples. The com-
bined detector reduces the false alarm rate by a factor of 10 relative to the best
appearance-based detector, for example giving false alarm rates of 1 per 20,000
windows tested at 8% miss rate on our Test Set 1.

1 Introduction

Detecting humans in video streams is a challenging problem owing to variations in
pose, body shape, appearance, clothing, illumination and background clutter. Mov-
ing cameras or backgrounds make it even harder. Potential applications include film
and television analysis, on-line pedestrian detection for smart vehicles [8] and video
surveillance. Although single-image appearance based detectors have made consider-
able advances in recent years (e.g. [3,13,15]), they are not yet reliable enough for many
practical applications. On the other hand, certain kinds of movement are very charac-
teristic of humans, so detector performance can potentially be improved by including
motion information. Most existing work in this area assumes that the camera and the
background are essentially static. This greatly simplifies the problem because the mere
presence of motion already provides a strong cue for human presence. For example,
Viola et al. [23] find that including motion features markedly increases the overall per-
formance of their system, but they assume a fixed surveillance camera viewing a largely
static scene. In our case, we wanted a detector that could be used to analyse film and TV
content, or to detect pedestrians from a moving car – applications in which the camera
and the background often move as much as the people in the scene, if not more. The
main challenge is thus to find a set of features that characterize human motion well,
while remaining resistant to camera and background motion.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 428–441, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Sample images from our human motion database, which contains moving people with sig-
nificant variation in appearance, pose, clothing, background, illumination, coupled with moving
cameras and backgrounds. Each pair shows two consecutive frames.

This paper introduces and evaluates a number of motion-based feature sets for hu-
man detection in videos. In particular it studies oriented histograms of various kinds of
local differences or differentials of optical flow as motion features, evaluating these both
independently and in combination with the Histogram of Oriented Gradient (HOG) ap-
pearance descriptors that we originally developed for human detection in static images
[3]. The new descriptors are designed to capture the relative motion of different limbs
while resisting background motions. Combining them with the appearance descriptors
reduces the false alarm rate by an order of magnitude in images with movement while
maintaining the performance of the original method [3] in stationary images.

The detectors are evaluated on two new and challenging feature film based data sets,
giving excellent results. Fig. 1 shows some typical image pairs from our ‘Test Set 1’
(see § 7).

Contents. § 2 briefly reviews the state-of-art in human detection in static and moving
images. § 3 describes the overall system architecture. § 4–7 respectively describe the
appearance descriptors, the motion descriptors, the optical flow methods and the train-
ing and test data sets that we used. § 8 studies the effect of representation choices and
parameter settings on performance, and § 9 summarizes the results.

2 Previous Work

We will only mention a few of the more recent works on human detection here – see
Gavrilla’s survey [7] for older references. A polynomial SVM based pedestrian detector
(upright whole-body human detector) using rectified Haar wavelets as input descriptors
is described in [17] , with a parts (subwindow) based variant in [16]. The pedestrian
detector of Gavrila & Philomen [9] takes a more direct approach, extracting edge im-
ages and matching them to a set of learned exemplars using chamfer distance. This
has recently been extended to a practical real-time pedestrian detection system [8]. The
success of SIFT appearance descriptors [14] for object recognition has motivated sev-
eral recent approaches. Mikolajczyk et al. [15] use position-orientation histograms of
binary image edges as image features, combining seven “part” (subwindow) detectors
to build a static-image detector that is robust to occlusions. Our own static detector [3]
uses a dense grid of SIFT-like blocks with a linear SVM for static-image person detec-
tion, giving false alarm rates 1–2 orders of magnitude lower than [17]. Leibe et al. [13]
developed an effective static-image pedestrian detector for crowded scenes by coding
local image patches against a learned codebook and combining the resulting bottom up
labels with top-down refinement.
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Regarding person detectors that incorporate motion descriptors, Viola et al. [23]
build a detector for static-camera surveillance applications, using generalized Haar
wavelets and block averages of spatiotemporal differences as image and motion fea-
tures and a computationally efficient rejection chain classifier [1,22,21] trained with
AdaBoost [19] feature selection. The inclusion of motion features increases the perfor-
mance by an order of magnitude relative to a similar static detector. Other surveillance
based detectors include the flow-based activity recognition system of Haritaoglu et al.
[10]. Efros et al. [4] used appearance and flow features in an exemplar based detector
for long shots of sports players, but quantitative performance results were not given.

3 Overall Architecture

This paper focuses on developing effective motion features so we have adopted a single
relatively simple learning framework as a baseline in most of our experiments. For
simplicity, we concentrate on detecting people who are upright and fully or almost fully
visible. However they may be stationary or moving, against a background that may be
stationary or moving. Linear SVM’s [20] are used as a baseline classifier. They offer
good performance relative to other linear classifiers and they are fast to run, providing at
least a prospect of reliable real time detection. Three properties make them valuable for
comparative testing work: reliable, repeatable training; the ability to handle large data
sets gracefully; and good robustness to different choices of feature sets and parameters.
Nonlinear SVM’s typically achieve slightly lower error rates, but this comes at the cost
of greatly increased run time and in practice we find that the main conclusions about
feature sets remain unchanged.

Our person detector combines appearance descriptors extracted from a single frame
of a video sequence with motion descriptors extracted from either optical flow or spatio-
temporal derivatives against the subsequent frame. It scans a 64×128 pixel window
across the image at multiple scales, running a linear SVM classifier on the descriptors
extracted from each resulting image window. The classifier is trained to make person/no-
person decisions using a set of manually labeled training windows. Fig. 2 gives an
overview of the feature extraction process. Image gradient vectors are used to produce
weighted votes for local gradient orientation and these are locally histogrammed to pro-
duce an appearance descriptor (SIFT / HOG process) [3]. Differentials of optical flow
are fed to a similar oriented voting process based on either flow orientation or oriented

Fig. 2. The feature extraction process for our combined detector
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spatial gradients of flow components. Each descriptor set is normalized over local, over-
lapping blocks of spatial cells, and the resulting normalized histograms are concatenated
to make the detection window descriptor vector used in the detector.

For the learning process we use a method similar to that of [3]. We start with a set
of training images (here consecutive image pairs so that flow can be used) in which all
of the positive training windows (ones containing people) have been manually marked.
A fixed set of initial negative training windows was selected by randomly sampling the
negative images. A preliminary classifier is trained on the marked positives and initial
negatives, and this is used to search the complete set of negative images exhaustively
for false alarms. As many of these “hard negatives” as will fit into the available RAM
are selected randomly and added to the training set, and the final classifier is trained.
Each classifier thus has its own set of hard negatives. This retraining procedure sig-
nificantly increases the performance of every detector that we have tested. Additional
rounds of search for hard negatives make little difference, so are not used. In most of
the experiments below the RAM is limited to 1.5 GB, so the larger the descriptor vector,
the smaller the number of hard examples that can be included. We think that this is fair
as memory is typically the main resource limitation during training.

In use, the algorithm runs a detection window across the image at all positions and
scales, giving a detection score at each point. Negative scores are zeroed and a 3D
position-scale mean shift process [2] is run to identify significant local peaks in the
resulting score. If above threshold, these are declared as detections. Currently there is
no attempt to enforce temporal continuity of detections: the detector runs independently
in each pair of images.

4 Appearance Descriptors

The static-image part of our descriptor set [3] uses Histogram of Oriented Gradient grids
(HOG) – a close relation of the descriptor in Lowe’s SIFT approach [14] – to code visual
appearance. Briefly, the HOG method tiles the detector window with a dense grid of cells,
with each cell containing a local histogram over orientation bins. At each pixel, the im-
age gradient vector is calculated and converted to an angle, voting into the corresponding
orientation bin with a vote weighted by the gradient magnitude. Votes are accumulated
over the pixels of each cell. The cells are grouped into blocks and a robust normalization
process is run on each block to provide strong illumination invariance. The normalized
histograms of all of the blocks are concatenated to give the window-level visual descrip-
tor vector for learning. To reduce aliasing, spatial and angular linear interpolation, and
in some cases Gaussian windowing over the block, are used during voting. The blocks
overlap spatially so that each cell appears several times with different normalizations, as
this typically improves performance. See [3] for further details and a study of the effects
of the various parameters. The same default parameter settings are used here.

5 Motion Descriptors

To use motion for human detection from moving cameras against dynamic backgrounds
we need features that characterize human movements well while remaining resistant to
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typical camera and background motions. Most of the existing motion descriptors, such
as the phase based features of Fleet & Jepson [5] and the generalized wavelet features of
Viola et al. [23], use absolute motions and hence work well only when the camera and
background are largely static. Nor do these representations take into account the lessons
learned from the SIFT / HOG family of descriptors [14,15,3]. This section introduces
descriptors that use differential flow to cancel out most of the effects of camera motion
and HOG like oriented histogram voting to obtain robust coding.

First note that the image flow induced by camera rotation (pan, tilt, roll) varies
smoothly across the image irrespective of 3D depth boundaries, and in most applications
it is locally essentially translational because significant camera roll is rare. Thus, any
kind of local differential or difference of flow cancels out most of the effects of camera
rotation. The remaining signal is due to either depth-induced motion parallax between
the camera, subject and background, or to independent motion in the scene. Differen-
tials of parallax flows are concentrated essentially at 3D depth boundaries, while those
of independent motions are largest at motion boundaries. For human subjects, both
types of boundaries coincide with limb and body edges, so flow differentials are good
cues for the outline of a person. However we also expect internal dynamics such as rel-
ative limb motions to be quite discriminant for human motions and differentials taken
within the subject’s silhouette are needed to capture these. Thus, flow-based features
can focus either on coding motion (and hence depth) boundaries, or on coding internal
dynamics and relative displacements of the limbs.

Notation. Ix, Iy denote images containing the x (horizontal) and y (vertical) compo-
nents of optical flow, Iw = (Ix, Iy) denote the 2D flow image (w = (x, y)), and
Ix

x , Ix
y , Iy

x , Iy
y denote the corresponding x- and y-derivative differential flow images.

E.g., Ix
y = d

dyIx is the y-derivative of the x component of optical flow.

5.1 Motion Boundary Based Coding

For motion boundary coding it is natural to try to capture the local orientations of mo-
tion edges by emulating the static-image HOG descriptors [3]. The simplest approach
is to treat the two flow components Ix, Iy as independent ‘images’, take their local
gradients separately, find the corresponding gradient magnitudes and orientations, and
use these as weighted votes into local orientation histograms in the same way as for the
standard gray scale HOG. We call this family of schemes Motion Boundary Histograms
(MBH) (see Fig. 3). A separate histogram can be built for each flow component, or the
two channels can be combined, e.g. by the winner-takes-all voting method used to han-
dle color channels in [3]. We find that separate histograms are more discriminant. As
with standard gray scale HOG, it is best to take spatial derivatives at the smallest possi-
ble scale ([1, 0,−1] mask) without any form of smoothing.

5.2 Internal / Relative Dynamics Based Coding

One could argue that the static appearance descriptor already captures much of the
available boundary information, so that the flow based descriptor should focus more on
capturing complementary information about internal or relative motions. This suggests
that flow differences should be computed between pairs of nearby, but not necessarily
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Illustration of the MBH descriptor. (a,b) Reference images at time t and t+1. (c,d) Com-
puted optical flow, and flow magnitude showing motion boundaries. (e,f) Gradient magnitude of
flow field Ix, Iy for image pair (a,b). (g,h) Average MBH descriptor over all training images for
flow field Ix, Iy .

neighboring, points, and that angular voting should be based on the direction of the
flow difference vector, not the direction of the spatial derivative displacement. So in
opposition to MBH, we use (Ix

x , Iy
x) and (Ix

y , Iy
y ) as the pairs for angular voting, and

the simple x, y derivatives are replaced by spatial differences taken at larger scales,
perhaps in several different directions. We will call this family of schemes Internal
Motion Histograms (IMH). Ideally, IMH descriptors would directly capture the relative
movements of different limbs, e.g. left vs. right leg, but choosing the necessary spatial
displacements for differencing would require reliable part detectors. Instead we test
simple variants based on fixed spatial displacements, as follows:

IMHdiff is the simplest IMH descriptor. It takes fine-scale derivatives, using (Ix
x , Iy

x)
and (Ix

y , Iy
y ) to create two relative-flow-direction based oriented histograms. As with

MBH, using separate orientation histograms for the x- and y-derivatives is better than
combining them. Variants of IMHdiff use larger (but still central) spatial displacements
for differencing – 5 pixels apart ([1, 0, 0, 0,−1] mask), or even 7 – and take spatial
differencing steps along several different directions, e.g. including diagonal axes.

IMHcd uses the blocks-of-cells structure of the HOG descriptors differently. It uses
3×3 blocks of cells, in each of the 8 outer cells computing flow differences for each
pixel relative to the corresponding pixel in the central cell and histogramming to give
an orientation histogram1. Figure 4(a) illustrates. The resulting 8 histograms are nor-
malized as a block. The motivation is that if the person’s limb width is approximately
the same as the cell size, IMHcd can capture relative displacements of the limbs w.r.t.
to the background and nearby limbs. The results in § 8 support this hypothesis.

IMHmd is similar to IMHcd, but instead of using the corresponding pixel in the central
cell as a reference flow, it uses the average of the corresponding pixels in all 9 cells. The
resulting 9 histograms are normalized as a block.

IMHwd is also similar to IMHcd but uses Haar wavelet like operators rather than
non-central differences, as shown in Fig. 4(b).

1 IMHcd uses non-central cell-width spatial differences that access only pixels within the block,
whereas IMHdiff uses central differences and in the boundary cells it accesses pixels that lie
outside the block.
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Fig. 4. Different coding schemes for IMH descriptors. (a) One block of IMHcd coding scheme.
The block is partitioned into cells. The dots in each cell represent the cell pixels. The arrows
emerging from the central cell show the central pixel used to compute differences for the cor-
responding pixel in the neighbouring cell. Similar differences are computed for each of the 8
neighbouring cells. Values +1 and −1 represent the difference weights. (b) The wavelet opera-
tors used in the IMHwd motion coding scheme.

ST Diff. We also evaluated a scheme inspired by Viola et al. [23] based on simple spa-
tiotemporal differencing rather than flow. For each pixel, its 3×3 stride-8 neighborhood
at the next time step is taken and its image intensity is subtracted from each of these 9
pixels. The absolute values are accumulated over each cell to make a 9 bin histogram
for the cell, which then undergoes the usual block normalization process.

5.3 Descriptor Parameters

For the combined flow and appearance detectors with the optimal cell size of 8×8 pix-
els, memory constraints limit us to a total of about 81 histogram bins per cell. (In-
creasing the histogram size beyond this is possible, but it reduces the number of hard
negatives that can be fitted into memory during re-training to such an extent that perfor-
mance suffers). In the experiments below, we test: MBH with 9 gradient orientations, 2
separate flow components, and 4× block overlap; IMHdiff with 2 displacements (hor-
izontal and vertical [1, 0,−1] masks), 9 flow orientations and 4× block overlap; and
IMHcd, IMHwd and IMHmd with eight 8-pixel displacements and 6 flow orientations.

All of the methods use orientation histograms with votes weighted by vector modu-
lus followed by a block-level normalization – essentially the same scheme as the orig-
inal HOG descriptor [3]. We tested various different bin sizes, normalization schemes,
etc. with similar conclusions to [3]. For both MBH and IMHdiff, fine (9 bin) orien-
tation coding with 2×2 blocks of 8×8 pixel cells seem to be best. 3 × 3 blocks of
cells (9× block overlap) perform better for the flow-only MBH classifier, but for the
combined detectors the performance of this combination drops owing to the increased
feature size. Changing the cell size from 8 × 8 to 6 × 6 only reduces the performance
slightly. Good normalization of the blocks is critical and for the flow descriptors Lowe’s
hysteresis-based L2 normalization seems to do significantly better than L2 or L1-sqrt
normalization. We tried larger displacement masks (3- and 5- pixel displacement) for
MBH but found that the performance drops. For the IMHcd/wd/md schemes, 6 and 9
orientation bins give the same performance (we use 6 below), and Lowe’s hysteresis
based L2 normalization still works best, but only by a small margin.
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We also evaluated variants that use the least squares image prediction error of the
estimated flow as a flow quality metric, down-weighting the histogram vote in propor-
tion to exp(−|e|/σ), where e is the fitting error over the local 5 × 5 window. This very
slightly (� 1%) improves the performance provided that σ is not set too small.

We also tested various motion descriptors that do not use orientation voting (e.g.
based simply on the modulus of velocity), but the results were significantly worse.

6 Optical Flow Estimation

We tried several optical flow methods. Our initial testing was done with the Otago
implementation [6] of the Proesmans et al. [18] multi-scale nonlinear diffusion based al-
gorithm. This gives dense high-quality sub-pixel motion estimates but it is computation-
ally expensive (15 seconds per frame). Also, motion boundaries are critical for human
detection and we recently began to suspect that the Otago flows were over-regularized
for this application. To test this we implemented a simple but fast flow method based
on the constant brightness assumption [11]. Flow is found top-down in a multi-scale
approach, with initial flow estimates made at a coarse scale propagated downwards and
refined in fine scale steps. The flow w is estimated independently at each pixel by solv-
ing a damped Linear Least Squares equation w = (A�A + βI)−1A�b over a small
N × N neighborhood, where b is an N2 column vector encoding the temporal image
differences, A is an N2 × 2 matrix of spatial gradients [Ix, Iy], and β is a damping
factor included to reduce numerical issues arising from singular A�A. The model does
not include any explicit spatial regularization or smoothing and its flow estimates are
visibly less accurate than the Otago ones, but our experiments show that using it in the
combined detector reduces false positives by a factor of more than 3 at 8% miss rate. In
fact, any regularization aimed at improving the flow smoothness appears to reduce the
detector performance. Our method is also much faster than the Otago one, running in 1
second on DVD resolution 752 × 396 images, with N = 5 and a scale refinement step
of 1.3. The new method is used in all of the experiments in § 8 unless otherwise noted.

We also tested motion descriptors based on an MPEG-4 block matcher taken from
the www.xvid.org codec. No attempt was made to enforce motion continuity be-
tween blocks. Even though the matching estimates were visually good, the detection
results were not competitive. We think that there are several reasons for this. Firstly,
block matching provides only one vote for each cell, whereas with optical flow each
pixel provides a separate vote into the histogram. Secondly, the block matching flow es-
timates do not have deep sub-pixel accuracy. Experiments on rounding the flow values
from the Otago code showed that even 1/10 of a pixel of rounding causes the perfor-
mance to drop significantly (the need for accurate orientation voting is one reason for
this). Thirdly, 8×8 MPEG blocks are too large for the best results.

7 Data Sets

To train our detectors, we selected shots from various movie DVDs and personal digi-
tal camera video sequences and annotated the humans in them. Our main training set,
‘Training Set 1’, was obtained from 5 different DVDs. It contains a total of 182 shots
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with 2781 human examples (5562 including left-right reflections). We created two test
sets. ‘Test Set 1’ contains 50 shots and 1704 human examples from unseen shots from
the DVDs used in Training Set 1. Test Set 2 is more challenging, containing 2700 human
examples from 128 shots from 6 new DVDs.

We have also used the static-image training and test sets from [3] (available at
http://pascal.inrialpes.fr/data/human/). In this paper, we call these
the ‘Static Training/Test Sets’. They contain respectively 2416 training and 1132 test
images. Even though the Static Training Set has no (zero) flow, we find that including
it along with Training Set 1 significantly improves the performance of both the static
and the combined detectors (see § 8). More precisely, the detector performance on Test
Set 1 improves, without changing that of the static detector on the Static Test Set. This
is perhaps because the Set 1 images contain many poses that do not appear in the Static
sets – notably running and other rapid actions.

8 Experiments

To quantify the performance of the various detectors we plot Detection Error Tradeoff
(DET) curves, i.e. Miss Rate (1 − Precision or NFalseNeg/(NFalseNeg + NTruePos))
versus False Positives Per Window tested (FPPW) on logarithmic scales. DET plots
present the same information as Receiver Operating Characteristic (ROC) curves in a
more readable form. Lower curves are better.

We begin by comparing the results of the motion descriptors introduced above,
trained and tested on Set 1. Figure 5(a,b) give results respectively for detectors learned
with the motion descriptors alone, and for detectors that include both these features and
the HOG appearance descriptors. The oriented histogram of differential flow schemes
MBH and IMHdiff with the Proesmans flow method dominate the motion-only re-
sults. In fact for the video test sets (which do contain many frames without much
visible movement) these motion features alone are within an order of magnitude of
the static HOG detector and significantly better than the static Haar wavelet detec-
tor. When motion and appearance features are combined, neither the Proesmans flow
method nor the MBH descriptors perform so well and it is IMHcd and IMHmd com-
puted using our flow method that are the leaders. Below we use SHOG + IMHcd
as the default combined detector, although SHOG + IMHmd would lead to similar
conclusions.

Fig. 5 shows that motion-only results are not a good guide to the performance of the
combined detector. The reduced spread of the results in the combined case suggests that
there is a considerable degree of redundancy between the appearance and motion chan-
nels. In particular, IMHdiff and MBH are the schemes with the smallest spatial strides
and thus the greatest potential for redundancy with the human boundary cues used by
the appearance based descriptors – factors that may explain their reduced performance
after combination. Similarly, the strong regularization of the Proesmans’ flow estimates
may make them effective cues for motion (and hence occlusion) boundaries, while the
unregularized nature of ours means that they capture motion within thin limbs more ac-
curately and hence provide information that is more complementary to the appearance
descriptors.



Human Detection Using Oriented Histograms of Flow and Appearance 437

10
−5

10
−4

10
−3

10
−2

10
−1

0.05

0.1

0.2

0.5
DET − train (set1) / test (set1)

false positives per window (FPPW)

m
is

s 
ra

te

MBH
IMHcd
IMHmd
IMHwd
STDiff
P−MBH
P−IMHDiff

10
−6

10
−5

10
−4

10
−3

10
−2

0.02

0.05

0.1

0.2

0.5
DET − train (set1) / test (set1)

false positives per window (FPPW)

m
is

s 
ra

te

SHOG + MBH
SHOG + IMHdiff
SHOG + IMHcd
SHOG + IMHmd
SHOG + IMHwd
SHOG + STDiff
SHOG + P−IMHcd

(a) (b)

Fig. 5. A comparison of the different motion descriptors, trained on Training Set 1 and tested on
Test Set 1, using: (a) the motion feature set alone; and (b) the motion feature set combined with
the SHOG appearance descriptor. The prefix ‘P’ in the MBH and IMH legends denotes the same
methods using Proesmans’ flow estimates.

Figure 6 demonstrates the overall performance of a selection of our detectors on
several different test sets. Unless otherwise noted, the detectors are trained on the com-
bined Set 1 and Static Training Sets. The static (appearance based) detectors shown are:
SHOG – the HOG detector of [3]; SHOG (static) – SHOG trained on the Static Training
Set alone, as in [3]; and Wavelet – our version of the static Haar wavelet based detector
of [17]. Two combined detectors are also shown: SHOG + IMHcd – SHOG combined
with the IMHcd flow feature (8-pixel steps in 8-neighbor directions); and SHOG + ST
Diff – SHOG combined with Viola et al. spatiotemporal differences [23].

Again the good performance of the SHOG + IMHcd combination is apparent. The
absolute results on Test Set 2 are an order of magnitude worse than on Test Set 1 owing
to the more challenging nature of the images, but the relative rankings of the different
methods are remarkably stable. Overall, on video data for which motion estimates are
available, the false alarm rates of the best combined detectors are an order of magnitude
lower than those for the best static-appearance-based ones.

Given that we want methods that can detect people reliably whether or not they are
moving, we were concerned that the choice of method might be sensitive to the rela-
tive proportion of moving and of static people in the videos. To check this, we tested
the detectors not only on the pure video Test Sets 1 and 2, but also on the combina-
tion of these with the Static Test Set (again with static image flows being zero). The
results are shown in fig. 6(c–d). Diluting the fraction of moving examples naturally
reduces the advantage of the combined methods relative to the static ones, but the rela-
tive ranking of the methods remains unchanged. Somewhat surprisingly, table 1 shows
that when used on entirely static images for which there is no flow, the best combined
detectors do marginally better the best static one. The images here are from the Static
Test Set, with the detectors trained on Training Set 1 plus the Static Training Set as
before.
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Fig. 6. An overview of the performance of our various detectors. All detectors are trained on
Training Set 1 combined with the Static Training Set with flow set to zero. They are tested re-
spectively on: (a) Test Set 1; (b) Test Set 2; (c) Test Set 1 plus the Static Test Set ; (d) Test Set 2
plus the Static Test Set.

Table 1. The miss rates of various detectors trained on Set 1 + Static images and tested on purely
Static images. Despite the complete lack of flow information, the combined detectors provide
slightly better performance than the static one.

FPPW 10−3 10−4 10−5

SHOG 6.2% 11.4% 19.8%
SHOG + IMHcd 5.8% 11.0% 19.8%
SHOG + ST Diff 5.7% 10.5% 19.7%

Figure 7 shows some sample detections of the combined detector (SHOG + IMHcd
trained on Set 1 + Static) on images from Test Set 2. Set 2 contains challenging images
taken from different films from the training images. Here there are shots of people in
Indian costume, some dance sequences, and people in crowds that are different from
anything seen in the training images.
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Fig. 7. Sample detections on Test Set 2 from the combined SHOG + IMHcd detector trained on
Set 1 + Static. Note the variations in pose, appearance, background and lightning.

The experiments shown here use linear SVMs. Informal tests with Gaussian kernel
SVMs suggest that these would reduce false positives by an additional factor of about
2, at a cost of a 5000-fold increase in run time.

Mixture of Experts. The combined-feature detectors above are monolithic – they con-
catenate the motion and appearance features into a single large feature vector and train
a combined classifier on it. We have also tested an alternative Mixture of Experts archi-
tecture. In this, separate detectors are learned from the appearance features and from
the motion features, and a second stage classifier is then trained to combine the (real
valued scalar) outputs of these to produce a combined detector. In our case the second
stage classifier is a linear SVM over a 2D feature space (the appearance score and the
motion score), so the final system remains linear in the input features. This approach
keeps the feature space dimensions relatively low during training, thus allowing more
hard negatives to be included at each stage. (Indeed, for the 2D second stage classi-
fier there can be millions of them). In our experiments these effects mitigate the losses
due to separate training and the linear Mixture of Experts classifier actually performs
slightly better than the best monolithic detector. For now the differences are marginal
(less than 1%), but the Mixture of Experts architecture provides more flexibility and
may ultimately be preferable. The component classifiers could also be combined in a
more sophisticated way, for example using a rejection cascade [1,22,21] to improve the
runtime.

9 Summary and Conclusions

We have developed a family of high-performance detectors for fully visible humans
in videos with moving people, cameras and backgrounds. The detectors combine
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gradient based appearance descriptors with differential optical flow based motion
descriptors in a linear SVM framework. Both motion and appearance channels use
oriented histogram voting to achieve a robust descriptor. We studied various different
motion coding schemes but found that although there are considerable performance dif-
ferences between them when motion features alone are used, the differences are greatly
reduced when the features are used in combination with static appearance descriptors.
The best combined schemes used motion descriptors based on oriented histogramming
of differences of unregularized multiscale flow relative to corresponding pixels in adja-
cent cells (IMHcd) or to local averages of these (IMHmd).
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Abstract. We present a novel approach to gait recognition that con-
siders gait sequences as cyclostationary processes on a shape space of
simple closed curves. Consequently, gait analysis reduces to quantifying
differences between statistics underlying these stochastic processes. The
main steps in the proposed approach are: (i) off-line extraction of hu-
man silhouettes from IR video data, (ii) use of piecewise-geodesic paths,
connecting the observed shapes, to smoothly interpolate between them,
(iii) computation of an average gait cycle within class (i.e. associated
with a person) using average shapes, (iv) registration of average cycles
using linear and nonlinear time scaling, (iv) comparisons of average cy-
cles using geodesic lengths between the corresponding registered shapes.
We illustrate this approach on infrared video clips involving 26 subjects.

1 Introduction

We study the problem of analyzing videos of humans walking, with a goal of
recognizing them using an analysis of their gait. Gait analysis closely relates to
statistical analysis of shapes of objects. Assuming that one focuses on silhouettes
of human beings, as they are walking, gait analysis becomes the problem of
analyzing sequences of shapes of closed curves. In this sense gait analysis is an
extension of shape analysis; shape analysis deals with comparisons of individual
shapes, while gait analysis deals with comparisons of sequences of shapes. A
gait sequence can be considered as a stochastic process on the shape space,
with finite, noisy measurements. Therefore, gait analysis can be considered as
the science of analyzing stochastic processes on shape manifolds. Furthermore,
considering the repetitive nature of a gait sequence, one can restrict to the family
of cyclo-stationary processes, i.e. processes whose statistics repeat themselves
periodically.

An an application of gait analysis, we will focus on infrared (IR) image se-
quences as the observed data, an example is shown in Figure 1. Depending on
the quality of infrared image detector, and ambient conditions such as temper-
ature, humidity, windchill, etc, the task of gait analysis using IR sequences is
somewhat more complicated than that using visual spectrum video sequences.
Essentially, the task of extracting shapes, or silhouettes, automatically becomes
more difficult in this application. However, in this paper we avoid that issue by
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working with a good quality IR camera and known backgrounds. The main focus
here is on a statistical analysis of shape processes for gait analysis.

1.1 Challenges and Past Work

What are the different components and issues associated with gait-based recogni-
tion of human beings? To develop a comprehensive system, one needs to develop
the following components:

1. Representation: First, one needs to choose a representation of human ap-
pearance in images that lends itself to gait analysis. The chosen representation
should highlight differences in walking styles between people, and should sup-
press the variations in walking style of a person. Also, a practical need is to be
able to extract these representations from video sequences fast, and in presence
of noise, clutter and partial obscuration. It is important to point out that very
few of the existing approaches, including the one proposed here, utilize real-time,
automated extraction of representations from video data. In other words, the fo-
cus in the recent literature is on the methodology and not on issue of real-time
extraction of features/representations. Several representations have been sug-
gested in the past: binary images or silhouettes [4, 2, 10, 11], width of silhouettes
[4], shapes of configurations of landmarks [9], systems of articulate parts, etc.
Each has its advantages and disadvantages. A survey of different ideas currently
used in gait analysis is presented in [8].
2. Models: Once the representations are chosen, the next issue is to impose mod-
els for analyzing gait. Several papers have studied parametric dynamic models
or state equations for analyzing gait processes [9, 1]. In the interest of com-
putational efficiency, one would like to use parametric models while the non-
parametric models provide a broad generality to the approach. A more general
approach is to consider gaits as stochastic processes in a certain representation
space; then one needs a stochastic model to characterize these processes. As
noted earlier, a good model highlights interclass variability while suppressing
intra-class variability.
3. Classification: Given probability models governing the evolution of a gait
process, the process of human identification or classification is simply that of
hypothesis testing. Some papers reduce this problem to the choice of metric
between gait representations, and use a distance-based classifier, e.g. the nearest
neighbor classifier, to perform recognition.

1.2 Our Approach

Our approach is to represent a human appearance using the shape of its bound-
ary. We consider this boundary as a closed curve in the image plane, and analyze
its shape during gait analysis. An important point here is that curves are consid-
ered in continuum and not just a collection of landmarks as is done in classical
shape analysis [3]. The shapes of all closed curves form a shape space S and shape
variation due to human motion forms a stochastic process on S. Furthermore,
due to the periodicity of human walk the resulting process becomes cyclosta-
tionary. Any two gait observations can be considered as two sample paths on
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S, and our goal is to quantify differences between them. We accomplish this by
registering two paths on S and then comparing corresponding points along the
two paths; these points are actually shapes of two closed curves and to compare
them we use geodesics connecting them on S. In other words, geodesic lengths
quantify differences between individual silhouettes. In order to remove intra-class
variability, i.e. variability associated with different gait observations of the same
human being, we compute average gait processes and use them for recognition,
rather than using single sample paths. Another important step is to register the
observed gait cycles using either linear or nonlinear time scaling before they
can be averaged. This often requires interpolating between observed shapes to
obtain the same number of shapes in all cycles. We form piecewise-geodesic
paths between observed shapes for this interpolation. The main strengths of this
approach are:

1. It chooses the boundaries of human silhouettes to analyze gait; analysis
of curves is computationally faster and more immune to noise than
analysis of full images even if they are binary.

2. It removes shape-preserving transformations – translation, rotation, and
scale – from representations of human appearances, making gait analysis
relatively immune to viewing angles and imaging distances. It is easier to
remove these transformations for curves than for binary images.

3. Several papers have pointed out the use of gait cycles as the basic units for
comparisons. Modeling gaits as cyclostationary processes on a shape
space provides a formal, nonparametric framework for a quantitative
study of gaits.

4. Computation of mean cycles, on an appropriate shape space, removes the
intra-class variability. Similarly, the use of geodesics on shape spaces
provides natural tools for: (i) interpolating between shapes during regis-
tration of gait cycles, and (ii) comparison of individual shapes during com-
parisons of cycles. These tools may not be available in other approaches.

2 Experimental Setup and Data Generation

In our experiments described later we have used two IR cameras: (i) Raytheon
PalmIR Pro with a spectral range of 7-14 μm, using an uncooled BST, producing
images of 320 × 240 pixels, and having a field of view of 36 × 27◦. (ii) FLIR
Systems’ Thermovision A40V. It uses a focal plane array, made of uncooled
microbolometer and produces images and video of 320 × 240 pixels. It has a
thermal sensitivity of 80mK at 30◦C, a spectral range of 7.5 - 13 μm and a field
of view of 24 × 10◦ at 0.3m. The first camera uses an older technology provides
noisy images with low sensitivity, while the second is a new generation with
higher thermal sensitivity and thus lower noise. Sample images from A40 are
shown in Figure 1 top row.

We need to extract the boundaries of human silhouettes in the observed im-
ages for gait analysis. For PalmIR camera, with noisy images, the automated
methods have not been successful and we resorted to manual extraction of the
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Fig. 1. Top row: A portion of IR sequence. Middle row: (a) Original frame, (b) back-
ground frame, (c) image after background subtraction, (d) edge estimation using mo-
tion, (e) composite image. Bottom row: (f) binary image after a low threshold, (g)
smoothed using a Gaussian filter, (h) level sets, (i) direction functions of outermost
level – before and after wavelet denoising, and (j) the final shape.

required curves. However, for the high contrast A40 camera, the process of auto-
mated boundary extraction works better and uses background subtraction and
simple ideas from motion estimation. Shown in Figure 1 is an illustration of the
automated extraction process. Figure 1(a) and (b) show the original IR image
with and without the subject. Panel (c) shows the difference image and panel
(d) shows the motion-based edge detection. In this case, this frame is simply
an absolute difference of two successive image frames. A convex combination of
images in (c) and (d) is used to extract the contour via thresholding, wavelet
smoothing, and level set extraction. The final curve is shown in the panel (j).

3 A Framework for Gait Analysis

Let S be the space of shapes defined later. We are interested in studying a
stochastic process X(t) ∈ S whose statistics repeat themselves in time. More
formally, we will focus on a family of cyclostationary stochastic processes in S.

Definition 1 (Cylostationary). A stochastic process is called cyclostation-
ary with a period τ if the joint probability distribution of the random variables
X(t1), X(t2), . . . , X(tn) is same as that of X(t1 + τ), X(t2 + τ), . . . , X(tn + τ),
for all t1, t2, . . . , tn and for all n. In particular, the random quantities X(t) and
X(t+ τ) have the same probability distribution.
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Fig. 2. Sequence of silhouettes extracted automatically as described in Figure 1
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Fig. 3. The sequence from legs together to right leg forward to legs together is the first
half-cycle. The sequence from legs-together to left leg forward to legs together is the
second half cycle.

Therefore, in our notation we generally consider the time t to be modulo τ so
that t ∈ [0, τ).

In the context of gait analysis, we consider a full cycle as the period starting
from when legs and hands are all together to the time of return to a similar state.
The top row of Figure 3 shows the first half-cycle where the left foot goes forward
and the right foot catches up, and the bottom row shows the second half-cycle
where the right foot moves first. We will assume that gait sequence associated
with a person is a cyclostationary process on a shape space. The duration of a
full cycle corresponds to the period τ of the process. Like any cyclostationary
process, it suffices to study statistics of a gait sequence in [0, τ ].

Given two stochastic processes, our goal is to quantify differences between
them. Let X(t) and Y (t) be two gait processes on the shape space S, with
periods τx and τy, respectively, our goal is to develop a metric d(X,Y ), with
certain desired properties. A simple idea is to use the mean squared distance:

dp(X,Y ) = argmin
κ∈[0,τy],φ

E

[(∫ τx

0
d(X(t), Y (κ+ φ(t)))2dt

)]
, (1)

where E denotes expectation, d(·, ·) denotes a metric defined on an appropriate
shape space, φ denotes a mapping between [0, τx] and [0, τy] that registers the
two cycles, and κ denotes a possible relative time-shift between the two paths.
An alternate form is to use squared distance of the mean cycles:

dp(X,Y ) = argmin
κ∈[0,τy],φ

(∫ τx

0
d(E[X(t)], E[Y (κ+ φ(t))])2dt

)
,
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where the expectations E[X(t) and E[Y (t)] are computed on the shape space S
in a suitable fashion. We choose this later quantity and use its discrete form:

dp(X,Y ) = argmin
κ∈[0,τy],φ

(
T∑

t=1

d(X(t), Y (κ+ φ(t)))2
)

, (2)

where X and Y are sample Karcher means of the processes X and Y at times
t = 1, . . . , T . Next we specify our choices of S, d(·, ·), Karcher mean, and φ.

3.1 Analysis of Silhouettes’ Shapes

For comparing shapes of planar curves, a recent emphasis has been on using func-
tions, such as direction function or curvature function, for representing curves,
and add a closure condition to analyze shapes [5]. One extension is to allow for
shapes to stretch and compress, in order for a better matching of feature points
[7], as follows. A parameterized curve in R2 of length 2π, denoted by α, is rep-
resented by a pair of function (φ, θ) such that at any point s ∈ [0, 2π], we have
α′(s) = exp(φ(s)) exp(jθ(s)), where j =

√
−1. φ is called the log-speed function

and θ is called the direction function of the curve α. Consider the space C of all
closed curves of length 2π, and average direction π, in R2 given by:

C = {(φ, θ)|
∫ 2π

0
eφ(s)ejθ(s)ds = 0,

∫ 2π

0
eφ(s)ds = 0,

∫ 2π

0
θeφ(s)ds = π} .

Note that the variability generated by shape-preserving transformations (rota-
tion, translation, and scale) are already removed, but the variability resulting
from different placements of origin on α, and different re-parameterizations of
[0, 2π] remain. The former variability results from the group action of S1, the
unit circle, and the latter results from the group action of D, the set of all auto-
morphisms {γ : [0, 2π]  → [0, 2π]}. Therefore, the shape space is defined to be a
quotient space S = C/(S1 ×D).

An efficient technique for quantifying shape differences is to compute a
geodesic path in S connecting the two shapes, and then use its length to quantify
shape differences. An integral part of this computation is to find an optimal match-
ing of points across shapes. That is, given two shapes (φ1, θ1) and (φ2, θ2), we are
interested in finding a re-parametrization γ of (φ2, θ2) such that it minimizes the
matching cost:

∫ 2π

0

(
λ‖(φ1(s), θ1(s)) − (φ2(s), θ2(s)) ◦ γ‖2 + (1 − λ)|γ′(s)|2

)
ds.

Here, λ is a parameter that balances between stretching and bending. Shown in
Figure 4 are some examples of this matching. Note that the matching process
works well whether the legs are apart or together, hands are visible or not, etc.
The computation of a geodesic is based on a shooting method [5]. To illustrate
this idea by example, shown in Figure 5 are some examples of geodesic paths be-
tween shapes of human silhouettes. Intermediate shapes denote equally-spaced
points along geodesics connecting the end shapes. For any two shapes (φ1, θ1) and
(φ2, θ2), the length of geodesic path between them forms a natural tool to compare
them and is denoted by d((φ1, θ1), (φ2, θ2)). Also, we will use the function Ψ(t) to
denote the geodesic path, so that Ψ(0) = (φ1, θ1) and Ψ(1) = (φ2, θ2).
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Fig. 4. Each pair shows an optimal registration of points, the lines connect the matched
points across the shapes

Fig. 5. Examples of geodesic paths between human shapes in S
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Fig. 6. Left: an ordered sequence of silhouettes. Right: a plot of d(X(1), X(t)) versus
t. The peaks at shapes t = 5, 12, 18, and 25 determine beginnings and ends of cycles.

3.2 Detection of Gait Cycles

We seek automated techniques for detecting cycles from ordered sequences of
extracted shapes. For this, we utilize the fact that silhouettes with the arms and
legs together are far away, in terms of geodesic distances, from the silhouettes
where the limbs are extended. We begin with a silhouette with the limbs extended
and compute geodesic distances from that first shape to all the following shapes.
This distance attains peaks at the shapes with the limbs together, and we detect
the beginning and end of cycles by looking for these peaks. An example is shown
in Figure 6.
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3.3 Interpolation Between Observed Shapes

An important tool in our approach to gait recognition is the ability to interpolate
on S. In Eqn. 2, the evaluation of X(t) and Y (κ + φ(t)) for the same t is an
issue as the two paths may not have been observed at corresponding times.
One needs an ability to “fill in” shapes using the observed shapes. To estimate
a shape that occurs between any two observed shapes, we use geodesics paths
to interpolate on the shape space S. We compute these interpolated points as
Ψ(t) for some t ∈ (0, 1), as illustrated in Figure 7. The silhouettes in the top
row were obtained at eight uniformly-spaced points in time, which we shall
denote t = 0 to t = 7. In case we need resample them at six time points, we
obtain silhouettes at t = 0, 7

5 ,
14
5 ,

21
5 ,

28
5 , 7 via interpolation. For example, to get

a point at time t = 7
5 , we compute the geodesic path Ψ from the shape at

t = 1 to the shape at t = 2 and an estimate of the shape at t = 7
5 is given

by Ψ(0.2). The remaining shapes in the second row of Figure 7 are computed
similarly.

Fig. 7. Geodesic Interpolation. Top: a sequence of eight shapes. Bottom: interpolation
of this sequence to sampled uniformly at six points.

3.4 Registration of Gait Cycles

The next issue in comparison and recognition of gait is the registration of points
along any two cycles. In other words, given samples of shapes along two observed
walks, which shapes should be compared with each other. Even though the
shapes form an ordered sequence, there may be a time scaling, time warping,
and/or time shifting between the two sequences. Shown in Figures 8 are examples
of observed gait cycles for two people. One cycle contains 10 shapes while the
other contains eight shapes. In order to compare these two sequences, we need to

Fig. 8. Observed gait cycles for two different people. They need to be registered before
their comparison.
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register the two cycles. As earlier, let τx and τy be the periods of gait sequences
X and Y , and let φ : [0, τx]  → [0, τy] be a map that is invertible, and both φ and
φ−1 have piecewise continuous derivatives. Our first goal is to find κ and φ that
minimize energy given in Eqn. 1. However, once the cycles have been detected,
the need to estimate κ is no more. The problem of finding φ is addressed as
follows:

1. Nonlinear time scaling: Several authors have used the idea of using dy-
namic programming, often called dynamic time warping (DTW), earlier in dif-
ferent contexts. This solves for φ̂ = argminφ

∫ τx

0 d(X(t), Y (φ(t)))2dt (see [9] for
example.) An example of dynamic time warping is given in Figure 9.
2. Linear time scaling: Another idea to consider φ simply as a linear time
scaling, φ(t) = βdt, where β > 0 is a scalar. In case the end points of the
two cycles are known, then β is simply τy/τx, otherwise both κ and β can
be jointly estimated from the observed gait sequences according to: (κ̂, β̂) =
argmin(κ,β)

∫ τx

0 d(X(t), Y (κ+βt))2dt. An example of linear time scaling is given
in Figure 7.

3.5 Computation of Mean Gait Cycles

To utilize Eqn. 2 for comparing gait sequences, we need to estimate the mean
shape E[X(t)] for relevant times in a gait cycle. Assuming that we have multiple
observations of a person’s gait cycle, the task here is to first register the shapes
across cycles, as described above, and then to compute means of corresponding
shapes across sequences. The mean shape E[X(t)] is defined to be the sam-
ple Karcher mean shape at time t as follows. Given a set of sample shapes
(φ1, θ1) . . . , (φn, θn) ∈ S , the sample Karcher variance is a function of (φ, θ) ∈ S,
and is given by V (φ, θ) =

∑n
k=1 d((φ, θ), (φk , θk))2, where the metric d denotes

the metric on S denoting the shortest geodesic path between points. The Karcher
mean set of (φ1, θ1), . . . , (φn, θn) ∈ S is the set of minimizers of V (φ, θ). Klassen
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Fig. 9. Dynamic Time Warping. Top left: a sequence of ten silhouettes from a training
sequence. Top right: a test sequence to be registered to the training sequence. Bottom
left: the test sequence after registration and the plot shows the function φ, found by
dynamic programming, used in the registration.
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Interpolated Cycle One Interpolated Cycle Two

Interpolated Cycle Three Mean Cycle

Fig. 10. Computation of a mean cycle. The first three sets consist of gait cycles regis-
tered using linear interpolation. The mean cycle is shown in the fourth set. Each shape
in the fourth row is the Karcher mean of the three corresponding shapes.

et al. [5] present an algorithm for computation of the sample Karcher mean. An
example of calculation of a mean gait cycle is shown in Figure 10.

4 Experimental Results

Our experimental results are based on a collection of IR video clips of 26 people.
We collected at least two video clips of each person, and formed disjoint training
and tests. We performed a gait matching experiment, following these steps:

– For each of the training and test sequences we extracted three half-cycles,
performed registration using linear time scaling, then computed an average
gait cycle.

– For each test sequence, we computed the metric in Eqn. 2 for each training
sequence and sought the nearest match.

The results are summarized in Table 1 under Method 1. Under the nearest
neighbor criterion, we obtain a successful match for 17 of the 26 test sequences.
For 21 of the 26 test sequences, the correct match in the training set was among
the top three choices. An example of a correct match is show in the top row of
Figure 11, while an incorrect match is shown in the bottom row.

For comparison we studied a simpler method, called the mean-shape approach.
Some papers suggest that gait recognition can be achieved using merely a mean
shape of the cycle, rather than using the full cycle [6, 11]. For each person in

Table 1. This table shows the number of test data, out of 26, for which the correct
class is in top i-classes, plotted against i

i 1 2 3 4 5 6 7 8 9 10

Our Approach 17 20 21 21 21 22 22 23 24 24

Mean-Shape Approach 13 14 16 19 19 20 20 20 20 22

Landmark-Based Approach 10 11 14 17 19 19 20 20 21 22
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Test Cycle Training Cycle for Best Match

Test Cycle Training Cycle for Same Person Training Cycle Selected (Incorrect)

Fig. 11. Top: Example of a correct match. Bottom: An example of an incorrect match.

the training set, these methods compute a single mean shape. Then for a test
sequence, a single mean shape is computed and then the best match in the train-
ing set is sought. Surprisingly, a decent performance has been reported with this
simplified method. In Table 1, results are summarized for this approach for our
dataset. Finally, we also compute recognition performance using the landmark-
based shape analysis of boundary curves. Although the general approach here
is same as our method, the choices of shape space S, geodesic length d(·, ·),
Karcher means, etc are different [3]. Recognition results based on this method
are reported in Table 1.

5 Summary

In this work we present a novel framework for gait recognition, considering gait
as a cyclostationary process on a shape space of simple closed curves. Geometric
tools enable us to perform: (i) interpolation between shapes, (ii) registration of
gait cycles, (ii) averaging of gait cycles, and (iv) comparisons of gait cycles for
human recognition. An important note is that comparison of mean cycles, rather
than the cycles themselves, help suppress intra-class variability and improve the
classification performance.
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Abstract. We propose a semidefinite relaxation technique for multiclass
image labeling problems. In this context, we consider labeling as a spe-
cial case of supervised classification with a predefined number of classes
and known but arbitrary dissimilarities between each image element and
each class. Using Markov random fields to model pairwise relationships,
this leads to a global energy minimization problem. In order to handle
its combinatorial complexity, we apply Lagrangian relaxation to derive
a semidefinite program, which has several advantageous properties over
alternative methods like graph cuts. In particular, there are no restric-
tions concerning the form of the pairwise interactions, which e.g. allows
us to incorporate a basic shape concept into the energy function. Based
on the solution matrix of our convex relaxation, a suboptimal solution of
the original labeling problem can be easily computed. Statistical ground-
truth experiments and several examples of multiclass image labeling and
restoration problems show that high quality solutions are obtained with
this technique.

1 Introduction

Classification of extracted image elements (e.g. pixels, patches, objects) or in
short image labeling is a fundamental issue in computer vision. Based on a pre-
defined number of classes, the goal is to assign each image element to one of these
classes according to some suitable criterion. Not considering the corresponding
problem of learning adequate class representations here, we assume that fixed
dissimilarity values between each image element in comparison to the different
classes are given in advance. Depending on the application, these dissimilari-
ties may be based on previously known class prototypes, resulting in an image
restoration problem (the image features are noisy measurements of the given pro-
totypes), or on class representations that can be estimated from training data
(by making certain assumptions about the distribution of the image features).

As illustrating examples consider the images given in Figure 1: based on the
observed values, we want to either restore the original image by determining the
‘true’ intensity for each pixel, or classify the pixels according to some measured
feature (like texture). To this end, a compromise between two competing forces is
usually sought [1]: on the one hand, we look for classifications that best conform
to the observed feature values, while on the other hand — assuming that natural

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 454–467, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Multiclass image restoration/labeling. Restore a gray-value image from
noisy measurements (left). Label image parts according to their texture (right).

images are mostly smooth, except for occasional region boundaries — spatially
neighboring pixels should receive similar labels.

In order to find a labeling which captures this trade-off, we seek to minimize a
global energy function which involves pairwise relationships among the objects.
This kind of problem has a long history in the literature, in particular as it arises
naturally from the well-studied theory of Markov random fields, a statistical
framework that builds the core of many image processing applications [1, 2, 3, 4].

Using integer variables xi to indicate the label for each image element i, the
resulting problem can be formulated as minimizing an energy functional of the
following general form [5]:

E(x) =
∑

i

Ci(xi) +
∑
〈i,j〉

Vij(xi, xj) , (1)

where the second term sums over all pairwise interacting image elements. The
energy (1) comprises two terms familiar from many regularization approaches:
a data-fitting term and a smoothness term modeling spatial context. In more
detail, the data-fitting term measures the dissimilarity Ci(xi) between element
i and class xi (assignment costs), while the smoothness term evaluates the dis-
agreement Vij(xi, xj) of the labels for related pairs i, j (separation costs).

Due to the integer constraint on the variables xi the optimization problems
obtained from (1) are much more difficult than standard regularization problems.
In fact, apart from a few special cases, they are in general NP-hard [5]. Accord-
ingly, different methods have been proposed to find good minimizers of (special
instances of) the energy (1) efficiently, like the ICM-algorithm [3], the graduated
non-convexity approach [6], different versions of annealing procedures [2, 7], local
search heuristics based on graph cuts [5], or linear programming relaxations [8].

Recently, a semidefinite relaxation approach was presented to approximate
the minimal solution of the energy (1) for the special case of binary labeling
problems [9]. At the cost of an increased but still moderate computational com-
plexity, the tightness of this relaxation method results in high quality combina-
torial solutions. This fact along with the recent success of semidefinite relaxation
for other combinatorial optimization problems [10, 11, 12] motivated us to extend
the approach from [9] to image labeling problems involving multiple classes. In
contrast to other methods [5, 8, 13] the resulting approximation technique needs
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no special assumptions with respect to the pairwise interactions between vari-
ables given by Vij(xi, xj) in (1), so that it is applicable to a very general class
of problems. In particular, each pair of image elements can have its own dis-
tinct, arbitrary interaction function, which will allow us to include basic ‘shape’
information into the labeling problem (see Section 4). Although recent efforts
show that e.g. graph cut methods can also be adapted to less restricted problems
[14, 15], they are not able to deal with the energy (1) in the general case.

Other favorable properties of our approach include: As it yields a convex
semidefinite program (SDP), the global optimum of the relaxation can be com-
puted to arbitrary precision in polynomial time, without the need to heuristically
optimize any tuning parameters (cf. [16]). Like the LP relaxation presented in
[8], we obtain probabilities for each point-label pair, which allows us to define so-
phisticated rounding schemes. Moreover, the SDP relaxation gives a lower bound
on the optimal objective value that can be used to estimate the per-instance
approximation error.

2 Problem Formulation

In order to apply semidefinite relaxation to the image labeling problem, we first
derive a trace formulation of the energy functional (1). To this end, let k denote
the number of possible classes present in the image. Furthermore, we indicate the
class membership of each image element i by a vector xi ∈ {e1, . . . , ek} taking
as value one of the k standard unit vectors from Rk. Assuming that the image
contains n elements, the indicator vectors form the rows of the labeling matrix
X ∈ Rn×k.

Using these definitions, and denoting the trace of a matrix A by Tr(A) =∑
iAii, we obtain the following formulation of the energy functional (1):

E(x) =
n∑

i=1

k∑
a=1

Ci(a)xia +
∑
〈i,j〉

k∑
a=1

k∑
b=1

Vij(a, b)xiaxjb

= Tr
(
CX� +

∑
a,b

V (a, b)XIabX�
)
,

(2)

where C ∈ Rn×k contains the costs Cia = Ci(a) for assigning object i to class a,
V (a, b) ∈ Rn×n comprises the separation costs of related objects for a fixed label
pair (a, b), and Iab ∈ Rk×k is the matrix with the only non-zero entry Iab

ab = 1.
For many image labeling problems, the separation costs in (1) can be decom-

posed into two factors:

Vij(xi, xj) = PijD(xi, xj) , (3)

where the weight Pij indicates the strength of the relation between image ele-
ments i, j, and D(xi, xj) measures the distance between the two labels xi, xj . In
this case, the trace formulation of the energy functional (2) simplifies to:

E(x) = Tr
(
CX� + PXDX�) , (4)
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with matrices P ∈ Rn×n and D ∈ Rk×k. A typical example is the discontinuity
preserving model of metric Potts interaction penalties [5], which are defined as

PijD(xi, xj) = λ‖xi − xj‖2 = 2λ(1 − x�i xj) (5)

for associated (neighboring) image elements i, j. Controlling the desired smooth-
ness by the fixed parameter λ ∈ R+, seperation costs of this form encourage im-
age regions with constant labels without penalizing sharp boundaries too much.
As can be verified easily, in terms of the trace formulation (4) the Potts interac-
tions are expressed by symmetric matrices P with non-zero entries Pij = λ for
associated objects i, j, and D = E− I, where E and I are the matrix of all ones
and the identity matrix, respectively.

However, in contrast to other image labeling methods [5, 8] our semidefinite
relaxation approach will not require any specific form of the separation costs; in
fact, they are allowed to be non-symmetric or may vary depending on the labels
for a fixed object pair. Putting everything together, we consider the following
optimization problem for multiclass image labeling:

z∗ := min
X∈Rn×k

Tr
(
CX� +

∑
a,b

V (a, b)XIabX�
)

s.t. Xek = en

Xia ∈ {0, 1} ∀ 1 ≤ i ≤ n, 1 ≤ a ≤ k ,

(6)

where ej ∈ Rj denotes the vector of all ones of appropriate size. The first
constraint in (6) requires each row of X to sum to one, which in connec-
tion with the second constraint ensures that each row corresponds to a unit
vector ei ∈ Rk.

This combinatorial optimization problem resembles the generalized quadratic
assignment problem (QAP, see, e.g., [17]), which has the objective to optimally
place n given activities at n given locations by minimizing a cost function of
the form Tr(AXBX�− 2CX�) over the set of permutation matrices X ∈ Rn×n

(with A,B,C ∈ Rn×n). In fact, we can interpret (6) as an uncapacitated version
of a general QAP where multiple activities are allowed to be placed at the same
location [8]. In the context of solving the NP-hard QAP, semidefinite relaxation
approaches have attracted considerable interest [10, 18]. In the next section, we
will show how these methods can be generalized to also find approximate solu-
tions for our less restricted labeling problem (6).

3 Semidefinite Relaxation

Following the QAP relaxation presented in [10], we apply Lagrangian relaxation
to the image labeling problem (6). For ease of notation, we use the simplified
form (4) of the energy here; the result for the more general case (2) is derived
analogously and will be stated later. As a first step, we represent the constraints
in (6) in quadratic form, which results in the following equivalent problem:
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z∗ = min
X∈Rn×k

Tr
(
PXDX� + CX�)

s.t. ‖Xek − en‖2 = 0

X2
ia −Xia = 0 ∀ i, a .

(7)

Using the Lagrange multipliers W ∈ Rn×k and u0 ∈ R, we add the constraints
to the objective function, and perform relaxation by virtue of the “minimax
inequality” [12]:

z∗ = min
X

max
W,u0

Tr
(
PXDX� + CX�) +

∑
i,a

Wia(X2
ia −Xia)

+ u0(Xek − en)�(Xek − en)

≥ max
W,u0

min
X

Tr
(
PXDX� + CX�) + Tr

(
W (X ◦X −X)�

)
+ u0 Tr

(
XEkX

� − 2En×kX
�) + u0n

= max
W,u0

min
X

Tr
(
PXDX� +W (X ◦X)� +X(u0Ek)X�

+ (C −W − 2u0En×k)X�) + u0n .

Here, X ◦X denotes the Hadamard (elementwise) product of two matrices, and
Ek and En×k are matrices of all ones of appropriate dimension.

Next we homogenize the objective function by multiplying X with a con-
strained scalar x0 = ±1, which increases the dimension of the problem by one.
The additional constraint is then inserted into the objective function by intro-
ducing the Lagrange multiplier w0 ∈ R:

z∗ ≥ max
W,u0

min
X,x2

0=1
Tr

(
PXDX� +W (X ◦X)� +X(u0Ek)X�

+ x0(C −W − 2u0En×k)X�) + u0nx
2
0

≥ max
W,u0,w0

min
X,x0

Tr
(
PXDX� +W (X ◦X)� +X(u0Ek)X�

+ x0(C −W − 2u0En×k)X�) + u0nx
2
0 + w0x

2
0 − w0 =: s∗d .

Transforming the problem variables x0 and X into a vector by defining y :=(
x0

vec(X)

)
, we obtain

s∗d = max
W,u0,w0

min
y

y�
(
LP,D,C +AW,w0 + u0F

)
y − w0 , (8)

with

LP,D,C :=
(

0 1
2 vec(C)�

1
2 vec(C) D ⊗ P

)
, (9)

AW,w0 :=
(

w0 − 1
2 vec(W )�

− 1
2 vec(W ) Diag(vec(W ))

)
, (10)

F :=
(

n −(enk)�

−enk Ek ⊗ I

)
. (11)
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Here, vec(X) is the vector containing the stacked columns xi of X , Diag(w) is
the diagonal matrix formed from the vector w, and A⊗B denotes the Kronecker
product of two matrices.

There is a hidden semidefinite constraint in (8): the inner minimization is
bounded below only if the matrix in the quadratic term is positive semidefinite,
in which case the corresponding minimum becomes zero (cf. [10]). Indicating
positive semidefiniteness of a matrix by X # 0, this finally yields the following
relaxation of (6):

s∗d = max
W,u0,w0

− w0

s.t. LP,D,C +AW,w0 + u0F # 0 .
(12)

To obtain a direct semidefinite relaxation of (6), we derive the Lagrangian
dual of (12). To this end, first observe that the matrix in (10) can be split
into AW,w0 =

∑nk
i=0 wiAi by defining w := vec(W ) and sparse symmetric, nk +

1-dimensional matrices Ai with the only non-zero entries (Ai)i+1,i+1 = 1 and
(for i �= 0) (Ai)1,i+1 = (Ai)i+1,1 = − 1

2 . Using the dual positive semidefinite
matrix variable Y ∈ Rnk+1×nk+1, we get

s∗d = max
w0,w,u0

min
Y �0

−w0 + Tr
(
Y (LP,D,C +

nk∑
i=0

wiAi + u0F )
)

≤ min
Y �0

max
w0,w,u0

Tr(LP,D,CY ) + w0
(
Tr(A0Y ) − 1

)
+

nk∑
i=1

wi Tr(AiY )

+ u0 Tr(FY ) =: s∗p .

As the inner maximization is unconstrained, this minimization problem is finite
valued only if all the factors in the last three terms are zero. Using this hidden
constraint, we finally obtain the following semidefinite program (SDP) as the
dual of (12):

s∗p = min
Y �0

Tr(LP,D,CY )

s.t. Tr(A0Y ) = 1
Tr(AiY ) = 0 ∀ 1 ≤ i ≤ nk

Tr(FY ) = 0 .

(13)

The connection of this semidefinite relaxation with the original integer prob-
lem (6) now becomes obvious: the binary labeling matrix X ∈ Rn×k is first
transformed into a vector vec(X) and then lifted into the higher, (nk + 1)2-
dimensional space of positive semidefinite matrices by setting

Y :=
(

1
vec(X)

)(
1, vec(X)�

)
. (14)

The relaxation consists in discarding the intractable rank one constraint on this
matrix Y , and minimizing over the more general space of nk + 1-dimensional,



460 J. Keuchel

positive semidefinite matrices instead (cf. [9]). Besides the A0-constraint, which
is an artificial one to enable the homogenization of the objective function, the
other constraints in (13) directly correspond to the constraints in the original
problem formulation (6): the Ai-constraints guarantee that the diagonal and the
first row (and column) of Y are identical, thus modeling the {0, 1}-constraint on
the entries ofX , whereas the F -constraint is derived from the sum-one-constraint
on the indicator vectors constituting the rows of X .

Regarding the more general case of the energy functional (2), the only differ-
ence during the relaxation process occurs in the derivation of (8): instead of the
matrix LP,D,C from (9), the term

∑
a,b V (a, b)XIabX� in (2) yields the matrix

LV,C :=
(

0 1
2 vec(C)�

1
2 vec(C)

∑
a,b I

ab ⊗ V (a, b)

)
=

(
0 1

2 vec(C)�
1
2 vec(C) V

)
, (15)

with V ∈ Rnk×nk being composed blockwisely of the V (a, b)-matrices. Hence,
we obtain the corresponding general semidefinite relaxation of (6) by simply
replacing LP,D,C with LV,C in (12) and (13).

Concerning the solvability of the SDP relaxation (13), we have the following
lemma (cf. [10]):

Lemma 1. A feasible solution matrix Y for (13) is singular, with at least n of
its eigenvalues being equal to zero.

Proof. The constraint matrix F �= 0 is positive semidefinite: as can easily be
calculated, its non-zero eigenvalues are λnk+1 = n + k and λn(k−1)+2 = · · · =
λnk = k. As Y is also positive semidefinite, the constraint Tr(FY ) = Tr(Y F ) = 0
in (13) directly implies that Y F has to be the null-matrix [19, Lemma 2.9].
Hence, Y Fi = 0 for each column Fi, which shows the singularity of Y . As
exactly n columns Fi of F are linearly independent (namely i = 2, . . . , n + 1),
the dimension of the null space ker(Y ) is at least n. �
Lemma 1 implies that the semidefinite program (13) has no strictly interior
point. On the other hand, we can always define a strictly interior point for
the corresponding dual SDP (12) by setting u0 = 0 and choosing w0 and the
entries of W large enough to make the diagonal of the matrix LP,D,C + AW,w0

as dominant as necessary to yield a positive definite matrix. Hence, the Slater
condition holds for the dual, so that by the strong duality theorem for SDP
[19], there is no duality gap: s∗p = s∗d (for more details about the elegant duality
theory for SDP, we refer to [16]).

Due to Lemma 1, however, it is not guaranteed that the optimal value of the
dual SDP (12) is attained. Therefore, interior point methods can suffer from in-
stability when solving the SDP relaxation and may not converge. One possibility
to circumvent this problem is to project the SDP (13) onto a lower dimensional
face of the semidefinite cone [10]. However, as we only need the optimal solution
of the primal SDP (and not the dual), we revert to a non-interior point algorithm
to solve the SDP relaxation instead: the PENNON SDP solver [20] is based on
a generalized version of the augmented Lagrangian method, and therefore does
not need to compute the optimum of the dual SDP (12).
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4 Experimental Results

In this section, we experimentally investigate the performance of the SDP relax-
ation for one- and two-dimensional labeling problems. In this context, we need
to derive a feasible integer solution of the original combinatorial problem (6)
based on the solution matrix Y ∗ of the primal SDP relaxation (13). Since the
first column of Y ∗ originally corresponds to Y1 =

( 1
vec(X)

)
(cf. (14)), we obtain an

approximation Ỹ of the binary matrix X by reshaping Y1 appropriately: starting
with the second entry, the columns of Ỹ are formed by blocks of length n in Y1.
As in particular, the constraints on Y in (13) ensure that each row ỹi of Ỹ sums
to one, the entries can be interpreted as probabilities of assigning the different
labels. This suggests to define the label of object i (and thus the position of the
one-entry in the corresponding class indicator vector xi) by simply seeking the
largest value in ỹi. However, the difference Δỹi between the two highest proba-
bility values in ỹi may be quite small for some objects. To take such ‘doubtful
labelings’ into account, we follow a slightly different idea to obtain the final so-
lution: In a first step, the labeling is fixed to the most likely class only for those
objects i where the difference Δỹi is bigger than a threshold Δmin. In subsequent
steps, the current labeling and the remaining probabilities ỹi are combined into
the matrix X̃, and modified contributions z̃�i = 2PiX̃D + Ci to the objective
value are calculated for the remaining objects. Seeking the smallest value z̃ja

within all vectors z̃i, we then fix the label for the corresponding object j to a.
In this way, the strong labels are taken into account when setting the doubtful
labelings according to the objective function.

Statistical Ground Truth. As a first experiment, we measure the performance
of the multiclass SDP relaxation (13) statistically. To this end, we perform the
following binary (k = 2) ground-truth experiment (cf. [9]): A synthetic one-
dimensional signal (Figure 2, top left) is first distorted by adding Gaussian white
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Fig. 2. One-dimensional restoration. The original signal (top left) is distorted by
Gaussian white noise (middle left) and restored based on the SDP relaxation (13). Giv-
ing relative errors mostly below 1%, our multiclass SDP relaxation in general performs
slightly better in comparison to the binary SDP relaxation presented in [9] (right).
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noise and then restored with the SDP relaxation approach — see Figure 2 (left)
for a representative example. The energy E(x) in this case is defined by Potts
interaction penalties (5) and assignment costs

Ci(a) = (ua − gi)�(ua − gi) , (16)

where gi denotes the local measurement at point i and u1 = 1, u2 = −1 are
the two prototypical class labels. As each signal element is only connected to its
two neighbors, the optimal solution X∗ of (6) can be found easily in this case
(for fixed smoothness parameter λ), e.g. by dynamic programming. Comparing
X∗ with the combinatorial solution obtained with the SDP relaxation, we then
calculate the relative error of the objective value and the corresponding relative
Hamming distance (percentage of misclassified elements).

In order to derive some significant statistics, we perform this experiment for
100 different noisy versions of the original signal, and calculate the correspond-
ing mean errors. The results obtained for a variety of fixed λ-values are depicted
in Figure 2, right. They show that the solutions based on the SDP relaxation ap-
proach are remarkably good: the average relative error of the objective value and
the average relative Hamming distance both are below 1.5%, with standard devi-
ations below 0.9% (objective error) and 1.5% (Hamming distance), respectively.
Note that in this experiment, we do not measure the quality of the restoration,
which also depends on picking a suitable value λ, but the performance of the
SDP relaxation approach in relation to the optimal solution.

For comparison, we also performed the same statistical experiment for the di-
rect binary SDP relaxation technique presented in [9]. Although the experiments
reveal that the objective values s∗p of both relaxations coincide (meaning that
they are equally tight), a slightly better performance of the multiclass SDP re-
laxation approach can be observed (see Figure 2, right). This difference indicates
that the randomized hyperplane technique used in [9] to obtain a combinatorial
solution performs worse than the more sophisticated method used here to find
the indicator vectors from the first column Y1 of the solution of the multiclass re-
laxation (13). However, the larger problem size of the multiclass SDP relaxation
(401 × 401 compared to 201 × 201 for binary relaxation) increases the compu-
tational requirements: whereas the solution of the direct binary SDP relaxation
is calculated in less than a second, it takes 6–7 seconds to solve the multiclass
relaxation (13).

Multiclass Image Labeling. Figure 3 indicates the main characteristics of
our SDP relaxation approach for image labeling with a first synthetic example:
the restoration of a noisy image originally comprising multiple blocks of dif-
ferent gray-values. For this and all the following two-dimensional experiments,
we use a second-order neighborhood structure (horizontally, vertically and di-
agonally adjacent points are connected), and define separation costs based on
Potts interactions penalties (5) with distance weighted values Pij = 1

dist(i,j)λ.
Moreover, assignment costs of type (16) are used, based on suitable prototypes
u1, . . . , uk ∈ Rm for each class that are fixed in advance. As this type of energy
function satisfies the requirements given in [13], we also compare our results
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Original Noisy input ML classification

SDP restoration Confidence Graph cuts restoration

Fig. 3. Multiclass image labeling result. The original image (top left) of 10 ×
18 pixels is degraded by adding Gaussian white noise (top middle). Without spatial
relations, ML classification yields a noisy restoration (top right). In contrast, the result
of the reconstruction obtained with SDP relaxation (with λ = 0.01) is almost perfect:
only two pixels are classified incorrectly (bottom left), with high confidence for most
pixel labels (bottom middle). This result is comparable to the corresponding restoration
obtained with graph cuts (bottom right).

with the corresponding restorations achieved with the expansion move graph
cuts algorithm from [5].

The reconstruction obtained with the SDP relaxation method for the small
image in Figure 3 is very promising: for this example comprising k = 6 classes,
only two of 180 pixels are labeled incorrectly. Hence, it is of the same quality
as the corresponding graph cuts restoration, which also mislabels two pixels. In
contrast to that, a simple maximum likelihood (ML) classification (which does
not use spatial context) yields a much noisier result (see Figure 3). Interpretation
of the solution values yi as probabilities allows us to compute confidence values
of the pixel labels by subtracting the two highest probabilities from each other:
the results show that only some boundary points receive uncertain labels (dark
pixels in Figure 3, bottom middle). Finally, we note that the lower bound s∗p on
the objective value of (6) computed by the relaxation (13) permits to estimate
the performance of the labeling method: comparison with the value zsdp of the
final combinatorial solution indicates that the relative error of the result is at
most zsdp−z∗

z∗ ≤ zsdp−s∗
p

s∗
p

= 0.064 for this instance.
Figure 4 depicts more results obtained for different types of image labeling

problems. Due to the involved problem sizes (see below), we restrict the algo-
rithm to smaller patches of the original images here. The first row shows the
reconstruction of a noisy grayvalue image taken from [5]. Whereas the ML clas-
sification is very noisy due to its local behaviour, both the SDP relaxation and
graph cuts produce nearly optimal restorations. The example given in the second
row demonstrates how the SDP relaxation approach can be applied to natural
color images: using the three main colors from the noisy patch as prototypes,
a satisfactory classification is obtained (as the original image comprises more
than three colors, this cannot be called a ‘restoration’). Color differences are
calculated in the perceptually uniform L*u*v* space in this case.
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n = 37×37, k = 4 λ = 0.01

n = 35×35, k = 3 λ = 0.02

n = 40×40, k = 3 λ = 0.02

n = 32×32, k = 5 λ = 0.05

Input ML classification SDP labeling Graph cuts labeling

Fig. 4. Multiclass image labeling results. Patches of larger noisy images are re-
stored (rows 1–3) resp. labeled according to texture (row 4) with the SDP relaxation
approach. While getting superior results in comparison to a simple maximum likelihood
classification, the labelings are of the same quality as those obtained with graph cuts.

The third row of Figure 4 indicates an application of our image labeling
method for segmenting tumors in noisy medical images. In this case, prototypes
are calculated directly from the image by choosing representative points for each
class and averaging the gray values over their neighborhoods. The SDP relaxation
then yields a corresponding smooth labeling of the pixels. The last row shows
that our SDP relaxation can also successfully be applied for texture classification:
dividing the original image into patches of size 16 × 16, we compute feature
vectors for each patch by averaging the absolute log-Gabor filter convolutions
of the corresponding pixels. We then pick representative patches for each class,
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and additionally calculate a diagonal covariance matrix Σ from the distribution
of filter responses within these patches to obtain more robust assignment costs
Ci(a) = (ua − gi)�Σ−1(ua − gi). Again, the SDP relaxation results in a smooth
classification of the same quality as the corresponding graph cuts labeling.

The good performance of the SDP relaxation is also confirmed by the es-
timates of the relative error obtained from the lower bounds s∗p, which range
between 1%–4% for the examples in Figure 4. On the other hand, solving the
SDP relaxation is more involved than applying graph cuts: the problem size
increases quadratically with nk, which results in computation times of up to 4
hours for the examples in Figure 4 in comparison to about one second for finding
the corresponding graph cuts solutions. However, these increased computational
requirements also make the approach less restrictive, as we will show next.

Image Labeling with Basic Shape Knowledge. In order to demonstrate
the generality of our SDP relaxation, we apply it to an image labeling task that
in general cannot be handled by other approaches like graph cuts [13]. Assuming
that some specific information is available on the arrangement of certain label
pairs, it is possible to incorporate a basic concept of ‘shape’ into the labeling
problem. For example, it may be known that two labels a, b cannot be neighbored
vertically. This information is easily included into the general energy functional
(1) by setting Vij(a, b) to a high value whenever i and j are vertical neighbors,
and to a small value otherwise. Note that besides preventing the application of
methods that rely on a decomposition (3) of the interaction terms [8] (which do
not permit label dependent penalties for different neighbor constellations), this
might also result in violations of the triangle inequality-type requirements on
the interactions necessary e.g. for the expansion move graph cuts algorithm [13].

Figure 5 shows some illustrative examples. To obtain a perfect reconstruction
for the image from Figure 3, we simply increase separation costs Vij(a, b) by
multiplying them with α = 3 for vertically neighboring pixels i, j for all three
label pairs a, b contained in the top part of the image. In this way, horizontal la-
bel changes are preferred over vertical ones, which efficiently prevents the wrong
classification of the two pixels in the top left block. The second example is han-
dled similarly, but this time we need to modify interactions differently according
to the label constellations: denoting the labels of the left part as a and of the
right part as b1, b2, respectively, the penalties Vij(a, br) are increased for vertical
neighbors i, j, while Vij(b1, b2) is increased for horizontal neighbors. Although
not perfect, the result clearly demonstrates the influence of these priors.

The last row of Figure 5 indicates how the classification can be restricted
to find rectangular shapes: dividing the background into two classes a1 and
a2 neighbored vertically and horizontally to the shape class b, respectively, we
generally decrease Vij(a1, a2) to allow pixels to vary from one background class to
the other (without changing the assignment costs Ci(a1) = Ci(a2)), but increase
vertical penalties Vij(b, a2) and Vij(a1, a2) and horizontal penalties Vij(b, a1)
to model the general label arrangement. The result clearly demonstrates that
these modified separation costs successfully restrict the labeling to a rectangular
shape, whereas the original interaction values give an inferior reconstruction.
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Original Noisy input SDP labeling SDP label. with prior

Fig. 5. Image labeling with basic ‘shape’ concept. Including simple information
about preferred label arrangements results in better reconstructions of heavily noisy
images. The slightly varying background color in the bottom right image visualizes the
artificially enforced splitting into two different background classes.

5 Conclusion

We have presented a method for multiclass image labeling that is able to find
approximate solutions of high quality for a very general class of combinatorial
optimization problems. Applying the mathematically fundamental concept of
Lagrangian relaxation, we obtain a semidefinite program which due to its con-
vexity can be solved in polynomial time without having to optimize any tuning
parameters. In fact, besides defining the classes, only the parameter λ control-
ling the smoothness of the result needs to be adjusted. In comparison to other
approaches like graph cuts, our SDP relaxation method is not restricted to spe-
cial types of the energy function, and additionally gives a lower bound on the
optimal solution value that can be used to estimate the relative error of the
result for each problem instance.

The generality of our method enables us to incorporate a basic concept of
shape into the labeling process. It will be interesting to further investigate this
idea to see whether more complex shape information can be included.

However, this generality of the multiclass SDP relaxation approach has its
price: since the problem size increases quadratically with the product of the
number of image elements and the number of classes, the application of this
method is (yet) restricted to small optimization problems consisting of only few
different classes. In order to remedy this drawback one could perform labeling
successively on different scales: Extracting larger image objects, a corresponding
coarse scale classification is computed in a first step. Afterwards, the labeling
can be refined by applying fine scale classification to those objects that received
low confidence values. In this way, instead of having to compute the solution for
one large problem instance, a sequence of smaller problems that can be solved
more efficiently needs to be considered.
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Finally, we note that it is often possible to tighten Lagrangian relaxations by
incorporating additional constraints that are redundant for the original problem
(cf. [10]). Future work will show whether this is useful in our case to find better
approximative solutions.
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Abstract. We present a method that automatically partitions a single image into
non-overlapping regions coherent in texture and colour. An assumption that each
textured or coloured region can be represented by a small template, called the
seed, is used. Positioning of the seed across the input image gives many pos-
sible sub-segmentations of the image having same texture and colour property
as the pixels behind the seed. A probability map constructed during the sub-
segmentations helps to assign each pixel to just one most probable region and
produce the final pyramid representing various detailed segmentations at each
level. Each sub-segmentation is obtained as the min-cut/max-flow in the graph
built from the image and the seed. One segment may consist of several isolated
parts. Compared to other methods our approach does not need a learning pro-
cess or a priori information about the textures in the image. Performance of the
method is evaluated on images from the Berkeley database.

1 Introduction

Image segmentation can be viewed as a partitioning of an image into regions having
some similar properties, e.g. colour, texture, shape, etc, or as a partitioning of the image
into semantically meaningful parts (as people do). A common problem is that it is dif-
ficult to objectively measure the goodness of a segmentation produced for such a task.
Obtaining absolute ground truth is almost impossible since different people produce
different manual segmentations of the same images [1].

Recently, a method combining image segmentation, the detection of faces, and the
detection and reading of text in an integrated framework has appeared [2]. It is one
of the first attempts to look at segmentation as a knowledge-driven task. At the begin-
ning of the whole face/text recognition task a pre-segmentation of the image is per-
formed which is then iteratively improved by the recognition results. It turns out that
the knowledge-based approach using good initial segmentation leads to a reasonable
result towards recognition of the objects in images. Similarly, in [3] it is shown that the
image segmentation is an important first step in automatic annotation of pictures.

In this paper we concentrate on finding an initial segmentation without any a priori
knowledge such as an object database. The image is split automatically into regions

� This work was supported by the Austrian Science Foundation (FWF) under grant SESAME
(P17189-N04), and the European Union Network of Excellence MUSCLE (FP6-507752).
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Fig. 1. Automatic segmentation of the zebra image shown at the left. The three images on the
right show three dominant textures as three different regions produced by the proposed method.

having similar properties in terms of colour and texture. See Fig. 1, where zebras were
segmented due to different texture and colour to the grass background. This should be
useful in a cognitive vision system leading towards the understanding of an image, as
in [2, 3]. As psychophysics experiments have shown [4], at the beginning of the human
procedure leading to scene understanding, some pre-segmentation using boundaries and
regions is performed as well. Finally, humans use a huge object database in their brains
to tune the segmentation. Usually, even with large occlusions, strong shadows and geo-
metric distortions, humans still are able to recognize objects correctly.

There are many papers dealing with automatic segmentation. We have to mention the
well known work of Shi & Malik [5] based on normalized cuts which segments an im-
age into non-overlapping regions. They introduced a modification of graph cuts, namely
normalized graph cuts, and provided an approximate closed-form solution. However,
the boundaries of detected regions often do not follow the true boundaries of the ob-
jects. The work [6] is a follow-up to [5] where the segmentation is improved by doing
it at various scales.

The normalized cuts method has often been used with success in combination with
methods computing pixel neighborhood relations through brightness, colour and tex-
ture cues [7, 8, 9, 10]. See results [11] showing what automatic segmentation without
knowledge database using affinity functions [8] which were fed to an eigensolver to
cluster the image can achieve. In our experiments we used the same image dataset [12]
to easily compare the results.

There is another direction in image segmentation by using Level Set Methods
[13, 14]. The boundary of a textured foreground object is obtained by minimization
(through the evolution of the region contour) of energies inside and outside the region.

The main contribution of this paper lies in showing how a small image patch can
be used to automatically drive the image segmentation based on graph cuts resulting
in colour- and texture-coherent non-overlapping regions. Moreover, a new illumination
invariant similarity measure between histograms is designed. For finding min-cut/max-
flow in the graph we applied the algorithm [15] used for the user-driven image segmen-
tation for grayscale non-textured images [15, 16, 17] augmented to colour and textured
images in [18].

The proposed method works very well for images containing strong textures like
natural images, see Fig. 1. Compared to other methods our approach does not need a
learning process [8] or a priori information about the textures in the image [13]. The
method positions a circular patch, called the seed, to detect the whole region having
the same properties as the area covered by the seed. Many sub-segmentations produced
during the positioning of the seed are then merged together based on proposed similarity
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measures. To obtain semantically correct regions composed often of many segments
with different textures and colours some knowledge-based method would have to be
applied which, however, is out of the scope of this paper.

A similar idea for establishing seeds at salient points based on a spectral embedding
technique and min-cut in the graph appeared in [19]. However, we provide another more
intuitive solution to this problem.

The structure of the paper is as follows. The segmentation method is first explained
for one seed in Sec. 2 and then for multiple seeds together with combining and merg-
ing partial segmentations yielding the final segmentation pyramid in Sec. 3, outlined in
steps in Sec. 4. Finally an experimental evaluation and summary conclude the paper.

2 One Seed Segmentation

We use a seed segmentation technique [18] taking into account colour and texture based
on the interactive graph cut method [15]. The core of the segmentation method is based
on an efficient algorithm [16] for finding the min-cut/max-flow in a graph. At first we
very briefly outline the boundary detection and then the construction and segmentation
of the graph representing an image.

2.1 Boundary Detection

Our main emphasis is put on boundaries at the changes of different textured regions and
not local changes inside a single texture. However, there are usually large responses of
edge detectors inside textures. Therefore, in this paper we use as a cue the colour and
texture gradients introduced in [7, 9] to produce the combined boundary probability
image, see Fig. 5(b).

2.2 Graph Representing the Image

The general framework for building the graph is depicted in Fig. 2 (left). The graph is
shown here for a 9 pixel image and an 8-point neighborhood N . In general, the graph
has as many nodes as pixels plus two extra nodes labeled F , B. In addition, the pixel
neighborhood is larger, e.g. we use a window of size 21 × 21 pixels.

The neighborhood penalty between two pixels is defined as follows

Wq,r =
(
e−

g(q,r)2

σ2

)2

, g(q, r) = pb(q) + max
s∈Lq,r

pb(s) , (1)

where σ2 is a parameter (we used σ2 = 0.08 in all our experiments), pb(q) is the
combined boundary probability (Sec. 2.1) at point q and Lq,r = {x ∈ R2 : x = q +
k(r−q), k ∈ (0, 1〉} is a set of points on a discretized line from the point q (exclusive)
to the point r (inclusive).

Each node in the graph is connected to the two extra nodes F , B. This allows the
incorporation of the information provided by the seed and a penalty for each pixel being
foreground or background to be set. The penalty of a point as being foreground F or
background B is defined as follows

RF|q = − ln p(B|cq), RB|q = − ln p(F|cq), (2)
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F

B

RB|q

RF|q

q

r

Wq,r

edge cost region

{q, r} Wq,r {q, r} ∈ N
{q, F} λ RF|q ∀q
{q, B} λ RB|q ∀q

Fig. 2. Left: Graph representation for a 9 pixel image and a table defining the costs of graph
edges. Symbols are explained in the text. Right: Four binary image segmentations using various
positions of the seed.

where cq = (cL, ca, cb)� is a vector in R3 of CIELAB values at the pixel q. The
CIELAB colour space has the advantage of being approximately perceptually uniform.
Furthermore, Euclidean distances in this space are perceptually meaningful as they cor-
respond to colour differences perceived by the human eye. Another reason for the good
performance of this space could be that in calculating the colour probabilities below,
we make the assumption that the three colour channels are statistically independent.
This assumption is better in the CIELAB space than in the RGB space. The posterior
probabilities are computed as

p(B|cq) =
p(cq|B)

p(cq|B) + p(cq|F)
, (3)

where the prior probabilities are

p(cq|F) = fL(cL) · fa(ca) · f b(cb), and p(cq|B) = bL(cL) · ba(ca) · bb(cb),

and f{L,a,b}(i), resp. b{L,a,b}(i), represents the foreground, resp. the background his-
togram of each colour channel separately at the ith bin smoothed by a Gaussian kernel.
We used 64 bins. The foreground histograms f{L,a,b} are computed from all pixels
behind the seed. The background histograms b{L,a,b} are computed from all pixels in
the image. See [18] for more details. λ in the table in Fig. 2 controls the importance of
foreground/background penalties against colour+texture penalties and was set to 1000.

After the graph is built the min-cut/max-flow splitting the graph and also the image
into two regions is found by the algorithm [16].

See segmentations resulting from various seed positions in Fig. 2 (right). It can be
seen that segmented foreground region has similar properties to the pixels behind the
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seed. Due to illumination changes, shadows and perspective distortion changing the
resolution of textures, the whole texture region is usually not marked as one region.
However, the segmented regions representing the same texture overlap which we use
in the procedure described in the next section to merge them and to build a probability
map yielding the segmentation.

3 Multiple Seed Segmentation

3.1 Seed Positioning

Each seed position gives one binary segmentation of the image, see Fig. 2(right). To
obtain image segmentation we move the seed across the image as follows.

A regular grid of initial seed positions is created, marked as black dots on small white
patches in Fig. 3(a). Using seeds at regular grid positions would segment two textured
regions as one segment. Since we want to find segments with a constant inner structure
we avoid cases where the seed crosses a strong response in the combined boundary
probability map in Fig. 5(b). Therefore we create a local neighborhood around each
initial position in the grid and the position of the seed which minimizes the sum of
values of pixels behind the seed in the combined probability map is looked for, i.e.

u∗ = argmin
u∈A

∑
v∈Su

pb(v), (4)

where u is a 2 element vector with (x, y)� image coordinates, Su is the seed (in our
case circular) area centered at the point u and A is a neighborhood rectangle around the
initial grid point. The neighborhood rectangles should not overlap to avoid the case of
identical seed positions having different initial points. We find the minimum in Eq. (4)
by brute force, i.e. the error is evaluated at all possible positions of the seed in the
neighborhood A because of low computational demand.

For each initial grid position, one u∗ is found and the segmentation method described
in Sec. 2 is applied using a seed positioned at u∗ to obtain a binary sub-segmentation.
The positions u∗ of the seeds for the leopard image are shown in Fig. 3(a).

(a) (b) (c)

Fig. 3. (a) The input image with automatically positioned seeds. (b) Probability maps for four
possible segments. Black corresponds to the higher probability, white to the lowest one. (c) Unas-
signed pixels.
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3.2 Combining Partial Segmentations

The sub-segmentations corresponding to the seeds are grouped together w.r.t. the size
of the mutual common area with other sub-segmentations. At the beginning of moving
the seed an empty list of potential segments is created. After the first run (first position
of the seed) the sub-segmentation is assigned to the first segment in the list. After each
consecutive run the actual sub-segmentation is compared to segments already stored in
the list. If there is any segment in the list overlapping with a specified fraction (we use
80%) of pixels then the sub-segmentation is summed to this segment. Otherwise a new
segment in the list is created.

Summing the sub-segmentations produces the probability with which each pixel be-
longs to each of the possible segments. The sum of values of pixels lying at the same
position in different segments in the list is used for normalization to get the value range
from 0 to 1. Fig. 3(b) shows an example of a four segment list obtained by applying
segmentations using seeds depicted in Fig. 3(a). There may still remain pixels which
were not assigned to any segment, see Fig. 3(c), which are treated in the merging stage
described later.

3.3 From Probability Map to Segments

The probability map constructed in the previous sub-section can be used to obtain the
a priori probability of each possible segment. Assuming that each segment is equally
important and no penalizations are applied, the decision following Bayes theorem leads to
choosing for each pixel the segment which has the highest support by sub-segmentations,
i.e. has highest a priori probability. For example, the tail of the leopard is present in three
segments, see Fig. 3(b). However, in the segment containing the whole leopard the pixels
corresponding to the tail have the highest probability to be assigned to this segment.
See Fig. 4 for the result. The list of segments L is represented by binary matrices Li, i.e.

L = {Li ∈ {0, 1}n×m : 0 ≤ i ≤ S},

where S is the number of segments. The matrix L0 stands for the segment containing
unassigned pixels.

For the leopard image after this stage we could be satisfied since the segmentation
captures the main regions. One possible region (top right in Fig. 3(b)) disappeared as no
pixels remained assigned to this segment after incorporating probabilities. However, the
non-overlapping segments having similar properties can sometimes be split due to illu-
mination changes. To observe this, look at the grass or the bear head in the bear image

Fig. 4. Segmentation after assigning the most probable segment to each pixel. The rightmost
image corresponds to unassigned pixels.
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(a) (b) (c)

Fig. 5. (a) The bear image with automatically positioned seeds. (b) Combined boundary proba-
bility image. (c) Possible segments. The last one corresponds to unassigned pixels.

segmentation in Fig. 5. Therefore, we incorporate a shadow-invariant colour space and
merge similar segments into one using a newly designed similarity measure described
in the following subsections.

3.4 Elimination of Unassigned Segments

We convert an input image into the c1c2c3 illumination invariant colour space [20].
Comparison and evaluation of various colour models in the sense of their invariance
can be found in [20]. The conversion from RGB to c1c2c3 colour space is done as
follows

c1 = arctan
R

max {G,B} , c2 = arctan
G

max {R,B} , c3 = arctan
B

max {R,G} .

We compute colour histograms h{c1,c2,c3}
i from pixels marked in segment Li by 1’s

for 1 ≤ i ≤ S. We used 64 bins and smoothed the histograms by a Gaussian kernel.
We label an unassigned segment stored in the binary matrix L0 to separate all re-

gions in this image. For each region Rj in the segment L0, if its area is larger than
some threshold (we use 200 pixels), the new segment LS++ is added into the list of all
segments L. Otherwise, if the area is below the threshold, the region Rj is assigned to
the most probable segment i∗ in the list L w.r.t. to the following criterion

i∗(j) = argmax
1≤i≤S

∑
u∈Rj

hc1
i (I(u)c1) · hc2

i (I(u)c2) · hc3
i (I(u)c3), (5)

where I(u){c1,c2,c3} are c1, c2, c3 values of an image point at the position u. By this step
all pixels/regions in the unassigned segment L0 are eliminated, however, the number of
segments in the list L can increase.

3.5 Merging Segments

We observed that the change of illumination on the same surface does not change the
shape of the histograms, however, it causes their mutual shift. This motivated us to
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design a new illumination invariant similarity function between histograms based on
evaluating the shift.

At first, compute the cross-correlation between histograms of segments for each
colour channel separately and find the maximum values of cross-correlation in some
range 〈t1, t2〉, i.e.

r(i, j) =

⎛⎝argmaxt1≤t≤t2 (hc1
i � hc1

j )(t)
argmaxt1≤t≤t2 (hc2

i � hc2
j )(t)

argmaxt1≤t≤t2 (hc3
i � hc3

j )(t)

⎞⎠ , (6)

where � stands for cross-correlation. We show in Fig. 6 the cross-correlation of third
segment histograms with each of the other segments, i.e. (hc{1,2,3}

3 �h
c{1,2,3}
j )(t), for the

segments shown in Fig. 5(c). As can be seen the cross-correlations have single maxima
which can easily be detected. If there is no peak inside the interval bounded by t1, t2,
the distance is set to Inf . We use t2 = −t1 = 20. The interval should be reasonably
narrow since comparison of the same colours affected by shadows yields only small
displacement of the maxima. In contrast, comparison of different colours yields more
significant displacement and the distance between maxima is meaningless.

Let three elements of r(i, j) be sorted in a vector s = (s1, s2, s3)� such that s1 ≤
s2 ≤ s3. The squared distance of two histograms i, j is then evaluated as

d(i, j) = (s1 − s2)2 + (s3 − s2)2. (7)

The histogram distance in Eq. (7) computed for all pairs of segments is used for finding
most similar segment(s) in the list L. The segments which mutually match to each other
are merged together if the distance is below some threshold dthr. The level of merging
can be controlled by this threshold. Depending on the value various levels in the final
segmentation pyramid are created, see for example the three-level pyramid in Fig. 7. In
this case dthr was increasing from 10 to 200 while three levels were obtained.

From Fig. 6 it is evident that the grass segment (third segment in Fig. 5(c)) is most
similar to other green segments. The same happens to the bear’s head which is at first
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of the curves in each graph corresponds to the c1, c2, c3 colour channel respectively.
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Fig. 7. Three-level pyramid of the bear image. Top row: First pyramid level with six segments.
Bottom row: Second level (five segments on the left) and third level (two rightmost segments).

divided into two parts in Fig. 5(c), however, at some level in the pyramid is merged
together.

4 Algorithm

We shortly summarize all the steps leading to the final single image segmentation:

1. Convert the image from the RGB colour space to the CIELAB space.
2. Compute the combined boundary gradient based on [7, 9] of the image.
3. Make a regular initial grid of seeds. For each initial seed position find a new optimal

position, Sec. 3.1, and compute a binary segmentation based on the min-cut/max-
flow in the graph, Sec. 2.

4. Combine segmentations yielding a probability map, Sec. 3.2, and create a list of
segments L, Sec. 3.3.

5. Eliminate unassigned pixels, Sec. 3.4, and merge similar segments based on the
illumination invariant similarity measure described in Sec. 3.5.

6. Depending on the chosen distance threshold dthr in the similarity measure, the
degree of segmentation coarseness is controlled and the final segmentation pyramid
is obtained.

5 Experimental Evaluation

To benchmark the results of the algorithms, we made use of the Berkeley segmentation
benchmark described in [1]. Two measures of the difference between two segmenta-
tions S1 and S2 are introduced in this paper, the Global and Local Consistency Errors
(GCE and LCE). As the GCE is a more demanding measure, we make use of only this
measure. There are other possibilities for benchmarking such as to use precision/recall
curves as in [19, 9].

We used the 200 colour images in the test group of the Berkeley Segmentation
Dataset [12] as well as the corresponding human segmentations. For each of the images,
at least 5 segmentations produced by different people are available. For each image, the
GCE of the segmentation produced by the tested algorithm with respect to each of the
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Fig. 8. Global Consistency Error (GCE) for human, normalized cuts (ncuts), Fowlkes et al. [8]
(fow) and our proposed method (seed) (from left). The top row shows variance of the GCE for
each image in the dataset. The bottom row shows the histogram of the GCE.

available human segmentations for that image was calculated. The mean of these values
gives the mean GCE per image, which was plotted in a histogram, see Fig. 8. The global
GCE was calculated as the mean of these 200 mean GCE values.

We compared human segmentations to each other and then with the normalized cuts
algorithm (ncuts) [5], Fowlkes et al. algorithm (fow) [8] and our seed algorithm (seed).
Comparison of human vs. human produces a very low GCE value which indicates the
consistency of the human segmentations. The “ncuts” and “fow” methods were applied
to the same combined boundary images as we used, mentioned in Sec. 2.1. Using the
same boundary gradient implies that the performance of the various methods is com-
pared using the same starting condition.

The implementation of the “ncuts” used (provided on the authors’ web page) requires
that the number of regions required be passed as a parameter. We used 5 as the average
number of segments per image for our seed segmentation was 4.3. There is a version of
the “ncuts” which determines the number of regions automatically [7], but we currently
have no implementation of it. The segmentations for the “fow” method were provided
directly by the author. In this segmentation, the average number of segments was 13.
See Tab. 1 for the results.

Table 1. Comparison of the methods. The first column contains the acronyms of the methods.
The second column corresponds to the average number of segments per image. The third column
shows the mean GCE error over all segmentations.

method # of reg GCE

hum 17 0.080

seed 4 0.209

fow 13 0.214

ncuts 5 0.336
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Usually as the number of regions per image grows it appears that the images become
more over-segmented. As is mentioned in [1] the GCE measure does not penalize an
over-segmentation. Our method and the “fow” method produce comparable GCE, how-
ever, the average number of segments of our method is less, approximately one third.
In some cases it means that our method does not split coherent regions.

Our segmentation method was implemented in MATLAB. Some of the most time
consuming operations (such as creating the graph edge weights) were implemented in
C and interfaced with MATLAB through mex-files. We used the online available C++
implementations of the min-cut algorithm [16] and some MATLAB code for colour and
texture gradient computation [7].

The method is relatively slow, for one 375x250 image with 96 seeds it needs on
average 15 minutes on a Pentium 4@2.8 GHz. However, the computation can easily be
parallelized as each sub-segmentation can be done independently on many computers.
The building of the weight matrix W representing the graph (which is done only once per
image) needs approximately 50 seconds. Once the graph is built, finding the min-cut for
one seed position takes 2 – 10 seconds.

Fig. 9. Some segmentation results on images from the Berkeley dataset

You may look at the results of the “fow” method [11] and our method1 to visu-
ally compare their performance. In general, both methods perform comparably, how-
ever, one method performs better on some images, the second one on others. This gives
an option to combine the methods in some further processing to choose the better re-
sult. Some segmentations using our method can be seen in Fig. 9. The results shown
here correspond to the threshold dthr equal to 10. The whole pyramid was built by
changing the dthr from 10 to 200. Each new level of pyramid is created when the
number of segments increases according to the previous level. Usually, 4 levels is the
maximum.

Constants (number of histogram bins, sigmas, etc.) which appear in the text are tuned
experimentally on real images to obtain reasonable performance on large data.

1 http://www.prip.tuwien.ac.at/Research/muscle/Images/ECCV06res
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6 Conclusion

The paper proposes a method for image segmentation into texture and colour coher-
ent segments. The segmentation combines known algorithms for computing combined
boundary gradient and for finding min-cut/max-flow in the graph. The novelty is in
introducing the positioning of the seed, and collecting and merging similar segments
yielding the segmentation pyramid. Moreover, an illumination invariant similarity mea-
sure is introduced.

We show that our method gives comparable results to the state-of-the-art methods
based on normalized graph cuts on the Berkeley dataset. We cannot say if the proposed
method outperforms existing methods since quantitative comparison of segmentations
is still an open problem. However, visual comparison as well as GCE comparison indi-
cate reasonable and useful results.
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Abstract. A novel technique for extracting texture edges is introduced.
It is based on the combination of two ideas: the patch-based approach,
and non-parametric tests of distributions.

Our method can reliably detect texture edges using only local informa-
tion. Therefore, it can be computed as a preprocessing step prior to seg-
mentation, and can be very easily combined with parametric deformable
models. These models furnish our system with smooth boundaries and
globally salient structures.

1 Introduction

The detection of image edges has been one of the most explored domains in
computer vision. While most of the effort has been aimed at the detection of
intensity edges, the study of color edges and the study of texture edges are also
well developed fields.

The dominant approach in texture edge analysis is to construct a description
of the local neighborhood around each pixel, and then to compare this descriptor
to the descriptors of nearby points. This approach is often referred to as “patch-
based” since a fragment around each pixel is used in order to compute the
outputs of the filters. In this work, however, the term “patch-based” is quite
distinguishable from the above: it means that the gray values of the patch are
used as-is, and that the basic operation on patches is the comparison of two
patches using image correlation measures, such as normalized cross correlation
between the gray values, or their Euclidean distance.

What makes this approach novel for texture edge detection is that since tex-
ture is a stochastic property, this kind of descriptor would traditionally be con-
sidered unfit. In other words, since the gray values of two neighboring patches
from the same texture could be very different, most methods rely on more elab-
orate descriptors. This is in contrast to the dominant trend in current texture
synthesis research, where patches of the original texture are stitched together in
order to generate a new texture image – a trend that seems to be much more
successful than the best descriptor based methods.

The main idea of this work is simple to grasp: if a point lies on the left-hand
side of a texture edge, the distribution of similarities of the patch centered at this
point to the patches on its left is different from the distribution of similarities to
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the patches on its right. Detection of the texture edges can therefore be achieved
by examining these differences in the similarity distributions.

As this paper will show, sampling from the distributions of similarities can
be done very efficiently. In order to estimate whether the distributions are the
same, we use a non-parametric test called the Wilcoxon Mann-Whitney Test
[38]. It is similar to the t-test but performs well even for small sample sizes with
unknown distributions.

In contrast to intensity edges, which have many uses in computer vision,
texture edges have been used primarily for image segmentation. In order to
make this work complete, we couple it with a segmentation scheme. Since texture
edges are often gapped, we use a hybrid deformable model to capture the image
contour. This hybrid deformable model is an adaptation of the general class of
Metamorphs Deformable models [19]. This type of deformable model borrows
the best features from traditional parametric deformable models [20, 35] and
geometric level-set based deformable models [7, 22], and enjoys the advantage
of bridging over gaps in contours, topology freedom during evolution, and fast
convergence. In particular, the model shape is implicitly represented in a higher
dimensional space of distance transforms as a distance map “image”, and model
deformations are efficiently parameterized using a space warping technique: the
Free Form Deformations (FFD) [1, 3] based on cubic B-splines.

2 Previous Work

Below we discuss traditional texture segmentation approaches, the emerging
patch-based techniques, and explain the background for our statistical test.

Feature-Based Texture Edge Detection and Segmentation. Traditional methods
for texture analysis are often grouped into three major categories: statistical,
structural and spectral. In the statistical approach, texture statistics (e.g., mo-
ments of the gray-value histogram, or co-occurrence matrices) serve as texture
descriptors. In structural approaches, the structure is analyzed by constructing
a set of rules that generates the texture. In spectral approaches, the texture
is analyzed in the frequency domain. In contrast to the wealth of approaches
suggested in the past, the last decade has been dominated by the filter bank
approach, to which we will suggest an alternative.

“There is an emerging consensus that for texture analysis, an image
should first be convolved with a bank of filters tuned to various orienta-
tions and spatial frequencies.”[11]

Of the many studies that employ banks of filters, the most common set of
filters used seems to be the Gabor filters [10, 16, 17, 11, 23, 32]. We would like to
specifically mention the work of [32] which, like our work, emphasizes the detec-
tion of texture edges, not texture segmentation. In relation to our work, we would
also like to point out that non-parametric tests have been used in the past for
texture segmentation, [16, 17], where nearby blocks of the image were grouped
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together if the distributions of filter outputs in those blocks were not statisti-
cally distinguishable. Similar to our work, the statistical distinguishability has
been measured using non parametric tests: [16] used the Kolmogorov-Smirnov
distance and [17] used the χ2 statistic.

On a more abstract level, we find relation to the work of [14] in which char-
acteristics of small segments in the image are used as part of the texture de-
scription in addition to filter banks. We conjecture that, similar to the move in
object recognition from semantic-object-parts to patches at random locations
[36], patches from textured areas may be similar in strength to identified sub-
segments for texture segmentation.

Patch Based Methods. The filter bank approach was popular in the field of tex-
ture synthesis as well (e.g., [15, 28]), up until the advent of the patch based
methods. In the few years since its publication [9, 21], the patch-based method
has dominated the field of texture synthesis.

The basic use of the patch for texture synthesis consists of stitching together
small overlapping patches of the input texture, such that their boundaries over-
lap (i.e., the gray value differences at the boundaries are minimal). This results
in a new texture image, which seems to match the original texture in appear-
ance, and has similar statistical properties. A similar approach was used for
super-resolution [13] and for class-based edge detection [5]. The success of the
patch-based methods has been extended to image completion [8] and to image
denoising [2]. Patch-based methods were also shown to be extremely successful
in object recognition [36].

Non-parametric Statistical Tests. Non-parametric statistical tests are preferred
over their parametric counterparts, when certain assumptions about the data
cannot be made. For example, the t-test assumes that the difference between
the two independent samples it is applied to is normally distributed, while its
non-parametric analog, the Wilcoxon Mann-Whitney Test [38], does not.

The WMW Test is one of the most powerful of the non-parametric tests for
comparing two samples. It is used to test the null hypothesis that two samples
have identical distribution functions against the alternative hypothesis that the
two distribution functions differ only with respect to location (median), if at all.

This test has several advantages that make it especially suitable for our appli-
cation. First, it is valid for data from any distribution and is robust to outliers.
Second, it reacts to differences both in the location of the distributions (i.e., to
the difference of their median), and to the shape of the distributions. The test
is well known, however, since it is uncommon in Computer Vision circles, and in
order to keep this paper self-contained, we describe it in Fig. 1.

Deformable Models for Segmentation. Deformable models or Active Contours
are curves and surfaces that move toward edges under the influence of internal
smoothness forces and external image forces. In traditional deformable models,
the external image forces come from image gradient or intensity edge informa-
tion, which are not reliable guides for texture segmentation. Region Competi-
tion [41] performs texture segmentation by combining region growing and active
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Given two vectors of samples va and vb, of lengths na and nb we wish to find
a measure for the similarity of the underlying distributions.
1. Combine the samples into one vector of length na + nb and sort this vector.
2. Each observation in the combined vector has a rank. The first observation has a
rank of 1, the second has a rank of 2, etc.
3. Let wa be the sum of all of the ranks of elements originating from the vector va,
and let wb be a similar sum for vb.
4. Use the statistic w = min(wa, wb) to determine if the two distributions are different.
Very low values of w suggest they are.

Fig. 1. The Wilcoxon Mann-Whitney Test

contours using multi-band input after applying a set of gabor filters. The method
assumes multivariate Gaussian distributions on the filter-response vector inputs.
Geodesic Active Regions [27] deals with supervised texture segmentation in a
frame partition framework using level-set deformable model implementation;
the assumptions of the method are that the number of regions in an image are
known beforehand and statistics of each region are learned offline. The active
unsupervised texture segmentation approach proposed in [31] uses feature chan-
nels extracted based on structure tensor and nonlinear diffusion to discriminate
different texture regions, the statistics of these features are then incorporated in
a level set based deformable model segmentation process to partition the image
into a foreground and a background region. Another level-set based algorithm
proposed in [33] detects texture edges by applying multiple gabor transforms and
an vector valued active contour model; the method supports both supervised and
unsupervised forms of the model, although it is limited by the selection of proper
gabor filter parameters and the Gaussian assumption on filter responses within
each region. Our unsupervised segmentation method overcomes the difficulties
faced by these methods by decomposing the problem into the two stages of an
initial local texture edge detection and a follow-up segmentation using a hybrid
deformable model that smoothly bridges over the missing gaps.

Work Related on an Abstract Level. In this work we detect discontinuities (edges)
by comparing distributions to the left and to the right of each point. This idea
can be tracked back to [40]. Comparing gray values of adjusted curves was used
in [39] in order to classify hand marked edges into the occluding contour or the
cast shadow types, in a manner that has faint similarities to our method.

3 Patch Based Texture Edge Detection

Our method is straightforward and is illustrated in Fig. 2(a). In essence, it tests
whether a point (x, y) in the image is near a texture edge. Assume a situation
where (x, y) is not near a texture edge. Then the similarities between the patch
surrounding (x, y) and the nearby patches to its left and right are drawn from
the same distribution. In our experiments we measure similarities by simply
computing the Euclidean distance between the patch at (x, y) and the nearby
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(a) (b) (c)

Fig. 2. (a) An illustration of the grid method, in which the patches near the center
patch are used in order to compute the similarity distributions. Four distributions are
sampled: Dup, Ddown, Dleft and Dright. The pixel at the center would be considered to
lie on a texture edge if, according to the Wilcoxon Mann Whitney test, the distribution
Dup is determined to be different from the distribution Ddown, or if Dleft is determined
to be different from Dright. (b) An illustration of the efficient method to sample the four
distributions, using vector operations. To simultaneously sample all of the differences
between all of the patches in the image, and all of the patches which are Δx pixels
to the right or to the left, a copy of the image is translated Δx pixels left, and then
subtracted from the original image. The difference is squared, and then summed at each
5x5 patch in the image, which is a separable operation. (c) An alternative architecture
using the flux idea. A pixel would not be on a texture edge if the similarity of points
along a circle around it are as likely to be similar to points inside the circle, as they
are to points outside the circle. For each point on the circle of radius r, the similarity
of the patch around it is compared to patches along the line of length 2l, which passes
through the center point, the point on the circle, and outside of the circle.

patches. Our use of the actual image patch as a template, instead of a predefined
filter bank, has the potential to be very sensitive to changes in the local texture.

Let Dright,Dleft be the distributions of similarities between the patch sur-
rounding (x, y) and the nearby patches. If there is a texture edge on the left side
of (x, y), it is natural to expect the distributions Dright and Dleft to be different.
For example, it might be reasonable to assume larger similarities within Dright.

In order to determine whether the two distributions are the same, we sample
patches slightly to the left and to the right of the point (x, y). In the experiments
we used a maximum distance of 15 pixels, and sampled at each pixel, therefore
sampling 15 similarities from each distribution.

As mentioned above, we use the Wilcoxon Mann-Whitney Test, which excels
for samples small in size, and assumes very little about the nature of the distri-
butions. The horizontal texture edge points are those points for which the test
determines that the two distributions Dright and Dleft are different. The same
process is then applied vertically, and two similar distributions Dup and Ddown

are compared. For our application we combine the two edge directions by taking
the minimum value returned from the two tests.

Note, that since measurements from patches as far as 15 pixels away affect
the distribution, we can expect the test score to change gradually. Moreover,
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Fig. 3. Profile of the edges we obtain by using our method. Left of each triplet: the
original part of the image. Middle: the texture edge we get. Right: the profile as a 2D
plot. Note that the profile has a double edge effect, but it is rather minimal.

when (x, y) lies exactly on a texture edge, the patch around it is a hybrid patch,
composed of two textures, and we expect the difference between the distributions
to be lower exactly at the edge, this could create a double edge. It turns out that
for the small patch size we used in the experiments (5×5 pixels), these concerns
did not affect the texture edges dramatically. This is demonstrated in Fig. 3
with plots of several edge profiles (See also Fig. 2(c), for an brief illustration of
a method developed to solve the double edge problem).

Another important implementation detail is the way ties are handled inside
the non-parametric test [29]. While, in general, this question has a critical ef-
fect on the results, and should be addressed with caution, exact ties in patch
similarity scores obtained from images are rare. An exception is when applying
our method to areas where the gray value is exactly fixed. Adding a negligi-
ble amount of random noise to the Euclidean distances solves this problem by
producing a random order in such cases.

3.1 Efficient Computation

Every pixel in the image contributes to many patches, which are in turn com-
pared with many overlapping patches. A näıve implementation might compute
the difference of the same two pixels multiple times. Another important facet of
efficiency is that in some programming environments or hardware configurations
(e.g., Matlab, designated graphics hardware) vector computations are done more
efficiently than the repeated index-by-index computation.

The implementation we suggest is illustrated in Fig. 2(b), and is based on
computing all of the patch comparisons to patches at a distance of Δx in either
the vertical or horizontal direction at once. In order to do so, one only needs to
translate the image Δx pixels in either the horizontal or vertical direction, and
subtract the resulting image from the original image. Since we are interested
in the Euclidean distance, we square each value in the difference image, and we
then sum across all patches in the difference image. Since the summing operation
is separable (can be done first horizontally, and then vertically), the procedure
can be made extremely efficient.
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4 Segmentation Using Hybrid Deformable Models

The detected texture edges can be coupled with a hybrid deformable model that
moves in the manner of free form deformations to achieve segmentation over
the entire image domain. The Euclidean distance transform is used to implicitly
embed an evolving model as the zero level set of a higher dimensional distance
function [25]. If we denote the model as M, and the implicit model representation
as a distance map ΦM, then the shape defines a partition of the image domain:
the region enclosed by M, [RM]; the background region [Ω − RM]; and the
model itself, [∂RM], which corresponds to the zero level set. Such a model shape
representation provides a feature space in which objective functions that are
optimized using a gradient descent method are stable enough to use.

The deformations that a model can undergo are defined using a space warping
technique: the Free Form Deformations (FFD) [34]. In essence, FFD deforms an
object by manipulating a regular control lattice F = {(F x

m,n, F
y
m,n)} of M ×

N control points overlaid on top of a region Γ in the volumetric embedding
space that contains the object (below we use Γ = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤
Y } in the object-centered coordinate system). In the Incremental Free Form
Deformations (IFFD) formulation used in [19], the deformation parameters, q,
are the deformations of the control points in both x and y directions:

q = {(δF x
m,n, δF

y
m,n)}; (m,n) ∈ [1,M ] × [1, N ].

When the control lattice deforms from F 0 to F = F 0 + δF , the deformed
position of a pixel x = (x, y) is given by D(q;x), which is defined in terms of a
tensor product of Cubic B-spline polynomials:

D(q;x) =

3

k=0

3

l=0

Bk(u)Bl(v)(F 0
i+k,j+l + δFi+k,j+l) (1)

where i = $ x
X · (M − 1)% + 1, j = $ y

Y · (N − 1)% + 1.
To find texture region boundaries given a simple-shape model initialized

around a seed point, the dynamics of the free-form deformable model are derived
from edge energy terms. Instead of intensity edges, which fail to separate tex-
tured regions, we use the texture edges computed using our patch-based method
above. The result of our patch-based filtering is a texture edge map (e.g., Fig. 3,
middle columns), on which true edges between different texture regions corre-
spond to low values. Denote the texture edge map as It, the boundary data term
Eb below encourages model deformations that map the model boundary to the
pixel locations with the smallest values on It.

Eb =
1

V (∂RM) ∂RM
It(D(q;x))

2
dx ,

where V (R) represents the volume of a region R. The above boundary term Eb

can help the model to converge to the exact edge location where the difference
between two neighboring texture patches is maximized. However, it may cause
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the model to get stuck in local minima when the model is initialized far-away
from the true boundary. To address this problem, we compute a binary edge
map by thresholding on the texture edge map It. The threshold is computed
automatically using Otsu’s method [26]; the method selects the threshold that
minimizes the weighted sum of within-group variances on the histogram of the
texture edge map. Given the binary edge map, we encode information from this
binary edge map by computing its un-signed distance transform. The resulting
distance map image is denoted by Φe. The data term Ee below aims to minimize
the sum-of-squared-differences between the implicit shape representation values
both on the model and inside the model and the underlying distance values on
Φe at corresponding deformed positions.

Ee =
1

V (R) R
ΦM(x) − Φe(D(q;x))

2
dx,

where R = RM ∪ ∂RM. During optimization, when the model is still far-away
from the true edges, this term serves as a two-way ballooning force that expands
or shrinks the model along the gradient direction of Φe. At an edge with small
gaps, this term also constrains the model to follow the “geodesic” path (i.e., the
shortest smooth path connecting the two open ends of a gap).

Combining the two data terms – the boundary term Eb and the thresholded
edge term Ee, the overall energy functional is: E = Eb + kEe, where k is a
constant balancing the contributions from the two terms 1. Both terms are
differentiable with respect to the free-form-deformation parameters q, and a
gradient-descent based method is used to derive the model evolution equation
for each element qi in q:

∂E

∂qi

=
∂Eb

∂qi

+ k
∂Ee

∂qi

, (2)

where

∂Eb

∂qi

=
1

V (∂RM) ∂RM
2It(D(q;x)) · ∇It(D(q;x)) · ∂

∂qi

D(q;x) dx

∂Ee

∂qi

=
RM∪∂RM

2 ΦM(x) − Φe(D(q;x)) · − ∇Φe(D(q;x)) · ∂
∂qi

D(q;x) dx

V (RM ∪ ∂RM)
.

In the above formulas, the partial derivatives ∂
∂qi

D(q;x) can be easily derived
from the model deformation formula in Eq. 1.

The whole image is processed in the following manner: the first region is
segmented by starting a deformable model at the center of the image. Another
point well outside the first region is then used to initialize a second model, and a
second region is segmented. The process continues until almost all of the points
in the image are segmented. In the case where a new region grows into an old
region, the two regions are joined together.
1 We are able to omit an explicit model smoothness term here because of the strong

implicit smoothness constraints imposed by FFD.
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5 Experiments

Comparing Methods for Texture Edge Detection. The main purpose of these
experiments is to demonstrate that Gabor based filter bank methods cannot be
used directly in local methods of deriving texture edges. Indeed, in [16, 17] a
global clustering method was used to combine regions based on the filter bank
descriptors; in [32] a method based on anisotropic diffusion in the direction of
the global principle direction was suggested; in [14] the filter bank output was
integrated along a region and was modified with statistics on the shape of small
segments. One can also refer to the text of [32, 14], where the limitations of the
local filter bank measurements are discussed.

In Fig. 4, we compare our method, Canny edge detection, and a method
based on [17], in which, for each pixel we plot the maximum difference (using
the original parameters and distance measure) of the block around it to the
nearest four blocks (the results are similar if using Wilcoxon Mann Whitney
instead of χ2). As can be seen, this “alternative” is not doing well. A verification
of this can be found in Fig. 4(a) of [32].
Experiments on Texture Mosaics. In Fig. 5, we show examples results on the tex-
ture mosaic images of [17], available online at http://www-dbv.cs.uni-bonn.
de/image/mixture.tar.gz. This data set contains mosaics generated from a
set of 86 micro-patterns from the Brodatz album [6].
Real Image Experiments. In Fig. 6 we present experiments on images taken
from the first 25 gray level testing images of the Berkeley Segmentation Dataset

(a) (b) (c) (d)

Fig. 4. Comparison of edge detection performed
on the original gray images (a), using the Canny
edge detector (b), using the filter bank dissimilar-
ity based on [17](c), and using our method (d)

(original) (texture edges) (segmentation)

Fig. 5. Results of our edge de-
tection and texture segmentation
methods on several mosaics con-
structed by the authors of [17]
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Fig. 6. Results of our edge detection and texture segmentation methods on several real
images taken from the Berkeley Segmentation Dataset, including the original images,
the recovered texture edges, and the resulting segmentation. The images in the lower
right demonstrate the detection of texture edges that also constitute intensity edges.

(http://www.cs.berkeley.edu/projects/vision/grouping/segbench/). We
did not use any dedicated intensity edges method, but as can be seen in the
image of the bird, edges between regions of uniform but different intensities, are
detected.

6 Summary and Conclusions

The patch based technologies, which are based on local gray value representations
and correlations between gray values, have proven to be successful in many
computer vision domains, and suggest an appealing alternative to filter bank
approaches. While there is no doubt that their recent proliferation is partly
due to the increasing computational power available, the representation itself
seems inherently powerful. In this work, we use patches in order to compute
texture edges. The edge representation (as opposed to a representation of regions
using some form of descriptor) is powerful in that it can be readily combined
with global optimization based-segmentation (e.g., “snakes”). Most energy-based
methods do not deal with texture edges. Attempts that have been made in the
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past to incorporate texture into these methods used simple texture descriptors
such as mean intensity of a region or the variance of the intensity in that region
[27, 30], and were computationally expensive.

By using our patch based texture edge detection technique, combined with
Free-Form Deformations, we are able to suggest a tractable solution, which en-
joys both rich texture information, and the advantages of a global solution.
These advantages include the detection of a smooth boundary, which is globally
salient. In this work we focused solely on texture edges, but it had not escaped
us that in our framework one can easily add the traditional energy terms for
intensity edges and color edges, thus making our framework complete for image
segmentation. This completeness was available in the affinity based approaches,
but not in the energy based methods.
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Abstract. This paper presents a novel approach to unsupervised tex-
ture segmentation that relies on a very general nonparametric statistical
model of image neighborhoods. The method models image neighborhoods
directly, without the construction of intermediate features. It does not
rely on using specific descriptors that work for certain kinds of textures,
but is rather based on a more generic approach that tries to adaptively
capture the core properties of textures. It exploits the fundamental de-
scription of textures as images derived from stationary random fields
and models the associated higher-order statistics nonparametrically. This
general formulation enables the method to easily adapt to various kinds
of textures. The method minimizes an entropy-based metric on the prob-
ability density functions of image neighborhoods to give an optimal seg-
mentation. The entropy minimization drives a very fast level-set scheme
that uses threshold dynamics, which allows for a very rapid evolution to-
wards the optimal segmentation during the initial iterations. The method
does not rely on a training stage and, hence, is unsupervised. It automat-
ically tunes its important internal parameters based on the information
content of the data. The method generalizes in a straightforward manner
from the two-region case to an arbitrary number of regions and incor-
porates an efficient multi-phase level-set framework. This paper presents
numerous results, for both the two-texture and multiple-texture cases,
using synthetic and real images that include electron-microscopy images.

1 Introduction

Image segmentation is one of the most extensively studied problems in computer
vision. The literature gives numerous approaches based on a variety of crite-
ria including intensity, color, texture, depth, and motion. This paper addresses
the problem of segmenting textured images. Textured regions do not typically
adhere to the piecewise-smooth or piecewise-constant assumptions that char-
acterize most intensity-based segmentation problems. Julesz [13] pioneered the
statistical analysis of textures and characterized textures as possessing regular-
ity in the higher-order intensity statistics. This establishes the description of a
textured image, or a Julesz ensemble, as one derived from stationary random
fields [21]. This principle forms the foundation of the approach in this paper.

In recent years, researchers have advanced the state-of-the-art in texture seg-
mentation in several important directions. An important direction relates to

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 494–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the mechanism used to model or quantify the regularity in image textures. Re-
searchers have developed progressively richer descriptions of local image geome-
try and thereby captured more complex and subtle distinctions between textures
[2, 23, 24]. In another direction, researchers have expressed the dissimilarity be-
tween textures through sophisticated statistically-based metrics [4, 15, 19, 14, 22].
Furthermore, research in texture segmentation, like image segmentation in gen-
eral, has focused on more robust mechanisms for enforcing geometric smoothness
in the segmented-region shapes. This is usually done via the construction of a
patchwork of regions that simultaneously minimize a set of geometric and sta-
tistical criteria [26].

This paper advances the state-of-the-art in texture segmentation by exploiting
the principle characteristics of a texture coupled with the generality of nonpara-
metric statistical modeling. The method relies on an information-theoretic metric
on the statistics of image neighborhoods that reside in high-dimensional spaces.
The nonparametric modeling of the statistics of the stationary random field im-
poses very few restrictions on the statistical structure of neighborhoods. This
enables the method to easily adapt to a variety of textures. The method does
not rely on a training stage and, hence, is unsupervised. These properties make
it is easily applicable to a wide range of texture-segmentation problems. More-
over, the method incorporates relatively recent advances in level-set evolution
strategies that use threshold dynamics [11, 10].

The rest of the paper is organized as follows. Section 2 discusses recent works
in texture segmentation and their relationship to the proposed method. Section 3
describes the optimal formulation with an entropy-based energy on higher-order
image statistics. Entropy optimization entails the estimation of probability den-
sity functions. Hence, Section 4 describes a nonparametric multivariate density
estimation technique. It also describes the general problems associated with den-
sity estimation in high-dimensional spaces and provides some intuition behind
the success of the proposed method in spite of these difficulties. Section 5 gives
the optimization strategy using a very fast level-set scheme that uses threshold
dynamics, along with the associated algorithm. Section 6 addresses several im-
portant practical issues pertaining to nonparametric statistical estimation and
its application to image neighborhoods. Section 7 gives experimental results on
numerous real and synthetic images, including electron-microscopy medical im-
ages. Section 8 summarizes the contributions of the paper and presents ideas for
further exploration.

2 Related Work

Much of the previous work in texture segmentation employs filter banks, com-
prising both isotropic and anisotropic filters, to capture texture statistics. For
instance, researchers have used Gabor-filter responses to discriminate between
different kinds of textures [19, 23, 24]. Gabor filters are a prominent example of a
very large class of oriented multiscale filters [4, 3]. This approach emphasizes the
extraction of appropriate features for discriminating between specific textures,
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which is typically a non-trivial task. The proposed method, on the other hand,
does not rely on using specific descriptors that work for certain kinds of textures,
but is based on a more generic approach that tries to adaptively capture the core
properties of a wide variety of textures.

Researchers have also investigated using more compact sets of texture fea-
tures. For instance, Bigun et al. [2] use the structure tensor (a second-order
moment matrix used, e.g., to analyze flow-like patterns [32]) to detect local orien-
tation. Rousson et al. [22] refine this strategy by using vector-valued anisotropic
diffusion, instead of Gaussian blurring, on the feature space formed using the
components of the structure tensor. This strategy requires the structure tensors
to have a sufficient degree of homogeneity within regions as well as sufficient
dissimilarity between regions. However, as the coming paragraphs explain, not
all images meet these criteria.

Other approaches use the intensity (or grayscale) histograms to distinguish
between textures [15, 14]. However, the grayscale intensity statistics (i.e. 1D his-
tograms), may fail to capture the geometric structure of neighborhoods, which
is critical for distinguishing textures with similar 1D histograms. The proposed
method exploits higher-order image statistics, modeled nonparametrically, to
adaptively capture the geometric regularity in textures.

Figure 1(a) shows two textures that are both irregular (in addition to hav-
ing similar means and gradient-magnitudes) that would pose a challenge for
structure-tensor-based approaches such as [2, 22]. In Figure 1(b) the textures
differ only in scale. Approaches based on structure tensors at a single scale would
fail to distinguish such cases, as reported in [22]. Approaches solely using inten-
sity histograms would also fail here. In Figure 1(c) the textures have identical
histograms, identical scale, and an almost-identical set of structure-tensor ma-
trix components. In this case, the above-mentioned approaches [2, 22] would face
a formidable challenge. The proposed method, on the other hand, incorporating

(a) (b) (c)

Fig. 1. Segmentations with the proposed approach (depicted by white/gray outlines)
for (a) Brodatz textures for sand and grass— both irregular textures with similar gradi-
ent magnitudes, (b) Brodatz textures differing only in scale, and (c) synthetic textures
with identical histograms, identical scales, and an almost-identical set of structure-
tensor matrix components
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a fundamentally richer texture description, produces successful segmentations
(depicted by white/gray outlines) for all the images in Figure 1.

Recently, researchers have investigated more direct approaches towards mod-
eling image statistics. For instance, the dynamic-texture segmentation approach
by Doretto et al. [6] uses a Gauss-Markov process to model the relationships
among pixels within regions and over time. However, that approach assumes
a Gaussian process for image intensities, a restrictive assumption that can-
not easily account for complex or subtle texture geometries [6, 22, 4]. Rous-
son et al. [22] use nonparametric statistics for one of the channels (the
image-intensity histogram) in their feature space to counter this restriction and
the proposed method generalizes that strategy to the complete higher-order
image statistics.

Popat et al. [20] were among the first to use nonparametric Markov sam-
pling in images. Their method takes a supervised approach for learning neighbor-
hood relationships. They attempt to capture the higher-order nonlinear image
statistics via cluster-based nonparametric density estimation and apply their
technique for texture classification. Varma and Zisserman [28] used a similar
training-based approach to classify textures based on a small Markov neigh-
borhood that was demonstrably superior to filter based approaches. Indeed, re-
searchers analyzing the statistics of 3 × 3 patches in images, in the corresponding
high-dimensional spaces, have found the data to be concentrated in clusters and
low-dimensional manifolds exhibiting nontrivial topologies [16, 5]. The proposed
approach also relies on the principle that textures exhibit regularity in neigh-
borhood structure, but this regularity is discovered for each texture individually
in a nonparametric manner. The proposed method builds on the work in [1],
which lays down the essentials for unsupervised learning of higher-order image
statistics. That work, however, focuses on image restoration.

The literature dealing with texture synthesis also sheds some light on the
proposed method. Texture synthesis algorithms rely on texture statistics from
an input image to construct novel images that exhibit a qualitative resemblance
to the input texture [9, 31]. This paper describes a very different application, but
the texture-synthesis work demonstrates the power of neighborhood statistics in
capturing the essential aspects of texture.

Lastly, this paper also borrows from a rather extensive body of work on vari-
ational methods for image segmentation [26], in particular the Mumford-Shah
model [18], its extensions to motion, depth, and texture, and its implementation
via level-set flows [29]. The proposed method employs the very fast approxima-
tion proposed by Esedoglu and Tsai [11, 10] based on threshold dynamics, and
extends it to include multiple regions within the variational framework.

3 Neighborhood Statistics for Texture Segmentation

This section introduces the random-field texture model, along with the associ-
ated notation, and then describes the optimal segmentation formulation based
on entropy minimization.
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3.1 Random Field Texture Model

A random field [7] is a family of random variables X(Ω;T ), for an index set
T , where, for each fixed T = t, the random variable X(Ω; t), or simply X(t), is
defined on the sample space Ω. If we let T be a set of points defined on a discrete
Cartesian grid and fix Ω = ω, we have a realization of the random field called
the digital image, X(ω, T ). In this case {t}t∈T is the set of pixels in the image.
For two-dimensional images t is a two-vector. We denote a specific realization
X(ω; t) (the image), as a deterministic function x(t).

If we associate with T a family of pixel neighborhoodsN = {Nt}t∈T such that
Nt ⊂ T , and s ∈ Nt if and only if t ∈ Ns, then N is called a neighborhood system
for the set T and points in Nt are called neighbors of t. We define a random
vector Z(t) = {X(t)}t∈Nt, denoting its realization by z(t), corresponding to
the set of intensities at the neighbors of pixel t. We refer to the statistics of the
random vector Z as higher-order statistics. Following the definition of texture as
a Julesz ensemble [13, 21], we assume that the intensities in each texture region
arise out of a stationary ergodic random field.

3.2 Optimal Segmentation by Entropy Minimization on
Higher-Order Statistics

Consider a random variable L(t), associated with each pixel t ∈ T , that gives the
region the pixel t belongs to. For a good segmentation, knowing the neighborhood
intensities (z) tells us the unique pixel class (k). Also, knowing the pixel class gives
us a good indication of what the neighborhood is. This functional dependence is
captured naturally in the concept of mutual information. Thus, the optimal seg-
mentation is one that maximizes the mutual information between L and Z:

I(L,Z) = h(Z) − h(Z|L) = h(Z) −
K∑

k=1

P (L = k)h(Z|L = k), (1)

where h(·) denotes the entropy of the random variable. The entropy of the higher-
order PDF associated with the entire image, h(Z), is a constant for an image
and is irrelevant for the optimization. Let {Tk}K

k=1 denote a mutually-exclusive
and exhaustive decomposition of the image domain T into K texture regions.
Let Pk(Z(t) = z(t)) be the probability of observing the image neighborhood z(t)
given that the center pixel of the neighborhood belongs to the texture region k.
We define the energy associated with the set of K texture probability density
functions (PDFs), i.e.

E =
K∑

k=1

P (L = k)h(Z|L = k). (2)

The entropy

h(Z|L = k) = −
∫
�m

Pk(Z(tk) = z(tk)) logPk(Z(tk) = z(tk)dz, (3)
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where m = |Nt| is the neighborhood size and tk is any pixel belonging to re-
gion k—for any tk ∈ Tk the PDF Pk(·) remains the same due to the assumed
stationarity. Let Rk : T → {0, 1} denote the indicator function for region Tk,
i.e. Rk(t) = 1 for t ∈ Tk and Rk(t) = 0 otherwise. Considering the intensities
in each region as derived from a stationary ergodic random field to approximate
entropy, and using P (L = k) = |Tk|/|T |, gives

E ≈ −
K∑

k=1

(
P (L = k)

|Tk|
∑
t∈T

Rk(t) logPk(z(t))

)
(4)

=
−1
|T |

K∑
k=1

∑
t∈T

Rk(t) logPk(z(t)). (5)

Thus, the optimal segmentation is the set of functions Rk for which E attains
a minimum. The strategy in this paper is to minimize the total entropy given
in (4) by manipulating the regions defined by Rk. This rather-large nonlinear
optimization problem potentially has many local minima. To regularize the so-
lution, variational formulations typically penalize the boundary lengths of the
segmented regions [18]. The objective function, after incorporating this penalty
using a Lagrange multiplier, now becomes

E + α

K∑
k=1

∑
t∈T

‖ ∇tRk(t) ‖, (6)

where α is the regularization parameter and ∇t denotes a discrete spatial-
gradient operator. In this framework, the critical issue lies in the estimation
of Pk(z(t)), and the next section focuses on addressing this issue.

4 Nonparametric Multivariate Density Estimation

Entropy optimization entails the estimation of higher-order conditional PDFs.
This introduces the challenge of high-dimensional, scattered-data interpolation,
even for modest sized image neighborhoods. High-dimensional spaces are notori-
ously challenging for data analysis (regarded as the the curse of dimensionality
[27, 25]), because they are so sparsely populated. Despite theoretical arguments
suggesting that density estimation beyond a few dimensions is impractical, the
empirical evidence from the literature is more optimistic [25, 20]. The results in
this paper confirm that observation. Furthermore, stationarity implies that the
random vector Z exhibits identical marginal PDFs, and thereby lends itself to
more accurate density estimates [25, 27]. We also rely on the neighborhoods in
natural images having a lower-dimensional topology in the multi-dimensional
feature space [16, 5]. Therefore, locally (in the feature space) the PDFs of images
are lower dimensional entities that lend themselves to better density estimation.

We use the Parzen-window nonparametric density estimation technique [8]
with an n-dimensional Gaussian kernel Gn(z, Ψn), where n = |Nt|. We have no
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a priori information on the structure of the PDFs, and therefore we choose an
isotropic Gaussian, i.e. Ψn=σ2In, where In is the n × n identity matrix. For a
stationary ergodic random field, the multivariate Parzen-window estimate is

Pk(Z(t) = z(t)) ≈ 1
|Ak,t|

∑
s∈Ak,t

Gn(z(t) − z(s), Ψn), (7)

where the set Ak,t is a small subset of Tk chosen randomly, from a uniform PDF,
for each t. This results in a stochastic estimate of the entropy that helps alleviate
the effects of spurious local maxima introduced in the Parzen-window density
estimate [30]. We refer to this sampling strategy as the global-sampling strategy.
Selecting appropriate values of the kernel-width σ is important for success, and
Section 6 presents a data-driven strategy for the same.

5 Fast Level-Set Optimization Using Threshold Dynamics

The level-set framework [26] is an attractive option for solving the variational
problem defined by (6), because it does not restrict either the shapes or the
topologies of regions. However, classical level-set evolution schemes for front-
tracking based on narrow-band strategies entail some significant computational
costs—in particular, the CFL condition for numerical stability [26] limits the
motion of the moving wavefront (region boundaries) to one pixel per iteration.

Recently, Esedoglu and Tsai introduced a fast level-set algorithm based on
threshold dynamics [11, 10] for minimizing Mumford-Shah type energies. The
proposed method adopts their approach for the level-set evolution but relies on
a multiphase extension of the basic formulation to enable multiple-texture seg-
mentation [17, 29]. In this method, the embeddings, one for each phase, are main-
tained as piecewise-constant binary functions. This method, essentially, evolves
the level-set by first updating the embeddings using the PDE-driven force, and
then regularizing the region boundaries by Gaussian smoothing the embedding
followed by re-thresholding. This approach needs to neither keep track of points
near interfaces nor maintain distance transforms for embeddings. At the same
time it allows new components of a region to crop up at remote locations. We
have found that this last property allows for very rapid level-set evolution when
the level-set location is far from the optimum.

We now let {Rk}K
k=1 be a set of level-set functions. The segmentation for

texture k is then defined as Tk = {t ∈ T |Rk(t) > Rj(t), ∀j �= k}. It is important
to realize that coupling (6) and (7) creates nested region integrals that introduce
extra terms in the gradient flow associated with the level-set evolution [15, 22].
The shape-derivative tool [12], specifically designed to handle such situations,
gives the level-set speed term for minimizing the energy defined in (6) as

∂Rk(t)
∂τ

= logPk(z(t)) +
1

|Tk|
∑
s∈Tk

Gn(z(s) − z(t), Ψn)
Pk(z(s))

+ α∇t ·
(

∇tRk(t)
‖ ∇tRk(t) ‖

)
,

(8)
where τ denotes the time-evolution variable [15, 22].
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To obtain an initial segmentation {R0
k}K

k=1, the proposed method uses ran-
domly generated regions, as shown in Section 7, based on the following algorithm.

1. Generate K images of uniform random noise, one for each R0
k.

2. Convolve each R0
k with a chosen Gaussian kernel.

3. ∀k, t do: if R0
k(t) > R0

j (t), ∀j �= k then set R0
k(t) = 1, otherwise set R0

k(t) = 0.

The iterations in Esedoglu and Tsai’s fast level-set evolution scheme [11, 10],
given a segmentation {Rm

k }K
k=1 at iteration m, proceed as follows.

1. ∀k, t do:
(a) Estimate Pk(z(t)) nonparametrically, as described in Section 4.

(b) R′
k(t) = Rm

k (t) + β
(
logPk(z(t)) + 1

Tk

∑
s∈Tk

Gn(z(s)−z(t),Ψn)
Pk(z(s))

)
2. Compute R′′

k = R′
k ⊗ N(0, γ2), where ⊗ denotes convolution and N(0, γ2) is

a Gaussian kernel with zero mean and standard deviation γ.
3. ∀k, t do: if R′′

k(t) > R′′
j (t), ∀j �= k then set Rm+1

k (t) = 1, otherwise set
Rm+1

k (t) = 0.
4. Stop upon convergence, i.e. when ‖ Rm+1

k −Rm
k ‖2< δ, a small threshold.

For a detailed discussion on the relationship between the new parameters γ, β,
and the parameter α in the traditional level-set framework, we refer the reader
to [11, 10]. In short, increasing β corresponds to increasing the PDE-driven force
on the level-set evolution and increasing γ results in smoother region boundaries.

6 Important Implementation Issues

This section discusses several practical issues that are crucial for the effectiveness
of the entropy reduction scheme. The work in [1] presents a detailed discussion
on these issues.

Data-driven choice for the Parzen-window kernel width: Using appro-
priate values of the Parzen-window parameters is important for success, and that
can be especially difficult in the high-dimensional spaces associated with higher-
order statistics. The best choice depends on a variety of factors including the
sample size |Ak,t| and the natural variability in the data. To address this issue
we fall back on our previous work for automatically choosing the optimal values
[1]. In that work, which focused on image restoration, we choose σ to minimize
the entropy of the associated PDF via a Newton-Raphson optimization scheme.
We have found that such a σ, i.e. one minimizing the entropy of Z, can be too
discriminative for the purpose of texture segmentation, splitting the image into
many more regions than what may be appropriate. Hence, in this paper, we set
σ to be 10 times as large. The choice of the precise value of this multiplicative
factor is not critical and we have found that the algorithm is quite robust to
small changes in this parameter.
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Data-driven choice for the Parzen-window sample size: Our experiments
show [1] that for sufficiently large |Ak,t| additional samples do not significantly
affect the estimates of entropy and σ, and thus |Ak,t| can also be selected auto-
matically from the input data. For the Parzen-windowing scheme we choose 500
samples, i.e. |Ak,t| = 500, uniformly distributed over each region.

Neighborhood size and shape: The quality of the results also depend on
the neighborhood size. We choose the size relative to the size of the textures in
the image. Bigger neighborhoods are generally more effective but increase the
computational cost. To obtain rotationally invariant neighborhoods, we use a
metric in the feature space that controls the influence of each neighborhood pixel
so that the distances in this space are less sensitive to neighborhood rotations
[1]. In this way, feature space dimensions close to the corners of the square
neighborhood shrink so that they do not significantly influence the filtering.
Likewise, image boundaries are handled through such anisotropic metrics so
that they do not distort the neighborhood statistics of the image.

7 Experiments and Results

This section presents results from experiments with real and synthetic data. The
number of regionsK is a user parameter and should be chosen appropriately. The
neighborhood size, in the current implementation, is also a user parameter. This
can be improved by using a multi-resolution scheme for the image representation
and constitutes an important area of future work. We use 9 × 9 neighborhoods,
β = 2, and γ = 3 for all examples, unless stated otherwise. Each iteration of the
proposed method takes about 3 minutes for a 256 × 256 image on a standard
Pentium workstation. Figure 2(a) shows a level-set initialization {R0

k}K
k=1 as a

randomly generated image with K = 2 regions.

(a) (b) (c)

Fig. 2. Two-texture segmentation. (a) Random initial segmentation for an image hav-
ing two Brodatz textures for grass and straw. The black and white intensities denote
the two regions. (b) Segmentation after stage 1; global samples only (see text). (c) Seg-
mentation after stage 2; local and global samples (see text).
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The level-set scheme using threshold dynamics, coupled with the global-
sampling strategy as explained in Section 4, makes the level sets evolve very
fast towards the optimal segmentation. We have found that, starting from the
random initialization, just a few iterations (less than 10) are sufficient to reach
an almost-optimal segmentation. However, this sampling strategy is sometimes
unable to give very accurate boundaries. This is because, in practice, the texture
boundaries present neighborhoods overlapping both textures and exhibiting sub-
tleties that may not be captured by the global sampling. Moreover, the joining
of intricate textures may inherently make the boundary location significantly
fuzzy so that it may be impossible even for humans to define the true segmenta-
tion. Figure 2(b) depicts this behavior. In this case, for each point t, selecting a
larger portion of the samples in Ak,t from a region close to t would help. Hence,
we propose a second stage of level-set evolution that incorporates local sam-
pling, in addition to global sampling, and is initialized with the segmentation
resulting from the first stage. We found that such a scheme consistently yields
better segmentations. Figure 2(c) shows the final segmentation. We have used
about 250 local samples taken from a Gaussian distribution, with a variance
of 900, centered at the concerned pixel. Furthermore, we have found that the
method performs well for any choice of the variance such that the Gaussian dis-
tribution encompasses more than several hundred pixels. Note that given this
variance, both |Ak,t| and the Parzen-window σ are computed automatically in a
data-driven manner, as explained before in Section 6.

Figure 3 gives examples dealingwithmultiple-texture segmentation. Figure 3(a)
shows a randomly generated initialization with three regions that leads to the final
segmentation in Figure 3(b). In this case the proposed algorithm uses amulti-phase
extension of the fast threshold-dynamics based scheme [11, 10]. Figure 3(c) shows
another multiple-texture segmentation with four textures.

Figure 4 shows electron-microscopy images of cellular structures. Because the
original images severely lacked contrast, we preprocessed them using adaptive

(a) (b) (c)

Fig. 3. Multiple-texture segmentation. (a) Random initial segmentation containing
three regions for the image in (b). (b) Final segmentation for an image with three
Brodatz textures, including both irregular and regular textures. (c) Final segmentation
for an image with four Brodatz textures.
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(a) (b) (c)

Fig. 4. Final segmentations for electron-microscopy images of rabbit retinal cells for
(a),(b) the two-texture case, and (c) the three-texture case

histogram equalization before applying the proposed texture-segmentation
method. Figure 4 shows the enhanced images. These images are challenging
to segment using edge or intensity information because of reduced textural ho-
mogeneity in the regions. The discriminating feature for these cell types is their
subtle textures formed by the arrangements of sub-cellular structures. To cap-
ture the large-scale structures in the images we used larger neighborhood sizes
of 13 × 13. We combine this with a higher γ for increased boundary regular-
ization. Figure 4(a) demonstrates a successful segmentation. In Figure 4(b) the
two cell types are segmented to a good degree of accuracy; however, notice that
the membranes between the cells are grouped together with the middle cell. A
third texture region could be used for the membrane, but this is not a trivial
extension due to the thin, elongated geometric structure of the membrane and
the associated difficulties in the Parzen-window sampling. The hole in the region
on the top left forms precisely because the region contains a large elliptical patch
that is identical to such patches in the other cell. Figure 4(c) shows a successful
three-texture segmentation for another image.

Figure 5(a) shows a zebra example that occurs quite often in the texture-
segmentation literature, e.g. [23, 22]. Figures 5(b) and 5(c) show other zebras.
Here, the proposed method performs well to differentiate the striped patterns,
with varying orientations and scales, from the irregular grass texture. The grass
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(a) (b) (c)

Fig. 5. Final segmentations for real images of Zebras

(a) (b)

Fig. 6. Final segmentations for real images of Leopards. Note: The segmentation out-
line for image (b) is shown in gray.

texture depicts homogeneous statistics. The striped patterns on the Zebras’
body, although incorporating many variations, change gradually from one part
of the body to another. Hence, neighborhoods from these patterns form one con-
tinuous manifold in the associated high-dimensional space, which is captured by
the method as a single texture class.

Figure 6(a) shows the successful segmentation of the Leopard with the ran-
dom sand texture in the background. Figure 6(b) shows an image that actually
contains three different kinds of textures, where the background is split into two
textures. Because we constrained the number of regions to be two, the method
grouped two of the background textures into the same region.

8 Conclusions and Discussion

This paper presents a novel approach for texture segmentation exploiting the
higher-order image statistics that principally define texture. The proposed
method adaptively learns the image statistics via nonparametric density esti-
mation and does not rely on specific texture descriptors. It relies on the infor-
mation content of input data for setting important parameters, and does not
require significant parameter tuning. Moreover, it does not rely on any kind of
training and, hence, is easily applicable to a wide spectrum of texture segmen-
tation tasks. The paper applies the proposed method to segment different cell
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types in electron-microscopy medical images, giving successful segmentations. It
also demonstrates the effectiveness of the method on real images of Zebras and
Leopards, as well as numerous examples with Brodatz textures. The method in-
corporates a very fast multiphase level-set evolution framework using threshold
dynamics [11, 10].

The algorithmic complexity of the method is O(K|T ||Ak,t|SD) where D is
the image dimension and S is the extent of the neighborhood along a dimen-
sion. This grows exponentially with D, and our current results are limited to 2D
images. The literature suggests some improvements, e.g. reduction in the com-
putational complexity via the improved fast-gauss transform [33]. In the current
implementation, the neighborhood size is chosen manually and this is a limita-
tion. This can be improved by defining a feature space comprising neighborhoods
at multiple scales. These are important areas for future work.
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Abstract. A novel and efficient method is presented for grouping feature points
on the basis of their underlying symmetry and characterising the symmetries
present in an image. We show how symmetric pairs of features can be efficiently
detected, how the symmetry bonding each pair is extracted and evaluated, and
how these can be grouped into symmetric constellations that specify the domi-
nant symmetries present in the image. Symmetries over all orientations and radii
are considered simultaneously, and the method is able to detect local or global
symmetries, locate symmetric figures in complex backgrounds, detect bilateral or
rotational symmetry, and detect multiple incidences of symmetry.

1 Introduction

Symmetry is an intrinsic phenomenon in the world around us, occurring both naturally
and in artefacts and architecture. Symmetry is attractive, both aesthetically and as a cue
directing visual attention [2, 8, 15, 27]. Not only does it give balance and form to ap-
pearance, but it ties together features that can otherwise seem diffuse. With the recent
success of feature point methods in computer vision [9, 16, 21, 22] it is useful to estab-
lish mechanisms for grouping the features generated, and symmetry provides a natural
means of doing so.

The contribution of this paper is a simple and effective method for grouping sym-
metric constellations of features and detecting symmetry in the image plane. Modern
feature-based methods (such as [9, 16]) are used to establish pairs of symmetric point
matches from which either bilateral symmetry axes or centres of rotational symmetry
can be analytically determined. These pairs are grouped into symmetric constellations
of features about common symmetry foci, identifying both the dominant symmetries
present and a set features associated with each foci. The method is independent of the
feature detector and descriptor used, requiring only robust, rotation-invariant match-
ing and an orientation measure for each feature. Symmetries over all orientations and
radii are considered simultaneously, and the method can also detect multiple axes of
symmetry, rotational symmetry and symmetric figures in complex backgrounds.

The remainder of this paper is organised as follows, Section 2 reviews previous work,
Section 3 describes the method, Section 4 presents experimental results and discusses
the performance of the method, and Section 5 presents our conclusions.
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2 Background

Symmetry has fascinated people since ancient times, and in the computer vision litera-
ture there is a significant body of work dealing with the detection of symmetry in images
dating back to the 1970’s (e.g. [3, 10, 17, 19, 20, 24, 30, 31, 35, 37]). Symmetry detection
has been used for numerous applications, including facial image analysis [23], vehicle
detection [12, 38], reconstruction [1, 6, 14, 34], visual attention [17, 24, 27] indexing of
image databases [28], completion of occluded shapes [36], object detection [19, 37]
and detecting tumours in medical imaging [18]. The problem of symmetry detection
amounts to trying to find an image region of unknown size that, when flipped about
an unknown axis or rotated about an unknown point, is sufficiently similar to another
image region an unknown distance away. With so many unknown parameters it is not
surprising that symmetry detection is a complex task.

Some researchers have taken a global approach to the problem, treating the entire im-
age as a signal from which symmetric properties are inferred, often via frequency anal-
ysis. Marola [19] proposed a method for detecting symmetry in symmetric and “almost
symmetric” images, where the axis of symmetry intersects or passes near the centroid.
Keller and Shkolnisky [10] took an algebraic approach and employed Fourier analysis
to detect symmetry, and Sun [31] showed that the orientation of the dominant bilateral
symmetry axis could be computed from the histogram of gradient orientations. How-
ever, these global approaches have two key shortcomings: they are limited to detecting
a single incidence of symmetry, and are adversely influenced by background structure.

An alternative to the global approach is to use local features such as edge features,
contours or boundary points, to reduce the problem to one of grouping symmetric sets of
points or lines. Scott and Longuet-Higgins [26] grouped symmetric sets of dot-patterns
extracted from the wing markings of a butterfly using the eigenvectors of a proximity
matrix. Masuda et al. [20] adopted an image similarity measure based on the directional
correlation of edge features and proceeded to detect rotational and reflectional symme-
try. This required an exhaustive search of all congruent transformations (consisting of
translation, rotation and reflection) of an image to identify any such transformations
under which parts of the image were close to invariant.

Zabrodsky et al. [37] proposed the symmetry distance as a continuous measure of
the amount of symmetry present in a shape. This distance was defined as the minimum
mean squared distance required to move points of the original shape to obtain a perfectly
symmetrical shape, and enabled a comparison of the “amount” of symmetry present in
different shapes. Given the location and orientation of a symmetry axis, this method
was used in conjunction with active contours to extract symmetric regions such as faces.
However, this method required the foci of symmetry to be known a priori.

Tuytelaars et al. [32] detected regular repetitions of planar patterns under perspec-
tive skew using a geometric framework. The approach detected all planar homologies1

and could thus find reflections about a point, periodicities, and mirror symmetries. By
considering perspective skew this method dealt with a much more general and complex
problem than detection of two-dimensional symmetries within an image. Whilst this

1 A plane projective transformation is a planar homology if it has a line of fixed points (called
the axis), together with a fixed point (called the vertex) not on the line [5].
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approach could indeed detect mirror symmetries in the image plane, it was a slow and
involved means of doing so, and as posed was unable to detect rotational symmetries.
This method built clusters of matching points that were evaluated for symmetry, by con-
trast the new method forms pairs of matching features whose symmetry can be rapidly
assessed from their embedded orientation and scale information.

Lazebnik et al. [13] also noted that clusters of features could be matched within an
image to detect symmetries. However, the use of rotationally invariant descriptors (pro-
viding no orientation information) restricted this, like [32], to a cluster-based approach.

Shen et al. [29] used an affine invariant representation to detect skewed symmetries
in cleanly segmented contours. A set of ordered feature points is sampled around a
contour and an affine invariant feature vector is constructed for each feature point. A
similarity matrix is then constructed describing the similarities between the features, a
threshold is applied to the matrix, and symmetries are identified as diagonal lines in the
binarized similarity matrix. The method is able to detect skew symmetries and rotational
symmetries, but is only suitable for pre-segmented objects and requires a strict ordering
of feature points around the object contour.

Motivated by the ease with which humans and other creatures (even bees) detect
symmetries, Scognamillo et al. [25] constructed a biologically plausible model for sym-
metry detection. A 2D local energy function was calculated defining a salience map
of the image. The symmetry of this map was evaluated via convolution with a broad
Gaussian filter oriented approximately perpendicular to the proposed axis of symmetry.
Maxima were then detected in the filtered direction, and were expected to lie close to
the axis of symmetry for a symmetric figure. If multiple maxima were detected the aver-
age location was used, and consequentially the method became unsuitable for detecting
symmetric figures in complex backgrounds, where maxima can occur that are unrelated
to the symmetric object.

Kiryati and Gofman [11] combined local and global approaches to detect the dom-
inant reflective symmetry axis in an image. They used a symmetry measure similar to
Marola [19] and applied this to assess symmetry in local circular regions parameterised
by their location, size and symmetry axis orientation (x, y, s, θ). The global maximum
of this measure was then determined using a probabilistic genetic algorithm which was
typically able to find the global maximum of the local symmetry measure in around
1,000 iterations. As posed the method detects only a single axis of symmetry, although
it is feasible to extend the genetic algorithm approach to detect multiple symmetries.
However, owing to the parameterisation the method is limited to detecting circular re-
gions of symmetry.

3 Symmetry from Feature Constellations

Our approach is based on the simple idea of matching symmetric pairs of feature
points. This is achieved efficiently and robustly using modern feature point methods.
The “amount” of symmetry exhibited by each pair is quantified by the relative location,
orientation and scale of the features in the pair. These pair-wise symmetries are then ac-
cumulated in a Hough-style voting space to determine the dominant symmetries present
in the image.



Detecting Symmetry and Symmetric Constellations of Features 511

Modern feature point methods [9, 16, 21, 22] provide a proven robust means for gen-
erating dense sets of feature points and matching these between images, however, little
use has been made of matching points within a single image. Feature point methods
typically define the orientation and scale of each feature, and normalise with respect to
these parameters to compute matches independent of orientation and scale. The distinc-
tiveness of the matches obtained, together with their invariance to rotation make these
methods well suited to detecting pairs of symmetric features. Rotational and transla-
tional symmetric pairs can be detected by directly matching the feature points within an
image, and potential mirror symmetric matches can be obtained by constructing a set of
mirrored feature descriptors and matching these against the original feature descriptors.
Mirrored feature descriptors are defined as descriptors of mirrored copies of the local
image patches associated with the original feature points (the choice of mirroring axis
is arbitrary).

Matching pairs of features, mirrored or otherwise, generates a collection of matched
pairs of feature points. Each feature can be represented by a point vector describing
its location in x, y co-ordinates, its orientation φ and scale s. Symmetry can then be
computed directly from these pairs of point vectors.

The remainder of this section discusses the details of this procedure for detecting
bilateral and rotational symmetries.

3.1 Defining Feature Points

A set of feature points pi are determined using any rotationally invariant method,
such as SIFT [16], that detects distinctive points with good repeatability. Whilst a
scale-invariant detection method can be used, this is not necessary. The point vector
pi = (xi, yi, φi, si) assigned to each feature point describes its location, orientation
and (optionally) scale. Scale need only be determined if a scale-invariant feature de-
tection method is used. Orientation, however, must be determined as it is central to the
evaluation of symmetry.

Next a feature descriptor ki is generated for each feature point, encoding the local
appearance of the feature after its orientation (and scale) have been normalised. Any
feature descriptor suitable for matching can be used, see [21] for a review of leading
techniques. The experiments in this paper use the SIFT descriptor [16], which gives ki

as a 128 element vector.

3.2 Bilateral Symmetry

A set of mirrored feature descriptors mi is generated. Here mi describes a mirrored
version of the image patch associated with feature ki. The choice of mirroring axis is
arbitrary owing to the orientation normalisation in the generation of the descriptor.

The mirrored feature descriptors can be generated in one of two ways. The simplest,
which allows the feature detection and matching to be treated entirely as a “black box”,
is to flip the original image about the y (or x) axis, and compute the feature point
descriptors for the mirrored image. Each mirrored feature point is then assigned to the
corresponding feature point in the original image, so that mi is the mirrored version of
ki. The second, more efficient, yet slightly more involved approach requires knowledge
of the configuration of the feature descriptor ki, and generates the mirrored feature
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Fig. 1. Schematic illustrating the extraction and matching of a pair of symmetric features

Fig. 2. A pair of point vectors pi and pj under scrutiny for mirror symmetry

points mi by directly modifying this feature descriptor. For example, in the case of
Lowe’s SIFT descriptor [16] this can be achieved simply by reordering the elements of
the descriptor vector so they represent the original image patch flipped about the axis
aligned with the dominant orientation.

Matches are then sort between the features ki and the mirrored features mj to form
a set of (pi,pj) pairs of potentially symmetric features. Figure 1 shows a schematic
of the process of extracting and matching a pair of symmetric features from an image.
Each pair of symmetric features generates two matching pairs, but as these matches are
equivalent only one need be recorded.

The symmetry of each pair is quantified as a function of the relative location, orien-
tation and scale of pi and pj . An angular symmetry weighting Φij ∈ [−1, 1] (adapted
from the first component of Reisfeld’s [24] phase weighting function) is computed as

Φij = 1 − cos(φi + φj − 2θij), (1)

where the angles are defined as shown in Figure 2. A scale weighting Sij ∈ [0, 1]
quantifying the relative similarity in scale of the two vectors is computed as

Sij = exp
(

−|si − sj |
σs(si + sj)

)2

(2)

where σs controls the amount of scale variation accepted, σs = 1 was used in our ex-
periments. Lastly an optional Gaussian distance weighting function Dij ∈ [0, 1] can be
introduced to reward matching pairs that are closer to the symmetry axis. This agrees
with psychophysical findings that symmetric features close to the symmetry axis con-
tribute more to human symmetry perception than features further away [33]. However,
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from a computer vision perspective introducing a distance weighting is only appropri-
ate if a bound can be given for the diameter of symmetry to be detected, i.e., how far
symmetry detection should extend perpendicular to the symmetry axis. Given such a
bound σd the distance weighting is defined as

Dij = exp
(
−d2

2σ2
d

)
(3)

where d is the distance separating the feature pair, otherwise Dij = 1. Our experiments
used Dij = 1, imposing no constraint on the diameter of symmetry detected.

All these weightings are combined to form a symmetry magnitude for each (pi,pj)
pair defined by

Mij =
{
ΦijSijDij if Φij > 0
0 otherwise

(4)

The symmetry magnitude Mij quantifies the “amount” of symmetry exhibited by an
individual pair of point vectors. We now accumulate the symmetries exhibited by all
individual pairs in a voting space to determine the dominant symmetries present in the
image.

Each pair of matching points defines a potential axis of symmetry passing perpendic-
ularly through the mid-point of the line joining pi and pj , shown by the dash-dotted line
in Figure 2. These potential symmetry axis lines can be represented using the standard
rθ polar co-ordinate parameterisation with

rij = xc cos θij + yc sin θij

where (xc, yc) are the image centred co-ordinates of the mid-point of the line joining
pi and pj , and θij is the angle this line subtends with the x-axis.

The linear Hough transform can then be used to find dominant symmetry axes. Each
symmetric pair (pi,pj) casts a vote (rij , θij) in Hough space weighted by its symmetry
magnitude Mij . The resulting Hough space is blurred with a Gaussian and the maxima
extracted and taken to describe the dominant symmetry axes. The points lying in the
neighbourhood of these maxima in Hough space indicate the symmetric pairs that are
associated with this particular axis of symmetry. The spatial extent of each symmetry
axis in the image is bounded by the convex hull of the population of pairs associated
with the axis.

Figure 3 shows the steps involved in computing symmetry in an example image
containing a symmetric figure in a cluttered background.

This method can be adapted to detect translational symmetry by replacing the mir-
rored feature points with unmirrored ones and modifying the assessment of the angular
symmetry weighting in Equation 1 to Φij = cos(φi − φj).

3.3 Rotational Symmetry

Unlike bilateral symmetry detection, detecting rotational symmetry does not require the
manufacture of additional feature descriptors, and is detected by simply matching the
features ki against each other. Each match defines a pair of point vectors (pi,pj). If
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(a) (b) (c)

(d) (e) (f)
Original photograph by m a c s f, distributed under the Creative Commons Attribution-Non-Commercial-Share-Alike Licence, http://creativecommons.org.

Fig. 3. Example. (a) 254 × 254 original image, (b) 946 feature points detected, (c) axes of sym-
metry associated with the 254 reflective matches obtained, intensity is proportional to symmetry
magnitude Mij , (d) symmetry axes in Hough space, (e) 22 symmetric features associated with
the dominant symmetry axis, (f) dominant axis of symmetry and associated symmetric features.

Fig. 4. Centre of rotation cij defined by point vectors pi and pj

these vectors are parallel they do not exhibit rotational symmetry, but if they are not
parallel their exists a point about which they are rotationally symmetric.

Formally, given a pair of non-parallel point vectors pi and pj in general position
there exists a point cij a distance r from pi and pj about which pi can be rotated to
become precisely aligned and coincident with pj .

Figure 4 shows two such point vectors. The rotation centre cij is given by

cij =
(
xi

yi

)
+
(
r cos(β + γ)
r sin(β + γ)

)
(5)

where xi, yi are the Cartesian co-ordinates of pi, γ is the angle the line joining pi and
pj makes with the x-axis. By Pythagoras
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r2 =
(
d

2

)2

+
(
d

2
tanβ

)2

=⇒ r =
d
√

1 + tan2 β

2
,

where d is the distance between pi and pj . Denoting the orientations of the point vectors
pi by φi, it can be seen from Figure 4 that

φi = γ + β + ψ
φj = γ + π − β + ψ

}
=⇒ β =

φi − φj + π

2
which solves for all unknowns in Equation 5 and analytically specifies the centre of
rotation of two non-parallel point vectors.

Once the centres of rotational symmetry have been determined for every matching
feature pair the rotational symmetry magnitude Rij is computed for each pair,

Rij = SijDij (6)

where Sij is defined by Equation 2 or can be set to unity if all features have the same
scale, and Dij is defined by Equation 3 or is set to unity if no restriction on the size of
symmetric objects to be detected is given.

Finally, the dominant centres of rotational symmetry are determined by accumulating
the centres of rotation cij in a vote image the same size as the input image. Each vote
is weighted by its rotational symmetry magnitude Rij . The result is blurred with a
Gaussian and the maxima identified as dominant centres of rotational symmetry. All
centres of rotation close to a maxima are associated with that maxima.

If desired, the order of rotational symmetry can be estimated by examining the his-
togram of angles of rotation between matched features about each centre of rotation.
Each order of rotationn defines an set of rotation anglesA = { 2πk

n : k = 1, 2, ..., n−1}
which should occur frequently in the angular histogram if this order of rotation is
present. A simple measure of the prevalence of different rotational orders can be ob-
tained by calculating the mean number of rotations in some vicinity q of the the angles
in A and subtracting the mean number of rotations that are 2π(k−1)

n out of phase with
these angles. This gives the order estimation function

O(n) =
1

n− 1

n−1∑
k=1

q∑
−q

(
h(2πk

n + q) − h(2π(k−1)
n + q)

)
Figure 5 shows the stages towards computing rotational symmetry in an example im-

age containing a rotationally symmetric region, (f) shows the order estimation function
O(n) with a clear peak at n = 10, and (e) shows the angular histogram with the shaded
areas above and below the axis indicating the regions sampled when determiningO(n)
for n = 10 (here q = π

18 ). Figure 5 (d) shows the correctly detected rotational symme-
try foci of order 10, note the stray match lying off the wheel was introduced by allowing
more than one match per feature, this is discussed in Section 3.4.

3.4 Matching

A similarity matrix is constructed quantifying the similarity between feature points.
There are numerous ways to measure the similarity between feature vectors, for our ex-
periments we used the Euclidean distance between the SIFT descriptors. The similarity
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(a) (b) (c)

(d) (e) (f)
Original photograph by Sandro Menzel, distributed under the Creative Commons Attribution-Non-Commercial-Share-Alike Licence, http://creativecommons.org.

Fig. 5. Example. (a) original image, (b) feature points detected, (c) centres of rotation of matched
feature pairs, (d) dominant centre of rotational symmetry and associated rotationally symmetric
features, (e) histogram of angles of rotation (black) and mask applied when assessing order 10
symmetry, (f) response to detection of order of symmetry, order 10 detected.

matrix is symmetric, and as we are not interested in matching features with themselves
or their mirrored equivalents, we only need to calculate the upper off-diagonal portion
of the matrix. We can also limit the necessary comparisons by only attempting to match
features whose scales are sufficiently similar for them to exhibit significant symmetry.

The number of matches per feature is not limited by the algorithm. Using only one
match per feature works well in most situations. However, when there are repeated
objects in the scene, or when searching for rotational symmetry of order greater than
two there are obvious reasons to allow more than one match per feature. There is little
additional computational load to generate several matching pairs per feature — the
comparisons have been computed already — the only extra work is determining the
symmetry for the additional pairs, which is extremely fast.

Allowing more than one match per feature allows the feature matching some degree
of leeway when finding the correct match, however, it also increases the chance that
incorrect “fluke” matches will be found that align with a dominant symmetry foci and
are incorrectly grouped into a symmetric constellation. For our experiments we allowed
one match per feature when detecting bilateral symmetry and four matches per feature
when detecting rotational symmetry.

4 Performance

The new method was implemented in Matlab, with feature points detected and described
using Lowe’s SIFT code [16], and applied to detect bilateral and rotational symmetries
in a diverse range of real images. Bilateral symmetry detection results are shown in
Figure 6 and rotational symmetry detection results are shown in Figure 7.
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(a) (b) (c) (d)

(e) (f) (g)

Original photographs (a) Sandro Menzel, (b) David Martin, (c) BioID face database, (d) Stuart Maxwell, (e) elfintech, (f) Leo Reynolds, (g) ze1, distributed under the
Creative Commons Attribution-Non-Commercial-Share-AlikeLicence, http://creativecommons.org.

Fig. 6. Bilateral symmetry detection

Many objects and creatures exhibit a high degree of bilateral symmetry, especially
when viewed from the front or rear, this is particularly common for moving objects (and
creatures) whose dynamics benefit from symmetry about their direction of motion. In
Figure 6 we see examples of this with the detection of vehicles (a) and (b), and faces of
a person (c) and a cheetah (d). The symmetry axes detected together with the pairs of
reflective feature points contributing to the symmetry axis are illustrated. Figure 6 (d)
and (e) show creatures being detected with significant background clutter, (e) is partic-
ularly interesting as the subject appears partially camouflaged to a human eye. Many
static artefacts also exhibit symmetry such as the street lamp in Figure 6 (f). Figure 6 (g)
demonstrates the method detecting multiple axes of symmetry. When multiple axes are
drawn the brightness indicates the relative symmetry magnitudes of the constellations.

Figure 7 shows five images containing rotationally symmetric objects. The second
row shows the centres of rotational symmetry detected in each image, the feature points
associated with each centre of rotation, and arcs indicating the rotations linking match-
ing feature pairs. Figures 7 (a) and (b) illustrate the algorithm’s ability to detect rota-
tionally symmetric objects in cluttered scenes, (c) and (d) show the method applied to
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(a) (b) (c) (d) (e)

Original photographs by (a) Sandro Menzel, (b) coolmel, (c) Oliver Hammond, (d) Timothy K. Hamilton, (e) gregw, distributed under the Creative Commons
Attribution-Non-Commercial-Share-AlikeLicence, http://creativecommons.org.

Fig. 7. Rotational symmetry detection. Estimated orders of rotational symmetry for detected cen-
tres: (a) 5 and 5, (b) 2, (c) 10, (d) 4, and (e) 8.

(a) (b) (c) (d) (e)

Fig. 8. Some results from the BioID database where the bilateral symmetry of the face was de-
tected in 95.1% of cases, e.g. (a)-(c), and not detected in 4.9%, e.g. (d) and (e)

images with global and almost-global rotational symmetry, and (e) shows the method
detecting rotational symmetry under partial occlusion. The orders of symmetry detected
are also shown. Note that the order detected for (d) is 4 not 12, this is due to the cropping
of the symmetric figure by the square image border which has left numerous features in
the corners of the image with order 4 rotation.

To give an indication of the method’s robustness it was applied to detect axes of
symmetry in 1521 images from the BioID face database2. Ground truth symmetry axes
were determined from 20 facial feature points manually annotated on each image3. Up
to five symmetry axes were detected per image, and the axis of facial symmetry was
deemed detected if the (r, θ) values of at least one detected axis lay within ±5 pixels
and ±5o of the ground truth respectively. Figure 8 shows some results. The symmetry
axes of the faces were correctly identified in 95.1% of the images. The 4.9% of cases
where the symmetry of the faces were not detected (e.g. Figure 8 (d) and (e)) were
attributed to the non-symmetric appearance of facial features in some of the images, or
insufficient feature points on the face due to lack of contrast. Note that other (non-facial)
axes of symmetry detected in the images still exhibited a degree of symmetry.

2 http://www.bioid.com/downloads/facedb
3 FGNet Annotation of the BioID Dataset http://www-prima.inrialpes.fr/FGnet/
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The performance of the new algorithm is closely linked to the matching capability of
the feature method used, and it is important to generate a substantial number of feature
points on a symmetric object for it to be reliably detected. In essence our method is
matching instances of locally symmetric texture, so it works very well when applied
to detailed two-dimensional symmetric patterns such as butterfly wings (Figure 3 and
Figure 6 (e) and (g)), however, it works equally well for three-dimensional features
when these features form symmetric patterns in an image, such as the face, lamp and
vehicles in Figure 6. The method works less well for smooth textureless objects where
the number of feature points diminishes. It is feasible, however, that a shape-based
descriptor, such as [7], could provide sufficient features in such circumstances.

The new method is simple and fast with the majority of time consumed in computing
features and performing the matching. The computational order for matching n feature
points is O(n2), although the number of computations is reduced by only matching
across similar scales. If a non-unity distance weighting Dij (Equation 3) is used the
squared distance between pairs can be used to further limit the number of comparisons
necessary. This would be useful when searching for relatively small symmetric objects
in large scenes. The image can then be divided into grid squares as wide as the maxi-
mum expected symmetry diameter and features need only be matched against features
in the same or adjacent grid regions. However, at present with no such constraints, and
running unoptimised Matlab code on a 2.8 GHz Pentium 4, the method is quite fast, e.g.
it takes less than 1.5 seconds to compute symmetry in the image in Figure 6 (c) with
314 feature points, and under 7 seconds to compute the symmetry in Figure 3 with 946
feature points. The majority of time is spent generating and matching the features, for
Figure 3 this takes 1 and 5.5 seconds respectively (SIFT feature generation is done by
calling Lowe’s pre-compiled C code [16]).

There is a great deal of opportunity to extend the approach presented here. The sym-
metric constellations of features, together with the accurate characterisation of symme-
try foci, provide a strong basis for segmenting the symmetric regions. One possibility
is to generate additional feature points in the vicinity of the symmetric matches, verify
their symmetry and grow symmetric regions, in a similar fashion to Ferrari et al.’s ob-
ject segmentation approach [4]. Segmenting the symmetric regions would also provide
a more accurate measure of the extent of the axes of symmetry in the image.

5 Conclusions

A method has been presented that finds symmetric constellations of features in images
and allows efficient computation of symmetries in the image plane. Its performance
has been demonstrated on a diverse range of real images. The method simultaneously
considers symmetries over all locations, scales and orientations, and was shown to reli-
ably detect both bilaterally and rotationally symmetric figures in complex backgrounds,
and handle multiple occurrences of symmetry in a single image. The method relies on
the robust matching of feature points generated by modern feature techniques such as
SIFT [16]. However, it is not restricted to any one such technique, rather, it provides
a means to compute symmetry from features, with the requirements that these features
facilitate orientation invariant matching and have an associated orientation measure.
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The pair-wise matching underpinning this approach accounts for its efficiency, allow-
ing symmetric pairs to “vote” for symmetry foci rather than having to search the space
of all possible symmetries. Symmetric features are grouped into constellations based on
their underlying symmetry, characterising both the symmetries present and identifying
the features associated with each incidence of symmetry.
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Abstract. Understanding texture regularity in real images is a challeng-
ing computer vision task. We propose a higher-order feature matching
algorithm to discover the lattices of near-regular textures in real im-
ages. The underlying lattice of a near-regular texture identifies all of the
texels as well as the global topology among the texels. A key contri-
bution of this paper is to formulate lattice-finding as a correspondence
problem. The algorithm finds a plausible lattice by iteratively proposing
texels and assigning neighbors between the texels. Our matching algo-
rithm seeks assignments that maximize both pair-wise visual similarity
and higher-order geometric consistency. We approximate the optimal as-
signment using a recently developed spectral method. We successfully
discover the lattices of a diverse set of unsegmented, real-world textures
with significant geometric warping and large appearance variation among
texels.

1 Introduction

Texture is all around us, taking up a large part of our visual world. However,
human perception is so well-tuned to detecting regularity (both structural as
well as statistical) that the casual observer often takes texture for granted, blind
to its actual complexity (see Figure 1a). But scientifically, texture analysis has
been a long-standing and surprisingly difficult problem. Interest in visual texture
predates computer vision, going back at least to J.J. Gibson [1], who pointed out
its importance for the perception of surface orientation (i.e. shape-from-texture).
Later, Bela Julesz developed a theory of human texture discrimination based on
matching Nth order texture statistics [2]. Both researchers speak of a texture
element (texel or texton)1, as the basic building block which defines a particular
texture. This notion of a texture element turned out to be extremely useful in

1 Although now most researchers use texel and texton interchangeably, we believe that
there is a useful distinction to be made. Texels, by analogy with pixels, define a par-
titioning (or tiling) of the texture, with each texel having a finite, non-overlapping
spatial extent. On the other hand, Julesz’s textons serve the role of statistical fea-
tures, and (as operationalized by Malik et al. [3]) are computed at every pixel,
without concern for overlap. In this paper, we are primarily interested in texels.
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Fig. 1. The stages of our algorithm, one iteration per row. (a) is the input image,
(l) is the final result. The leftmost column shows (potentially warped) input images
with the current, refined lattice overlaid. The second column is the correlation map,
calculated from valid texels, used to propose the potential texels in (c) and (g). (d)
and (h) show assignments made from these potential texels before they are refined into
the lattices of (e) and (i), respectively. (k) shows the lattice with the highest a-score
after 16 iterations, and (l) is that lattice mapped back to input image coordinates. The
input image (a) is a challenge posed by David Martin at the Lotus Hill workshop, 2005.
Best seen in color.

approaching a number of problems, including shape-from-texture [4, 5, 6], tex-
ture segmentation [7, 3], texture recognition [8, 9], as well as texture editing and
resynthesis [10, 11, 12, 13]. However, finding texels in real images has proved to
be an extremely difficult task. (In this paper, we are not concerned about highly
stochastic textures with no easily identifiable texels.) For textures with well
defined texture elements, most existing automatic texel detection algorithms
appear too brittle, severely constraining the applicability of algorithms such as
shape-from-texture to the very limited class of “easy” textures. For the same
reason, in computer graphics literature, automatic approaches have been largely
unsuccessful, typically replaced by the user identifying texels by hand [13].

Why is finding repeated texture elements such a difficult problem? The answer
is that texture is inherently a global process. Texture, by definition, exists only
over a large spatial extent. It is meaningless to talk about a single texel in isolation,
since it only becomes a texel when it is repeated. Only when consideration is given
to the persistent re-appearance of deformed, noisy versions of the same texel in
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a texture, does the structure of the texture have a chance to overcome its local
noise and emerge as a global solution. In fact, texel finding is an instance of the
notoriously hard Gestalt grouping problem. Therefore, local approaches alone are
doomed to fail due to their inherent computational brittleness.

1.1 Finding Repeated Elements

In the now classic paper, Leung and Malik [14] pose the problem of detecting
and grouping texture elements in the language of tracking. After being initialized
through corner features, potential texels are spatially “tracked” to nearby image
locations under the affine deformation model. Texels that have a high similarity
with their neighbors are deemed good and are stitched together. This algorithm
iterates until no more texture elements can be added, resulting in a connected
set of texels without any global topological structure. The algorithm is greedy,
with no mechanism to fix mistakes and there is no method to evaluate groupings
produced from different initializations.

Lobay and Forsyth [6, 12] address these concerns by building a global texel
model, based on clustering SIFT descriptors. The authors model texture regu-
larity as a “marked point process” that ignores the geometric arrangement of
texture elements and assumes that all texture elements are foreshortened, ro-
tated, and differently illuminated versions of an identical canonical texel. The
advantage of this model is that the appearance deformations of the different
instances of the same texel provide useful information about surface orientation
without having to reason about their geometric or topological relationship.

The above approaches place strong requirements on the appearance of each
individual texel (e.g. it must be distinctive enough to be matched), but make
no strict assumptions about the spatial relationships between the texels. Schaf-
falitzky et al. [15] and Turina et al. [16] take the opposite view by assuming a
very strong transformation model. In particular, they assume that the texture
is completely regular and planar, and that it has undergone a global projective
transformation. Under such strong assumptions, it is possible to locate texels
even if they are not very distinctive. However, such restrictive assumptions limit
the applicability of these methods.

1.2 The Case for Lattice Estimation

Previous work on discovering repeated texture elements can be viewed as two
extremes: one focusing on individual texels (or local neighborhoods) with no
regard to their global organization or regularity [14, 12]; the other placing very
strict requirements on the overall image structure (i.e. planar regular texture
under global perspective transformation) [15, 16]. The former can handle a wide
range of textures but at the cost of relying entirely on the appearance of individ-
ual texels. The latter uses the overall arrangement of the texels to its advantage,
but is only applicable to a limited subset of textures.

In this paper, we would like to consider the middle ground – an algorithm
that uses the underlying structure of the texture, but does not place undue
restrictions on the allowable deformations. For this paper we will consider a
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class of near-regular textures (NRT) [13] that are regular textures under locally
smooth geometric and appearance deformations. Although this somewhat re-
stricts the types of textures we can handle (e.g. randomly distributed polka dots
are probably out), NRT can model a broad set of real-world textures (see Result
Section for examples). The most useful property of near-regular texture is that
it can be completely characterized by an underlying 2D lattice.

We can formally define a near-regular texture P as a deformed regular texture
Pr through a multi-modal, multi-dimensional mapping d: P = d(Pr). Wallpaper
group theory [17] states that all translationally symmetric textures Pr can be
generated by a pair of shortest (among all possible) vectors t1, t2. The orbits
of this pair of generators form a 2D quadrilateral lattice, which simultaneously
defines all 2D texels (partitions the space into smallest generating regions) and
a topological structure among all texels. A regular texture can be expressed by a
single pair of t1, t2, while an NRT is uniquely determined by its location-varying
lattice under actions t1(x, y), t2(x, y).

Two important observations on the lattice are worth noting: (1) the lattice
topology for all different types of wallpaper patterns remains the same: quadri-
lateral; (2) while NRT may suffer large geometry and appearance variations
locally or globally, its lattice topology remains invariant. Therefore, automati-
cally discovering the lattice of an NRT is a well-defined and conceptually feasible
task. Understanding and explicitly searching for lattice structures in real world
textures enables us to develop more powerful texture analysis algorithms that
are not totally dependent on specific image features [14, 12], and to approach a
much broader set of textures than could be covered in [15, 16].

1.3 Lattice Estimation as Correspondence

Our main contribution in this paper is the formulation of texel lattice discovery
as an instance of the general correspondence problem. Correspondence problems
come up in computer vision whenever there are two disjoint sets of features
that require a one-to-one assignment (e.g. stereo correspondence, non-rigid shape
matching [18], etc). Here, however, we propose to assign a set of potential texels
to itself, with constraints to avoid self-assignments and other degeneracies. While
this formulation might seem counterintuitive, by phrasing lattice finding as a
correspondence problem we can leverage powerful matching algorithms that will
allow us to reason globally about regularity. Robustness is key because there is
no foolproof way to identify texels before forming a lattice – the two must be
discovered simultaneously.

But how can 2D lattice discovery (where each texel is connected to a spatial
neighborhood) be formulated in terms of pairwise correspondence? Our solu-
tion is to perform two semi-independent correspondence assignments, resulting
in each texel being paired with two of its neighbors along two directions, which
turn out to be precisely the t1 and t2 directions discussed earlier. Combining all
these pairwise assignments into a single graph will produce a consistent texture
lattice, along with all its constituent texels. Thus, the overall correspondence
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procedure will involve: 1) generating a set of potential texels in the form of visual
descriptors and their locations, and 2) using a matching algorithm to discover
the inherent regularity in the form of a lattice and to throw out the potentially
numerous false positives.

Correspondence problems in computer vision are commonly constructed as
a “bipartite matching.” One can use the Hungarian algorithm or integer linear
programming to find, in polynomial time, the global optimum assignment based
on any such bipartite, pairwise matching costs. But texture regularity is not
a pairwise phenomenon – it is inherently higher-order. Consider the following
scenario: a texel, in trying to decide who his neighbors are, can see that he looks
very much like many other potential texels. This is necessarily the case in a
repeating texture. This leaves a great deal of ambiguity about who his t1 and t2
neighbors should be. But the texel knows that whatever assignment he makes
should be consistent with what other texels are picking as their neighbors – i.e.
his t1 vector should be similar to everyone else’s. This compels us to adopt a
higher order assignment scheme in which the “goodness” of an assignment can
be conditioned not just on pairwise features and one-to-one assignment, but on
higher-order relationships between potential assignments. We can thus encourage
assignments that are geometrically consistent with each other.

Unfortunately finding a global optimum in a situation like this is NP-complete.
One can try to coerce bipartite matching to approximate the process by rolling
the higher-order considerations (e.g. consistency with the some t1 and t2) into the
pairwise costs. However, this is a tall order, effectively requiring us to estimate
the regularity of a texture a priori. Fortunately there are other efficient ways to
approximate the optimal assignments for higher order correspondence [19, 20]. We
use the method presented in [20] because of its speed and simplicity.

2 Approach

Our algorithm proceeds in four stages: 1) Proposal of texels, in which new can-
didate texels will be proposed based on an interest point detector, correlation
with a random template, or a lattice from a previous iteration. 2) Lattice as-
signment, in which potential texels will be assigned t1 and t2 neighbors based
on their pairwise relationships to each other as well as higher-order relation-
ships between assignments. 3) Lattice refinement, in which the assignments are
interpreted so as to form a meaningful lattice and discard the outlier texels.
4) Thin-plate spline warping, in which the texture is regularized based on our
deformed lattice and a corresponding regular lattice. Our algorithm will iterate
through these four stages based on several random initializations and pick the
best overall lattice.

2.1 Initial Texel Proposal

Our task in initialization is to propose a set of potential texels from an input
texture that can be passed to the assignment procedure. Without initial knowl-
edge of the nature of the regularity in a texture our initial estimates of texels are
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necessarily crude. Our approach is therefore to avoid making commitments until
the global assignment procedure can discover the true regularity and separate
the “true” texels from the “false.”

Many previous regular texture analysis approaches [14, 15, 16, 12] use some
manner of interest point detector or corner detector to propose initial texel
locations. All of these methods use a grouping or verification phase, analogous
to our assignment phase, in order to confirm their proposed texels. Likewise, we
propose a set of potential texels with MSER[21], which we found to be the most
effective interest point detector for structured textures.

However, for about half of the textures in our test set the interest points
were so poorly correlated with the regularity that not even a partial lattice
could be formed through any subset of the interest points. If such a failure
occurs, our algorithm falls back to a texel proposal method based on normalized
cross correlation (NCC). We pick a patch at random location and radius from
our image (figure 1a) and correlate it at all offsets within 5 radii of its center
(Figure 1b). We then find peaks in this correlation score map using the Region
of Dominance method [22]. In a highly deformed near-regular texture it is likely
that NCC will not be effective at identifying all similar texels. However, we find
that it can do a reasonable job locally so long as textures vary smoothly.

2.2 Higher-Order Matching

The use of higher-order matching to discover a lattice from potential texels is the
core of our algorithm. We assign each potential texel a t1 neighbor and then a t2
neighbor. Figures 1d and 1h show the assignments from the potential texels 1c
and 1g, respectively, during the first and second iteration of our lattice finding.

In order to employ the machinery of higher-order assignment, we need to an-
swer two questions: 1) what is the affinity between each pair of texels. 2) what
is the affinity between each pair of assignments. The former are pairwise affini-
ties and the latter are higher-order affinities. Because our higher-order match-
ing problem is NP-complete, we must engineer our answers such that they are
amenable to approximation by the specific algorithm that we have chosen [20].

To calculate pairwise affinities we will consider all of the information that a
pair of texels can draw upon to decide if they are neighbors. The most obvious
and vital source of pairwise information is visual similarity– how similar do these
two texels appear? Other factors must be considered as well– how near are the
two texels? Would the angle of this assignment compromise the independence
of t1 and t2? To calculate the higher-order affinities, we will focus on geometric
consistency – how geometrically similar are these two potential pairs of assign-
ments? By rewarding the selection of t1, t2 vectors that agree with each other
we encourage the assignment algorithm to discover a globally consistent lattice.
The higher-order affinities also prevent geometrically inconsistent false positives
from being included in the lattice, even if they are visually indistinguishable
from the true texels.

Taken together, these affinities should prefer visually and geometrically con-
sistent lattices which are made up of true texels while the false texels are left
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unassigned or assigned to each other. Before getting into further detail about the
calculation of these affinities we must first discuss the mechanics of our matching
algorithm as they will influence our precise metrics.

Estimating the Optimal Higher-Order Assignment. The higher-order as-
signment algorithm we adopt from [20] is a spectral method which will infer the
correct assignments based on the dominant eigenvector of an affinity matrix M .
M is symmetric and strictly non-negative, containing affinities between all pos-
sible assignments. Therefore, M is n2-by-n2, where n is the number of potential
texels found in section 2.1, for a total of n4 elements. Each element M(a, b),
where a = (i, i′) and b = (j, j′), describes the affinity between the assignment
from texel i to i′ with the assignment from texel j to j′. Where a = b on the diag-
onal of the affinity matrix lie what could be considered the lower-order affinities.
Clearly, M will need to be extremely sparse.

The correspondence problem now reduces to finding the cluster C of assign-
ments (i, i′) that maximizes the intra-cluster score S =

∑
a,b∈C M(a, b) such that

the one to one mapping constraints are met. We can represent any cluster C by
an indicator vector x, such that x(a) = 1 if a ∈ C and zero otherwise. We can
rewrite the total intra-cluster score as S =

∑
a,b∈C M(a, b) = xTMx and thus

the optimal assignment x∗ is the binary vector that maximizes the score, given the
mapping constraints: x∗ = argmax(xTMx). Finding this optimal x∗ is NP-Hard
so Leordeanu and Hebert[20] approximate the optimal assignment by relaxing the
integral constraints on x∗. Then by Raleigh’s ratio theorem the x∗ that maximizes
x∗ = argmax(xTMx) is the principal eigenvector of M. The principal eigenvector
x∗ is binarized in order to satisfy the mapping constraints by iteratively finding the
maximum value of the eigenvector, setting it to 1, and zeroing out all conflicting
assignments. The magnitude of each value of the eigenvector before binarization
roughly equates to the confidence of the corresponding assignment.

Specifying the Affinities. The lower-order, pairwise affinities A are calculated
as follows:

A(i, i′) = NCC(Patch(i), Patch(i′)) ∗ θ(i, i′, t1) ∗ λ(i, i′) (1)

NCC is normalized cross correlation, clamped to [0,1], where Patch(i) is the im-
age region centered at the location of potential texel i. θ(i, i′, t1) is the angular
distance between the vector from i to i′ and the t1 vector (or its opposite) previ-
ously assigned at i (if i is in the process of assigning t1 then this term is left out).
The θ term is necessary to prevent t1 and t2 connecting in the same direction.
λ(i, i′) =

√
1/(Length(i, i′) + Cl) is a penalty for Euclidean distance between

two potential texels. The λ term is necessary to encourage a texel to connect to
its nearest true neighbor instead of a farther neighbor which would otherwise be
just as appealing based on the other metrics. Cl is a constant used to prevent λ
from going to infinity as a potential assignment becomes degenerately short.

The higher-order affinity G is a scale-invariant measure of geometric distortion
between each pair of potential t vectors.

G(i, i′, j, j′) = max(1 − Cd ∗Distance(i, i′, j, j′)/Length(i, i′, j, j′), 0) (2)
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This term gives affinity to pairs of assignments that would produce similar t
vectors. Distance(i, i′, j, j′) is the Euclidean distance between the vectors from
i to i′ and j to j′. Length(i, i′, j, j′) is the average length of the same vectors.
Multiplying the lengths of these vectors by some constant has no effect on the G.
This is desirable– we wouldn’t expect resizing a texture to change the distortion
measured in the potential assignments.Cd controls how tolerant to distortion this
metric is.

Logically, we could place the lower-order affinities on the diagonal of M and
place the higher-order affinities on the off-diagonal of M . But by keeping these
affinities distinct in M , x∗ could be biased towards an assignment with very large
lower-order affinity but absolutely no higher-order support (or vice versa). Since
we are looking for x∗ = argmax(xTMx), by placing the lower-order and higher-
order affinities separately in M the two sets of affinities are additive. We want a
more conservative affinity measure which requires both lower-order and higher-
order affinities to be reasonable. Therefore we multiply the lower-order affinities
onto the higher-order affinities and leave the diagonal of M empty. Assignments
without lower-order (appearance) agreement or without higher-order (geometric)
support will not be allowed.

Combining all of the previously defined terms, we build the affinity matrix M
as follows:

M((i, i′), (j, j′)) = A(i, i′) ∗A(j, j′) ∗G(i, i′, j, j′)
for all i, i′, j, j′such that i �= i′ and j �= j′ and i �= j and i′ �= j′ (3)

The restrictions on which (i, i′, j, j′) tuples are visited are based on the topology
of the lattice– no self assignments (i = i′ or j = j′) or many-to-one assignments (i
= j or i′ = j′) are given affinity. We avoid cycles (both i = j′ and i′ = j) as well.
It would still be computationally prohibitive to visit all the remaining (i, i′, j, j′)
tuples, but we skip the configurations which would lead to zero affinity. For a given
(i, i′), the geometric distortion measureG will only be non-zero for (j, j′) that are
reasonably similar. In practice, this will be the case for several hundred choices
of (j, j′) out of the hundred thousand or so possible assignments. We therefore
build a kd-tree out of all the vectors implied by all assignments and only calculate
affinity between assignments whose vectors fall inside a radius (implied by Cd)
where they can have non-zero G score. Affinities not explicitly calculated in M
are 0. In practice, M is commonly 99.99% sparse. Lastly, this affinity metric is
symmetric (as required by [20]), so we only need to visit the lower diagonal.

2.3 Lattice Refinement / Outlier Rejection

The matching algorithmproduces a one-to-one assignment of texels to texels, both
for t1 and t2, but the assignments do not directly define a proper lattice. A lattice
has topological constraints that are of higher-order than a second-order correspon-
dence algorithm can guarantee. We enforce three distinct topological constraints:
1) border texels don’t necessarily have two t1 or t2 neighbors, 2) the lattice is made
up of quadrilaterals, and 3) the lattice is connected and non-overlapping. Because
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the higher-order assignment algorithm has chained the true texels into a coherent
lattice, these simple heuristics tend to discard most of the false positive texels.

Non-assignments. Our first refinement of the lattice is performed based on the
“confidences” found during the assignment phase above. By keeping only assign-
ments whose eigenvector value is above a certain threshold, we can find all bor-
der nodes or unmatched texels. We use a threshold of 10−2 to distinguish these
“non-assignments” from the real assignments. Non-assignments have low confi-
dences because they cannot find a match that is geometrically consistent with
the dominant cluster of assignments. In figures 1d and 1h these non-assignments
are shown as blue “stubs.” An alternative approach is to use dummy nodes as
proposed in [18], but we find our method more effective in conjunction with the
higher-order approximation we use.

Quadrilaterals. Our second refinement requires that the lattice be composed en-
tirely of quadrilaterals. A texel is included in the lattice only if, by going to its t1
neighbor and then that neighbor’s t2 neighbor, you arrive at the same texel as tak-
ing t2 and then t1 links. We also require all four texels encountered during such
a test to be distinct in order to discard cycles and self-assignments. All quadri-
laterals that pass this test are shown with a beige line through their diagonal in
figures 1d and 1h.

Maximum Connected Component. If false positive texels appear in an orga-
nized fashion either by coincidence or by poor thresholding in the texel proposal
phase, these false positives will self-connect into a secondary, independent quadri-
lateral lattice. Two such texels can be seen in the upper right of figure 1d. It is not
rare to see large secondary lattices which are the dual of the primary lattice. These
secondary lattices are perfectly valid but redundant. We reduce the final lattice to
a single, connected lattice by finding the maximum connected component of the
valid texels.

2.4 Regularized Thin-Plate Spline Warping

The result of the previous section is a connected, topologically valid lattice that
can be unambiguously corresponded to a “regular” lattice. Inspired by work in
shape matching [18], we use this correspondence to parameterize a regularized
thin-plate spline coordinate warp to invert whatever geometric distortions are
present in our texture. At each texel in the lattice, we specify a warp to the cor-
responding texel in a regular lattice which is constructed from uniform t1 and t2
vectors that are the mean of the t1 and t2 vectors observed in the deformed lat-
tice. We use a strong regularization parameter which globalizes the un-warping
and prevents a few spurious, incorrectly included or wrongly shaped texels from
distorting the image too much. We use the same affine regularization term
as in [18].

Unwarping the texture makes the true texels easier to recognize. For instance,
in figure 2 the unwarping flattens the seams in the lower half of the image where
the distortion would otherwise be too strong to detect the texels. Figures 1 and 3
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Fig. 2. From left to right: input, warp specified at each texel after the second iteration,
flattened texture after nine iterations, and the final lattice

Fig. 3. From top to bottom: Iterations 1, 3, and 9 of our lattice finding procedure. On
the left is the final lattice overlaid onto the original image. On the right one can observe
the effects of successive thin-plate spline warps to regularize the image.

show the effect of thin-plate spline warping through several iterations. Figures 1e
and 1i show the combined effects of lattice refinement and thin-plate spline warp-
ing on the assignments returned from the matching algorithm (shown in figure 1d
and 1h). The warping effects may seem subtle because of the strong regularization
parameter but by later iterations the effect is pronounced. (See figure 1k)

2.5 Iterative Refinement

One of the keys of our approach is the idea of incrementally building and refining a
lattice by trusting the texels that have been kept as inliers through the assignment
and refinement steps. At the end of each iteration we allow texels to “vote” on a
new set of potential texels. We extract each texel from the final, warped lattice and
correlate it locally just as we did with our initial patch in section 2.1. These local
correlation maps for each texel are then summed up at the appropriate offsets for
the combined correlation map (see figures 1b, 1f, 1j). This voting process prevents
a few false texels from propagating to future iterations since they are overridden
by the majority of true texels.
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2.6 Evaluation: The A-Score

With an iterative, randomly initialized lattice-finding procedure we need a way
to reason about the relative quality of the many lattices we will discover. For this
purpose we adopt a modified version of the “a-score” from [13]:

A-score =
∑m

i=1 std(T1(i), T2(i), . . . , Tn(i))
m ∗

√
n

(4)

where n is the number of final texels, andm is the number of pixels in each aligned
texel Tn. This score is the average per-pixel standard deviation among the final,
aligned texels. Texel alignment is achieved with a perspective warp which aligns
the corner points of each texel with the mean sized texel. This alignment is re-
quired because the regularized thin-plate spline does not necessarily bring the tex-
els into complete alignment, although it will tend to do so given enough iterations.
Our modification is the inclusion of

√
n in the divisor in order bias the a-score

toward more complete lattices.

3 Results

All of the results shown in this paper were generated with the same parameters and
constants (Cl = 30 and Cd = 3). Each texture was randomly initialized and run
for 20 iterations. This procedure was repeated 5 times with different initializations
and the best result was chosen based on the a-score. For bad initializations, it takes
less than a minute to propose texels, run them through matching, and realize that
there is no meaningful lattice. A full 20 iterations can take half an hour for some
textures as the number of texels increases.

For our experiments, we used textures from the CMU Near-regular Texture
Database (http://graphics.cs.cmu.edu/data/texturedb/gallery). Some qualita-
tive results of our algorithm are presented in Figures 4, 5, and 6. Quantitatively,
the algorithm was evaluated on about 60 different textures. The full lattices were
discovered in about 60% of the cases, with about 20-30% producing partially-
complete lattices (as in Figure 6 upper left), and the rest being miserable failures.

Fig. 4. From left to right: input, final lattice, warped texture, and extracted texels
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Fig. 5. Input and best lattice pairs. Best seen in color.
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Fig. 6. Input and best lattice pairs. Best seen in Color.

Failure is typically due to the low-level visual features rather than the matching
algorithm.

4 Conclusions

We have presented a novel approach for discovering texture regularity. By formu-
lating lattice finding as a higher-order correspondence problem we are able to ob-
tain a globally consistent solution from the local texture measurements. With our
iterative approach of lattice discovery and post-warping we recover the structure
of extremely challenging textures. Our basic framework of higher-order match-
ing should be applicable to discovering regularity with any set of features. While
there does not exist any standard test sets for comparing the performance of our
method against the others, we demonstrate that our algorithm is able to handle
a wide range of different textures as compared to previous approaches.
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Abstract. This paper proposes a novel method to exploit model similarity in 
model-based 3D object recognition. The scenario consists of a large 3D model 
database of vehicles, and rapid indexing and matching needs to be done without 
sequential model alignment. In this scenario, the competition amongst shape 
features from similar models may pose serious challenge to recognition. To 
solve the problem, we propose to use a metric to quantitatively measure model 
similarities. For each model, we use similarity measures to define a model-
centric class (MCC), which contains a group of similar models and the pose 
transformations between the model and its class members. Similarity informa-
tion embedded in a MCC is used to boost matching hypotheses generation so 
that the correct model gains more opportunities to be hypothesized and identi-
fied. The algorithm is implemented and extensively tested on 1100 real 
LADAR scans of vehicles with a model database containing over 360 models. 

1   Introduction 

1.1   Background 

In a model-based 3D object recognition system, two model-related issues are chal-
lenging for the recognition performance: the number of models in the database and 
the degree of similarity amongst the models. In an indexing based recognition system 
that employs shape features for indexing, as the number of models increases, so does 
the number of the model features. As more features need to be searched, the recogni-
tion process may become inefficient. When a large number of similar models exist in 
a database, features from these models will compete with each other, the matching 
uncertainty may result in missing the correct target model. Numerous methods have 
been proposed to solve the first problem, such as the locality sensitivity hashing 
(LSH) techniques [2], which result in sublinear efficiency in feature search. There are, 
however, far fewer methods proposed to solve the model similarity problem in order 
to improve the recognition performance. 

In this paper, we propose a new approach to tackle the model similarity issue in a 
model-based 3D object indexing system to improve the object indexing performance. 
Our indexing system takes the 3D object data obtained from a LADAR sensor, 
searches through the model database, and outputs a short list of models with high like-
lihood of matching to the scene target.  Our application is vehicle recognition. A large  
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Fig. 1. The model-based 3D object indexing system 

model database is built which contains several hundred commercial and military vehi-
cles, of which about 2/3rd are sedans, pickup trucks, minivans and SUVs.   

In our previous work [14], as shown in middle-row blocks in Figure 1, we have 
developed a method of coarse alignment and hypothesis testing by using linear model 
hashing and batch RANSAC for rapid and accurate model indexing. Facet models are 
converted into point clouds, and a set of shape signatures, the spin images [3], in the 
form of high-dimensional shape vectors is computed for each model and stored in the 
database. During the indexing process, the set of shape signatures is computed from a 
scene object and matched to the models features in the database. Features matched be-
tween the scene and models are used to generate indexing hypotheses. These hypothe-
ses are verified by using the geometrical correspondence between the scene and 
model signatures, and the final matching likelihood is computed for each matched 
model. The indexer outputs a list of matched models with high likelihood value, as 
well as the model pose estimates.  

1.2   Issues 

As discussed above, the matched scene and model features are used to generate 
matching hypotheses.  Based on indexing with shape signatures, for efficiency, the 
method tests for a limited number of pose hypotheses generated through the feature-
pair of spin image matches. The method works well on diversified and mixed models. 
However, shape signatures tend to be alike if they are generated from the same loca-
tion among the similar models. With the constraint of limited number of hypotheses, 
when the number of similar models increases in the model database, the best-matched 
model features may not come from the right model, but from models that are similar 
to the right one. This may result in the target model not being hypothesized and tested 
through the indexing process. The problem gets worse when large model database is 
indexed and many similar models present with quite severe ambiguities. 

To alleviate the similar model indexing problem, in this paper we discuss a new 
approach to (1) measure the model similarity, (2) define the model-centric class  
to make use of model similarity, (3) use the model similarity to bootstrap model  
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hypothesis to increase indexing and matching performance, and (4) use ICP for pose 
refining to improve likelihood computation. The new approach is shown in top-row 
blocks in Figure 1. 

1.3   Related Work 

Model similarity has been addressed in 2D/3D model retrieval applications, where on 
a given query of a model, the similar models are searched and retrieved from a do-
main specific database or from the Internet [4, 5]. The most common approaches for 
estimating model shape similarity is to establish the correspondence between two 
models and then to define the measure of similarity in terms of the mean-squared dis-
tance between pairs of points in correspondence [6]. 3D pose estimation between two 
3D objects is well studied and a variety of methods were proposed [10, 11, 12, 13]. 

In recent years, instead of direct matching model raw points, a wide range of shape 
descriptors, in form of high-dimensional feature vectors, either global or semi-local, 
such as spin image [3] or shape context [7, 17], were introduced to represent 3D mod-
els. In shape descriptor or signature representations, model similarity measures become 
distance measurement between two sets of shape description vectors [2, 3, 7, 8, 9]. 
Point-based methods measure the local features; it is highly sensitive to precision of 
model alignment and to noise – if in the case the similarity is measured between a 
model and a scene object. Shape descriptors are, in general, more global or semi-local, 
and more immune to noise. The approach is generally invariant to viewing point trans-
formations, which enables the computing the model similarity without using align-
ment. In [15] Sharp et al proposed the combination of shape and point-based methods 
for refining the ICP registration in the ICPIF algorithm. 

Similarity measures between models were employed in [16] to define part based 
classes of 3D models, however the similarity was obtained using shape signatures 
only and the measures obtained were relative to the models used in the database. 
Thus, if several models were added to the database, the similarity between two mod-
els would change. 

One of the approaches in dealing with similar models is to categorize models into 
classes and compose the model prototypes to represent the classes. Recognition proc-
ess starts with matching on class prototypes, and then matching the individual models 
in the selected classes [18]. While the method sounds efficient, there are certain unre-
solved problems with such scheme. One is how to select the class prototypes such that 
they can well represent a model class? Bad prototyping will sure fail the recognition 
in the classification stage. The second is what if the right class prototype misses the 
matching at the first place? The continuing identification process inside classes using 
wrong prototypes will guarantee to generate wrong results.  

Our work does not use class prototypes explicitly. However, the way the LSH 
process organizing the model features implies that the similar model features are 
grouped for scene-model match. Since such grouping is performed in model feature 
space, certain bad feature matches would not have fatal impact to the final recognition 
– because of large number of features used for each model (>1500).  
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1.4   Notation 

In this paper, models are represented by a group of shape descriptor features. Each 
feature, F=(s, x, n, mid), consists of four elements: s – the shape signature, e.g. a spin 
image defined w.r.t. a locally planar coordinate system; x – the 3D coordinate of the 
shape signature origin; n – the local surface normal, and mid – the model ID. Match 
from scene object to model is represented by transformation Φ(R, T), where R is a 
3x3 rotation matrix and T is 3x1 translation vector. We call a model the target model 
if the model is the ground truth for the scene object. The similarity between model i 
and j is represented by Sij, with the value in the range of [0, 1]; 0 means completely 
dissimilar, 1 means identical. Sij also has the property of symmetry, i.e. Sij = Sji. 

The remainder of this paper is organized as follows: In Section 2, we discuss how 
to quantitatively measure the model similarity, which provides the basis for using 
model similarity in 3D object indexing. We then propose a novel concept to define a 
model class for each model by using similarities, which is different from the conven-
tional model-clustering methods. We then propose a new method to use our definition 
of model class to improve the matching hypothesizing process so that the target mod-
els gain more chances to be indexed. In Section 3, we discuss the models and database 
used in the experiments, and present the results from extensive testing on real 
LADAR vehicle data to show the performance improvement. 

2   Our Approach 

2.1   Quantitative Measure for Model Similarities 

We use the distance measures between a pair of models to evaluate their similarity S. 
Two sets of data are used for the measurement: the raw model point clouds and the 
shape signatures extracted from the sampled positions. Prior to the measurement, two 
models are aligned to obtain their relative pose by using the Iterative Closest Point 
(ICP) algorithm [6].  The pose alignment is initiated by feeding one of the models into 
the indexing system, which generates coarse alignment between this model and the 
one in the database. The similarity is calculated by a weighted sum of point-to-point 
distance and shape signature differences, as shown in Eq. 1, in which, x is a 3D point, 
s is the shape signature at point x. The α’s are used to weight the contribution from 
each component. The value of S is normalized between [0, 1]. Figure 2 shows the 
overlap a 1995 Toyota Tercel (white) aligned with a 1995 BMW 318i (black). The 
alignment and match measure show that the difference between the two is very small. 

   

Fig. 2. The overlap of model 1995 Toyota Tercel (white pixels) with 1995 BMW 318i (black 
pixels) shows the small shape difference between the two vehicles 
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2.2   Model-Centric Class 

For each model, we define a class, the model-centric class (MCC), to specify the as-
sociation of a model with its class members. The MCCi for model mi contains a group 
of models which have the highest similarities to model mi. For a given database con-
taining N models, the similarities Sij between mi and rest of N-1 models are calculated. 
Models satisfying the following criterion are defined as a member in MCCi: 

mj ∈ MCCi   iff   Sij ≥ Sthreshold (i≠j) . (2) 

MCCi also includes the pose transformation Φij between model mi and mj, which is ob-
tained in similarity computation process.  

MCC has the following properties: (1) a model can be a class member in multiple 
MCCs, (2) the number of class members can vary in different MCCs, and (3) if model 
mj is a member of MCCi, then model mi must be a member in MCCj. 

Fig. 3. 1995 Toyota Tercel (right) and a group of models with high similarity values: (1) 1996 
Nissan Sentra-GXE s=0.79, (2) 1999 Volkswagon Passat s=0.76, (3) 1999 Toyota Corolla 
s=0.75, and (4) 1996 BMW 318i s=0.75 

For instance, in Figure 3 if Sthreshold set to be 0.7, all four models as shown will be 
the members of MCC for the 1999 Toyota Tercel. By property #3, under the same 
similarity threshold, 1999 Toyota Tercel is also the member of MCCs of these 4 vehi-
cle models. 

Model similarity association within MCC provides a convenient way to bootstrap 
the matching hypothesis from a model to its class members without involving an ex-
pensive correspondence search and pose computation process. 

2.3   Generate Matching Hypotheses 

As mentioned in Introduction section, we use shape signatures, e.g. spin images, 
augmented with 3D positions to represent both models and scene objects. In the fea-
ture search process, Q best-matched model features are obtained for each of the scene 
object’s features.  The Q features can belong to P different models. A data-driven 
method, described in [14], is used to generate the scene-model matching hypotheses.  
In the method, a feature pair (doublet) is randomly generated from the scene data and 
the corresponding model doublet, sampled from the matched model feature list Q, is 
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Fig. 4. Scene-model doublets are used to generate the matching hypothesis. Geometrical con-
straints are applied to ensure the goodness of matching. 

selected. This doublet of features, if passes all the geometrical constraints, is used to 
generate a scene-model matching hypothesis, i.e. the R and T transformation, as 
shown in Figure 4. 

For Q model features matched to each scene feature, the maximum number of dou-
blets to be generated is Q2. In our case, scene data usually contains 2000 features. If 
we match each scene feature to Q=100 model features, then, the potential matches to 
be generated could be C2

2000× 1002 ~ 1010, which is clearly impractical. To make the 
matching process efficient, scene features are checked to make sure they are salient 
before use; matched model features are sorted to make sure the best-matched ones are 
first used. A sequence of geometrical constraints are applied between the matched 
doublets, such as that |d| > dmin, |d-d′| ≤ε, |a-a′|<η, |b-b′|<η, and |c-c′|<η, to ensure 
choosing good hypotheses. After all checks have passed, it is checked if the best-
matched model doublet belongs to the same model. Otherwise, the matching cannot 
be established. 

At the end of the hypothesis generating process, we find that it may never guaran-
tee to generate good hypotheses, if any, for the target model, largely due to (1) The 
features of target model never get in the Q list, (2) even though they get in Q list, 
there is a chance that they never get sampled, (3) even though they get sampled and 
used to form the matching doublet hypothesis, the constraint checks as discussed 
above may fail the match.  

2.4   Use MCC to Enhance Matching Hypothesis 

As discussed, we have the problem that when two best-matched model features in a 
doublet do not belong to the same model, no matching hypothesis will be generated. 
In such case, if one of the features belongs to the target model, then the target model 
may be missed in hypothesis generation process. 

To solve this problem, we propose to use information in MCC to boost the hy-
pothesis making process. It is observed that (1) the best set of model features matched 
to the scene largely comes from models that are similar to the scene object, and (2) 
most of these models are similar to the target model. The proposed idea is, if two 
best-matched features belong to two models that are similar to each other, we can use 
Φ in MCC to transform a feature from the location of one model to the corresponding 
location of the other, and then use the transformed features to generate hypothesis. 
This is illustrated in Figure 5. The method is stated as follows: 
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Fig. 5. Two matched features belong to two similar models, as indicated by solid-line patches. 
Features can be mapped to the same location from one model to the other by using MCC, as in-
dicated by dashed-line patches. Thus for each model, a feature doublet, a solid-dashed pair, can 
be constructed. 

For two best matched model features, Fi(si, xi, ni, mi) and Fj(sj, xj, nj, mj) where i≠j, 
if the following conditions are met: 

mj ∈ MCCi and Sij ≥ Sthreshold . 

or   mi ∈ MCCj and Sji ≥ Sthreshold . 
(3) 

    Then, the two new features, one for each model, can be generated: 

F′i(si(Φji (xj)), Φji (xj), n(Φji (xj)), mi) . 
F′j(sj(Φij (xi)), Φij (xi), n(Φij (xi)), mj) . 

(4) 

A hypothesis can be generated for each model by using two original best-matched 
features and two newly generated features: 

For model i:  [Fi(si, xi, ni, mi), F′i(si(Φji (xj)), Φji (xj), Φji (nj), mi)] . 
For model j:  [Fj(sj, xj, nj, mj), F′j(sj(Φij (xi)), Φij (xi), Φij (ni), mj)] . 

These new hypotheses are added to the hypothesis list of the corresponding model 
and evaluated by feature alignment and matching. 

2.5   Use MCC to Bootstrap Poses for Similar Models 

The goal of the indexer is to produce a pruned short list of potential matching models.  
Indexer fails if the target model is not in the output list. To increase the chance of tar-
get model match, we use MCC to bootstrap new pose hypotheses for un-hypothesized 
models, evaluate the newly generated hypotheses, and increase the probability of tar-
get model detection. The idea is again based on two observations: (1) models in the 
indexer’s output list are typically the good matches to the scene object; (2) the target 
model should ideally be in the list or at least be similar to some of the models in the 
list. The method is described as follows. 

We begin by examining the top K (m1, m2, …, mk) highest ranked models from the 
indexer output. For each of these models mi, we look at its MCCi and perform the fol-
lowing operation: for each model mj in MCCi, if Sij ≥ Sthreshold, we generate a new 
matching hypothesis for model mj: 
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Φsj (mj)= Φsi • Φij . (5) 

Where Φsi is the pose transformation from scene to model mi, Φij is the relative pose 
transformation from model mi to its class model mj, and Φsj is the new matching hy-
pothesis generated for mj.  This idea is depicted in Figure 6. 

 

Fig. 6. Scene object (leftmost column) matches to model 1998 Chevrolet_S10 (mc) (middle 
column), which has a list of similar models in MCC: right top - 1999 Mazda B2500 (mm) , 
right middle - 1988 Toyota SR5 (mt), and right bottom - 1997 Dodge Dakota (md). Using 
scene-to-model and model-to-model transformations in MCCc, new matching hypotheses are 
generated for the three similar models, indicated by the dashed arrows. The final best-matched 
model is 1988 Toyota SR5 (right middle), which is the true model. 

The pose bootstrapping process generates a new set of matching hypotheses, which 
are evaluated through the verification process, and added to the previously generated 
pruned model list. The final indexer output is generated by ranking the likelihoods of 
the models in the expanded list.  

2.6   ICP for Scene-Model Pose Refinement 

Point distance between aligned scene and model is used for likelihood computation. It 
is observed that the accuracy of the likelihood computation heavily depends on the 
fine pose alignment between the model and the scene. This is especially critical when 
many similar models exist in the hypothesis list; in such case, a slight misalignment 
may cause the target model to be ranked low in the candidate list. To ensure that the 
target model will prevail in competing with its similar rivals, the pose of scene-model 
alignment is refined by using ICP algorithm on both model and scene point cloud 
data. The final model candidates is sorted on the likelihood values and constrained by 
top K threshold. 

3   Experimental Results 

3.1   Model Database and Similarity Distribution 

We generated a 3D model database containing 366 vehicle models, of which most are 
civilian vehicles, such as sedans, SUVs, pickups trucks etc. Samples of vehicle mod-
els in the model database are shown in Figure 7(a). Similar models are commonly 
seen in database.  
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  (a)     (b) 

Fig. 7. (a) Sample models in model database; (b) Model similarity distribution on 366 model 
database (Sthreshold=0.5), and most models in the database are sedans 

Figure 7(b) shows the similar model distribution for 366 models in the database 
with the similarity threshold, Sthreshold set at 0.5. Each model, on average, contains 35 
similar models. There are over 127 models containing more than 50 similar models in 
their MCCs. These models are all sedans. On the other hand, most of construction or 
military vehicles, located between models 211 and 253 in Figure 7(b), have very few 
similar models since their geometrical shapes are unique.  

Facet model data are processed to generate point clouds. Spin images are generated 
on evenly sampled locations around the model point clouds. Model features are built 
by combining the spin image, its 3D location, the local surface normal, and the model 
ID. A 366x366 model similarity matrix is computed. MCC for each model is ex-
tracted from the similarity matrix. Model database consists of nearly 1,000,000 shape 
features and 366 MCCs. 

3.2   Real LADAR Scene Data and Pre-processing 

We used three sets of LADAR data collected from high-lift on ground, airship, and 
helicopter platforms. About 250 real vehicles, both civilian and military, situated in 
the natural settings (urban, suburban) were scanned by Laser Terrain Mapper. Vehi-
cles range from cars, SUVs, minivans, to trucks and construction utilities. More than 
1000 volume of interest (VOIs) containing scene targets were extracted and used for 
testing. Note that typically each VOI contains only partial “views” of an object since 
only 2 or at most 3 sides of vehicles are scanned by the LADAR and that the point 
density is quite non-uniform. Scene data input to indexer are noisy with 5-10 cm stan-
dard deviation, contain ground plane and tree-like clutter, are sparse at times, may 
have articulations (doors, hood, trunk may open), and may be partially occluded.  

Data from multiple views covering approximately 90° of viewing angle (2-3 sides) 
are registered to form the input scene object. Prior to feature computation, ground 
plane is removed through automated pre-processing. The input VOI in Figure 11 
shows that with high degree of noise, fine features from vehicle data are lost. This in-
creases the challenge for indexing process. 

3.3   Experimental Results 

We used data from all three collections and the 366-models database to test indexing 
system with and without using the new algorithm. For each input VOI query, the  
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indexer outputs a variable length of ranked models (from 1 up to 25) as the best-
matched model candidates. The probability of correct identification (Pid) is computed 
by comparison with the ground truth. We use the precision vs. the recall (ROC) curve 
to present the performance. 
    The first set testing is on 344 vehicles’ VOI from ground high-lift data collection.  
The results are shown in Figure 8, where the triangle curve indicates the indexing per-
formance with using the new algorithm; the diamond curve shows the performance 
without using the new algorithm. It shows that the new method increases the indexing 
performance on Pid by about 15%. 
    The second set testing is on 210 vehicles’ VOI from airship data collection.  The 
results are shown in Figure 9. Again, the triangle curve indicates the indexing per-
formance with using the new algorithm; the diamond curve shows the performance 
without. It shows that the new algorithm increases the indexing performance by up to 
20% on airship data. 

         

Fig. 8. Testing results on 344 highlift vehicles      Fig. 9. Testing results on 210 airship vehicles 

The last set of testing is on 548 vehicles’ VOI from helicopter data collection.  The 
results are shown in Figure 10 (a).  Again, the triangle curve indicates the indexing 
performance by using the new algorithm; the diamond curve shows the performance 
without using the new algorithm. It shows that the new algorithm increases the index-
ing performance by up to 30% on helicopter data collection. 

Overall, the indexing performance improvement with using new algorithm is sig-
nificant on the large model database and large data collection sets. Indexer performs 
better on helicopter data collection is due to better data density in VOI, though the 
noise level (up to 10 cm) in this data set is larger than in other two data collections.  

Together with ranked model output, indexer also outputs the pose alignment for 
each candidate model to the scene. Figure 10 (b) shows indexing results with scene-
model poses; dark pixels are for scene data, light pixels are for matched models.  

In general, for scene targets that have distinctive 3D shape, the target model will 
appear on top of the output list. In the case the 3D shape of input data can match to 
many models, the top K list will automatically expand to have the target model in-
cluded. If the target model does not rank on top of the output list, the models ranked 
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  (a)     (b) 

Fig. 10. (a) Results on 548 helicopter collection data; (b) Examples of scene-model pose align-
ment output from indexing process. In the image, dark pixels are for scene, light pixels are for 
matched models. 

 

Fig. 11. Input query “1987 Honda Accord” and its top 10 best matched models: 1) 1994 Nis-
san_Sentra, 2) 1995 Oldsmobile_Cutlass-Ciera, 3) 1994 Ford_Tempo, 4) 1995 Geo_Prizm, 5) 
1987 Ford_Escort, 6) 1992 Mazda_626, 7) 1984 Ford_Tempo, 8) 1987 Honda_Accord, 9) 1999 
Dodge_Neon, and 10) 1991 Honda_Prelude-SI.  High noise data and model similarity pushed 
the target model to rank 8.  In the image, dark pixels are for scene, light pixels are for models. 

above it are mostly very similar to the target model. Figure 11 shows an example of 
1989 Honda Accord scene data and the top 10 best-matched models. The target model 
is ranked at 8, but the 7 models above it are very similar in shape and all match well 
with the scene.  

To further distinguish among fine differences in indexed similar models needs to 
use model saliency features for fine verification. We discuss the issue in a separate 
paper [19].   

The indexing runs on a PC with a 2.0 GHz CPU and 2 GB memory, on Windows 
and Linux OS.  The entire process takes about 100 seconds on a 366 models database. 

4   Conclusion 

In this paper, we present a new method to solve the model similarity problem encoun-
tered in model-based 3D object recognition. We use a new metric to quantitatively 
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measure model similarities on both shape signatures and 3D points. We use the simi-
larity measures to define a model-centric class, the MCC, for each model. MCC con-
tains a group of similar models and the pose transformation between the model and its 
class members. Similarity information embedded in MCC is used to boost matching 
hypotheses generation so that the target model gains more opportunity to be hypothe-
sized and identified through the indexing process. The algorithm is implemented and 
extensively tested in a 3D object indexing system with a large model database con-
taining 366 vehicle models, among which many similar models exist. Over 1000 real 
LADAR data from vehicle scans with noise up to 10cm standard deviation are used to 
test the new method. Our test results show that the target recognition performance 
improved by 15% to 30% in correct target identification with the new approach. 
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Abstract. We address the problem of recognition of natural motions
such as water, smoke and wind-blown vegetation. Such dynamic scenes
exhibit characteristic stochastic motions, and we ask whether the scene
contents can be recognized using motion information alone. Previous
work on this problem has considered only the case where the texture
samples have sufficient overlap to allow registration, so that the visual
content of the scene is very similar between examples. In this paper we
investigate the recognition of entirely non-overlapping views of the same
underlying motion, specifically excluding appearance-based cues.

We describe the scenes with time-series models—specifically multi-
variate autoregressive (AR) models—so the recognition problem becomes
one of measuring distances between AR models. We show that exist-
ing techniques, when applied to non-overlapping sequences, have signifi-
cantly lower performance than on static-camera data. We propose several
new schemes, and show that some outperform the existing methods.

1 Recognition from Motion

Motion is a powerful cue for visual recognition of scenes and objects. Johansson’s
moving dot displays [1] show that objects which are highly ambiguous from a
single view are readily recovered once motion is supplied. In computer vision, the
classification of scenes from motion information has seen considerable research,
summarized in the recent survey of Chetverikov and Péteri [2]. In this paper, we
focus on classification of objects using the class of state-space dynamic texture
models introduced by Doretto and Soatto [3, 4] and Fitzgibbon [5].

Dynamic textures are image sequences of moving scenes which exhibit char-
acteristic stochastic motion. Examples include natural scenes such as water,
wind-blown flowers and fire. State-space models [5, 4] view a dynamic texture
as a realization of a time-series model such as an autoregressive process. By de-
termining the model parameters for such sequences, we can hope to recognize
similar motions by comparing the models represented by the parameters. Our
goal in this paper is to define a distance measure between pairs of image se-
quences which is low for models representing the same motion (or motion class),
and high for models derived from motions of different classes. Such distance
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measures can be used in kernel-based or nearest-neighbour classifiers; and as the
basis of clustering algorithms for the unsupervised learning of dynamic texture
classes. Some of the distance measures we propose are based on feature vectors
extracted from the state-space models, and are thus also suitable for density
estimation or regression.

Two important new aspects of our work are that we require shift invariance,
and that we want to investigate recognition using motion alone, for reasons we
now explain.
Shift invariance. Previous authors [6, 7] have investigated only the case where
the temporal sequences are captured by a camera at a single viewpoint, so that
the same area of the scene is viewed in (part of) each sequence. In some cases [5, 8]
the camera is panning across the scene, or the textures compared are in overlap-
ping tiles [9], but there remains the constraint of overlap between the textures.
However, in order to separate the appearance and dynamic components of recog-
nition we compare images of the scene where there is no spatial overlap between
the example dynamic textures. Recognition rates for this configuration are much
lower than for the single-viewpoint case, but are significantly higher than either
baseline methods or chance, and thus confirm that motion can provide a useful
cue for recognition.
Recognition from motion alone. As noted by Chan and Vasconcelos [7],
much of the recognition performance on typical test data may be attributed to
appearance cues. Thus comparisons between the recognition schemes conflate
appearance and motion, and this conflation is of a form that is hard to disen-
tangle. Furthermore, the appearance component of these schemes is not repre-
sentative of the current state of the art in appearance-based recognition, being
based essentially on a principal components analysis of the image sequence. Thus
a practical scheme for recognition including motion should combine a state-of-
the-art appearance-based scheme and the best possible motion-based scheme.
By considering motion-only schemes, we hope to allow this selection to be more
carefully performed, and to allow the balance between motion and appearance
to depend on the training set for any given real-world system.

The remainder of the paper is structured as follows: a discussion of the state of
the art also serves to introduce the DT model and the notation of the paper. We
then discuss the construction of motion-based distance measures between such
models, and introduce some novel measures. We conduct experiments comparing
these and existing distance measures in section 4, and conclude with a discussion
of the relative merits of the various models.

2 Background

General-purpose automated recognition of motions in video sequences may be
attributed to Polana and Nelson, who considered two classes: stochastic motions
and “activities”. For activities they considered periodicity measures on edges
in xyt slices [10]. Subsequent research on activity recognition has been consid-
erable, using optical flow [11], features in the spatiotemporal volume [12, 13],
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Fig. 1. Single frames from the database sequences. Although many of the sequences
are easily distinguished using colour information, the goal of this paper is to explore
how well they can be distinguished using motion information alone.

spatiotemporal correlation [14], parametrized models [15] and exemplars [16]. In
addition, models of videotextures [17] may be considered to be related to activ-
ity models. These perform well for regular motions, but are less well suited to
stochastic motions of the types we consider.

Stochastic models of temporal texture may be divided into local and global:
local models include Polana and Nelson’s co-occurrence statistics of optical flow
vectors [18]; and the spatiotemporal autoregressive models of Szummer and Pi-
card [19], which model stochastic regularity by expressing each pixel of the se-
quence as a linear combination of its spatial and temporal neighbours. By fitting
the model to an example sequence, and assuming the AR model parameters
are constant over the sequence, each temporal texture is represented by a small
number of model parameters. Comparison of such parameters may be achieved
using the methods reviewed in the current paper. Fablet and Bouthemy [20]
first quantize certain motion-related per-pixel measurements, and then model
the spatiotemporal cooccurrence of the quantized labels as a Gibbs distribution.
A model is learned for each class to be recognized and recognition proceeds
by measuring the likelihood of the labels of a novel sequence under each class
model. These local models allow robust classification, but strongly bind together
the appearance and motion of the texture, limiting their applicability to textures
which are both spatially and temporally stationary; yet offering limited shift and
viewpoint invariance.

State-space models [3, 5] on the other hand, model the image sequence more
globally, and have been used for recognition [6], image segmentation [21, 9, 8],
image registration [5] and videotexture synthesis [4, 5]. The core of such models
is a spatiotemporal autoregressive (AR) model, and recognition depends on com-
puting the similarity of pairs of AR models. Saisan et al. [6] propose the Martin
distance between AR model parameters, and Chan and Vasconcelos [7] mea-
sure the Kullback-Leibler (KL) divergence between the realization distributions
defined by the models. In both of these previous cases however, the sequence
appearance plays an important role in the recognition performance, and indeed,
as we show, swamps the motion-based results.
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2.1 The State-Space Model

Dynamic texture models [4, 5] represent the image using a state-space model.
Images are represented by column vectors y. A sequence of T images is the
matrix Y = [y1, ...,yT ]. Under the state-space model of such a sequence, each yt

is assumed to be a linear projection of a low-dimensional state vector xt ∈ RN ,
with typical values of N in the range 5 to 35. The observed y are corrupted with
zero-mean Gaussian noise with covariance matrix R, yielding

yt = Cxt + wt, wt ∼ N (0, R) (1)

The matrix C is sometimes termed the output matrix. The temporal evolution of
xt is modelled by the first-order time-series, or autoregressive (AR) model,

xt+1 = Axt + vt, vt ∼ N (0, Q) (2)

where A is the N ×N state matrix, and Q is the N ×N driving noise covariance
matrix. The model from which a given sequence is drawn will be represented by
its parameters θ = (C, A, Q), where C models the sequence appearance and A and
Q its motion. A sequence such as Y which is generated from the model is called
a realization of the model. Figure 2 shows some example trajectories.

2.2 Fitting the Model

Given an example sequence Y, we would like to estimate the parameters θ =
(C, A, Q) of the model of which it is a realization. We adopt the approach of [4, 5],
described here for completeness.
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Fig. 2. Example 2D state-space trajectories x1..T ⊂ R2 for three example sequences.
Red: water flowing over stone; Black and Blue: tree blowing in the wind. We char-
acterize the sequences using auto-regressive models, and wish to compare the model
parameters to identify similar models. Any distance metric must be invariant to changes
of basis in the state space (see §2.3).
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We ensure that input sequences have zero mean
∑

t yt = 0, by subtracting
the mean from each frame. The matrix C is determined via principal components
analysis of the sequence, i.e. assuming Y is much taller than it is wide, compute
the eigendecomposition Y�Y = VDV� and set C = YVD−

1
2 . From this we may

immediately obtain estimates of the state vectors

xt = C�yt, t = 1 . . . T (3)

The state matrix A is found as the minimizer

A = argmin
T∑

t=2

‖xt − Axt−1‖2 (4)

which is easily computed. Finally the driving covariance Q is approximated as
the sample covariance of the residuals rt = xt − Axt−1, given by

Q =
1

T − 1

T∑
t=2

rtr�t (5)

As we are interested in recognition schemes which depend only on motion, and
not appearance, we shall not be required to estimate R.

2.3 Comparing State-Space Models

For recognition, we will need to determine whether two models θ = (C, A, Q) and
θ′ = (C′, A′, Q′) represent the same dynamic texture. It is not sufficient to check
for equality of the parameters, because a given sequence may be generated by
an equivalence class of models [3]. Specifically, for any invertible N ×N matrix
M the model

(CM−1, MAM−1, MQM�) (6)

generates image sequences drawn from the same distribution as (C, A, Q). Thus
any metric for comparing AR models must be invariant to this class of transfor-
mations of the model parameters. In this paper we explore three classes of dis-
tance measure which (sometimes approximately) obey this property: measures
of divergence between the distributions of the model realizations [7], spectral
methods [6], and techniques which operate directly on invariant functions of the
AR model parameters. Each of these will now be discussed.

2.4 Time-Series Spectrum

Several of the distance measures previously proposed in the literature, as well
as those we introduce, may be expressed in terms of the Fourier transform of
the autocovariance of the time series, or its spectral density [22, Ch3]. For an
infinite time-series (C, A, Q), the spectral density matrix is a matrix function of
frequency ν, F(ν) ∈ CN×N defined as



554 F. Woolfe and A. Fitzgibbon

F(ν) = (I− Ae−2πiν)−1Q(I− Ae2πiν)−1.

and for a finite time-series of length T it will suffice to evaluate this on the
finite set νk = k/T , k = 0, ..., T − 1. Thus the spectral density of a length
T time-series is a set of T matrices. We refer to this method for estimating
the spectral density matrices as the AR method, since it is computed from the
auto-regressive model parameters. We may also directly estimate the spectrum
F(νk) using the fast Fourier transform of the raw time-series as follows. Given
the N × T matrix of state values X, compute the componentwise FFT fk (i.e.
FFT each component f(i, :) = fft(X(i, :)), and set fk = f(:, k).) Then compute
the periodogram Gk = fkf∗k . The spectrum is then given by smoothing G with
a window of size 2H + 1, yielding F(νk) =

∑k+H
i=k−H Gk. We refer to this as the

time-series or TS method, and show that it can give better results than the AR
method for appropriate choices of smoothing parameter H .

3 Distance Measures Between Dynamic Textures

We are now in a position to define distance measures between dynamic textures.
We consider distances of three forms. The first class compares the probability
densities over all possible sequences generated by the time-series under compari-
son. We present a new formulation of the KL metric and introduce the Chernoff
distance. The second class of measure is based on a multivariate definition of
the Cepstrum. The final class is based on computing a set of features from the
fitted AR model parameters.

3.1 Distances Between Realization Distributions

We consider the set of all possible realizations of time-series generated by the AR
model (C, A, Q). Following [7], it suffices to consider only sequences of a certain
length T . This is a probability density over the set of sequences Y, which we may
write as p(Y) or p(yT , ...,y1). As the yt are linear transformations of xt, it is
sufficient to characterize the distribution of the xt, written p(X) = p(xT , ...,x1).
From (2), this is exactly p(xT |xT−1)p(xT−1|xT−2) · · · p(x2|x1)p(x1) where each
term in the product is Gaussian, so that the joint distribution is a Gaussian,
whose covariance matrix may be computed from the model parameters A and Q.
Thus any sequence X drawn from the model is a draw from a Gaussian distribu-
tion whose parameters depend only on the model parameters. Comparing two
AR models then amounts to comparing two Gaussian distributions, i.e. measur-
ing their divergence. We consider two possible definitions: the Kullback-Leibler
divergence and the Chernoff distance.

Given two probability distributions over X with pdfs f1 and f2, the Kullback
Leibler divergence is

IKL(f1, f2) = E1

[
f1(X1)
f2(X1)

]
. (7)
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A generalization of this is the Chernoff distance, given by

ICH(f1, f2) = − lnE2

[(
f2(X1)
f1(X1)

)α]
, (8)

where 0 < α < 1 is a parameter. It was found in experiments that for our
task, the success rate did not depend sensitively on α near the middle of the
interval (0, 1). Thus we often took α = 0.5, yielding Bhattacharya’s symmetric
divergence.

In order to compute the KL divergence of our dynamic texture model, suppose
we have two movies (Cj , Aj, Qj)j=1,2. Compute the spectral densities Fj(νk) as
above. From this definition, we can compute the Kullback Leibler distance from
(C1, A1, Q1) to (C2, A2, Q2) by [22, p459]

IKL(F1, F2) =
∑

0<νk<1/2

[
trace

{
F1(νk)F−1

2 (νk)
}
− ln

|F1(νk)|
|F2(νk)| −N

]
. (9)

The Chernoff distance may also be expressed in terms of the spectral density
as follows [22, p461].

ICH(α, F1, F2) =
1
2

∑
0<νk<1/2

[
ln

|αF1(νk) + (1 − α)F2(νk)|
|F2(νk)| − α ln

|F1(νk)|
|F2(νk)|

]
.

(10)

Note that these distance measures are not invariant to transformations of the
form described in §2.3, so Chan and Vasconcelos suggest resolving the ambiguity
by projecting A2 into the space of A1 using the appearance matrices C1, C2.

3.2 Distances Based on the Cepstrum

The cepstrum of a time series may be thought of as being derived from the
frequency domain representation in the same way that this comes from the time
domain. Intuitively, peaks in the cepstrum correspond to “echoes” in the signal.
The cepstrum coefficients are powerful features for characterizing speech and
music signals, so it is of interest to see how they may apply to repetitive video
signals. In this section, we give the conventional univariate definition of cepstrum
and apply it to dynamic texture recognition via cepstral distance. We suggest
three extensions of the cepstrum to the case of multivariate time series.

Univariate case. For a general univariate time series (xt) the cepstrum, written
(x̂t), is defined as [23] the inverse z-transform of the logarithm of the z-transform
of (xt). In symbols:

(xt) →
∑
t∈Z

xtz
−t = X(z) : the z transform (11)

→ logX(z) (12)

=
∑
t∈Z

x̂tz
−t (13)

→ (x̂t) : the complex cepstrum. (14)
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If the time series (xt) above is drawn from an autoregressive model of order K
the above definition gives rise to a characterization of the cepstrum in terms of
poles. Assume (xt) comes from such an AR(K) model, that is:

xt + a1xt−1 + ...+ aKxt−K = wt;wt ∼ N(0, σ2). (15)

Define the model’s poles as pi ∈ C where the system function is:

H (z)−1 = 1 + a1z
−1 + ...+ aKz

−K =
K∏

i=1

(1 − piz
−1). (16)

The cepstral coefficients x̂t are then given by

x̂t = 0, for t ≤ 0 (17)

=
1
t

K∑
i=1

pt
i for t > 0.

The cepstral distance between two univariate time series (xt) and (x′t), with
cepstra (x̂t) and (x̂′t), is then [23]

∞∑
t=0

|x̂t − x̂′t|
2
. (18)

Note the similarity to the Martin distance [4, 24] where the weighting of higher
degree cepstral coefficients is increased linearly:

∞∑
t=0

t |x̂t − x̂′t|
2
. (19)

For practical computation, in our application, the sum may be terminated at
about t = 20. Performance (i.e. success rate in the classification task of §4,
figure 4) rises quickly for t < 20 and then plateaus.

Multivariate case. There is no consensus definition in the literature of either
cepstra or cepstral distance for multivariate time series, to the best of our knowl-
edge. We present three such definitions, which are mutually incompatible, and
use them to construct distances for classifying dynamic textures.

Summed univariate distances. One simple extension of the univariate definitions
is to fit univariate AR(K) models to each component of the series (xt) indepen-
dently. The distance is simply the sum of the per-component distances. Although
this ignores correlations between the components, the fact that C is obtained by
projection onto a PCA space will have the effect of somewhat decorrelating the
components, and thus this technique can provide good results, as we shall see.
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Fig. 3. Crop regions. In order to test the invariance of recognition to shifts of the image,
all comparisons are between cropped sub-sequences. This figure indicates the two crops
of the test dataset used. Note that the appearance of the tree varies considerably
(globally—local texture measures will be similar) between the two regions, so that
motion is the main recognition cue, even for schemes which include some appearance
modelling.
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Fig. 4. Performance of cepstral distances for two values of N , the number of princi-
pal components. The abscissa is the upper bound on the summations in (18). Left:
N = 5, Right: N = 15. The three distances tested are (red) summed univariate dis-
tances, (green) state matrix eigenvalues, (black) DFT. The DFT method is uniformly
outperformed by the other two.

State matrix eigenvalues. This definition is by analogy to (17). The state equa-
tion for a dynamic texture is xt = Axt−1+vt; vt ∼ N(0, Q), that is a multivariate
AR(1) process. Let the system function be

H(z) = (I− Az−1)−1, z ∈ C. (20)

Let the poles be solutions of |I− Ap−1
i | = 0, that is to say eigenvalues of A. Now

define the cepstrum by analogy with (17) as

x̂t = 0, for t ≤ 0 (21)

=
1
t

N∑
i=1

pt
i for t > 0.
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Note that the cepstral coefficients of a multivariate time series are scalars, accord-
ing to this definition. The multivariate cepstral distance is again given here by (18).

Discrete Fourier transform. Here we let the cepstrum of a multivariate time
series (xt)T

t=1 be the inverse DFT of the logarithm of the DFT of (xt):

(x̂t)T
t=1 = IDFT(ln(DFT((xt)T

t=1))). (22)

Here the DFT of a sequence of vectors is taken componentwise. Thus, the cepstral
coefficients of a multivariate time series are vectors. The cepstral distance is then

n∑
t=1

‖x̂t − ŷt‖ . (23)

3.3 Distances Based on Feature Extraction

In this section we measure discrepancy between dynamic textures by Euclidean
distances between feature vectors. A feature vector is some vector function of
the sequence parameters (C, A, Q) which we hope characterizes a movie.

The choice of feature vectors is subject to two constraints, for the purposes
of this paper. Firstly we restrict ourselves only to consider motion. So the state
matrix A and driving noise covariance matrix Q are both allowed, but we may not
examine the output matrix C or the movie frames yt. Secondly, recall that we
aim to measure distances between observationally equivalent classes of dynamic
textures. Thus any property of A we examine should be invariant under a change
of basis A → M−1AM. Similarly, any property of Q we use should be invariant
under Q → M�QM.
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Fig. 5. Feature-based distance. Each sequence is characterized by a feature vector
comprising K eigenvalues of Q and (N − K) eigenvalues of A.



Shift-Invariant Dynamic Texture Recognition 559

A typical feature vector consists of some eigenvalues of A and some eigenvalues of
Q. Fromtheabove considerations, eigenvalues ofA seemvalid choices for featurevec-
tors, and we note that the set of eigenvalues of A already appears in the definition of
multivariate cepstrum above. Eigenvalues of Q are invariant under Q → M�QMwhen
M is orthogonal, but not otherwise, in general. Nevertheless, experiments suggest
there is some information to be gained from the eigenvalues of Q.

Specifically, denote by αi the eigenvalues of A with |αi| > |αi+1|, and denote by
σ2

i the eigenvalues of Q, again in descending order. Generate the feature vector
v(K) = [α1, ..., αK , σ

2
1 , ..., σ

2
N−K ]. Figure 5 shows performance of this feature

vector as a function of K.

4 Experimental Results

In order to compare the distance measures on experimental data, we tested classifi-
cation performance on the UCLA test database [6]. The UCLA database comprises
50 sets of four sequences of a dynamic texture scene, for a total of200 sequences.The
movies are 75-frame sequences of size 110×160, andwere converted to grayscale be-
fore any computation. In each category, the fourmovies are captured from the same
camera viewpoint, and thus recognitionperformance is dominated by the sequence
appearance. Indeed simply using the mean frame of each sequence, and performing
a 1-vs-all classification using a 1-nearest neighbor classifer (described in more de-
tail below) yields a 60% classification rate. Existing dynamic texture recognition
algorithms quote performance figures of 90% on this dataset.

In order to more rigorously test the performance of motion-based classifica-
tion, we have cropped the test data to remove the effects of identical viewpoint.
The sequences were cropped into a pair of 48 × 48 subsequences, denoted “L”
and “R” for left and right crop windows (illustrated in figure 3). Comparisons
between sequences were only ever performed between different crop locations.
From the 51 categories in the UCLA database, we discarded 12 which violated
the assumption of spatial stationarity (e.g. “candle”, “fire”, “fountain”, in all of
which the “L” cropping viewed stationary background, while the “R” cropping
viewed the motion). Retaining these sequences would be expected to yield simi-
lar results, but with a reduced success rate on all algorithms. There were thus 39
categories. The introduction of this cropping reduces the performance of state-
of-the-art metrics from a quoted 90% to about 15%. Note that this is still well
above the performance of random guessing, which is expected to be about 1%.

In all experiments we considered a nearest-neighbour classifier—classifiers
with stronger priors on the density could be considered, such as a support vector
machine using these distance metrics as a kernel [7], but the NN classifier makes
the fewest assumptions about the parameter distribution, and generally performs
competitively with a wide range of classifiers [25], providing a useful baseline.

The experimental procedure may be defined as follows. Index the m = 36× 4
test sequences by i, with the sequence category given by c(i). For each se-
quence, fit models θiL = (CL, AL, QL) and θiR = (CR, AR, QR) to the left and right
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Fig. 6. Performance of distance metrics as a function of state-space dimension (i.e. nu
mber of principal components) N . The state of the art is represented by the “Martin”
and “KL” schemes, which are generally outperformed by the new cepstral univari-
ate scheme. The Bhattacharya metric performs comparably to the Martin distance.
The “Baseline” metric simply compares the mean frames of the (greyscale) sequences.
Note that all performance figures are low—best achieved performance is about 20%—
reflecting the difficulty of the dataset when cropping is introduced.

croppings. For a distance metric d(θ, φ) between AR models, define the distance
between sequences i and j as

dij = min{d(θiL, θjR), d(θiR, θjL)}. (24)

One-NN classification performance is then computed as

success =
∑

i

δ(c(i), c(argminj �=i dij))

where δ(x, y) = 1/m for x = y, zero otherwise. Figure 6 summarizes the primary
result. The tuning parameter common to all techniques is N , the number of
principal components used to characterize the sequence, and the figure plots
performance against N . The graph shows that for a wide range of values, the
leading performers were the Bhattacharya distribution comparison (Chernoff
information with α = 0.5) and the summed univariate cepstral distances of §3.2.

5 Conclusion

This paper has introduced a new and challenging recognition problem: shift-
invariant dynamic texture recognition. We have shown that existing dynamic
texture recognition algorithms, when applied to classification problems where
there is a difference in camera viewpoint, show a significant drop in performance.
Several new similarity measures have been proposed, and some have been shown
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to outperform the state of the art. In particular, the use of the cepstrum appears
to be a natural tool for the comparison of AR models.

The investigation has concentrated on defining distance metrics between AR
models, rather than modelling the distributions of model parameters in a learning
framework. This allows us to test classification without requiring a large labelled
training set, and provides insight into the behaviour of these model parameters
which may be useful in feature selection for distributional approaches.

The reader will note that we are quoting absolute performance figures of the
order of 20%, which may appear unusually low. We comment that the absolute
performance figures are not relevant, providing that performance is significantly
different from random, which is true here. The absolute performance figures can
be increased by further pruning of the dataset, but relative performance of the
algorithms is expected to remain unchanged. In a real-world system, of course, we
would not expect to use cues based on motion alone—distinguishing grass from
water is rendered artificially difficult if colour is removed from consideration. It is
our contention however, that when testing metrics for motion-based recognition,
it is valuable to exclude textural cues as much as possible.

The paper has concentrated on global modelling approaches in order to cap-
ture large-scale correlations in the motion sequences. However, the relatively
small size of our crop windows may be thought of as positioning the technique
between local and global strategies. It may be valuable to further explore this
tradeoff, and build a multi-scale strategy.
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Abstract. Local appearance models in the neighborhood of salient im-
age features, together with local and/or global geometric constraints,
serve as the basis for several recent and effective approaches to 3D ob-
ject recognition from photographs. However, these techniques typically
either fail to explicitly account for the strong geometric constraints asso-
ciated with multiple images of the same 3D object, or require a large set
of training images with much overlap to construct relatively sparse ob-
ject models. This paper proposes a simple new method for automatically
constructing 3D object models consisting of dense assemblies of small
surface patches and affine-invariant descriptions of the corresponding
texture patterns from a few (7 to 12) stereo pairs. Similar constraints are
used to effectively identify instances of these models in highly cluttered
photographs taken from arbitrary and unknown viewpoints. Experiments
with a dataset consisting of 80 test images of 9 objects, including com-
parisons with a number of baseline algorithms, demonstrate the promise
of the proposed approach.

1 Introduction

This paper addresses the problem of recognizing three dimensional (3D) objects
in photographs taken from arbitrary viewpoints. Recently, object recognition
approaches based on local viewpoint invariant feature matching ([1], [2], [3], [4])
have become increasingly popular. The local nature of these features provides tol-
erance to occlusions and their viewpoint invariance provides tolerance to changes
in object pose. Most methods (for example [5],[6]) match each of the training im-
ages of the object to the test image independently and use the highest matching
score to detect the presence/absence of the object in the test image. This es-
sentially reduces object recognition to a wide-baseline stereo matching problem.
Only a few previous approaches ([2], [7], [8]) exploit the relationships among
the model views. Lowe [2] clusters the training images into model views and
links matching features in adjacent clusters. Each test image feature matched to
some feature f in a model view v votes for v and its neighbors linked to f . This
helps to model feature appearance variation since different model views provide
slightly different pictures of the features they share, yet features’ votes do not
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get dispersed among competing model views. Ferrari et al. [7] integrate the infor-
mation contained in successive images by constructing region tracks consisting
of the same region of the object seen in multiple views. They introduce the no-
tion of a group of aggregated matches (GAM ) which is a collection of matched
regions on the same surface of the object. The region tracks are then used to
transfer matched GAMs from one model view to another, and their consistency
is checked using a heuristic test. The problem with this (as with all other meth-
ods that do not explicitly exploit 3D constraints) is that geometric consistency
can only be loosely enforced. Also, for both [2] and [7] there is no way to de-
termine consistency among matched regions which are not seen together in any
model view. Rothganger et al. [8] use multiple images to build a model encod-
ing the 3D structure of the object, and the much tighter constraints associated
with the 3D projection of the model patches are used to guide matching during
recognition. In this case, the 3D model explicitly integrates the various model
views, but the determination of the 3D position and orientation of a patch on
the object requires it to be visible in three or more training images [8], and hence
requires a large number of closely separated training images for modeling the
object. Also, [8] only makes use of patches centered at interest points, so the
model constructed is sparse and does not encode all the available information
in the training images. We tackle these issues by using calibrated stereo pairs to
construct partial 3D object models and then register these models together to
form a full model.1 This allows the use of a sparse set of stereo training views
(7 to 12 pairs in our experiments) for the modeling. We also extend to 3D object
models the idea proposed in [6] in the image matching domain, and augment the
model patches associated with interest points of [8] (called primary patches from
now on) with more general secondary patches. This allows us to cover the object
densely, utilize all the available texture information in the training images, and
effectively handle clutter and occlusion in recognition tasks.

The paper is organized as follows. In section 2 we discuss the detection and
representation of affine invariant patches as well as give an overview of our
approach. The construction of the partial models and their inter-registration to
generate the full model is explained in section 3. The details of the recognition
phase of the algorithm are provided in section 4. In section 5 we show recognition
results using the proposed approach and summarize in section 6.

2 An Overview of Our Approach

We use an implementation of the affine region detector developed by Mikolajczyk
and Schmid [3] for low-level image description. The detector is initialized with the
Harris-Laplacian interest point detector and the Difference of Gaussian (DoG)
operator similar to [9]. The two detectors find complementary type of points. The
Harris-Laplacian detector tends to find corners and points at which significant
intensity changes occur while the DoG operator detects blob like features in
the image. The output of the interest point detection/rectification process is
1 This is for modeling only of course; individual photographs are used for recognition.
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(a) Affine regions found in an image
of a teddy bear. Only a subset of the
patches detected is shown for clarity.

c(0,0)

v

h

2

2
S

(b) The inverse transformation S maps the
rectified square associated with an affine re-
gion back onto the image

Fig. 1. Affine regions and inverse rectification

a set of parallelogram-shaped image patches together with the corresponding
affine rectifying transformations mapping these onto a square with edge length
2 centered at the origin. We represent each detected region by the 2 × 3 affine
transformation matrix S that maps the rectified texture patch back onto its
position in the image as shown in Fig. 1(b) (after [8]).

We use calibrated stereo for determining the 3D structure of the object and
building the model mentioned in the previous section. Potential primary matches
between the affine regions found in each stereo pair are first filtered using pho-
tometric and geometric consistency constraints, and then augmented with ad-
ditional secondary matches for dense coverage of the object, as proposed in [6]
in the 2D case. The 3D location and shape of the patches is determined using
standard stereo to generate partial models which are later combined to form a
complete model of the object. The 3D patches that correspond to primary (or
secondary) matches are called primary (or secondary) model patches.

A similar scheme is followed during recognition. First, the primary patches
in the model are matched to the affine regions found in the test image. These
primary patches are then used as guides for matching nearby secondary patches.
The object is recognized based on the number of matched patches.

3 Stereo Modeling

We start by acquiring a few (7 to 12) stereo pairs that are roughly equally spaced
around the equatorial ring of the object for modeling. The stereo views are taken
against a uniform background to allow for easy segmentation. Then, a standard
stereo matching algorithm that searches for matching patches along correspond-
ing epipolar lines is used to determine an initial set of tentative matches. We
use a combination of SIFT [5] and the color histogram descriptor described in
[10] to compute the initial matches. The matches are then refined to obtain the
correct alignment of the patches in the left and right images. Only matches with
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normalized correlation greater than a pre-refinement threshold (kept at 0.75) are
considered for the refinement step for efficiency reasons. The refinement process
employs nonlinear optimization to affinely deform the right image patch until
the correlation with its match in the left image is maximized. Matches with
normalized correlation greater than a post-refinement threshold (equal to 0.9 in
this paper) are kept for subsequent processing.

The matches are filtered by using a neighborhood constraint which removes
a match if its neighbors are not consistent with it. More precisely, for every
match m we look at its K closest neighbors in the left image (K = 5 in our
implementation) and, for every triple out of these, we calculate the barycentric
coordinates of the center of the left and right patches of m with respect to
the triangle formed by the centers of the patches of the triple in the left and
right images respectively. We then count the number of triples for which these
barycentric coordinates agree (the sum of squared differences is smaller than a
tolerance limit L = 0.5). We repeat the process using the K closest neighbors
of m in the right image and add up both the counts. Finally, the matches with
a count smaller than a threshold T are dropped. Setting T = 2

(
K−1

3

)
ensures

that a correct match with one bad nearby match out of the K still survives after
this test. This gives us a set Γ of reliable matches. Note that these matches are
based only on the primary patches associated with salient affine regions detected
in the stereo training images and hence, only cover the object sparsely. To get
a dense coverage of the object we use an expansion technique similar to [6] to
spread these initial matches in Γ .

Expansion Technique

We use the fact that the training views are taken against a uniform background
to segment the object and cover it with a grid Ω of partially overlapping square-
shaped patches in the left image (Fig. 2(a)). For every match mi in Γ , we

(a) (b) (c) (d) (e)

Fig. 2. (a) Left image in a stereo pair, covered with a grid of patches (three of the
overlapping patches are shown in black for clarity). (b) Partial model constructed from
primary matches before expansion. (c) Model constructed using only the secondary
patches found during expansion. (d) Model containing the primary patches after ex-
pansion. (e) Model containing all the patches after expansion.
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compute the affine transformation T = SRiS−1
Li

between the corresponding
patches Li and Ri in the left and right images. Here SLi and SRi are the in-
verse rectification matrices for Li and Ri respectively. We use T to predict the
location SRj = T SLj of the right matches of the yet unmatched patches Lj in
Ω that are close to (within one side length of) the center of Li. Then, a refine-
ment process is used to align the predicted patch correctly in the right image.
Again, if the match has sufficient correlation after refinement, it is accepted as a
valid match and added to Γ . Since the patches that form these matches are not
associated with interest points, we call these secondary matches. The expansion
process iterates by expanding around the newly added matches to Γ until no
more matches can be added. This process usually covers the entire object sur-
face densely with matches. Figure 2(c) shows the secondary patches on a partial
model of the dragon constructed from a single stereo pair.

We then use the secondary matches to locate additional primary matches as-
sociated with salient affine regions. Even though the corresponding part of the
object surface may already be covered (with secondary matches), this is useful
because it is the primary matches that can be repeatably detected, and will later
be required for the initial matching to the test image as well as for the alignment
of the partial models. This is accomplished by finding unmatched affine regions
in the left (respectively right) image, and using close-by secondary matches to
predict the position of the corresponding patches in the right (respectively left)
image. Again, a refinement process is used to adjust the alignment of the right
(respectively left) image patch. If there is sufficient correlation (again 0.9) be-
tween the left and right patches, the match is added to Γ . Figures 2(d) and 2(e)
respectively show the expanded primary patches and the union of the primary
and secondary patches in the partial model of the dragon.

Model Construction

The dense matches constructed as discussed above are used for building the
3D model. First, we solve for the patch centers in 3D by using standard cali-
brated stereo triangulation. Then, we reconstruct the edges of the corresponding
parallelograms using a first-order approximation to the perspective projection
equations in the vicinity of the patch centers as proposed by Rothganger [10].
This gives us a partial 3D model of the object for each stereo pair. The next
task is to combine these partial models into a complete model.

The first step in combining the models is to find appearance-based matches
between the primary model patches in adjacent partial models. Again, SIFT
and color histogram descriptors are used to facilitate the initial matching. Next,
a variant of the expansion scheme described earlier is used to propagate these
initial matches between 3D patches to neighboring model patches as follows
(Fig. 3). Let the two partial models being registered be MP and MQ. For each
initial match Mi between the 3D patches Pi in MP and Qi in MQ, we consider
the 2D patch pi (resp. qi) corresponding to Pi (resp. Qi) in the left stereo image
of MP (resp. MQ). We calculate the affine transformation T that maps the patch
pi onto qi. Then, we consider the yet unmatched patches Pj in MP whose 2D
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Fig. 3. Expansion during registration

projection pj in the left stereo image lies within a small distance limit of the
center of pi. These patches pj are then projected to qj in the left stereo image
of MQ using T . A refinement process (similar to the one described earlier) is
then used to align the projected patch qj correctly. The match is removed from
consideration if the final correlation between pj and qj ’s normalized representa-
tion is less than a threshold (again kept at 0.9). If the match passes this test we
find the patch Qk in MQ whose projection qk into the left stereo image of MQ is
closest to qj ’s center point. An estimate of the position of the 3D patch Qj that
corresponds to the 2D patch qj can then be obtained, assuming that Qj lies on
the same plane πk as Qk. An affine transformation S that maps the 2D patch qk

to the 3D patch Qk on πk is calculated and then Qj is estimated by projecting
qj onto πk using S. This new match between Pj and Qj is then added to the
set of matches and is used for finding other matches. This expansion step has
proven to be very useful while registering models with small overlap.

Finally, all the matches are filtered through a RANSAC procedure that finds
the matches consistent with a rigid transformation. This provides an estimate
of the pairwise rigid transformations. Since these pairwise estimates may not in
general be consistent with each other (the product of the rotations between the
consecutive models must be the identity), we use a process similar to [11] to find
a consistent solution: It is initialized using the pairwise transformation estimates
and these estimates are refined by looping through all the partial models and
updating the position of the current model to align it best with its neighbors.
More formally, we search for the rigid transformation that minimizes the sum
of squared distances between the centers of the matched patches in the current
model and its neighbors. The positions of these neighbors are kept fixed while
the position of the current partial model is calculated via linear least squares
[11]. The above process is iterated until a local minimum of the error is reached.
Figure 4(c) shows a plot of the mean squared error after each iteration of the
refinement process for three of the models used for experimentation. Finally the
rigid transformations estimated are used to bring all the partial models into a
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(a) Partial models (b) Complete model
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Fig. 4. Registration of partial models

common euclidean coordinate frame and a complete model is constructed by
taking the union of these transformed partial models. The partial models and
the complete model formed after registration for a teddy bear are shown in
Figs. 4(a) and 4(b) respectively.

4 Recognition

The recognition starts by matching the repeatable primary patches in the 3D
model to the interest points detected in the test image. Again, we use both SIFT
descriptors and color histograms to characterize the appearance of the patches
and compute the initial matches. The refinement process is then employed to
affinely deform the matched test image patch so as to maximize the its cor-
relation with its corresponding model patch. Matches with correlation smaller
than a threshold (again taken as 0.9) are dropped before further processing. The
remaining matches are used as seeds for the subsequent match expansion stage.

Expansion Process

This process is similar in spirit to the expansion technique used during the
initial modeling but the expansion here happens on the surface of the 3D model
instead of the stereo images. For this, we first preprocess the model M to build an
undirected graph GM that represents the adjacency information of the patches
in M . We add an edge e between two patches if their centers lie within a distance
limit of each other. This limit is set to be such that the average degree of a vertex
is around 20. We now spread the matches along the edges of this graph using
the following steps.

Expansion using images (Fig. 5(a)): This expansion step is similar to the
expansion during modeling. For each previously matched model patch P we
calculate the affine transformation S that maps its projection in the left training
image of the stereo pair from which it originates into the test image. Then we
look at every unmatched neighbor Q of P that is part of the same partial model
(and so shares the same left stereo image) and use S to predict its location in
the test image. This predicted position is then refined as before and the match is
accepted if the correlation is sufficiently large (again 0.9). This expansion scheme
does not allow expanding matches from one partial model to another.
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Fig. 5. Expansion during recognition

Geometric consistency test (Algorithm 1): A “greedy” RANSAC-like algo-
rithm is used to extract a set of geometrically consistent matches and estimate
the camera for the test image. The test image camera is modeled as a weak-
perspective camera with zero skew and square pixels.

Expansion using the camera (Fig. 5(b)): This step is used after the matches
have been filtered through the above geometric consistency test and the camera
A associated with the test image has been estimated. A is used to project a
base 3D patch P (which is already matched to a patch p in the test image) and
some adjacent patch Q into the test image. Let the 2D projected patches be p′

and q′ respectively. A correcting affine transformation τ is computed that aligns
the projection p′ of the base 3D match exactly with its correct location p. τ
is then applied to the projection q′ of the adjacent patch to obtain a corrected
prediction q of its position. The prediction is then refined as before to maximize
the normalized correlation between the patches corresponding to the match and
accepted only if it has high correlation (greater than 0.9). This expansion step
allows for moving smoothly from one partial model to another and hence provides
an advantage over the pure 2D expansion technique of [6].

For extending matches to parts of the object that are not directly connected
to the initial matches in the test image (possibly due to occlusion) the recon-
structed test camera is used to project unmatched primary patches from the
model into the test image. Affine regions detected in the test image close to
these projected positions are then matched to the corresponding model patch.
Again, the refinement process is used to correctly align the patch in the
test image and the match is accepted if the correlation exceeds a threshold
(again, 0.9).

The two expansion steps also allow us to reject false matches by simply re-
moving those that do not have enough support. More precisely, if the expansion
step from a base match tries to expand to a large number of neighbors and none of
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Input: A set M of possible matches.
Output: A set S of trusted matches, camera for the test image C

for i = 1 to numIter do
• Pick a match mi ∈ M at random.
• Select the most compatible match m′

i ∈ M \ {mi} to mi.
• Initialize Si = {mi, m

′
i} and Ci to the camera estimated using Si.

• Select mbest ∈ M \ Si with minimum reprojection error Ebest using Ci

while |Si| < K and Ebest < τ do
• Si ⇐ Si ∪ {mbest}.
• Update Ci with the camera estimated using Si

• Select mbest ∈ M \ Si with minimum reprojection error Ebest using Ci

end while
• Add all matches m ∈ M \ Si with reprojection error Em < τ to Si.

end for
• Set S to the Si with the largest cardinality.
• Estimate the camera C for the test image using S.

Algorithm 1. Geometric consistency test

these succeeds in forming an acceptable match, the base match is removed. The
above cycle consisting of the two expansion steps and the geometric consistency
test is iterated until the number of matches does not increase any more. This
process usually takes only 3 iterations.

5 Results

We have evaluated the proposed method on a dataset consisting of 9 objects and
80 test images. The object models, constructed from 7 to 12 stereo views each,
are shown in Fig. 6. The objects vary from simple shapes (e.g., the salt container)
to quite complex ones (e.g., the two dragons and the chest buster model).

The test images contain the objects in different orientations and under vary-
ing amounts of occlusion and clutter. The total number of occurrences of the
objects in the test image dataset is 129 since some images contain more than one
object. Figure 7(a) shows the ROC plot between the true positive (detection)
rate and the false positive rate. To assess the value of the expansion step of our
approach, we have simply removed the secondary patches and the extra primary
patches added during this stage of modeling from our models, and used these
sparse models for recognition (this is similar in spirit to the algorithm proposed
by Rothganger et al. [8], but includes the expansion step during the recognition
phase which was absent in [8]). The corresponding recognition performance is
depicted by the blue ROC curve. Our experiments clearly demonstrate the bene-
fit of using dense models as opposed to sparse ones for our dataset. We have also
implemented recognition as wide-baseline stereo matching to assess the power
of using explicit 3D constraints as opposed to simple epipolar ones. Each test
image is matched to all the 168 training images (both left and right images for
each stereo pair) for every object separately, making a total of 168× 80 = 13440
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(a) Bournvita (8) (b) Ball (12) (c) Yogurt (8)

(d) Vase (8) (e) Chest Buster (7) (f) Bear (8)

(g) Small Dragon (12) (h) Salt (8) (i) Dragon (12)

Fig. 6. Object models. The number of stereo views used is given in parenthesis.
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Fig. 7. Comparison ROC plots

image pairs to be compared. The maximum number of matches corresponding to
each object is recorded and used to construct the ROC curve. As expected, our
method clearly outperforms this simple baseline approach. The detection rates
for zero false positives and the equal error rates for the different methods are
shown in Fig. 5.

The proposed approach also performs well on the highly complex geomet-
ric objects like the dragons and the chest buster model. Figure 7(b) shows the
comparison of the ROC plots on the dataset restricted to only these 3 models.
The variation in appearance of the features due to small viewpoint changes is
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Method Detection Rate (zero false positives) Equal Error Rate

Proposed Approach 86.8% 89.1%
Primary patches only 69.8% 84.9%

Wide Baseline 58.1% 77.1%

Fig. 8. Error rate comparison

larger for these models since the surface of the models is not smooth. Because
the proposed approach combines the different views of the features together
(when the different partial models are merged) its performance is less severely
affected on the restricted dataset. On the other hand, the performance of the
wide-baseline matching scheme drops by a significant amount.

Finally, Fig. 9 gives a qualitative illustration of the performance of our algo-
rithm with a gallery of recognition results on some test images which contain
the objects under heavy occlusion, viewpoint and scale variation, as well as ex-
tensive clutter. The dataset used in this paper is available at the following URL:
http://www-cvr.ai.uiuc.edu/ponce grp/data/stereo recog dataset/

Fig. 9. Results: test image (left), matched patches (center), predicted location (right)

6 Conclusions and Summary

We have proposed an approach to efficiently build dense 3D euclidean models
of objects from stereo views and use them for recognizing these objects in clut-
tered photographs taken from arbitrary viewpoints. At this point there are many
directions for future work.

– Extending the approach to handle non rigid deformations
– Recognizing objects in a cluttered scene using a pair of calibrated stereo

images of the scene.
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Also, it would be desirable to do a comparison with the native implementa-
tions of other state-of-the-art recognition methods such as those proposed by
Ferrari et al. [7], Lowe [2], and Rothganger et al. [8].
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Abstract. The objective of this work is the detection of object classes,
such as airplanes or horses. Instead of using a model based on salient im-
age fragments, we show that object class detection is also possible using
only the object’s boundary. To this end, we develop a novel learning tech-
nique to extract class-discriminative boundary fragments. In addition to
their shape, these “codebook” entries also determine the object’s centroid
(in the manner of Leibe et al. [19]). Boosting is used to select discrim-
inative combinations of boundary fragments (weak detectors) to form
a strong “Boundary-Fragment-Model” (BFM) detector. The generative
aspect of the model is used to determine an approximate segmentation.

We demonstrate the following results: (i) the BFM detector is able
to represent and detect object classes principally defined by their shape,
rather than their appearance; and (ii) in comparison with other published
results on several object classes (airplanes, cars-rear, cows) the BFM
detector is able to exceed previous performances, and to achieve this
with less supervision (such as the number of training images).

1 Introduction and Objective

Several recent papers on object categorization and detection have explored the
idea of learning a codebook of appearance parts or fragments from a corpus of
images. A particular instantiation of an object class in an image is then composed
from codebook entries, possibly arising from different source images. Examples
include Agarwal & Roth [1], Vidal-Naquet & Ullman [27], Leibe et al. [19], Fer-
gus et al. [12, 14], Crandall et al. [9], Bar-Hillel et al. [3]. The methods differ on
the details of the codebook, but more fundamentally they differ in how strictly
the geometry of the configuration of parts constituting an object class is con-
strained. For example, Csurka et al. [10], Bar-Hillel et al. [3] and Opelt et al. [22]
simply use a “bag of visual words” model (with no geometrical relations between
the parts at all), Agarwal & Roth [1], Amores et al. [2], and Vidal-Naquet and
Ullman [27] use quite loose pairwise relations, whilst Fergus et al. [12] have a
strongly parametrized geometric model consisting of a joint Gaussian over the

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 575–588, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Original Image All matched boundary
fragments Centroid Voting on a subset of the matched fragments

Backprojected MaximumSegmentation / Detection

Fig. 1. An overview of applying the BF model detector

centroid position of all the parts. The approaches using no geometric relations
are able to categorize images (as containing the object class), but generally do
not provide location information (no detection). Whereas the methods with even
loose geometry are able to detect the object’s location.

The method of Leibe et al. ([19], [20]) has achieved the best detection perfor-
mance to date on various object classes (e.g. cows, cars-rear (Caltech)). Their
representation of the geometry is algorithmic – all parts vote on the object cen-
troid as in a Generalized Hough transform. In this paper we explore a similar
geometric representation to that of Leibe et al. [19] but use only the boundaries
of the object, both internal and external (silhouette). In our case the codebook
consists of boundary-fragments, with an additional entry recording the location
of the object’s centroid. Figure 1 overviews the idea. The boundary represents
the shape of the object class quite naturally without requiring the appearance
(e.g. texture) to be learnt. For certain categories (bottles, cups) where the surface
markings are very variable, approaches relying on consistency of these appear-
ances may fail or need considerable training data to succeed. Our method, with
its stress on boundary representation, is highly suitable for such objects. The
intention is not to replace appearance fragments but to develop complementary
features. As will be seen, in many cases the boundary alone performs as well as
or better than the appearance and segmentation masks (mattes) used by other
authors (e.g. [19, 27]) – the boundary is responsible for much of the success.

The areas of novelty in the paper include: (i) the manner in which the
boundary-fragment codebook is learnt – fragments (from the boundaries of the
training objects) are selected to be highly class-distinctive, and are stable in their
prediction of the object centroid; and (ii) the construction of a strong detector
(rather than a classifier) by Boosting [15] over a set of weak detectors built on
boundary fragments. This detector means that it is not necessary to scan the
image with a sliding window in order to localize the object.

Boundaries have been used in object recognition to a certain extent: Ku-
mar et al. [17] used part outlines in their application of pictorial structures [11];
Fergus et al. [13] used boundary curves between bitangent points in their exten-
sion of the constellation model; and, Jurie and Schmid [16] detected circular arc
features from boundary curves. However, in all these cases the boundary features
are segmented independently in individual images. They are not flexibly selected
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Fig. 2. Example training images for the cows
category

Fig. 3. Examples of detecting multiple
objects in one test image

to be discriminative over a training set, as they are here. Bernstein and Amit [4]
do use discriminative edge maps. However, theirs is only a very local representa-
tion of the boundary; in contrast we capture the global geometry of the object
category. Recently, and independently, Shotton et al. [24] presented a method
quite related to the Boundary-Fragment-Model presented here. The principal dif-
ferences are: the level of segmentation required in training ([24] requires more);
the number of boundary fragments employed in each weak detector (a single
fragment in [24], and a variable number here); and the method of localizing the
detected centroid (grid in [24], mean shift here).

We will illustrate BFM classification and detection for a running example,
namely the object class cows. For this we selected cow images as [7, 19] which
originate from the videos of Magee and Boyle [21]. The cows appear at various
positions in the image with just moderate scale changes. Figure 2 shows some ex-
ample images. Figure 3 shows detections using the BFM detector on additional,
more complex, cow images obtained from Google image search.

2 Learning Boundary Fragments

In a similar manner to [19], we require the following data to train the model:

– A training image set with the object delineated by a bounding box.
– A validation image set labelled with whether the object is absent or present,

and the object’s centroid (but the bounding box is not necessary).

The training images provide the candidate boundary fragments, and these can-
didates are optimized over the validation set as described below. For the results
of this section the training set contains 20 images of cows, and the validation
set contains 25 cow images (the positive set) and 25 images of other objects
(motorbikes and cars – the negative set).

Given the outlines of the training images we want to identify boundary frag-
ments that:

(i) discriminate objects of the target category from other objects, and
(ii) give a precise estimate of the object centroid.

A candidate boundary fragment is required to (i) match edge chains often in the
positive images but not in the negative, and (ii) have a good localization of the
centroid in the positive images. These requirements are illustrated in figure 4.
The idea of using validation images for discriminative learning is motivated by
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Fig. 4. Scoring boundary fragments. The first row shows an example of a boundary
fragment that matches often on the positive images of the validation set, and less often
on the negative images. Additionally it gives a good estimate of the centroid position
on the positive images. In contrast, the second row shows an example of an unsuitable
boundary fragment. The cross denotes the estimate of the centroid and the asterisk
the correct object centroid.

Sali and Ullman [23]. However, in their work they only consider requirement (i),
the learning of class-discriminate parts, but not the second requirement which is
a geometric relation. In the following we first explain how to score a boundary
fragment according to how well it satisfies these two requirements, and then how
this score is used to select candidate fragments from the training images.

2.1 Scoring a Boundary Fragment

Linked edges are obtained in the training and validation set using a Canny edge
detector with hysteresis. We do not obtain perfect segmentations – there may
be gaps and false edges. A linked edge in the training image is then considered
as a candidate boundary fragment γi, and scoring cost C(γi) is a product of two
factors:

1. cmatch(γi): the matching cost of the fragment to the edge chains in the
validation images using a Chamfer distance [5, 6], see (1). This is described
in more detail below.

2. cloc(γi): the distance (in pixels) between the true object centroid and the
centroid predicted by the boundary fragment γi averaged over all the positive
validation images.

with C(γi) = cmatch(γi)cloc(γi). The matching cost is computed as

cmatch(γi) =
∑L+

i=1 distance(γi, Pvi)/L+∑L−
i=1 distance(γi, Nvi)/L−

(1)

where L− denotes the number of negative validation images Nvi and L+ the
number of positive validation images Pvi , and distance(γi, Ivi) is the distance to
the best matching edge chain in image Ivi :
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distance(γi, Ivi) =
1
|γi|

min
γi⊂Ivi

∑
t∈γi

DTIvi
(t) (2)

where DTIvi
is the distance transform. The Chamfer distance [5] is implemented

using 8 orientation planes with an overlap of 5 degrees. The orientation of the
edges is averaged over a length of 7 pixels by orthogonal regression. Because
of background clutter the best match is often located on highly textured back-
ground clutter, i.e. it is not correct. To solve this problem we use the N = 10
best matches (with respect to (2)), and from these we take the one with the best
centroid prediction. Note, images are scale normalized for training.

2.2 Selecting Boundary Fragments

Having defined the cost, we now turn to selecting candidate fragments. This is
accomplished by optimization. For this purpose seeds are randomly distributed
on the boundary of each training image. Then at each seed we extract boundary
fragments. We let the size of each fragment grow and at every step we calculate
the cost C(γi) on the validation set. Figure 5(a) shows three examples of this
growing of boundary fragments (the length varies from 20 pixels in steps of
30 pixels in both directions up to a length of 520 pixels). The cost is minimized
over the varying length of the boundary fragment to choose the best fragment.
If no length variation meets some threshold of the cost we reject this fragment
and proceed with the next one. Using this procedure we obtain a codebook of
boundary fragments each having the geometric information to vote for an object
centroid.

To reduce redundancy in the codebook the resulting boundary fragment set
is merged using agglomerative clustering on medoids. The distance function is
distance(γi, γj) (where Ivi in (2) is replaced by the binary image of fragment γj)
and we cluster with a threshold of thcl = 0.2. Figure 5(b) shows some examples
of resulting clusters. This optimized codebook forms the basis for the next stage
in learning the BFM.

(a) (b)

Fig. 5. Learning boundary fragments. (a) Each row shows the growing of a differ-
ent random seed on a training image. (b) Clusters from the optimized boundary frag-
ments. The first column shows the chosen codebook entries. The remaining columns
show the boundary fragments that also lie in that cluster.
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3 Training an Object Detector Using Boosting

At this stage we have a codebook of optimized boundary fragments each carrying
additional geometric information on the object centroid. We now want to com-
bine these fragments so that their aggregated estimates determine the centroid
and increase the matching precision. In the case of image fragments, a single
region can be used to determine a unique correspondence (e.g. see [19]). In con-
trast, boundary fragments are not so discriminating, but a combination of several
such fragments (for example distributed around the actual object boundary) is
characteristic for an object class.

We combine boundary fragments to form a weak detector by learning com-
binations which fit well on all the positive validation images. We then learn a
strong detector from these weak detectors using a standard Boosting framework
which is adapted to learn detection rather than classification. This learning of
a strong detector chooses boundary fragments which model the whole distribu-
tion of the training data (whereas the method of the previous section can score
fragments highly if they have low costs on only a subset of the validation images).

3.1 Weak Detectors

A weak detector is composed of k (typically 2 or 3) boundary fragments. We want
a detector to fire (hi(I) = 1) if (i) the k boundary fragments match image edge
chains, (ii) the centroid estimates concur, and, in the case of positive images,
(iii) the centroid estimate agrees with the true object centroid. Figure 6(a) illus-
trates a positive detection of an image (with k = 2 and the boundary fragments
named γa and γb). The classification output hi(I) of detector hi on an image I
is defined as:

hi(I) =
{

1 if D(hi, I) < thhi

0 otherwise

with thhi the learnt threshold of each detector (see section 3.2), and where the
distance D(hi, I) of hi (consisting of k boundary fragments γj) to an image I is
defined as:

D(hi, I) =
1
m2

s

·
k∑

j=1

distance(γj, I) (3)

The distance(γj, I) is defined in (2) and ms is explained below. Any weak de-
tector where the centroid estimate misses the true object centroid by more than
dc (in our case 15 pixels), is rejected.

Figure 6(b) shows examples of matches of weak detectors on positive and
negative validation images. At these positions as shown in column 2 of figure 6(a)
each fragment also estimates a centroid by a circular uncertainty window. Here
the radius of the window is r = 10. The compactness of the centroid estimate
is measured by ms (shown in the third column of figure 6(a)). ms = k if the
circular uncertainty regions overlap, and otherwise a penalty of ms = 0.5 is
allocated. Note, to keep the search for weak detectors tractable, the number
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Two boundary
fragments

a

b

Matching      on the edge image

Matching      on the edge image

Overlap of centroid predictions

similarities of matches

voting for same centroid

2r

dc

On

b

a

(a) (b)

Fig. 6. Learning a weak detector. (a) The combination of boundary fragments to
form a weak detector. Details in the text. (b) Examples of matching the weak detector
to the validation set. Top: a weak detector with k = 2, that fires on a positive validation
image because of highly compact centre votes close enough to the true object centre
(black circle). Middle: a negative validation image where the same weak detector does
not fire (votings do not concur). Bottom: the same as the top with k = 3. In the
implementation r = 10 and dc = 15.

of used codebook entries (before clustering, to reduce the effort already in the
clustering procedure) is restricted to the top 500 for k = 2 and 200 for k =
3 (determined by the ranked costs C(γi)). Also, each boundary fragment is
matched separately and only those for which distance(γj, I) < 0.2 are used.

3.2 Strong Detector

Having defined a weak detector consisting of k boundary fragments and a thresh-
old thhi , we now explain how we learn this threshold and form a strong detector
H out of T weak detectors hi using AdaBoost. First we calculate the distances
D(hi, Ij) of all combinations of our boundary fragments (using k elements for
one combination) on all (positive and negative) images of our validation set
I1 . . . Iv. Then in each iteration 1 . . . T we search for the weak detector that ob-
tains the best detection result on the current image weighting (for details see
AdaBoost [15]). This selects weak detectors which generally (depending on the
weighting) “fire” often on positive validation images (classify them as correct
and estimate a centroid closer than dc to the true object centroid) and not on
the negative ones. Figure 7 shows examples of learnt weak detectors that con-
tribute to the strong detector. Each of these weak detectors also has a weight
whi . The output of a strong detector on a whole test image is then:

H(I) = sign(
T∑

i=1

hi(I) · whi). (4)
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Fig. 7. Examples of weak detectors, left for k = 2, and right for k = 3

The sign function is replaced in the detection procedure by a threshold tdet,
where an object is detected in the image I if H(I) > tdet and no evidence for the
occurrence of an object if H(I) ≤ tdet (the standard formulation uses tdet = 0).

4 Object Detection

Detection algorithm and segmentation: The steps of the detection algo-
rithm are now described and qualitatively illustrated in figure 8. First the edges
are detected (step 1) then the boundary fragments of the weak detectors, that
form the strong detector, are matched to this edge image (step 2). In order to de-
tect (one or more) instances of the object (instead of classifying the whole image)
each weak detector hi votes with a weight whi in a Hough voting space (step 3).
Votes are then accumulated in a circular search window (W (xn)) with radius dc

around candidate points xn (represented by a Mean-Shift-Mode estimation [8]).
The Mean-Shift modes that are above a threshold tdet are taken as detections
of object instances (candidate points). The confidence in detections at these
candidate points xn is calculated using probabilistic scoring (see below). The
segmentation is obtained by backprojection of the boundary fragments (step 3)
of weak detectors which contributed to that centre to a binary pixel map. Typi-
cally, the contour of the object is over-represented by these fragments. We obtain
a closed contour of the object, and additional, spurious contours (seen in figure
8, step 3). Short segments (< 30 pixels) are deleted, the contour is filled (using
Matlab’s ‘filled area’ in regionprops), and the final segmentation matte is ob-
tained by a morphological opening, which removes thin structures (votes from

Edge Image
Matching boundary

fragments
Hough voting
space for the 

centroid

Detection of
the objectOriginal

 Image

Backprojected
codebook entries

for a maximum

No maximum
above threshold found

Segmentation

No maximum
above threshold found

Steps in
Detect. Alg. (1) (2) (3) (4)

Fig. 8. Examples of processing test images with the BFM detector
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outliers that are connected to the object). Finally, each of the objects obtained
by this procedure is represented by its bounding box.

Probabilistic scoring: At candidate points xn for instances of an object cate-
gory c, found by the strong detector in the test image IT we sum up the (proba-
bilistic) votings of the weak detectors hi in a 2D Hough voting space which gives
us the probabilistic confidence:

conf(xn) =
T∑
i

p(c, hi) =
T∑
i

p(hi)p(c|hi) (5)

where p(hi) = 1
M
q=1 score(hq,IT ) · score(hi, IT ) describes the pdf of the effective

matching of the weak detector with score(hi, IT ) = 1/D(hi, IT ) (see (3)). The
second term of this vote is the confidence we have in each specific weak detector
and is computed as:

p(c|hi) =
#firescorrect

#firestotal
(6)

where #firescorrect is the number of positive and #firestotal is the number of
positive and negative validation images the weak detector fires on. Finally our
confidence of an object appearing at position xn is computed by using a Mean-
Shift algorithm [8] (circular window W (xn)) in the Hough voting space defined
as: conf(xn|W (xn)) =

∑
Xj∈W (xn) conf(Xj).

5 Detection Results

In this section we compare the performance of the BFM detector to published
state-of-the-art results, and also give results on new data sets. Throughout we
use fixed parameters (T = 200, k = 2, tdet = 8) for our training and testing
procedure unless stated otherwise. An object is deemed correctly detected if the
overlap of the bounding boxes (detection vs ground truth) is greater than 50%.

Cows: First we give quantitative results on the cow dataset. We used 20 training
images (validation set 25 positive/25 negative) and tested on 80 unseen images,
half belonging to the category cows and half to counter examples (cars and mo-
torbikes). In table 2 we compare our results to those reported by Leibe et al. [19]
and Caputo et al. [7] (Images are from the same test set – though the authors
do not specify which ones they used). We perform as well as the result in [19],
clearly demonstrating that in some cases the contour alone is sufficient for ex-
cellent detection performance. Kumar et al. [17] also give an RPC curve for cow
detection with an ROC-equal-error rate of 10% (though they use different test
images). Note, that the detector can identify multiple instances in an image, as
shown in figure 3.

Variation in performance with number of training images: The results
on the cow dataset reported above have been achieved using 20 training images.
Figure 9 shows how the number of training images influences the performance of
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Fig. 11. Example of BFM
detections for horses show-
ing computed bounding
boxes and segmentations

the BFM detector. Even with five images our model achieves detection results of
better than 10% RPC-equal-error rate. The performance saturates at twenty in
this case, but this number is dependent on the degree of within class variation
(e.g. see fig.10).

Caltech datasets: From the widely used Caltech datasets we performed ex-
periments on the category Cars-Rear and Airplanes. Table 1 shows our results
compared with other state of the art approaches on the same test images as
reported in [12]. First we give the detection results (BFM-D) and compare them
to the best (as far as we know) results on detection by Leibe et. al [18, 19, 20]
(scale changes are handled as described in section 6). We achieve superior results
– even though we only require the bounding boxes in the training images (and not
foreground segmentation as in [24], for example). For the classification results an
image is classified, in the manner of [12], if it contains the object, but localization
by a bounding box is not considered. Compared to recently published results on
this data we again achieve the best results. Note that the amount of supervision
varies over the methods where e.g. [26] use labels and bounding boxes (as we do);
[2, 3, 12, 22] use just the object labels; and Sivic et al. [25] use no supervision.
It should be pointed out, that we use just 50 training images and 50 validation
images for each category, which is less than the other approaches use. Figure
10 shows the error rate depending on the number of training images (again, the
same number of positive and negative validation images are used). However, it is
known that the Caltech images are now not sufficiently demanding, so we next
consider further harder situations.

Table 1. Comparison of the BFM detector to other published results on the Caltech
dataset (Cars-Rear and Airplanes). The first two columns give the actual object de-
tection error (BFM-D) and the remaining columns the categorization of the images
(BFM-C) given by the ROC-equal error rates.

Cat. BFM-D [18] BFM-C [12] [22] [25] [2] [3] [14] [26] [28]

Cars-Rear 2.25 6.1 0.05 8.8 8.9 21.4 3.1 2.3 1.8 9.8 -

Airplanes 7.4 - 2.6 6.3 11.1 3.4 4.5 10.3 - 17.1 5.6
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Table 2. Comparison of the
BFM detector to other pub-
lished results on the cows

Method RPC-err.

Caputo et al. [7] 2.9%

Leibe et al. [19] 0.0%

Our approach 0.0%

Table 3. The first 3 rows show the failures made
by the three different models (FP=false positive,
FN=false negative, M=multiple detection). The last
row shows the RPC-equal-error rate for each model.

- cow horse1 horse2

FP 0 3 0

FN 0 13 12

M 0 1 2

RPC-err 0% 23% 19%

Horses and Cow/horse discrimination: To address the topic of how well
our method performs on categories that consist of objects that have a similar
boundary shape we attempt to detect and discriminate horses and cows. We use
the horse data from [16] (no quantitative comparison as the authors could not
report their exact test set because of lost data). In the following we compare
three models. In each case they are learnt on 20 training images of the category
and a validation set of 25 positive and 25 negative images that is different for
each model. The first model for cows (cow-BFM) is learnt using no horses in the
negative validation set (13 cars, 12 motorbikes). The second model for horses
(horse1-BFM) is learnt using also cows in the negative validation set (8 cars,
10 cows, 7 motorbikes). Finally we train a model (horse2-BFM) which uses just
cow images as negative validation images (25 cows). We now apply all three
models on the same test set, containing 40 images of cows and 40 images of
horses (figure 11 shows example detection results). Table 3 shows the failures
and the RPC-equal error rate of each of these three models on this test set. The
cow model is very strong (no failures) because it needs no knowledge of another
object class even if its boundary shape is similar. Horse1-BFM is a weaker model
(this is a consequence of greater variations of the horses in the training and test
images). The model horse2-BFM obviously gains from the cows in the negative
validation images, as it does not have any false positive detections. Overall this
means our models are good at discriminating classes of similar boundary shapes.

Fig. 12. Example of BFM detections for bottles. The first row shows the bounding box
of the detection and the second row shows the backprojected boundary fragments for
these detections.
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Still, categories with higher intra-class variability (like horses compared to cows)
are harder to learn and might need more training data to generalize over the
whole distribution.

Bottles: To show the advantage of an approach relying on the shape of an object
category we set up a new dataset of bottle images. This consists of 118 images
collected using Google Image Search. Negative images are provided by the Cal-
tech background image set. We separated the images in test/training/validation-
set (64/24/30) and added the same amount of negative images in each case.
We achieve an RPC-equal error rate of 9%. Figure 12 shows some detection
examples.

6 Invariance to Scale, Rotation and Viewpoint

This section briefly discusses the topic of invariance of the BFM with respect to
scale, rotation and changes in viewpoint.

Search over scale: A scaled codebook representation is used. Additionally we
normalize the parameters in the detection procedure with respect to scale, for
example the radius for centroid estimation, in the obvious way. The Mean-Shift
modes are then aggregated over the set of scales, and the maxima explored as
in the single scale case. Results on Cars-rear, airplanes and bottles of section 5
were obtained by this method.

Rotation: To achieve in-plane rotation invariance we use rotated versions of
the codebook (see figure 12 second column for an example). The BFM is in-
variant to small rotations in plane due to the orientation planes used in the
Chamfer-matching. This is a consequence of the nature of our matching pro-
cedure. For many categories the rotation invariance up to this degree may be
sufficient (e.g. cars, cows) because they have a favoured orientation where other
occurrences are quite unnatural.

Changes in viewpoint: For natural objects (e.g. cows) the perceived bound-
ary is the visual rim. The position of the visual rim on the object will vary with
pose but the shape of the associated boundary fragment will be valid over a
range of poses. We performed experiments under controlled conditions on the
ETH-80 database. With a BFM learnt for a certain aspect we could still de-
tect a prominent mode in the Hough voting space up to 45 degrees rotation in
both directions (horizontal and vertical). Thus, to extend the BFM to various
aspects this invariance to small viewpoint changes reduces the number of neces-
sary positions on the view-sphere to a handful of aspects that have to be trained
separately. Our probabilistic formulation can be straightforwardly extended to
multiple aspects.

7 Discussion and Conclusions

We have described a Boundary Fragment Model for detecting instances of object
categories. The method is able to deal with the partial boundaries that typically
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are recovered by an edge detector. Its performance is similar to or outperforms
state-of-the-art methods that include image appearance region fragments. For
classes where the texture is very variable (e.g. bottles, mugs) a BFM may be
preferable. In other cases a combination of appearance and boundary will have
superior performance.

It is worth noting that the BFM once learnt can be implemented very ef-
ficiently using the low computational complexity method of Felzenszwalb &
Huttenlocher[11].

Currently our research is focusing on extending the BFM to multi-class and
multiple aspects of one class.
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Abstract. We describe a new region descriptor and apply it to two
problems, object detection and texture classification. The covariance of
d-features, e.g., the three-dimensional color vector, the norm of first and
second derivatives of intensity with respect to x and y, etc., characterizes
a region of interest. We describe a fast method for computation of covari-
ances based on integral images. The idea presented here is more general
than the image sums or histograms, which were already published before,
and with a series of integral images the covariances are obtained by a
few arithmetic operations. Covariance matrices do not lie on Euclidean
space, therefore we use a distance metric involving generalized eigenval-
ues which also follows from the Lie group structure of positive definite
matrices. Feature matching is a simple nearest neighbor search under
the distance metric and performed extremely rapidly using the integral
images. The performance of the covariance features is superior to other
methods, as it is shown, and large rotations and illumination changes are
also absorbed by the covariance matrix.

1 Introduction

Feature selection is one of the most important steps for detection and classifica-
tion problems. Good features should be discriminative, robust, easy to compute
and efficient algorithms are needed for a variety of tasks such as recognition and
tracking.

The raw pixel values of several image statistics such as color, gradient and
filter responses are the simplest choice for image features, and were used for
many years in computer vision, e.g., [1, 2, 3]. However, these features are not
robust in the presence of illumination changes and nonrigid motion, and efficient
matching algorithms are limited by the high dimensional representation. Lower
dimensional projections were also used for classification [4] and tracking [5].

A natural extension of raw pixel values are via histograms where a region is
represented with its nonparametric estimation of joint distribution. Following [6],
histograms were widely used for nonrigid object tracking. In a recent study [7],
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fast histogram construction methods were explored to find a global match. Be-
sides tracking, histograms were also used for texture representation [8, 9], match-
ing [10] and other problems in the field of computer vision. However, the joint
representation of several different features through histograms is exponential
with the number features.

The integral image idea is first introduced in [11] for fast computation of
Haar-like features. Combined with cascaded AdaBoost classifier, superior per-
formances were reported for face detection problem, but the algorithm requires
long training time to learn the object classifiers. In [12] scale space extremas
are detected for keypoint localization and arrays of orientation histograms were
used as keypoint descriptors. The descriptors are very effective in matching local
neighborhoods but do not have global context information.

There are two main contributions within this paper. First, we propose to use
the covariance of several image statistics computed inside a region of interest,
as the region descriptor. Instead of the joint distribution of the image statistics,
we use the covariance as our feature, so the dimensionality is much smaller.
We provide a fast way of calculating covariances using the integral images and
the computational cost is independent of the size of the region. Secondly, we
introduce new algorithms for object detection and texture classification using the
covariance features. The covariance matrices are not elements of the Euclidean
space, therefore we can not use most of the classical machine learning algorithms.
We propose a nearest neighbor search algorithm using a distance metric defined
on the positive definite symmetric matrices for feature matching.

In Section 2 we describe the covariance features and explain the fast computa-
tion of the region covariances using integral image idea. Object detection problem
is described in Section 3 and texture classification problem is described in Sec-
tion 4. We demonstrate the superior performance of the algorithms based on the
covariance features with detailed comparisons to previous methods and features.

2 Covariance as a Region Descriptor

Let I be a one dimensional intensity or three dimensional color image. The
method also generalizes to other type of images, e.g., infrared. Let F be the
W ×H × d dimensional feature image extracted from I

F (x, y) = φ(I, x, y) (1)

where the function φ can be any mapping such as intensity, color, gradients,
filter responses, etc. For a given rectangular region R ⊂ F , let {zk}k=1..n be the
d-dimensional feature points inside R. We represent the region R with the d× d
covariance matrix of the feature points

CR =
1

n− 1

n∑
k=1

(zk − μ)(zk − μ)T (2)

where μ is the mean of the points.
There are several advantages of using covariance matrices as region descrip-

tors. A single covariance matrix extracted from a region is usually enough to
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match the region in different views and poses. In fact we assume that the co-
variance of a distribution is enough to discriminate it from other distributions.
If two distributions only vary with their mean, our matching result produces
perfect match but in real examples these cases almost never occur.

The covariance matrix proposes a natural way of fusing multiple features
which might be correlated. The diagonal entries of the covariance matrix rep-
resent the variance of each feature and the nondiagonal entries represent the
correlations. The noise corrupting individual samples are largely filtered out
with an average filter during covariance computation.

The covariance matrices are low-dimensional compared to other region de-
scriptors and due to symmetry CR has only (d2 +d)/2 different values. Whereas
if we represent the same region with raw values we need n× d dimensions, and
if we use joint feature histograms we need bd dimensions, where b is the number
of histogram bins used for each feature.

Given a region R, its covariance CR does not have any information regarding
the ordering and the number of points. This implies a certain scale and rota-
tion invariance over the regions in different images. Nevertheless, if information
regarding the orientation of the points are represented, such as the norm of gra-
dient with respect to x and y, the covariance descriptor is no longer rotationally
invariant. The same argument is also correct for scale and illumination. Rotation
and illumination dependent statistics are important for recognition/classification
purposes and we use them in Sections 3 and 4.

2.1 Distance Calculation on Covariance Matrices

The covariance matrices do not lie on Euclidean space. For example, the space
is not closed under multiplication with negative scalers. Most of the common
machine learning methods work on Euclidean spaces and therefore they are not
suitable for our features. The nearest neighbor algorithm which will be used
in the following sections, only requires a way of computing distances between
feature points. We use the distance measure proposed in [13] to measure the
dissimilarity of two covariance matrices

ρ(C1,C2) =

√√√√ n∑
i=1

ln2λi(C1,C2) (3)

where {λi(C1,C2)}i=1...n are the generalized eigenvalues of C1 and C2, com-
puted from

λiC1xi − C2xi = 0 i = 1...d (4)

and xi �= 0 are the generalized eigenvectors. The distance measure ρ satisfies the
metric axioms for positive definite symmetric matrices C1 and C2

1. ρ(C1,C2) ≥ 0 and ρ(C1,C2) = 0 only if C1 = C2,
2. ρ(C1,C2) = ρ(C2,C1),
3. ρ(C1,C2) + ρ(C1,C3) ≥ ρ(C2,C3).
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The distance measure also follows from the Lie group structure of positive
definite matrices and an equivalent form can be derived from the Lie algebra
of positive definite matrices. The generalized eigenvalues can be computed with
O(d3) arithmetic operations using numerical methods and an additional d loga-
rithm operations are required for distance computation, which is usually faster
than comparing two histograms that grow exponentially with d. We refer the
readers to [13] for a detailed discussion on the distance metric.

2.2 Integral Images for Fast Covariance Computation

Integral images are intermediate image representations used for fast calculation
of region sums [11]. Each pixel of the integral image is the sum of all the pixels
inside the rectangle bounded by the upper left corner of the image and the pixel
of interest. For an intensity image I its integral image is defined as

Integral Image (x′, y′) =
∑

x<x′,y<y′
I(x, y). (5)

Using this representation, any rectangular region sum can be computed in con-
stant time. In [7], the integral images were extended to higher dimensions for fast
calculation of region histograms. Here we follow a similar idea for fast calculation
of region covariances.

We can write the (i, j)-th element of the covariance matrix defined in (2) as

CR(i, j) =
1

n− 1

n∑
k=1

(zk(i) − μ(i))(zk(j) − μ(j)). (6)

Expanding the mean and rearranging the terms we can write

CR(i, j) =
1

n− 1

[
n∑

k=1

zk(i)zk(j) − 1
n

n∑
k=1

zk(i)
n∑

k=1

zk(j)

]
. (7)

To find the covariance in a given rectangular region R, we have to compute the
sum of each feature dimension, z(i)i=1...n, as well as the sum of the multiplication
of any two feature dimensions, z(i)z(j)i,j=1...n. We construct d + d2 integral
images for each feature dimension z(i) and multiplication of any two feature
dimensions z(i)z(j).

Let P be the W ×H × d tensor of the integral images

P (x′, y′, i) =
∑

x<x′,y<y′
F (x, y, i) i = 1...d (8)

and Q be the W ×H × d× d tensor of the second order integral images

Q(x′, y′, i, j) =
∑

x<x′,y<y′
F (x, y, i)F (x, y, j) i, j = 1...d. (9)

In [11], it is shown that integral image can be computed in one pass over the
image. In our notation, px,y is the d dimensional vector and Qx,y is the d × d
dimensional matrix
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px,y = [P (x, y, 1) . . . P (x, y, d)]T

Qx,y =

⎛⎜⎝Q(x, y, 1, 1) . . . Q(x, y, 1, d)
...

Q(x, y, d, 1) . . . Q(x, y, d, d)

⎞⎟⎠ . (10)

Note that Qx,y is a symmetric matrix and d + (d2 + d)/2 passes are enough
to compute both P and Q. The computational complexity of constructing the
integral images is O(d2WH).

Let R(x′, y′;x′′, y′′) be the rectangular region, where (x′, y′) is the upper left
coordinate and (x′′, y′′) is the lower right coordinate, as shown in Figure 1. The
covariance of the region bounded by (1, 1) and (x′, y′) is

CR(1,1;x′,y′) =
1

n− 1

[
Qx′,y′ − 1

n
px′,y′pT

x′,y′

]
(11)

where n = x′ · y′. Similarly, after a few manipulations, the covariance of the
region R(x′, y′;x′′, y′′) can be computed as

CR(x′,y′;x′′,y′′) =
1

n− 1

[
Qx′′,y′′ + Qx′,y′ − Qx′′,y′ − Qx′,y′′ (12)

− 1
n

(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)(
px′′,y′′ + px′,y′ − px′,y′′ − px′′,y′

)T
]

where n = (x′′ − x′) · (y′′ − y′). Therefore, after constructing integral images the
covariance of any rectangular region can be computed in O(d2) time.

Fig. 1. Integral Image. The rectangle R(x′, y′; x′′, y′′) is defined by its upper left (x′, y′)
and lower right (x′′, y′′) corners in the image, and each point is a d dimensional vector.

3 Object Detection

In object detection, given an object image, the aim is to locate the object in an
arbitrary image and pose after a nonrigid transformation. We use pixel locations
(x,y), color (RGB) values and the norm of the first and second order derivatives
of the intensities with respect to x and y. Each pixel of the image is converted
to a nine-dimensional feature vector
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F (x, y) =

[
x y R(x, y) G(x, y) B(x, y)

∣∣∣∣∂I(x, y)∂x

∣∣∣∣ ∣∣∣∣∂I(x, y)∂y

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂x2

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂y2

∣∣∣∣
]T

(13)

where R, G, B are the RGB color values, and I is the intensity. The image
derivatives are calculated through the filters [−1 0 1]T and [−1 2 − 1]T . The
covariance of a region is a 9× 9 matrix. Although the variance of pixel locations
(x,y) is same for all the regions of the same size, they are still important since
their correlation with the other features are used at the nondiagonal entries of
the covariance matrix.

Fig. 2. Object representation. We construct five covariance matrices from overlapping
regions of an object feature image. The covariances are used as the object descriptors.

We represent an object with five covariance matrices of the image features
computed inside the object region, as shown in Figure 2. Initially we compute
only the covariance of the whole region, C1, from the source image. We search the
target image for a region having similar covariance matrix and the dissimilarity is
measured through (3). At all the locations in the target image we analyze at nine
different scales (four smaller, four larger) to find matching regions. We perform
a brute force search, since we can compute the covariance of an arbitrary region
very quickly. Instead of scaling the target image, we just change the size of our
search window. There is a 15% scaling factor between two consecutive scales. The
variance of the x and y components are not the same for regions with different
sizes and we normalize the rows and columns corresponding to these features. At
the smallest size of the window we jump three pixels horizontally or vertically
between two search locations. For larger windows we jump 15% more and round
to the next integer at each scale.

We keep the best matching 1000 locations and scales. At the second phase
we repeat the search for 1000 detected locations, using the covariance matrices
Ci=1...5. The dissimilarity of the object model and a target region is computed

ρ(O, T ) = min
j

[
5∑

i=1

ρ(CO
i ,C

T
i ) − ρ(CO

j ,C
T
j )

]
(14)

where CO
i and CT

i are the object and target covariances respectively, and we
ignore the least matching region covariance of the five. This increases robustness
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(a) (b) (c)

Fig. 3. Object detection. (a) Input regions. (b) Regions found via covariance features.
(c) Regions found via histogram features.
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towards possible occlusions and large illumination changes. The region with the
smallest dissimilarity is selected as the matching region.

We present the matching results for a variety of examples in Figure 3 and
compare our results with histogram features. We tested histogram features both
with the RGB and HSV color spaces. With the RGB color space the results
were much worse in all of the cases, therefore we did not present these results.
We construct three separate 64 bin histograms for hue, saturation and value
since it is not practical to construct a joint histogram. We search the target
image for the same locations and sizes, and fast construction of histograms are
performed through integral histograms [7]. We measure the distance between
two histograms through Bhattacharyya distance [6] and sum over three color
channels.

Covariance features can match all the target regions accurately whereas most
of the regions found by histogram are erroneous. Even among the correctly de-
tected regions with both methods we see that covariance features better localize
the target. The examples are challenging since there are large scale, orienta-
tion and illumination changes, and some of the targets are occluded and have
nonrigid motion. Almost perfect results indicate the robustness of the proposed
approach. We also conclude that the covariances are very discriminative since
they can match the correct target in the presence of similar objects, as seen in
the face matching examples.

Covariance features are faster than the integral histograms since the dimen-
sionality of the space is smaller. The search time of an object in a color image
with size 320× 240 is 6.5 seconds with a MATLAB 7 implementation. The per-
formance can be improved by a factor of 20-30 with a C++ implementation
which would yield to near real time performance.

4 Texture Classification

Currently, the most successful methods for texture classification are through
textons which are cluster centers in a feature space derived from the input. The
feature space is built from the output of a filter bank applied at every pixel and
the methods differ only in the employed filter bank.

– LM: A combination of 48 anisotropic and isotropic filters were used by Leung
and Malik [8]. The feature space is 48 dimensional.

– S: A set of 13 circular symmetric filters was used by Schmid [14]. The feature
space is 13 dimensional.

– M4, M8: Both representations were proposed by Varma and Zissermann
[9]. Original filters include both rotationally symmetric and oriented filters
but only maximum response oriented filters are included to feature vector.
The feature space is 4 and 8 dimensional respectively.

To find the textons, usually the k-means clustering algorithm is used, although
it was shown that it might not be the best choice [15]. The most significant
textons are aggregated into the texton library and the texton histograms are used
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as texture representation. The χ2 distance [8] is used to measure the similarity
of two histograms and the training image with the smallest distance from the
test image determines the class of the latter. The process is computationally
expensive since the images are convolved with large filter banks and in most
cases requires clustering in high dimensional space.

4.1 Random Covariances for Texture Classification

We present a new approach to texture classification problem without using tex-
tons. We start with extracting several features from each pixel. For texture clas-
sification problem we use image intensities and norms of first and second order
derivatives of intensities in both x and y direction. Each pixel is mapped to a
d = 5 dimensional feature space

F (x, y) =
[
I(x, y)

∣∣∣∣∂I(x, y)∂x

∣∣∣∣ ∣∣∣∣∂I(x, y)∂y

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂x2

∣∣∣∣ ∣∣∣∣∂2I(x, y)
∂y2

∣∣∣∣]T

. (15)

We sample s random square regions from each image with random sizes between
16×16 and 128×128. Using integral images we compute the covariance matrix of
each region. Each texture image is then represented with s covariance matrices
and we have u training texture images from each texture class, a total of s · u
covariance matrices. Texture representation process is illustrated in Figure 4.
We repeat the process for the c texture classes and construct the representation
for each texture class in the same way.

Given a test image, we again extract s covariance matrices from randomly
selected regions. For each covariance matrix we measure the distance (3) from
all the matrices of the training set and the label is predicted according to the
majority voting among the k nearest ones (kNN algorithm). This classifier per-
forms as a weak classifier and the class of the texture is determined according
to the maximum votes among the s weak classifiers.

Fig. 4. Texture representation. There are u images for each texture class and we sample
s regions from each image and compute covariance matrices C.



598 O. Tuzel, F. Porikli, and P. Meer

4.2 Texture Classification Experiments

We perform our tests on the Brodatz texture database which consists of 112
textures. Because of the nonhomogeneous textures inside the database, classi-
fication is a challenging task. We duplicate the test environment of [15]. Each
640× 640 texture image is divided into four 320× 320 subimages and half of the
images are used for training and half for testing.

We compare our results with the results reported in [15] in Table 1. Here we
present the results for k-means based clustering algorithm. The texture repre-
sentation through texton histograms has 560 bins. The results vary from 85.71%
to 97.32% depending on the filter bank used.

In our tests we sample s = 100 random covariances from each image, both
for testing and training, and we used k = 5 for the kNN algorithm. For d = 5
dimensional features, the covariance matrix is 5 × 5 and has only 15 different
values compared to 560 bins before. Our result, 97.77%, is better than all of the
previous results and faster. Only 5 images out of 224 is misclassified which is
close to the upper limit of the problem. We show two of the misclassified images
in Figure 5 and the misclassification is usually in nonhomogeneous textures.

To make the method rotationally invariant, we used only three rotationally
invariant features: intensity and the magnitude of the gradient and Laplacian.
The covariance matrices are 3 × 3 and have only 6 different values. Even with
this very simple features the classification performance is 94.20%, which is as
good as or even better than other rotationally invariant methods (M4, M8, S)
listed in Table 1. Due to random sized window selection our method is scale
invariant. Although the approach is not completely illumination invariant, it is
more robust than using features (intensity and gradients) directly. The variances
of intensity and gradients inside regions change less than intensity and gradients
themselves in illumination variations.

In the second experiment we compare the covariance features with other pos-
sible choices. We run the proposed texture classification algorithm with the raw
intensity values and histograms extracted from random regions.

For raw intensities we normalize each random region to 16 × 16 square region
and use Euclidean distance to compute distances for kNN classification, which is
similar to [3]. The feature space is 256 dimensional. The raw intensity values are
very noisy therefore only in this case we sample s = 500 regions from each image.

We perform two tests using histogram features: intensity only, and intensity
and norms of first and second order derivatives together. In both cases the dis-
similarity is measured with Bhattacharyya distance [6]. We use 256 bins for
intensity only and 5 · 64 = 320 bins for intensity and norm of derivatives to-
gether. It is not practical to construct the joint intensity and norm of derivatives
histograms, due to computational and memory requirement.

Table 1. Classification results for the Brodatz database

M4 M8 S LM Random Covariance
Performance 85.71 94.64 93.30 97.32 97.77
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(a) (b) (c)

Fig. 5. Misclassified samples. (a) Test examples. (b) Samples from the same class. (c)
Samples from the predicted texture class.

Table 2. Classification results for different features

Raw Inten. Inten. Hist. Inten./Deriv. Hist. Covariance
Performance 26.79 83.35 96.88 97.77

We sample s = 100 regions from each texture image. The results are shown
in Table 2. The only result close to covariance is the 320 dimensional intensity
and derivative histograms together. This is not surprising because our covari-
ance features are the covariances of the joint distribution of the intensity and
derivatives. But with covariance features we achieve a better performance in a
much faster way.

5 Conclusion

In this paper we presented the covariance features and related algorithms for ob-
ject detection and texture classification. Superior performance of the covariance
features and algorithms were demonstrated on several examples with detailed
comparisons to previous techniques and features. The method can be extended
in several ways. For example, following automatical detection of an object in
a video, it can be tracked in the following frames using this approach. As the
object leaves the scene, the distance score will increase significantly which ends
the tracking. Currently we are working on classification algorithms which use
the Lie group structure of covariance matrices.
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Abstract. We present a new way of constraining the evolution of a
region-based active contour with respect to a set of reference shapes. The
approach is based on a description of shapes by the Legendre moments
computed from their characteristic function. This provides a region-based
representation that can handle arbitrary shape topologies. Moreover, ex-
ploiting the properties of moments, it is possible to include intrinsic affine
invariance in the descriptor, which solves the issue of shape alignment
without increasing the number of d.o.f. of the initial problem and allows
introducing geometric shape variabilities. Our new shape prior is based
on a distance between the descriptors of the evolving curve and a ref-
erence shape. The proposed model naturally extends to the case where
multiple reference shapes are simultaneously considered. Minimizing the
shape energy, leads to a geometric flow that does not rely on any par-
ticular representation of the contour and can be implemented with any
contour evolution algorithm. We introduce our prior into a two-class
segmentation functional, showing its benefits on segmentation results in
presence of severe occlusions and clutter. Examples illustrate the abil-
ity of the model to deal with large affine deformation and to take into
account a set of reference shapes of different topologies.

1 Introduction

Incorporating global shape constraints into deformable models, which traces back
to pioneering works such as [1, 2], has recently received an increasing attention in
the context of active contours (see e.g. [3], [4], [5], [6], [7] and references therein).
The standard approach consists in defining an additional prior term, based on
a similarity measure between the evolving shape and a reference one. A first
important issue that must be dealt with is the question of shape alignment. Pose
transformations (rotation, translation and scaling) are generally taken into ac-
count in an explicit fashion, which increases the number of d.o.f. of the problem,
and leads to systems of coupled partial differential equations (PDE’s). A second

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 601–613, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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issue is the question of variability. Variations of the shape away from a reference
template are, in the majority of existing works, handled using statistical models,
even if a framework that accounts for geometric transformations of the reference
shape has recently been proposed in [6].

In this paper, we introduce a novel approach for image segmentation, which
combines a parametric representation of shapes with curve evolution theory to
constrain the geometry of an evolving active contour toward a given reference
shape or a set of reference shapes. More specifically, we consider a parametric
description based on Legendre moments computed from the characteristic func-
tion of a shape. Such a representation is region-based, does not depend on im-
plementation considerations and allows taking into account arbitrary topologies.
Based on this shape description, we define a shape prior as a distance between
the evolving curve and a reference shape. This framework naturally extends to
the multi-reference case, i.e. when multiple reference shapes are simultaneously
considered. Moreover, we exploit the fact that moments convey all geometric
information about shape to define a canonical representation, i.e. a configura-
tion in which two shapes differing by an affine transformation have identical
descriptors. Our shape prior is thus intrinsically affine-invariant. This naturally
avoids the pose estimation problem and allows the model to handle geometrical
variabilities. Finally, a unique evolution equation for the active contour is de-
rived using the formalism of shape derivative and classical differentiation rules
as proposed in [8] by Aubert et al. Thanks to the ability of the model to change
topology during evolution, automatic initialization of the active contour is also
possible, whatever the topology of the final target shape.

The reminder of the paper is structured as follows. In Sec. 2, we introduce our
new multi-reference, affine-invariant moment-based shape prior. The associated
evolution equation is given in Sec. 3. In Sec. 4, we illustrate the benefits of the
new prior on the segmentation of objects with various topologies, undergoing
large affine transformations, in presence of occlusions and clutter.

2 An Affine-Invariant, Multi-reference Shape Prior

2.1 Encoding Shapes with Moments

Denoting by Ωin the inside region of a shape, the regular or geometric moments
of its characteristic function (which is binary) are defined as:

Mp,q =
∫∫

Ωin

xpyqdxdy (1)

where (p, q) ∈ Z2, and (p + q) is called the order of the moment. Any shape,
discretized on a sufficiently fine grid, may be reconstructed from its infinite set
of moments. Hence, when computed from the characteristic function, moments
naturally provide region-based shape descriptors. However, as is well-known [9],
a more tractable representation for reconstruction purposes is obtained by using
an orthogonal basis, such as Legendre polynomials:
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λp,q = Cpq

∫∫
Ωin

Pp(x)Pq(y)dxdy, (2)

for (x, y) ∈ [−1, 1]2, where Cpq = (2p+ 1)(2q + 1)/4 is a normalizing constant,
and for x ∈ [−1, 1]:

Pp(x) =
p∑

k=0

apkx
k =

1
2pp!

dp

dxp
(x2 − 1)p. (3)

Note that there is a linear relationship between Legendre moments and regular
moments:

λp,q = Cpq

p∑
u=0

q∑
v=0

apuaqvMu,v. (4)

In practice we limit this representation to a finite orderN and we define the shape
descriptor as the D-dimensional vector of Legendre moments: λ = {λp,q, p+ q ≤
N}, where D = (N + 1)(N + 2)/2. Note that this compact description can take
into account arbitrary shape topologies.

2.2 Shape Prior Based on Legendre Shape Descriptors

Let us first consider the case where the evolving active contour, Γ , is constrained
to evolve toward a single reference shape. It is natural to define a shape constraint
as a distance d in terms of shape descriptors. Equivalently, in a probabilistic
framework, we define a shape prior energy as:

Jprior = − log (P(λ)) , (5)

with:
P(λ) ∝ exp

(
−d(λ(Ωin),λref )

)
, (6)

where Ωin is the inside region of Γ , and λref is the set of moments of the ref-
erence object. In the simplest case d is a quadratic distance. Of course, more
elaborate expressions can be used to model arbitrarily complex priors. For ex-
ample, when Nref reference shapes are simultaneously considered, the above
model is extended by defining P(λ) as a mixture of pdf’s. When d is quadratic
and all shapes are equiprobable, this leads to a mixture-of-Gaussians:

P(λ) =
1

Nref

1
σ
√

2π

Nref∑
k=1

exp

(
−
‖λ(Ωin) − λref

(k) ‖2

2σ2

)
. (7)

In this paper, we will consider multiple-reference models involving different fixed
shapes. Let us notice that eq. (7) is very close to the classical Parzen density
estimator, thus the model readily extends to the definition of statistical shape
variabilities, in the spirit of [10].
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2.3 Handling Pose and Geometric Variabilities

Dealing with affine transformations allows to solve the alignment problem since
translation, scaling and rotation are included in this group. Moreover, since
transformations such as skewing and reflection are also included, this allows the
introduction of geometrical variabilities in the model. For this purpose, we define
what we call a canonical representation. This is, in fact, a change of variables in
which two original shapes, differing by a certain transformation, are represented
by the same set of moments. Then, using such a representation for both the
reference and the evolving shape straightforwardly makes the model invariant
w.r.t. the transformation in question. The advantage of this approach is that the
change of variable is defined by closed-form expressions involving only geometric
moments, i.e. the data at hand during the optimization stage. No additional
optimization over pose parameters is necessary.

For example, in the case of scaling and translation, the canonical represen-
tation of a shape is obtained by aligning its centroid, (x, y), with the center of
the domain and normalizing its area, |Ωin|, to a constant, 1/β. This amounts
to using the normalized central moments ηp,q instead of the Mp,q’s in (4), as
proposed in [11].

ηp,q =
∫∫

Ωin

(x− x)p(y − y)q

(β|Ωin|)(p+q+2)/2 dxdy, (8)

with x =
M1,0

M0,0
, y =

M0,1

M0,0
and |Ωin| = M0,0. (9)

In the more general case of affine invariance, our approach is inspired by
the image normalization procedure [12]. Consider the so-called compaction al-
gorithm, which consists first in aligning the ellipse-of-inertia of the shape with
the axes of the coordinate system, then, in applying a non-isotropic scaling to
make this ellipse circular. It can be shown [12] that two shapes differing by an
affine transformation yield the same compact shape, up to a rotation. Compen-
sating for this rotation, we obtain a normalized shape, which is identical for
all affinely-related shapes. Hence, image normalization naturally provides our
canonical representation. Image normalization itself amounts to an affine trans-
formation, i.e. a translation followed by a linear transformation which can be
decomposed as: [

cos γ sin γ
− sin γ cos γ

]
.

[
l1 0
0 l2

]
.

[
cos θ sin θ

− sin θ cos θ

]
(10)

As already mentioned, the parameters of the canonical representation are given
by closed-form expressions involving geometric moments. Following [9] and [12],
we have:

θ =
1
2

atan2

(
2ν1,1

ν2,0 − ν0,2

)
(11)

where atan2 is the usual four-quadrant inverse tangent,

l1/2 =
(ν2,0 + ν0,2) ±

√
(ν2,0 − ν0,2)2 + 4ν2

1,1

2
(12)
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where the νu,v’s are the second-order central moments of the original shape, and

γ = tan−1

(
−
M c

1,2 +M c
3,0

M c
0,3 +M c

2,1

)
+ (1 − sign(M c

0,3 +M c
2,1))

π

2
(13)

where the M c
u,v’s are the central moments of the compact shape. Image normal-

ization, however, does not handle reflection. Since reflection only affects the sign
of moments for p odd (reflection w.r.t. y axis) or for q odd (reflection w.r.t. x
axis), we choose, without loss of generality, to fix the sign of the third-order mo-
ments. Affine-invariant moments, yielding the desired canonical representation,
are finally defined in the following equations:

ηA
u,v =

(
sign

(
η̂A
3,0

))u
.
(
sign

(
η̂A
0,3

))v
.η̂A

u,v. (14)

where:

ηA
u,v =

(l1.l2)
u+v

4

(β|Ωin|)(u+v+2)/2

×
Ωin

((x − x) cos θ + (y − y) sin θ)√
l1

cos γ +
((y − y) cos θ − (x − x) sin θ)√

l2
sin γ

u

× ((y − y) cos θ − (x − x) sin θ)√
l2

cos γ − ((x − x) cos θ + (y − y) sin θ)√
l1

sin γ
v

dxdy.

(15)

Note that a simpler model, that only handles rigid transformations may readily
be obtained by setting γ = 0 and l1 = l2 = 1 in (15) 1.

Fig. 1. Reconstruction of shapes from their affine-invariant moments (see text)

Replacing Mp,q by ηA
p,q in (4), we obtain an affine-invariant descriptor that

we will denote by λA. Fig. (1) shows examples of reconstruction of four shapes
from their affine-invariant descriptor up to the 45th order. The four initial letters

1 Handling reflection is still necessary in that case, to avoid ambiguity in the determi-
nation of θ.
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F shown on the upper row are similar up to affine transformations. As it can
be seen on the lower row, the four reconstructed shapes are the same. This
corresponds to the canonical representation and illustrates the invariance of the
proposed descriptor.

Using λA instead of λ in (5), we define a shape prior which benefits from
the affine invariance of the descriptor. This shape constraint, based on the char-
acteristic function, handles complex topologies, does not rely on a particular
implementation and is intrinsically invariant w.r.t. affine transformations: the
prior has a closed-form expression depending only on moments.

3 Active Contour Evolution Equation

The evolution equation for the boundary of Ωin can be derived from the mini-
mization of Jprior using the shape derivative framework [8].

3.1 Single-Reference Model

Let us first focus on the case where the shape constraint is a quadratic distance
to as single reference shape, described by λref , i.e.:

Jprior(Ωin(t)) =
p+q≤N∑

p,q

(λp,q(Ωin(t)) − λref
p,q )2. (16)

When the descriptor is invariant w.r.t. translation and scaling, λ and λref

are computed from normalized central moments (8), i.e.:

λp,q = Cpq

p∑
u=0

q∑
v=0

apuaqvηu,v. (17)

Applying the strategy described in [8] in order to minimize Jprior leads, in this
particular case, to the following flow (see [13] for details):

∂Γ

∂t
=

u+v≤N

u,v

Auv Huv(x, y, Ωint) +
2

i=0

Buvi.Li(x, y)

Vprior

N , (18)

where N is the inward unit normal vector of Γ and:

Auv = 2

p+q≤N

p,q

(λp,q − λref
p,q )Cpqapuaqv, (19)

Huv(x, y, Ωin) =
(x − x)u(y − y)v

|βΩin|(u+v+2)/2 , (20)

Buv0 =
u.x.ηu−1,v + v.y.ηu,v−1

β
1
2 |Ωin| 3

2
− (u + v + 2).ηu,v

2|Ωin| , (21)

Buv1 =
−u.ηu−1,v

β
1
2 |Ωin| 3

2
, Buv2 =

−v.ηu,v−1

β
1
2 |Ωin| 3

2
, (22)

L0 = 1, L1 = x, L2 = y. (23)
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When taking into account affine invariance in the prior, i.e. using λA, we
obtain (see [13] for details):

∂Γ

∂t
=

u+v≤N

u,v

AA
uv. sign ηA

3,0

u

. sign ηA
0,3

v

. HA
uv +

9

i=0

BA
uvi.Li

Vprior

N , (24)

where the expressions of B̂A
u,v,i are given in [13] and:

AA
uv = 2

p+q≤N

p,q

(λA
p,q − λAref

p,q ).Cpqapuaqv, (25)

HA
uv =

(l1.l2)
u+v

4

(|βΩin|)(u+v+2)/2

× ((x − x) cos θ + (y − y) sin θ√
l1

cos γ +
((y − y) cos θ − (x − x) sin θ)√

l2
sin γ

u

.

× ((y − y) cos θ − (x − x) sin θ)√
l2

cos γ − ((x − x) cos θ + (y − y) sin θ)√
l1

sin γ
v

(26)

L0 = 1, L1 = x, L2 = y, (27)

L3 = x2, L4 = y2, L5 = xy, (28)

L6 = x3, L7 = y3, L8 = x2y, L9 = xy2. (29)

3.2 Multi-reference Model

Let us now consider the multi-reference case. For the sake of conciseness, we
present the case of translation and scale invariance, the case of affine invariance
being similar. Taking the log in eq. (7) and differentiating leads to an expression
similar to (18), but with a different Au,v factor:

∂Γ

∂t
=

u+v≤N

u,v

Amulti
uv Huv(x, y, Ωint) +

2

i=0

Buvi.Li(x, y)

Vprior

N , (30)

where the expressions of Huv, Buvi and Li are given by equations (20) to (23).
The Amulti

u,v factor is a weighted average of the individual factors, A(k)uv com-
puted for each reference shape descriptor λref

(k) from (19):

Amulti
uv =

1

2σ2

Nref

k=1

exp
−||λ − λref

(k) ||2
2σ2

Nref

k=1

A(k)uv exp
−||λ − λref

(k) ||2
2σ2 . (31)

In other words, the force induced by the minimization of Jprior in the multi-
reference case is a weighted average of the individual forces directed towards each
reference shape. Note that the weights decay exponentially with the distance in
terms of shape descriptors between the evolving curve and the reference shape.
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3.3 Implementation

Both the models and the derivation of the active contour evolution equation
are independent from any implementation consideration. Consequently, (18) or
(24) may be implemented using either a parametric approach, such as spline-
snakes [14], or the non-parametric level set formalism [15]. We use here the latter,
which naturally handles changes of topology.

4 Application to Image Segmentation

We now address the general problem of two-class segmentation. Our purpose
being to illustrate the behavior of the novel prior term, we choose a standard
data functional, which was first introduced by Chan and Vese in [16]:

Jdata(Ωin, Ωout) =
Ωin

(I(x, y) − μin)2dxdy +
Ωout

(I(x, y) − μout)
2dxdy, (32)

where μin (resp. μout) is the (unknown) average intensity in the inside (resp. out-
side) domain, Ωin (resp. Ωout), and I(x, y) is the intensity value of the pixel. Its
differentiation may be cast in the general framework presented in [8]. Minimizing
the total energy:

J(Ωin, Ωout) = Jdata(Ωin, Ωout) + αJprior(Ωin), (33)

we obtain:
∂Γ (t)
∂t

= ((I − μin)2 − (I − μout)2︸ ︷︷ ︸
Vdata

+αVprior)N , (34)

where Vprior is defined in (18), (24) or (30) and μin, μout are computed after
each iteration [16].

4.1 Single-Reference Model

We illustrate the behavior of our algorithm on the real image of a partially
occluded rabbit against a cluttered background (Fig. 3). We first evolve the
curve with the region-based energy (32) and an additional standard curvature
component. The result (Fig. 3b) is clearly sensitive to the presence of clutter
and occlusion. We then refine this result, replacing the curvature term by the
shape prior invariant w.r.t. translation and scaling, i.e. evolving according to
(34) with Vprior given by (18). We obtain the final result shown in Fig. 3c. The
order of the model, N , is chosen such that the Normalized Mean Squared Error
(NMSE) between the reference shape, shown in Fig. 2 (leftmost image), and the
reconstruction from its descriptor, given by

∑N
p=0

∑p
q=0 λ

ref
p−q,qPp−q(x)Pq(y), is

less than 10%. In the present case, we obtain N = 40.
We next consider topologically more complex objects (Fig. 2) against cluttered

background and with occlusions (Fig. 4). As in the previous experiment, we first
evolve the curve with the region-based energy, then we introduce the shape prior.
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Fig. 2. Reference shapes used with the single reference model, eq. (6)

(a) (b) (c)

Fig. 3. Segmentation results on real data (test image: by courtesy of D. Cremers [3]):
(a) initial contour, (b) segmentation result without shape prior (standard curvature
component used), (c) segmentation result using the single-reference prior (moments up
to the 40th-order)

Fig. 4. Segmentation of topologically non-trivial shapes. First row: initial contours
(note that they are of different kinds). Second row: results without shape constraint;
a curvature term is used for the mug only. Third row: final results, adding the single-
reference prior up to the order 40 for the mug and the stop sign, up to the order 43 for
the triangle sign.
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The reference shapes are presented on Fig. 2 and the shape prior used in this case
is invariant w.r.t. translation and scaling, i.e. Vprior is given by (18). Considering
for example the third column of Fig. 4, we can see that our prior improves the
segmentation result, for a complex shape (the stop sign) with important data
missing and in presence of noise. Fig. 4 also illustrates the flexibility of our
approach w.r.t. the kind of initial curve that is used. Moreover, using the shape
constraint, it is possible to overcome the absence of regularization term during
the first step of the segmentation.

(a) (b) (d)(c)

Fig. 5. Segmentation of objects with affine deformations. First row: initial contours.
Second row: results without shape constraint (standard curvature component used).
Third row: final results, adding the single-reference prior up to the order 40. (a) and
(b): the prior is invariant w.r.t. translation, rotation, scaling and reflection. (c) and
(d): the full affine model is used.

Fig. 6. Set of reference shapes used with the multi-reference model, eq. (7)
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Finally, results presented Fig. 5 show the ability of our constraint to deal with
large affine deformations of the shape. We use here the flow (24) to regularize
the segmentation result. The reference shape is the same as in the experiment
presented Fig. 3.

4.2 Multi-reference Model

We now illustrate how the model can take into account several reference shapes
in a segmentation application. We consider five images (Fig. 7, first row), each
one representing a partially occluded letter. The five segmentation results on
the fourth row are obtained with the same curve evolution equation for the
contour (34), with Vprior given by eq. (30). The constraint is invariant w.r.t.
translation and scale. The set of reference shapes, shown Fig. 6, consists of 26
letters. The parameter σ is computed from the set {λref

(k) } in order to bound the

Fig. 7. Segmentation of five images of letters featuring large occlusions. First row: orig-
inal images. Second row: initialization. Third row: results without shape constraint (no
standard curvature component). Fourth row: final results, adding the multi-reference
prior up to the order 40. The same set of parameters is used for the whole experiments.
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classification error probability, Pe, between the two closest reference shapes in
terms of descriptors, where:

Pe =
1
2

erfc

⎛⎝min
k �=l

√
||λref

(k) − λ
ref
(l) ||2

2σ
√

2

⎞⎠ (35)

In practice, σ is chosen so that Pe < 3%.

5 Conclusion

In this paper, we have considered Legendre moments to define affine-invariant
shape descriptors. Experimental results show that the obtained evolution equa-
tion is able to constrain an active contour to evolve toward a reference shape, and
provides robustness to clutter and occlusions in image segmentation. The pro-
posed approach also naturally handles pose variations, affine deformations and
complex changes of topology. Moreover, it naturally extends to the multiple-
reference case, which paves the way for further extensions to the modeling of
statistical shape variabilities.
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Abstract. Figure/ground assignment is a key step in perceptual or-
ganization which assigns contours to one of the two abutting regions,
providing information about occlusion and allowing high-level process-
ing to focus on non-accidental shapes of figural regions. In this paper,
we develop a computational model for figure/ground assignment in com-
plex natural scenes. We utilize a large dataset of images annotated with
human-marked segmentations and figure/ground labels for training and
quantitative evaluation.

We operationalize the concept of familiar configuration by construct-
ing prototypical local shapes, i.e. shapemes, from image data. Shapemes
automatically encode mid-level visual cues to figure/ground assignment
such as convexity and parallelism. Based on the shapeme representation,
we train a logistic classifier to locally predict figure/ground labels. We
also consider a global model using a conditional random field (CRF) to
enforce global figure/ground consistency at T-junctions. We use loopy
belief propagation to perform approximate inference on this model and
learn maximum likelihood parameters from ground-truth labels.

We find that the local shapeme model achieves an accuracy of 64%
in predicting the correct figural assignment. This compares favorably to
previous studies using classical figure/ground cues [1]. We evaluate the
global model using either a set of contours extracted from a low-level
edge detector or the set of contours given by human segmentations. The
global CRF model significantly improves the performance over the lo-
cal model, most notably when using human-marked boundaries (78%).
These promising experimental results show that this is a feasible ap-
proach to bottom-up figure/ground assignment in natural images.

1 Introduction

Figure/ground organization, as pioneered by Edgar Rubin [2], is a step of
perceptual organization which assigns a contour to one of the two abutting re-
gions. It is commonly thought to follow region segmentation, it is an essential
step in forming our perception of surfaces, shapes and objects, as vividly demon-
strated by the pictures in Figure 1. These pictures are highly ambiguous and we
may perceive either side as the figure and “see” its shape. We always perceive
the ground side as being shapeless and extended behind the figure, never seeing
both shapes simultaneously.

Figure/ground organization is a classical topic in Gestalt psychology, and over
the years many factors have been discovered which play a role in determining
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Fig. 1. The figure/ground assignment problem. We perceive that each boundary be-
longs to one, but not both, of the two abutting regions. The figure side has a “shape”
and the ground side is “shapeless”, extending behind the figure.

what regions are seen as figural [3]. The most important of these factors include
size, convexity, symmetry, parallelism, surroundedness and lower-region as well
as familiar configuration. Recent studies in psychophysics show that familiar
configurations of contours provide a powerful cue for figure/ground [4], which
often dominates more generic cues.

In computer vision, partly due to its lack of immediate applications,
figure/ground organization has received little attention. Nevertheless, a few in-
fluential studies on figure/ground persist: many focusing on modeling and ex-
ploiting global structure such as T-junctions (e.g. [5, 6, 7, 8, 9]), others studying
the use of local cues such as convexity (e.g. [10]). Typically such approaches have
only been demonstrated on a limited set of images, mostly synthetic.

Fig. 2. Examples from the figure/ground dataset of natural scenes. Each image is first
segmented by a human subject; then two human subjects assign figure/ground labels
to each boundary in the segmentation. Here the white boundary indicates the figure
side and black the ground side. Blue boundaries indicate contours labeled by subjects
as not having a clear figure/ground assignment (e.g. surface markings).

In this work we utilize a large dataset of natural images where human
subjects provide segmentations as well as figure/ground labels (the Berkeley
Figure/Ground Dataset [1]). Figure 2 shows a few images from this dataset,
each annotated with a segmentation and corresponding figure/ground labels.
The purpose of this work is to address the challenges of figure/ground assign-
ment in such complex natural scenes, in the presence of hierarchical object struc-
ture, arbitrary occlusion and texture as well as background clutter and imaging
noise.

We propose a two-step approach: a local model using prototypical local shapes
to represent context; and a global model using a random field to enforce consis-
tency along contours and junctions. We train both models with human-marked
groundtruth data and quantitatively evaluate their performance.
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2 Figure/Ground Assignment in Natural Images

A standard view in perceptual organization is that images are first grouped into
smooth contours, regions and junctions. Then each contour is assigned to one of
the two abutting regions, after which shape analysis and object recognition hap-
pen. Recently this theory of sequential processing has been brought into question.
Psychophysical experiments suggest that recognition of familiar contour config-
urations is a powerful figure/ground cue and may occur prior to figure/ground
assignment [4]. On the other hand, studies from neurophysiology indicate that
figure/ground organization may occur early in the visual pathway [11, 12], long
before grouping is completed.

There is, of course, nothing contradictory between these findings and the tra-
ditional Gestalt emphasis on global processing. It could well be that informative
cues (including familiar shape) are available in the local context of each contour
independently extracted quite early. After this initial step, more global struc-
ture, such as T-junctions, may be constructed and used to enforce consistency
between local figure/ground assignments.

This is the philosophy behind our approach, which is outlined in Figure 3.
Starting from an image, first we compute its edge map using the Pb (Prob-
ability of Boundary) operator [13]. Then we use Geometric Blur [14], a local
shape descriptor, to represent the local context around each image location. The
representation is in terms of its similarity to set of prototypical local shapes, or
shapemes, that we find in advance from clustering training data. These similar-
ity terms are then combined using a linear classifier to predict the figure/ground
label at each image location. We show that the shapeme-based classifier performs
much better than a baseline model using size/convexity.

Next we develop a global figure/ground model which enforces labeling consis-
tency at junctions. First we integrate local figure/ground cues over continuous

Fig. 3. Summary of our two-stage approach. First we use the Pb operator [13] to com-
pute a soft edge map. The Pb map is used to compute local shape descriptors using
Geometric Blur [14]. These shape descriptors are clustered into prototypical shapes, or
shapemes, which encode rich mid-level visual information. Our local figure/ground
model is a logistic classifier based on the shapeme representation. Our global fig-
ure/ground model uses a conditional random field to enforce global consistency by
learning junction frequency and continuity. It operates either on a human-marked seg-
mentation or thresholded Pb boundaries.
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contour segments. We consider the following two cases separately: (1) if we as-
sume that a segmentation is available, we obtain a contour/junction structure
from a human-marked segmentation; or (2) if we don’t assume to have a seg-
mentation, a contour/junction structure is constructed from bottom-up based
on thresholded Pb edges.

We use a conditional random field model [15, 16] to build a joint probabilistic
model over the figure/ground labels on the complete set of contours segments.
Empirical frequencies of junction types (such as valid or invalid T-junction la-
bels), along with continuity of foreground contours, are exploited to correct
locally ambiguous labelings. Inference is done with loopy belief propagation. We
learn maximum likelihood model parameters with gradient descent.

We quantify the performance of our models by testing them against
groundtruth labels. In the case of using human segmentations, each pixel on
a human-marked boundary has a figure/ground label, and we count the percent-
age of figure/ground labels correctly predicted. In the case of bottom-up contour
detection, we use the Canny’s hysteresis to threshold Pb boundaries and apply
a bipartite matching process to “assign” groundtruth labels to each pixel on
the Pb boundaries. We then count the percentage of correct predictions of our
models on these transferred labels.

3 Local Figure/Ground Model with Shapemes

Many of the classical figure/ground cues are mid-level cues. Unlike edge detec-
tion, which measures contrast at a point, visual cues such as convexity, paral-
lelism and symmetry are about the relations between points or elements. On the
other hand, these cues can still be estimated within a moderately sized neigh-
borhood, without requiring a complete segmentation or recognition of objects.

Such mid-level cues are not trivial to operationalize. Parallelism, symme-
try and convexity have precise mathematical definitions but models constructed
from mathematical/geometric analysis are seldom flexible enough to cope with
the variety of natural phenomenon including noise, texture and clutter. Another
challenge with natural scenes is that they often contain multiple objects/parts
and hence have a complex junction structure which is impossible to reliably
detect using local operators[17].

3.1 Shapemes: Prototypical Shapes

Instead of seeking a mathematical definition for every local figure/ground cue, we
take an empirical approach, using a generic shape descriptor to discover shape-
mes, or prototypical shapes, from data. This is in the spirit of Wertheimer’s fa-
miliar configuration and Brunswik’s ecological theory of Gestalt principles.

We use the Geometric Blur operator [14] to describe local shape. Let I be
an input image and E an edge map. The geometric blur centered at location x,
GBx(y), is a linear operator applied to E whose value is another image given by
the “convolution” of E with a spatially varying Gaussian. GBx has the property
that points farther away from x are more blurred, making the descriptor robust
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93.84% 89.59% 66.52%

49.80% 11.69% 4.98%

Fig. 4. Shapemes, or clusters of local shapes from a set of human-marked boundaries
of baseball players. Shown here are the average shapes in each cluster. We find that
shapemes encode rich contextual information, such as parallelism (row 1, col 1), con-
vexity (row 1, col 2), sharp corners (row 2, col 3) or straight lines (row 2, col 5). On
the right we show a few shapemes and the percentage of the shapes in each cluster
that have the left side as figure. Empirical data confirm that mid-level cues such as
parallelism or convexity are very useful for figure/ground assignment; figure/ground
labelings are heavily biased in such cases.

to affine distortions. The value GBx(y) is the inner product of E with a Gaussian
centered at y whose standard deviation is α|y− x|. We rotate the blurred image
GBx so that the locally estimated contour orientation at x is always vertical.
We choose α = 0.5 and sample the blurred and rotated image GBx at 4 different
radii (increasing by a factor of

√
2) and 12 orientations, to obtain a feature vector

of length 48.
We then cluster these Geometric Blur descriptors to find prototypical shapes,

or shapemes. The use of shapemes was first introduced in [18] as a means to
efficiently index and retrieve object specific shapes. Here we use shapemes in
a rather different way, as a representation derived from data to capture mid-
level cues. Our shapemes also differ in that they are orientation-independent,
as we align them to local boundary orientations. This allows us to encode rich
contextual information with a small set of shapemes.

To illustrate the concept, Figure 4 visualizes 32 shapemes constructed (us-
ing k-means) from a simpler database containing silhouettes of baseball player
photos [19]. We find that mid-level cues such as convexity and parallelism are
implicitly captured in the shapemes, making it an appealing representation for
figure/ground organization.

For experiments on the more complex Berkeley Figure/Ground Dataset, we
use 64 shapemes constructed from Pb edge maps and modeled as a mixture of
Gaussians. For each local shape, we use the mixture of Gaussian to obtain a
feature vector f of dimension 64, which is the log posterior probability of each
component mixture. We use these features to predict a binary label Y ∈ {−1, 1}
indicating which side is figure and which side is ground, a binary classification
problem. A logistic classifier is fit to the human-marked labels using standard
iteratively re-weighted least squares.
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4 Global Figure/Ground Model with Conditional
Random Fields

Although local shape is quite informative, figure/ground organization is not a lo-
cal phenomenon. Contour form parts of object boundaries in the scene, and they
interact through junctions and regions. One classical problem in the early days
of computer vision is the labeling of line drawings. There, T-junctions are prob-
ably the most important cue in interpreting objects and scenes. Following this
tradition, many previous studies focus on the global inference of figure/ground
relations through junctions [5, 6, 7, 8, 9].

In the previous section we have shown that shapemes encode rich mid-level
cues and can be used to construct a local model for figure/ground organization.
To combine local cues and enforce global consistency, we assume that we have
a discrete graph structure of the image, as shown in Figure 5(a), where edge
pixels form contours and contours join to form junctions. This structure may
either come from a human-marked segmentation or, as we will show in the next
section, from a thresholded edge map.

(a) (b)

Fig. 5. Global inference of figure/ground assignments. Suppose we have a discrete con-
tour/junction structure as in (a), which comes either from a human-marked segmenta-
tion or from thresholded Pb edge maps. We use a conditional random field to enforce
global consistency of the figure/ground labels on individual edges. (b) shows the factor
graph of our probabilistic model corresponding to the edge structure in (a). Edge poten-
tials combine evidence from the local figure/ground model. Junction potentials ensure
that the figure/ground labels are consistent with one another, forming valid junctions.

We use a conditional random field (CRF) model for global figure/ground infer-
ence on this discrete structure. Conditional random fields were first introduced
by [15] for natural language processing, and have been shown to outperform tra-
ditional Markov Random Fields in many domains. It has been previously applied
to image labeling [20, 21], as well as contour completion [16].

For every contour e in the image, the local model provides us with an estimate
pe, the probability that the “left” side of e is figure (averaged over all pixels on
e). We associate with e a ternary variable Xe, where Xe = 1 if the “left” side of e
is figure, Xe = −1 if the “right” side is figure, or Xe = 0 if neither (e.g. a surface
marking). Let XV be the collection of variables for all contours which join at
a junction V in the graph. We consider an exponential family distribution over
the collection of edges of the form
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P (X |I,Θ) =
1

Z(I,Θ)
exp

{∑
e

φ(Xe|I,Θ) +
∑
V

ψ(XV |I,Θ)

}
(1)

where φ is a unary potential function on each contour e, ψ a potential function
on each junction XV , and Θ is the collection of model parameters. An example
factor graph, showing the conditional independence structure of our CRF model,
is illustrated in Figure 5(b).

The contour potential φ incorporates local figure/ground evidence, defined as
φ(Xe) = βXelog( pe

1−pe
), where pe is the local estimate that the “left” side of e

is figure.
The junction potential ψ assigns a weight to each distinctive “junction type”.

Suppose a junction V contains k contours {e1, · · · , ek}, sorted in a clock-wise
way, with a figure/ground label assignment XV (we do not consider any contour
with a label Xe = 0). The type of the junction V can be represented by a vector
of dimension k: T (XV ) = {Xe1 , · · · , Xek

}. We define

ψ(XV ) =
∑
t∈Ta

αt · 1{T (XV )=t} +
∑
t∈Tc

γ · θ(XV ) · 1{T (XV )=t} (2)

where Ta is the set of all possible junction types, and Tc is a subset of junction
types on which a continuity term θ may be defined (explained below).

Figure 6 shows a few examples of junction types. Intuitively, junction types (a)
and (d) are sensible junction labelings, (a) being a continuation of contours, and
(d) being a classical T-junction; while junction types (b) and (c) seem highly
unlikely. We can count the empirical frequencies of these junction types; and
indeed we find that type (a) and (d) are much more common than (b) and (c).

In order to analyze junctions, we need to know the geometric configuration
in addition to its type. For example, in a T-junction, we need to know which
two contours form the “top” of the “T”. This is accomplished by defining a
continuity term between a pair of contours. For junction type (d), we know from
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(a): type (1,-1),
frequency 0.126,

weight 0.185

(b): type (-1,-1),
frequency 0.039,
weight −0.611

(c): type (-1,-1,-1),
frequency 0.006,
weight −0.857

(d): type (1,-1,-1),
frequency 0.086,

weight 0.428

Fig. 6. A number of junction types, red indicating the figure side and blue the ground.
Each type is represented by its set of figure/ground labels collected in a clockwise way.
The empirical frequencies of these junction types confirm that type (a) and (d) are
common junction labelings but (b) and (c) are uncommon. This is encoded into the
CRF model parameters by maximum likelihood learning. For type (a) and (d), we may
define a continuity term θ, which is the angle between the two contours that belong to
the foreground.
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the figure/ground labels that the contours 1 and 3 form the boundary of the
foreground object, while the contour 2 is an occluded contour in the background.
Therefore the continuity of this junction is the angle between the contours 1
and 3. We also use continuity in junction type (a) by measuring the angle between
the two contours.

Because the contour/junction graph typically contains many loops, exact in-
ference on the CRF model is intractable. We perform approximate inference
using loopy belief propagation to estimate marginal posterior distributions of
the figure/ground labels Xe. We then assign a binary figure/ground label to
a contour e (hence all the pixels on e), the figure being on its “left” side if
P (Xe = 1) > P (Xe = −1), or otherwise the “right” side. In our experiments, we
find loopy belief propagation converges quickly (< 10 iterations) to a reasonable
solution.

We fit the model parameters Θ = {α, β, γ} using maximum likelihood crite-
rion. The partial derivatives of the log-likelihood take on a simple form as the
difference between two expectations. For example,

∂

∂αt
log

(
1

Z(I, Θ)
exp

{∑
e

φ(Xe|I, Θ) +
∑
V

ψ(XV |I, Θ)

})

=
∑
V

1{T (XV )=t} −
〈∑

V

1{T (XV )=t}

〉
P (X|I,Θ)

where the first term is the empirical frequency of junction type t, and the sec-
ond term is the frequency of type t under the current parameter setting. Learning
parameters with simple gradient descent converges quickly (< 500 iterations).

5 Figure/Ground Assignment Without Segmentation

The figure/ground models we have introduced are based on the assumption that
figure/ground organization occurs after region grouping. Using human-marked
segmentations, these models provide valuable insights into the figure/ground
process, such as relative powers of the local and global cues involved. To utilize
these cues in a practical algorithm, however, we need to compute a segmentation
first. Unfortunately, segmentation is a hard problem itself and requires the use
of all available visual information, potentially including figure/ground cues.

In this section we replace the human segmentation with a bottom-up grouping
process based directly on edge detection. There are two main questions that need
to be addressed:

1. The groundtruth labels in the dataset are all given on human-marked bound-
aries. How do we transfer these labels to a set of (potentially mislocalized)
edges, so that we may train and test our models as before?

2. The global conditional random field model requires a discrete contour/
junction graph structure. How do we construct such a structure from the
image?
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To transfer groundtruth labels, we run a bipartite matching between pixels on
human-marked boundaries and pixels on Pb edge maps, illustrated in Figure 7
(a). For each Pb edge pixel, we have an estimate of the local orientation at
that location. We then look at the matched pixel on human-marked boundary,
compute its figure/ground label at that particular orientation, and transfer it to
the Pb pixel. Figure 7(b) shows a few examples from this matching process.

F G

Groundtruth Boundary

Pb Pixels

(a) (b)

Fig. 7. Transferring groundtruth labels to Pb edge maps. (a) a bipartite matching es-
tablishes the correspondence between thresholded Pb edges and human-marked bound-
aries. This correspondence determines the figure/ground label on each Pb pixel, at its
local orientation. (b) examples of the transferred groundtruth labels. White indicates
that “left” is the figure side, black the ground side; blue pixels are either not matched,
or matched to a boundary with no figure/ground labels (not used in evaluation).

To construct a discrete junction structure on which our conditional random
field model can be applied, we use Canny’s hysteresis thresholding to trace salient
contours in Pb edge maps. Junctions are discovered during the process when two
or more contours join. A heuristic is used which merges two vertices when they
are sufficiently close to each other.

Pb edge maps have nice non-maximum suppression properties so a naive con-
tour tracing approach suffices most of the time. Figure 8 shows an example of
the resulting contour/junction graph, alongside the human-marked segmenta-
tion. Our conditional random field model can directly apply to either of these
discrete structures.

(a) (b) (c) (d)

Fig. 8. Constructing contour/junction structure (c) from thresholded Pb edge maps
(b). Contours are marked in black and junctions in red. Such a discrete structure allows
global inference on junction consistencies. However, bottom-up contours are much more
fragmented and not nearly as clean (and useful) as the human-marked boundaries (d).
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6 Experimental Results

The figure/ground dataset we use for both training and testing include 200
Corel images of size 321 × 481. Human subjects provide one segmentation for
each image as well as two sets of figure/ground labels. We use 100 images for
training and 100 for testing.

We test the performance of four models: a baseline size/convexity model, the
local shapeme model, the local shapeme model averaged on continuous contours,
and the global conditional random field model. Each model provides a binary
figure/ground label on boundary pixels, and we count the percentage of correct
predictions. Surface markings are excluded in these experiments. The models
are evaluated in two cases, with or without using human-marked segmentations.
Chance is 50%. Since each image is labeled by multiple human subjects, we can
measure the labeling consistency between human subjects. For this dataset the
self-consistency is 88%.

The baseline size/convexity model is constructed in the following way. Given
a segmentation, suppose p is a pixel on a contour c between two segments S1
and S2. Let D be a disk around p with a radius r. We can measure the area of
overlap A1 = |D ∩ S1| and A2 = |D ∩ S2|: if the area A1 < A2, then we label S1

Table 1. Performance evaluation based on human-marked segmentations. The baseline
size/convexity model has difficulties around junctions. Its performance slowly increases
with scale/radius, capped at 55.6%. The shapeme model, incorporating convexity, par-
allelism and textureness, performs much better than the baseline. Averaging local cues
over human-marked boundaries proves to suppress noise and significantly increase the
performance. The global CRF model, by enforcing labeling consistency at T-junctions,
performs the best, achieving 78.3% accuracy.

Chance
Size/

Convexity
Local

Shapeme
Averaging Shapemes

on Contours
Global CRF

Dataset
Consistency

50% 55.6% 64.8% 72.0% 78.3% 88%

Table 2. Performance evaluation based on Pb boundaries. Without the knowledge of a
segmentation, the baseline size/convexity model cannot be applied. The local shapeme
model, based solely on local image-based descriptors, performs as good as in the case
with human-marked boundaries. The global models, however, are severely handicapped
without a perfect segmentation. The contour/junction structure constructed from edge
maps is useful at enforcing global consistencies (4% improvement); but as it is much
more fragmented and noisy than the set of human-marked boundaries, the benefit
of global integration is much smaller. Clearly, a more sophisticated contour/region
grouping algorithm is needed here to produce better junction structures.

Chance
Size/

Convexity
Local

Shapeme
Averaging Shapemes

on Contours
Global CRF

Dataset
Consistency

50% n/a 64.9% 66.5% 68.9% 88%



624 X. Ren, C.C. Fowlkes, and J. Malik

Fig. 9. Results based on human-marked boundaries. Shown here are the images,
the groundtruth labels (white being the figure, black the ground, blue neither),
figure/ground labels from the local shapeme model (white being correct, black incor-
rect; average accuracy 64.8%), and labels from the global CRF model (average accuracy
78.3%). The global model performs well in most cases, suggesting that figure/ground
assignment in natural images is a feasible problem, if a good segmentation is available.



Figure/Ground Assignment in Natural Images 625

Fig. 10. Results based on Pb boundaries. Shown here are the images, the Pb edge
map, figure/ground labels from the local shapeme model (average accuracy 64.9%), and
labels from the global CRF model (average accuracy 68.9%). Without using human-
marked segmentations, the results are more noisy and less consistent. Nevertheless the
local shapeme model applies without any difficulty, and global inference on a bottom-up
contour/junction structure still significantly improves performance.
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as figure, and vice versa. This simple size cue is closely correlated with convexity
(convex regions typically have a smaller size, if the boundary is smooth enough)
and has been shown to perform well on this dataset without interference with
junctions [1]. This cue, however, relies on the availability of a segmentation and
performs poorly near junctions.

Table 1 lists the average labeling accuracy for the case of using human-marked
segmentations. Table 2 lists the results in the case of bottom-up contour detec-
tion. We find that the local shapeme model performs well in both cases, achiev-
ing an accuracy of 64.8%, much higher than the baseline size/convexity model.
Enforcing global consistency improves performance in both cases, most no-
tably when using human-marked segmentations. Sample results can be found in
Figure 9 and Figure 10.

7 Conclusion

In this work we have developed a model for figure/ground assignment in natural
images using shapemes to represent context and a conditional random field to
enforce labeling consistency at junctions. We train and test our models on a large
dataset of natural images with human-marked groundtruth data, using either a
high-quality segmentation or a bottom-up edge detector to determine junction
structure.

The local figure/ground prediction based on shapemes performs well in both
cases, comparing favorably to previous studies using classical Gestalt figure/
ground cues. Shapemes automatically discover contextual cues such as paral-
lelism or convexity, and are robust to complex variability in natural images.
The global CRF model significantly improves the performance, most notably
when using human-marked boundaries. Experimental results suggest that
figure/ground assignment in natural images is a feasible problem and a good
segmentation algorithm would greatly facilitate figure/ground organization.
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Abstract. In this paper, we introduce background cut, a high quality and real-
time foreground layer extraction algorithm. From a single video sequence with a
moving foreground object and stationary background, our algorithm combines
background subtraction, color and contrast cues to extract a foreground layer
accurately and efficiently. The key idea in background cut is background con-
trast attenuation, which adaptively attenuates the contrasts in the background
while preserving the contrasts across foreground/background boundaries. Our
algorithm builds upon a key observation that the contrast (or more precisely,
color image gradient) in the background is dissimilar to the contrast across fore-
ground/background boundaries in most cases. Using background cut, the layer
extraction errors caused by background clutter can be substantially reduced.
Moreover, we present an adaptive mixture model of global and per-pixel back-
ground colors to improve the robustness of our system under various background
changes. Experimental results of high quality composite video demonstrate the
effectiveness of our background cut algorithm.

1 Introduction

Layer extraction [2, 20] has long been a topic of research in computer vision. In recent
work [8], Kolmogorov et al. showed that the foreground layer can be very accurately and
efficiently (near real time) extracted from a binocular stereo video in a teleconferencing
scenario. One application of foreground layer extraction is high quality live background
substitution. The success of their approach arises from a probabilistic fusion of multiple
cues, i.e, stereo, color, and contrast.

In real visual communication scenario, e.g., teleconferencing or instant messaging,
however, most users have only a single web camera. So, can we achieve a similar quality
foreground layer extraction using a single web camera? For an arbitrary scene (e.g.
non-static background), automatically foreground layer extraction is still a monumental
challenge to the current state of the art [21, 23]. To facilitate progress in this area, we
address a somewhat constrained but widely useful real world problem in this paper —
high quality, real-time foreground extraction (or background removal) from a single
camera with a known, stationary background.

To address this problem, the most efficient approach is background subtraction.
Background subtraction detects foreground objects as the difference between the cur-
rent image and the background image. Nevertheless, there are two issues in back-
ground subtraction: 1) the threshold in background subtraction is very sensitive to
noise and background illuminance changes. A larger threshold detects fewer fore-
ground pixels and vice versa. 2) foreground color and background color might be

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 628–641, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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very similar, resulting in holes in detected foreground object. More sophisticated
techniques [7, 22, 1, 6, 17, 16, 14, 11, 12, 18] have been proposed to overcome these
problems. But the results are still error-prone and not accurate enough for high quality
foreground extraction required in our application because most of these methods make
local decisions. Figure 2 (b) shows a background subtraction result. Postprocessing
(e.g, morphological operations) may help but cannot produce an accurate and coherent
foreground.

Recent interactive image and video segmentation techniques [15, 10, 19, 9] have
shown the powerful effectiveness of the color/contrast based model proposed by
Boykov et al. [3]. The color/contrast based model considers both color similarity to
manually obtained foreground/background color models and contrast (or edge) strength
along the segmentation boundary. The final foreground layer is globally determined us-
ing the min-cut algorithm. But, as demonstrated in [8], using only color and contrast
cues is insufficient.

Therefore, a straightforward solution is to combine the above two techniques - build-
ing foreground and background color models from background subtraction and then
applying the color/contrast based model. Because the background image is known and
stationary, the background color model can be modeled as a mixture of a global color
model and a more accurate per-pixel color model, as done in [8] and [19]. This com-
bination can produce a more accurate segmentation result. We refer to this as the basic
model.

However, there are still problems in the basic model. Since the basic model considers
both color and contrast simultaneously, the final segmentation boundary will inevitably
be snapped or attracted to high contrast edges in a cluttered background, more or less
as shown in Figure 2 (c). Though this kind of error may be small around the boundary

a) b) c)

d) e) f)

Fig. 1. Background Cut. (a) an image I in a video sequence. (b) contrast map of I . (c) attenuated
contrast map by our approach. (d) the background image IB . (e) contrast map of IB . (f) our final
foreground extraction result using attenuated contrast map.
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(a) (b) (c) (d)

Fig. 2. Foreground layer extraction by different approaches. (a) an image in a video sequence. (b)
background subtraction result. Threshold is set to a conservative value to avoid classifying more
pixels to foreground. (c) color/contrast-based segmentation result. Red circles indicate notable
segmentation errors. (d) our result.

or only occur in partial frames, the flickering artifact in the video due to this error can
be very distractive and unpleasant in the final composite video.

In this paper, we propose an new approach, “background cut”, to address the above
issue in the basic model. The novel component in background cut is “background con-
trast attenuation” which can substantially reduce the segmentation errors caused by
high contrast edges in the clutter background. Background contrast attenuation is based
on an key observation that the contrast from background is dissimilar to the contrast
caused by foreground/background boundaries in most cases. Figure 1 (b) and (e) show
contrast maps of current image and background image respectively. Notice that most
contrasts caused by foreground/background boundaries in (b) is not consistent with the
contrasts in (e). Based on this observation, background contrast attenuation adaptively
modified the contrast map in (b) to produce an attenuated contrast map in (c). Most con-
trasts from background are removed while contrasts caused by foreground/background
boundaries are well preserved. Using this attenuated contrast map, background cut can
extract high quality foreground layer from clutter background as shown in (f). Figure 2
(d) also shows that segmentation errors can be significantly reduced in comparison to
the basic model.

Another challenge in real scenarios is background maintenance. Many tech-
niques [7, 22, 1, 6, 17, 16, 14, 11, 12, 18] have been proposed to handle various changes
in the background, e.g, gradual and sudden illuminance change (light switch in office),
small moving objects in the background (e.g, moving curtain), casual camera shaking
(e.g, webcame on laptop), sleeping object (an object moves into the background and
then becomes motionless), waking object (an object that moves away from the back-
ground and reveals new parts of the background), and cast shadows by foreground.
To make our system more practical and robust to background changes, we propose a
background maintenance scheme based on modeling an adaptive mixture of global and
per-pixel background color model.

The paper is organized as follows. In Section 2, we give notations and introduce
the basic model. In Section 3, we present our approach - background cut. Background
maintenance is described in Section 4 and experimental results are shown in Section 5.
Finally, we discuss the limitations of our current approach and give conclusions in
Section 6.
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2 Notation and Basic Model

Let IB be the known background image and I be the image at the current timestep
that is to be processed. IB

r and Ir are color values of pixel r in IB and I respec-
tively. Let V be the set of all pixels in I and E be the set of all adjacent pixel pairs
(4 neighbors or 8 neighbors) in I . Foreground/background segmentation can be posed
as a binary labeling problem — to assign a unique label xr to each pixel r ∈ V , i.e.
xr ∈ {foreground(= 1), background(= 0)}. The labeling variables X = {xr} can be
obtained by minimizing a Gibbs energy E(X) [3]:

E(X) =
∑
r∈V

E1(xr) + λ
∑

(r,s)∈E
E2(xr, xs), (1)

where E1(xi) is the color term, encoding the cost when the label of pixel r is xr, and
E2(xr , xs) is the contrast term, denoting the cost when the labels of adjacent nodes r and
s are xr and xs respectively. The parameter λ balances the influences of the two terms.

2.1 Basic Model

Color term. To model the likelihood of each pixel r belonging to foreground or
background, a foreground color model p(Ir|x = 1) and a background color model
p(Ir|x = 0) are learned from samples. Both models are represented by spatially global
Gaussian mixture models (GMMs).

The global background color model p(Ir |x = 0) can be directly learned from the
known background image IB:

p(Ir |x = 0) =
Kb∑
k=1

wb
kN(Ir |μb

k, Σ
b
k), (2)

whereN(·) is a Gaussian distribution and (wb
k, μ

b
k, Σ

b
k) represents the weight, the mean

color, and the covariance matrix of the kth component of the background GMMs. The
typical value of Kb is 10-15 for the background. For stationary background, a per-pixel
single isotopic Gaussian distribution pB(Ir) is also used to model the background color
more precisely:

pB(Ir) = N(Ir |μB
r , Σ

B
r ), (3)

where μB
r = IB

r and ΣB
r = σ2

rI . The per-pixel variance σ2
r is learned from a back-

ground initialization phase. The per-pixel color model is more precise than the global
color model but is sensitive to noise, illuminance change, and small movement of back-
ground. The global background color model is less precise but more robust. Therefore,
an improved approach is to mix the two models:

pmix(Ir) = α · p(Ir|x = 0) + (1 − α) · pB(xr) (4)

where α is a mixing factor for the global and per-pixel background color models.
The global foreground color model is learned from background subtraction. With

a per-pixel background color model, we can mark the pixel that has a very low
background probability as “definitely foreground”. Let B, F, U represent “definitely
background”, “definitely foreground” and “uncertainty region” respectively, we have:
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Ir =

⎧⎨⎩
B pB(Ir) > tb
F pB(Ir) < tf
U otherwises ,

(5)

where tb and tf are two thresholds. Then, the global foreground color model
p(Ir|xr = 1) is learned from the pixels in F . In order to enforce temporal coherence,
we also sample the pixels from the intersection of F and the labeled foreground region
(after segmentation) in the frame at the previous timestep. The component number in
the global foreground color model is set to 5 in our experiments because foreground
colors are usually simpler than background colors.

Finally, the color term is defined as:

E1(xr) =
{
− log pmix(Ir) xr = 0
− log p(Ir|xr = 1) xr = 1 .

(6)

Contrast term. For two adjacent pixels r and s, the contrast term E2(xr, xs) between
them is defined as:

E2(xr , xs) = |xr − xs| · exp(−βdrs), (7)

where drs = ||Ir − Is||2 is the L2 norm of the color difference, which we call contrast
in this paper. β is a robust parameter that weights the color contrast, and can be set
to β =

(
2〈‖Ir − Is‖2〉

)−1
[15], where 〈·〉 is the expectation operator. Note that the

factor |xr − xs| allows this term to capture the contrast information only along the
segmentation boundary. In other words, the contrast term E2 is the penalty term when
adjacent pixels are assigned with different labels. The more similar the colors of the
two adjacent pixels are, the larger contrast term E2 is, and thus the less likely the edge
is on the object boundary.

To minimize the energy E(X) in Equation (1), we use the implementation of the
min-cut algorithm in [4].

3 Background Cut

The basic model usually produces good results in most frames. However, when the
scene contains background clutter, notable segmentation errors around the boundary
often occur. This generates flickering artifacts in video. The top row of Figure 3 shows
several frames in a video and the third row shows segmentation results by the basic
model. Notable segmentation errors are marked by red circles. Why does this happen?
The reason is that the basic model contains two terms for both color and contrast. In-
evitably, high contrasts (strong edges) from the background will bias the final segmen-
tation result. The second row in Figure 3 shows the corresponding contrast maps1 of
input frames. Notice that most incorrect segmentation boundaries pass strong edges in
background. These errors are mainly caused by the contrast term in the basic model:

E2(xr , xs) = |xr − xs| · exp(−β · drs). (8)

How to fix this bias? More specifically, can we remove or attenuate the contrasts in the
background to obtain more accurate segmentation results?

1 For display, the contrast for each pixel r is computed as dr,rx + dr,ry , where rx and ry are
two adjacent pixels on the left and above pixel r.
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Fig. 3. Background contrast attenuation. Top row: several frames from a video. Second row: con-
trast maps. Third row: segmentation results by the basic model. Red circles indicate notable
segmentation errors. Fourth row: attenuated contrast maps. Last row: segmentation result using
attenuated contrast map.

3.1 Background Contrast Attenuation

Because the background is known, a straightforward idea is to subtract the contrast
of the background image IB from the contrast of the current image I . To avoid hard
thresholding and motivated by anisotropic diffusion [13], we attenuate the contrast be-
tween two adjacent pixels (r, s) in image I from drs = ||Ir−Is||2 to d′rs by the contrast
||IB

r − IB
s ||2 in the background image:

d′rs = ||Ir − Is||2 ·
1

1 +
(
||IB

r − IB
s ||

K

)2 , (9)

where K is a constant to control the strength of attenuation. The larger the contrast
||IB

r − IB
s ||2 is in the background, the more attenuation is applied on the contrast ||Ir −

Is||2 in image I . Figure 4 (a) and (c) show the contrast maps before and after this soft
contrast subtraction. Unfortunately, the contrast caused by the foreground/background
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a) c) e)

b) d) f)

Fig. 4. Adaptive contrast attenuation. (a) contrast map of image I . (b) an image I in a video
sequence. (c) and (d) attenuated contrast map and segmentation result using Equation (9). (e) and
(f) adaptively attenuated contrast map and segmentation result using Equation (10).

boundary is also attenuated. Figure 4 (d) shows the unsatisfactory segmentation result
using this simple subtraction.

In this paper, we propose an adaptive background contrast attenuation method. An
ideal attenuation method should attenuate most contrasts in the background and pre-
serve contrasts along the foreground/background boundary simultaneously. To achieve
this goal, we define the following method to adaptively preform background contrast
attenuation:

d′′rs = ||Ir − Is||2 ·
1

1 +
(
||IB

r − IB
s ||

K

)2

exp(−z2
rs
σz

)

, (10)

where zrs measures the dissimilarity between pixel pair (Ir , Is) in image I and
(IB

r , I
B
s ) in background image IB . A Hausdorff distance-like definition for zrs is:

zrs = max{||Ir − IB
r ||, ||Is − IB

s ||}. (11)

If zrs is small, the pixel pair (Ir, Is) has a high probability of belonging to the back-
ground, and the attenuation strength should be large (exp(−z2

rs/σz) → 1). Otherwise,
it probably belongs to the contrast caused by the foreground/background boundary, and
the attenuation strength should be small (exp(−z2

rs/σz) → 0). Figure 4 (e) shows the
contrast map after adaptive background contrast attenuation by Equation (10). Clearly,
most contrasts in the background are greatly attenuated and most contrasts along the
foreground object boundary are well preserved. Figure 4 (f) shows the corresponding
segmentation result. The last two rows of Figure 3 also show the attenuated contrast
maps and good segmentation results.

Figure 5 shows attenuation results using different values for parameters K and zrs.
Figure 5 (b) shows that a large K will decrease the attenuation strength. A small
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(a) (b) (c) (d)

Fig. 5. Parameter settings. (a) K = 5, σz = 10. (b) K = 500, σz = 10. (c) K = 5, σz = 1. (d)
K = 5, σz = 50.

zrs will leave more contrasts in the image (Figure 5 (c)) and vise versa (Figure 5 (d)).
In all our experiments, we set the default values of K and zrs to 5 and 10 respectively
to obtain good segmentation results on average, as shown in Figure 5 (a). These values
are quite stable — there is no notable change in segmentation results when we change
K and zrs within the ranges (2.5, 10) and (5, 20) respectively.

This adaptive attenuation method works very well in most cases if there is no large
illuminance change in the background image. In order to make our background contrast
attenuation more robust, we also propose a measure zrs which is not sensitive to large
illuminance change:

zrs =
∣∣|−→v (Ir , Is) −−→v (IB

r , I
B
s )|

∣∣ , (12)

where−→v (a, b) is a vector from point a to point b in RGB color space. zrs is illuminance-
invariant if we assume the color changes of two adjacent pixels to be the same.

4 Background Maintenance

4.1 Adaptive Mixture of Global and Per-pixel Background Color Model

As mentioned in section 2.1, for the color term, there is a tradeoff between the global
background color model (more robust to background change) and the per-pixel back-
ground color model (more accurate). In previous works [8] and [19], the mixing factor
α in Equation (4) is a fixed value. To maximize robustness, an ideal system should
adaptively adjust the mixing factor: if the foreground colors and background colors can
be well separated, it should rely more on the global color model such that the whole
system is robust to various changes of background; otherwise, it should rely on both the
global and per-pixel color models. To achieve this goal, we adaptively mix two mod-
els based on the discriminative capabilities of the global foreground and background
color models. In this paper, we adopt an approximation of the Kullback-Liebler (KL)
divergence between two GMMs models [5]:

KLfb =
K∑

k=0

wf
k min

i
(KL(Nf

k ||N b
i ) + log

wf
k

wb
i

), (13)

whereNf
k and N b

i are the kth component of foreground GMMs and the ith component
of background GMMs respectively. The KL-divergence between Nf

k and N b
i can be

computed analytically. Our adaptive mixture for the background color model is:



636 J. Sun et al.

p′mix(Ir) = α′p(Ir|x = 0) + (1 − α′)pB(Ir) (14)

α′ = 1 − 1
2

exp(−KLfb/σKL), (15)

where σKL is a parameter to control the influence of KLfb. If the foreground and
background color can be well separated, i.e., KLfb is large, the mixing factor α′ is
set to be large to rely more on the global background color model. Otherwise, α′ is
small (minimum value is 0.5) to use both the global and per-pixel background color
models.

4.2 Background Maintenance Scheme

Because visual communication (e.g., video chat) usually last a short period, sudden illu-
minance change is the main issue to be considered due to auto gain/white-balance con-
trol of the camera, illumination by fluorescent lamps (asynchronous with frame capture
in the camera), and light switching. In addition, we also consider several background
change events, i.e., small movement in background, casual camera shaking, sleeping
and waking object. The following is our background maintenance scheme based on the
above adaptive mixture of global and per-pixel background color model.

Sudden illuminance change. Illuminance change caused by auto gain/white-balance
control of a camera or illumination by a fluorescent lamp is usually a small global
change. We adopted histogram specification to adjust the background image globally.
After segmentation at each timestep, we compute a histogram transformation function
between two histograms from the labeled background regions in I and IB . Then we ap-
ply this transformation to update the whole background image IB . This simple method
works well for small global illuminance or color changes. The large sudden illuminance
change is detected by using frame differences. If the difference is above a predefined
threshold, we trigger the following process:

Before segmentation: the background image IB is updated by histogram specifi-
cation and the global background color model is rebuilt. The foreground threshold tf
is increased to 3tf to avoid introducing incorrect samples. A background uncertainty
map UB = {uB

r = 1} is initialized. The mixture for the background color model is
modified as:

p′mix(Ir|x = 0) = α′p(Ir|x = 0) + (1 − uB
r ) · (1 − α′)pB(Ir). (16)

After segmentation: the color, variance, and uncertainty of each pixel in the labeled
background region is updated as follows:

IB
r,t = (1 − ρ)IB

r,t + ρIr,t (17)

σ2
r,t = (1 − ρ)σ2

r,t + ρ(Ir,t − IB
r,t)

T (Ir,t − IB
r,t) (18)

uB
r = (1 − ρ)uB

r + ρ(1 − exp(−||Ir,t − IB
r,t||/2σ−2

r,t )), (19)
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where ρ = βN(Ir,t|IB
r,t, σ

2
r,t) and β (typically 0.2) is the learning rate. Note that the

uncertainty of the hidden pixel behind the foreground will never be decreased because
we have no information about it.

Movement in background. We handle moving backgrounds using two mechanisms:
1) if the foreground colors and background colors can be well separated, our model will
automatically self adjust to rely on the global background color model which is robust to
small movements or dynamic motions (e.g., moving curtain) in background. 2) if there
is no intersection between a moving object and the foreground, we can keep the biggest
connected component in the segmentation result as foreground object. Otherwise, our
system will treat the moving object as foreground if there is no higher-level sematic
information available.

Sleeping and waking object. Both cases are essentially the same - a sleeping object
is a new static object in the background and a waking object reveals new background
areas. We should absorb these new pixels into background when they do not intersect
with the foreground. After segmentation, the small connected components far from the
foreground (largest connected component) are identified as new pixels. If these pixels
and their neighboring pixels are labeled as background for a sufficient time period, we
trigger background maintenance processing (Equation (17-19)) to absorb these pixels
into the background.

Casual camera shaking. Camera shaking often occurs for a laptop user. We detect
camera translation between the current and previous frames. If the translation is small
(<4 pixels), a Gaussian blurred (standard variance 2.0) background image is applied
and the weight of the per-pixel color model is decreased because global background
color model is insensitive to camera shaking. If the translation is large, we disable the
per-pixel color model. We will investigate motion compensation in the next step.

We show our background maintenance and segmentation results on the above men-
tioned background changing cases in the next section.

5 Experimental Results

All videos in our experiments are captured by consumer level web cameras (Logitech
QuickCam@ Pro 5000 and Logitech QuickCam@ for Notebooks Deluxe) and we leave
all parameters in the web cameras at the default settings (auto gain control and auto
white balance). The frame rate is about 12-15 frames/seconds for a 320x240 video on a
3.2GHz desktop PC, with our 2-level multi-scale implementation (the result at the fine
level is computed in a narrow band (20 pixels width) around the result at the coarse
level). The opacity around the object boundary is obtained by a feathering operation.

Comparison with “Bi-layer segmentation”. We quantitatively evaluate the accuracy
of our approach on “AC” video which is a stereo video sequence for the evaluation of
“Bi-layer segmentation” [8]. The ground truth foreground/background segmentation is
provided every 5 frames. The segmentation error is measured as the percentage of bad
pixels with respect to the whole image. We only use the video of the left view to test our
approach (static background image is obtained by image mosaicing). Figure 6 (a) shows



638 J. Sun et al.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Frames

E
rr

or
: (

pr
ec

. m
is

c.
 p

ix
el

s 
w

.r
.t.

 im
ag

e 
ar

ea
)

Background cut (error curve)

Bi-layer segmenation (error bar)

Background cut (error bar)

(a) (b)

Fig. 6. Comparison with “Bi-layer segmentation” on “AC” video. (a) Background cut results (at-
tenuated contrast map and final segmentations). (b) Error statistics. The solid blue line and two
green dash lines are error curve and 1 standard error bar of background cut. Two red dotted lines is
1 standard variance error bar of “Bi-layer segmentation”. The original video and ground truth seg-
mentation are obtained from (http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm).

Fig. 7. Comparison with the basic model. Top row: a frame in a video sequence. Second row:
result by the basic model. Red circles indicate notable segmentation errors. Last row: result by
background cut.
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two attenuated contrast maps and segmented foreground layers in the video. Figure 6
(b) plots an error curve (blue solid line) and 1 std error bar (two green dash lines) for
our approach, and 1 std error bar (two red dotted lines) for “Bi-layer segmentation”.
Without using stereo information, the accuracy of our approach is still comparable.

Comparison with “basic model”. We compare our approach with the basic model.
Figure 7 shows the results produced by the basic model (2nd row) and background
cut (last row), respectively. Using the attenuated contrast map, our approach can

Fig. 8. “Light1”, “Curtain”, and “Sleeping” examples (from top to bottom). In each example, the
upper row shows input images and the lower row shows our segmentation results.
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substantially reduce the errors caused by background contrast. Notice that the error of
the basic model often results in temporal flickering artifacts around the boundary. For
side-by-side comparisons, we highly recommend the reader to view our videos online
(http://research.microsoft.com/∼ jiansun/).

Background maintenance. Figure 8 shows partial examples to demonstrate our back-
ground maintenance scheme. In the “Light1” example, there are two sudden illumi-
nance changes in the 20th frame (first light off) and 181th frame (second light off).
The system detected these changes and triggered the background maintenance process.
The segmentation results in the 2nd row of Figure 8 shows that good segmentation re-
sults can still be obtained during maintenance process. The updated background image
sequence is shown in the accompanying video. The “Curtain” example shows a mov-
ing curtain in the background. The system adaptively adjusted the mixture of global
and per-pixel background color models to handle movements in the background. In the
“Sleeping” example, a cloth is put into the background in the 50th frame. Then, it be-
comes motionless from the 100th frame. The system identified this event and gradually
absorbed the cloth into the background. The right most image in the last row of Figure 8
shows correct segmentation when the foreground is interacting with this “sleeping” ob-
ject. More examples containing sudden illuminance change, casual camera shaking and
waking object are shown in our accompanying videos.

6 Discussion and Conclusion

In this paper, we have proposed a high quality, real-time foreground/background layer
extraction approach called background cut, which combines background subtraction,
color and contrast cues. In background cut, background subtraction is not only done on
image color but also on image contrast — background contrast attenuation which re-
duces segmentation errors significantly. Our system is also robust to various background
changes in real applications.

The current system still has some limitations. First, when the foreground and back-
ground colors are very similar or the foreground object contains very thin structures
with respect to image size, high quality segmentation usually is hard to be obtain with
our current algorithm. Enforcing more temporal coherence of the foreground boundary
may improve the result to a certain extent. Second, in the current system, we assume a
static background is obtained in an initialization phase. Automatically initialization of
the background image is also important in real applications. Last, we misclassified the
moving object which is interacting with the foreground. To solve this ambiguity, high
level priors should be integrated into the system.
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Abstract. We present a novel algorithm for performing integrated seg-
mentation and 3D pose estimation of a human body from multiple views.
Unlike other related state of the art techniques which focus on either
segmentation or pose estimation individually, our approach tackles these
two tasks together. Normally, when optimizing for pose, it is traditional
to use some fixed set of features, e.g. edges or chamfer maps. In con-
trast, our novel approach consists of optimizing a cost function based on
a Markov Random Field (MRF). This has the advantage that we can
use all the information in the image: edges, background and foreground
appearances, as well as the prior information on the shape and pose of
the subject and combine them in a Bayesian framework. Previously, opti-
mizing such a cost function would have been computationally infeasible.
However, our recent research in dynamic graph cuts allows this to be
done much more efficiently than before. We demonstrate the efficacy of
our approach on challenging motion sequences. Note that although we
target the human pose inference problem in the paper, our method is
completely generic and can be used to segment and infer the pose of any
specified rigid, deformable or articulated object.

1 Introduction

Human pose inference is an important problem in computer vision standing at
the crossroads of various applications ranging from Human Computer Interac-
tion (HCI) to surveillance. The importance and complexity of this problem can
be guaged by observing the number of papers which have tried to deal with
it [1, 2, 3, 4, 5, 6]. In the last few years, several techniques have been proposed
for tackling the pose inference problem, some of which have obtained decent
results. In particular, the work of Agarwal and Triggs [1] using relevance vec-
tor machines and that of Shakhnarovich et al. [3] based on parametric sensitive
hashing induced a lot interest and have been shown to give good results.

Most algorithms which perform pose estimation require the segmentation of
humans as an essential introductory step [1, 2, 3]. This precondition limits the
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use of these techniques to scenarios where good segmentations are made available
by enforcing strict studio conditions like blue-screening. Otherwise a preprocess-
ing step must be performed in an attempt to segment the human, such as [7].
These approaches however cannot overcome the complexity of the problem of
producing good segmentations for the general case of complex foreground and
backgrounds (as will be seen in section 4), and where there are multiple objects
in the scene or the camera/background is not stationary. Some pose inference
methods exist which do not need segmentations. These rely on features such as
chamfer distance [4], appearance [5], or edge and intensity [6]. However, none
of these methods is able to efficiently utilize all the information present in an
image and fail if the feature detector they are using fails. This is partly because
the feature detector is not coupled to the knowledge of the pose of the object.

The question is then, how to simultaneously obtain the segmentation and
human pose using all available information contained in the images?

Some elements of the answer to this question have been described by Kumar et
al. [8]. Addressing the object segmentation problem, they report that the “sam-
ples from the Gibbs distribution defined by the MRF very rarely give
rise to realistic shapes”. As an illustration of this statement, figure 1(b) shows
the segmentation result corresponding to the maximum a posteriori (MAP) so-
lution of the Markov random Field (MRF) incorporating information about the
image edges and appearances of the object and background. It can be clearly
seen that this result is nowhere close to the ground truth.

Shape priors and segmentation. In recent years, a number of papers have
tried to couple MRFs used for modelling the image segmentation problem, with
information about the nature and shape of the object to be segmented [8, 10, 11].
One of the initial methods for combining MRFs with a shape prior was proposed
by Huang et al. [10]. They incrementally found the MAP solution of an extended
MRF1 integrated with a probabilistic deformable model. By using belief propa-
gation in the area surrounding the contour of this deformable model in an iter-
ative manner, they were able to obtain a refined estimate of the contour. Their
work however did not address the crucial problem of obtaining a object-like seg-
mentation using prior information about the object which was later addressed
by [8, 11].

The problem however was still far from being completely solved since objects
in the real world change their shapes constantly and hence it is difficult to as-
certain what would be a good choice for a prior on the shape. This complex and
important problem was addressed by the work of Kumar et al. [8]. They modelled
the segmentation problem by combining MRFs with layered pictorial structures
(LPS) which provided them with a realistic shape prior described by a set of
latent shape parameters. Their cost function was a weighted sum of the energy
terms for different shape parameters (samples). The weights of this energy func-
tion were obtained by optimizing the labelling solution (background/foreground)
using the Expectation-Maximization (EM) algorithm. During this optimization
1 It is named an extended MRF due to the presence of an extra layer in the MRF to

cope with the shape prior.
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(a) (b) (c) (d) (e)

Fig. 1. Segmentation results corresponding to MRFs incorporating increasingly more
information. (a) Original image. (b) The segmentation obtained corresponding to the
MAP solution of a MRF consisting of colour likelihood and contrast terms as de-
scribed in [9]. We give the exact formulation of this MRF in section 2.2. (c) The result
obtained when the likelihood term of the MRF also takes into account the Gaussian
Mixture Models (GMM) of individual pixel intensities as described in section 2.2. (d)
Segmentation obtained after incorporating a ‘pose-specific’ shape prior in the MRF
as explained in Section 2.3. The prior is represented as the distance transform of a
stickman which guarantees a human-like segmentation. (e) The stickman model after
optimization of its 3D pose (see Section 3). Observe how incorporating the individual
pixel colour models in the MRF (c) gives a considerably better result than the one ob-
tained using the standard appearance and contrast based representation (b). However
the segmentation still misses the face of the subject. The incorporation of a stickman
shape prior ensures a human-like segmentation (d) and provides simultaneously (after
optimization) the 3D pose of the subject (e).

procedure, a graph cut had to be computed in order to obtain the segmenta-
tion score each time any parameter of the MRF was changed. This made their
algorithm extremely computationally expensive.

Although their approach produced good results, it had some shortcomings. It
was focused on obtaining good segmentations and did not furnish the pose of the
object explicitly. Moreover, a lot of effort had to be spent to learn the exemplars
for different parts of the LPS model. In the next section we will describe how we
overcome the second limitation by using a simple articulated stickman model,
which is not only efficiently renderable, but also provides a robust human-like
segmentation and accurate pose estimate. To make our algorithm further com-
putationally efficient we use the dynamic graph cut algorithm which was recently
proposed in [12]. This new algorithm enables multiple graph cut computations,
each computation taking a fraction of the time taken by the conventional graph
cut algorithm if the change in the problem is small.

Solving markov random fields using dynamic graph cuts. A MRF is
defined by its parameters and the observed data. A change in any of the two
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thus causes a change in the MRF. If these changes are minimal, then intuitively
the change in the MAP solution of the MRF should also be small. We made
this observation and showed how dynamic graph cuts can be used to efficiently
find the MAP solutions for MRFs that vary minimally from one time instant to
the next [12]. The underlying idea of our paper was that of dynamic computa-
tion, where an algorithm solves a problem instance by dynamically updating the
solution of the previous problem instance. Its goal is to be more efficient than
a re-computation of the problem solution after every change from scratch. In
the case of enormous problem instances and few changes, dynamic computation
yields a substantial speed-up.

Overview of the paper. The paper proposes a novel algorithm for performing
integrated segmentation and 3D pose estimation of a human body from multi-
ple views. We do not require a feature extraction step but use all the data in
the image. We formulate the problem in a Bayesian framework building on the
object-specific MRF [8] and provide an efficient method for its solution called
PoseCut. We include a human pose-specific shape prior in the MRF used for
image segmentation, to obtain high quality segmentation results. We refer to this
integrated model as a pose-specific MRF. As opposed to Kumar et al. [8], our
approach does not require the laborious process of learning exemplars. Instead
we use a simple articulated stickman model, which together with an MRF is
used as our shape prior. Our experimental results show that this model suffices
to ensure human-like segmentations.

Given an image, the solution of the pose-specific MRF is used to measure the
quality of a 3D body pose. This cost function is then optimized over all pose
parameters using dynamic graph cuts to provide both a object-like segmenta-
tion and the pose. The astute reader will notice that although we focus on the
human pose inference problem, our method is in-fact general and can be used to
segment and/or infer the pose of any object. We believe that our methodology is
completely novel and we are not aware of any published methods which perform
simultaneous segmentation and pose estimation. To summarize, the novelties of
our approach include:

– An efficient method for combined object segmentation and pose estimation
(PoseCut).

– Integration of a simple ‘stickman prior’ based on the skeleton of the object
in a MRF to obtain a pose-specific MRF which helps us in obtaining high
quality object pose estimate and segmentation results.

In the next section we give an intuitive insight into our framework. The pose-
specific MRF and the different terms used in its construction are introduced
in the same section. In section 3 we formulate the pose inference problem and
describe the use of dynamic graph cuts for optimization in our problem construc-
tion. We present the experimental results obtained by our methods in section 4.
These include comparison of our segmentation results with those obtained by
some state of the art methods. We also show some results of simultaneous 3D
pose estimation and segmentation. Our conclusions and the directions for future
work are listed in Section 5.
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2 Pose Specific MRF for Image Segmentation

In this section, we define an MRF-based energy function that gives the cost of
any pose of a subject. We will optimize over this MRF using the Powell [13]
minimization algorithm to infer the pose, and graph cuts to solve the segmenta-
tion as described in Section 3. The optimization of the energy is made efficient
by the use of the dynamic graph cut algorithm [12].

Image segmentation has always remained an iconic problem of computer vi-
sion. The past few years have seen rapid progress made on it driven by the
emergence of powerful optimization algorithms such as graph cuts. The early
methods for performing image segmentation worked by coupling colour appear-
ance information about the object and background with the edges present in an
image to obtain good segmentations. However, this framework does not always
guarantee good results. In particular, it fails in cases where the colour appear-
ance models of the object and background are not discriminative as seen in
figure 1(b). The problem becomes even more pronounced in the case of humans
where we have to deal with the various idiosyncracies of human clothing.

A semi-automated solution to this problem was explored by Boykov and
Jolly [9] in their work on interactive image segmentation. They showed how users
could refine segmentation results by specifying additional constraints. This can
be done by labelling particular regions of the image as ‘object’ or ‘background’
and then computing the MAP solution of the MRF again. From their work,
we made the following interesting observations: Simple user supplied shape
cues used as rough priors for the object segmentation problem pro-
duced excellent results. The exact shape of the object can be induced
from the edge information embedded in the image. Taking these into con-
sideration, we hypothesized that the accurate exemplars used in [8] to generate
shape priors were in-fact an overkill and could be replaced by a much simpler
model.

Stickman model. Motivated by the observations made above, we decided
against using a sophisticated shape prior. Instead, we used a simple articulated
stickman model (shown in figure 1(e)) to generate a rough pose-specific shape
prior on the segmentation. As can been seen from the segmentation results in
figure 1(d), the stickman model helped us to obtain excellent segmentation re-
sults. The model has 26 degrees of freedom consisting of parameters defining
absolute position and orientation of the torso, and the various joint angle val-
ues. There were no constraints or joint-limits incorporated in our model.

We now formally describe how the image segmentation problem can be mod-
eled using a pose-specific MRF.

2.1 Markov Random Fields

A random field comprises of a set of discrete random variables {X1, X2, . . . , Xn}
defined on the index set V , such that each variable Xv takes a value xv from the
label set X = {X1,X2, . . . ,Xl} of all possible labels. We represent the set of all
values xv, ∀v ∈ V by the vector x which takes values in Xn, and is referred to as
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the configuration of the MRF. Further, we use Nv to denote the set consisting
of indices of all variables which are neighbours of the random variable Xv in
the graphical model. This random field is said to be a MRF with respect to
a neighborhood system N = {Nv|v ∈ V} if and only if it satisfies the positivity
property: Pr(x) > 0 ∀x ∈ Xn, and the Markovian property:

Pr(xv |{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv}) ∀v ∈ V . (1)

Here we refer to Pr(X = x) by Pr(x) and Pr(Xi = xi) by Pr(xi). The MAP-
MRF estimation problem can be formulated as an energy minimization problem
where the energy corresponding to configuration x is the negative log likelihood
of the joint posterior probability of the MRF and is defined as

E(x) = − logPr(x|D) + const. (2)

where D is the observed data.

2.2 Image Segmentation as MAP-MRF Inference

In the context of image segmentation, V corresponds to the set of all image pix-
els, N is a neighbourhood defined on this set2, the set X comprises of the labels
representing the different image segments (which in our case are ‘foreground’
and ‘background’), and the value xv denotes the labeling of the pixel v of the
image. Every configuration x of such an MRF defines a segmentation. The image
segmentation problem can thus be solved by finding the least energy configura-
tion of the MRF. The energy corresponding to a configuration x consists of a
likelihood and a prior term as:

Ψ1(x) =
∑
i∈V

⎛⎝φ(D|xi) +
∑
j∈Ni

ψ(xi, xj)

⎞⎠ + const, (3)

where the prior ψ(xi, xj) takes the form of a Generalized Potts model:

ψ(xi, xj) =
{
Kij if xi �= xj ,
0 if xi = xj .

(4)

The MRF used to model the image segmentation problem also contains a con-
trast term which favours pixels with similar colour having the same label [9, 14].
This is incorporated in the energy function by reducing the cost within the Potts
model for two labels being different in proportion to the difference in intensities
of their corresponding pixels. In our experiments, we use the term:

γ(i, j) = λ exp
(
−g2(i, j)

2σ2

)
1

dist(i, j)
, (5)

2 In this paper, we have used the standard 8-neighbourhood i.e. each pixel is connected
to the 8 pixels surrounding it.
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where g2(i, j) measures the difference in the RGB values of pixels i and j and
dist(i, j) gives the spatial distance between i and j. This is a likelihood term
(not prior) as it is based on the data, and hence has to be added separately from
the smoothness prior. The energy function of the MRF now becomes

Ψ2(x) =
∑
i∈V

⎛⎝φ(D|xi) +
∑
j∈Ni

(φ(D|xi, xj) + ψ(xi, xj))

⎞⎠ (6)

The contrast term of the energy function is defined as

φ(D|xi, xj) =
{
γ(i, j) if xi �= xj

0 if xi = xj .
(7)

The term φ(D|xi) in the MRF energy is the data log likelihood which imposes
individual penalties for assigning any label Xk to pixel i. If we only take the
appearance model into consideration, the likelihood is given by

φ(D|xi) = − log Pr(i ∈ Vk|Hk) if xi = Xk (8)

where Hk is the RGB (or for grey scale images, the intensity value) distribution
for Sk, the segment denoted by label Xk

3. The probability of a pixel belonging
to a particular segment i.e. Pr(i ∈ Sk|Hk) is proportional to the likelihood
Pr(Ii|Hk), where Ii is the colour intensity of the pixel i. As can be seen from
figure 2(b), this term is rather undiscriminating as the colours (grey intensity
values in this case) included in the foreground histogram are similar to the ones
included in the background histogram.

Modeling pixel intensities as GMMs. The MRF defined above for image
segmentation performs poorly when segmenting images in which the appearance
models of the foreground and background are not highly discriminative. When
working on video sequences, we can use a background model developed using
the Grimson-Stauffer [7] algorithm to improve our results. This algorithm works
by representing the colour distribution of each pixel position in the video as a
Gaussian Mixture Model (GMM). The likelihoods of a pixel for being background
or foreground obtained by this technique are integrated in our MRF. Figure 1(c)
shows the segmentation result obtained after incorporating this information in
our MRF formulation.

2.3 Incorporating the Pose-Specific Shape Prior

Though the results obtained from the above formulation look decent, they are
not perfect. Note that there is no prior on the segmentation to look human like.
Intuitively, incorporating such a constraint in the MRF would improve the fi-
nal result obtained. In our case, this prior should be pose-specific as it depends
on what pose the object (the human) is in. Kumar et. al. [8] in their work on

3 In our problem, we have only 2 segments i.e. the foreground and the background.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. (a) Original image. (b) The ratios of the likelihoods of pixels being labelled fore-
ground/background (φ(D|xi = ‘fg’) − φ(D|xi = ‘bg’)). These values are derived from
the colour intensity histograms (see Section 2.2). (c) The segmentation results obtained
by using the GMM models of pixel intensities. (d) The stickman in the optimal pose
(see Sections 2.3 and 3). (e) The shape prior (distance transform) corresponding to the
optimal pose of the stickman. (f) The ratio of the likelihoods of being labelled fore-
ground/background using all the energy terms (colour histograms defining appearance
models, GMMs for individual pixel intensities, and the pose-specific shape prior (see
Sections 2.2, 2.2 and 2.3)) Ψ3(xi = ‘fg’,Θ) − Ψ3(xi = ‘bg’,Θ). (g) The segmentation
result obtained from our algorithm which is the MAP solution of the energy Ψ3 of the
pose-specific MRF.

interleaved object recognition and segmentation, used the result of the recogni-
tion to develop a shape prior over the segmentation. This prior was defined by
a set of latent variables which favoured segmentations of a specific pose of the
object. They called this model the Object Category Specific MRF, which had
the following energy function:

Ψ3(x,Θ) =
∑

i

(φ(D|xi) + φ(xi|Θ) +
∑

j

(φ(D|xi, xj) + ψ(xi, xj))) (9)

with posterior p(x,Θ|D) = 1
Z3

exp(−Ψ3(x,Θ)). Here Θ is used to denote
the vector consisting of the object pose parameters. The shape-prior term of
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the energy function for a particular pose of the human is shown in figure 2(e).
This is a distance transform generated from the stick-man model silhouette using
the fast implementation of Felzenszwalb and Huttenlocher [15].

The function φ(xi|Θ) was choosen such that given an estimate of the location
and shape of the object, pixels falling near to that shape were more likely to be
labelled as ‘foreground’ and vice versa. It has the form: φ(xi|Θ) = − log p(xi|Θ).
We follow the formulation of [8] and define p(xi|Θ) as

p(xi = figure|Θ) = 1 − p(xi = ground|Θ) =
1

1 + exp(μ ∗ (d(i,Θ) − dr))
, (10)

where d(i,Θ) is the distance of a pixel i from the shape defined by Θ (being
negative if inside the shape). The parameter dr decides how ‘fat’ the shape should
be, while parameter μ determines the ratio of the magnitude of the penalty that
points outside the shape have to face compared to the points inside the shape.

2.4 MAP-MRF Inference Using Graph Cuts

Energies like the one defined in (9) can be solved using graph cuts if they are
sub-modular [16]. The condition for sub-modularity is given as:

E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0) (11)

which implies that the energy for two labels taking similar values should be less
than the energy for them taking different values. In our case, this is indeed the
case and thus we can find the optimal configuration x∗ = minx Ψ3(x,Θ) using a
single graph cut. The labels of the latent variable in this configuration give the
segmentation solution.

3 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated pose, we would
like to make sure that our shape prior reflects the actual pose of the object. This
takes us to our original problem of finding the pose of the human in an image. In
order to solve this, we start with an initial guess of the object pose and optimize
it to find the correct pose. When dealing with videos, a good starting point for
this process would be the pose of the object in the previous frame. However,
more sophisticated methods could be used based on object detection [17] at the
expense of increasing the computation time.

One of the key contributions of this paper is to show how given an image of the
object, the pose inference problem can be formulated in terms of a optimization
problem over the MRF energy given in (9). Specifically, we solve the problem:

Θopt = arg min
Θ

(min
x

Ψ3(x,Θ)). (12)

Fig. 3 shows how minx Ψ3(x,Θ) changes with rotation and translation of our shape
prior. It can be clearly seen that the energy surface is uni-modal and hence can
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Fig. 3. a) The values of minx Ψ3(x,Θ) obtained by varying the global translation
and rotation of the shape prior in the x-axis. b) Original image. c) The pose obtained
corresponding to the global minimum of the energy.

be optimized using any standard optimization algorithm like gradient descent.
However, for more subtle joint angles, the energy is multi-modal, containing local
minima. In our experiments, we used the Powell minimization [13] algorithm for
optimization. When dealing with multiple views we solve the problem:

Θopt = argmin
Θ

(min
x

∑
views

(Ψ3(x,Θ)). (13)

Minimizing energies using dynamic graph cuts. As explained earlier
global minima of energies like the one defined in (9) can be found by graph
cuts [16]. The time taken for computing a graph cut for a reasonably sized
MRF is of the order of seconds. This would make our optimization algorithm
extremely slow since we need to compute the global optimum of Ψ3(x,Θ) with
respect to x multiple number times for different values of Θ. The graph cut
computation can be made significantly faster by using the dynamic graph cut
algorithm proposed recently in [12]. This algorithm works by using the solution
of the previous graph cut computation for solving the new instance of the prob-
lem. We obtained a speed-up in the range of 15-20 times by using the dynamic
graph cut algorithm.

4 Experiments

We now discuss the results obtained by PoseCut.

Segmentation. In order to demonstrate the performance of our method, we
compare our segmentation results with those obtained by using the methods
proposed in [7] and [18]. Bhatia et al. [18] learn a pixelwise background model
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Original:
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Bhatia et al [18]:

PoseCut:

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Segmentation results obtained by Grimson-Stauffer, the method proposed by
Bhatia et al [18] and PoseCut

represented by 3 Gaussians whose parameters are estimated by the Expectation-
Maximization algorithm. They assume a uniform distribution for the likelihood
of foreground pixels. It can be seen from the results in figure 4 that the seg-
mentations obtained by using the methods of [7] and [18] are not accurate: They
contain “speckles” and often segment the shadows of the feet as foreground. This
is expected as they use only a pixelwise term to differentiate the background
from the foreground and do not incorporate any spatial term which could offer a
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Fig. 5. Segmentation (middle) and pose estimation (bottom) results from PoseCut

Camera 2 Camera 3

%

Fig. 6. Segmentation (middle row) and pose estimation (bottom row) results obtained
by PoseCut. Observe that although the foreground and background appearances are
similar, our algorithm is able to obtain good segmentations.
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better “smoothing”. In contrast, PoseCut which uses a pairwise potential term
(as any standard graph cut approach) and a shape prior (which guarantees a
human-like segmentation), is able to provide accurate results.

Segmentation and pose estimation. Figures 5 and 6 present the segmen-
tations and the pose estimates obtained using PoseCut. The first data set
comprises of three views of human walking circularly. The time needed for com-
putation of the 3D pose estimate, on a PM 2GHz machine, when dealing with
644×484 images, is about 50 seconds per view4. As shown in these figures, the
pose estimates match the original images accurately. In Figures 5 and 6, it should
be noted that the appearance models of the foreground and background are quite
similar: for instance, in Figure 6, the clothes of the subject are black in colour
and the floor in the background is rather dark. The accuracy of the segmen-
tation obtained in such challenging conditions demonstrates the robustness of
PoseCut. An interesting fact to observe in Figure 5 about frame 95 is that the
torso rotation of the stickman does not exactly conform with the original pose
of the object. However, the segmentation of these frames is still accurate.

5 Conclusions and Future Work

The paper sets out a novel method for performing simultaneous segmentation
and 3D pose estimation (PoseCut). The problem is formulated in a Bayesian
framework which has the capability to utilize all information available (prior as
well as observed data) to obtain good results. We showed how a rough pose-
specific shape prior could be used to improve segmentation results significantly.
We also gave a new formulation of the pose inference problem as an energy min-
imization problem and showed how it could be efficiently solved using dynamic
graph cuts. The experiments demonstrate that our method is able to obtain
excellent segmentation and pose estimation results.

It is common knowledge that the set of all human poses constitutes a low-
dimensional manifold in the complete pose space. Optimizing over a parametriza-
tion of this low dimensional space instead of the 26D pose vector would intuitively
improve both the accuracy and computation efficiency of our algorithm. Thus the
use of dimensionality reduction algorithms is an important area to be investigated.
The directions for future work also include using an appearance model per limb,
which being more discriminative could help provide more accurate segmentations
and pose estimates.
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14. Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.: Interactive image segmenta-

tion using an adaptive gmmrf model. In: ECCV. Volume I. (2004) 428–441
15. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions.

Technical Report TR2004-1963, Cornell University (2004)
16. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph

cuts? In: ECCV. Volume III. (2002) 65 ff.
17. Stenger, B., Thayananthan, A., Torr, P., Cipolla, R.: Filtering using a tree-based

estimator. In: ICCV. (2003) 1063–1070
18. Bhatia, S., Sigal, L., Isard, M., Black, M.: 3d human limb detection using space

carving and multi-view eigen models. In: ANM Workshop. Volume I. (2004) 17



Author Index

Aach, Til II-69
Abd-Almageed, Wael IV-410
Abretske, Daniel II-205
Ackermann, Hanno IV-147
Agarwal, Ankur I-30
Agarwal, Sameer I-592
Agarwala, Aseem II-16
Agrawal, Amit I-578
Ahuja, Narendra I-147, II-245
Ait-Aider, Omar II-56
Alter, François IV-267
Andreff, Nicolas II-56
Angelopoulou, Anastassia I-313
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