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Preface

The first PASCAL Machine Learning Challenges Workshop (MLCW 2005) (see,
www.pascal-network.org/Workshops/PC04/)was held in Southampton,UK,dur-
ing April 11-13, 2005.This conference was organizedby the Challenges programme
of the European Network of Excellence PASCAL (Pattern Analysis, Statistical
modelling and ComputationAl Learning) in the framework of the IST Programme
of the European Community. First annually and now quarterly, the PASCAL Chal-
lenges Programme plays the role of selecting and sponsoring challenging tasks,
either practical or theoretical. The aim is to raise difficult machine learning ques-
tions and to motivate innovative research and development of new approaches.
Financial support covers all the work concerning the cleaning and labelling of the
data as well as the preparation of evaluation tools for ranking the results. For the
first round of the programme, four challenges were selected according to their im-
pact in the machine learning community, supported from summer 2004 to early
spring 2005 by PASCAL and finally invited to participate in MLCW 2005 :

– The first challenge, called “Evaluating Predictive Uncertainty”, dealt with
the fundamental question of assigning a degree of confidence to the outputs
of a classifier or a regressor.

– The goal of the second challenge, called “Visual Object Classes”, was to
recognise objects from a number of visual objects classes in realistic scenes.

– The third challenge task, called “Recognizing Textual Entailment”, consisted
in recognizing, given two texts fragments, whether the meaning of one text
can be inferred (entailed) from the other.

– The fourth challenge was concerned with the assessment of “Machine Learn-
ing Methodologies to Extract Implicit Relations from Documents”.

Each of these challenges raised noticeable attention in the research community,
attracting numerous participants. The idea behind having a unique workshop
was to make participants in different challenges exchange and benefit from the
research experienced in other challenges. For the workshop, the session chairs
made a first selection among submissions leading to 34 oral contributions. This
book is concerned with selected proceedings of the first three challenges, pro-
viding a large panel of machine learning issues and solutions. A second round
of selection was made to extract the 25 contributed chapters that make up this
book, resulting in a selection rate of one half for the three considered challenges
whose description follows.

Evaluating Predictive Uncertainty Challenge
When making decisions based on predictions, it is essential to have a measure
of the uncertainty associated to them, or predictive uncertainty. Decisions are of
course most often based on a loss function that is to be minimized in expectation.
One common approach in machine learning is to assume knowledge of the loss
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function, and then train an algorithm that outputs decisions that directly mini-
mize the expected loss. In a realistic setting, however, the loss function might be
unknown, or depend on additional factors only determined at a later stage. A
system that predicts the presence of calcification from a mammography should
also provide information about its uncertainty. Whether to operate or not will
depend on the particular patient, as well as on the context in general. If the loss
function is unknown, expressing uncertainties becomes crucial. Failing to do so
implies throwing information away.

There does not seem to be a universal way of producing good estimates of
predictive uncertainty in the machine learning community, nor a consensus on
the ways of evaluating them. In part this is caused by deep fundamental differ-
ences in methodology (classical statistics, Bayesian inference, statistical learning
theory). We decided to organize the Evaluating Predictive Uncertainty Challenge
(http://predict.kyb.tuebingen.mpg.de/) to allow the different philosophies
to compete directly on the empirical battleground. This required us to define
losses for probabilistic predictions. Twenty groups of participants competed on
two classification and three regression datasets before the submission deadline of
December 11, 2004, and a few more after the deadline. We present six contributed
chapters to this volume, by all the winners plus authors of other outstanding
entries.

Visual Objects Classes
The PASCAL Visual Object Classes Challenge ran from February to March
2005 (http://www.pascal-network.org/challenges/VOC/). The goal of the
challenge was to recognize objects from a number of visual object classes in
realistic scenes (i.e., not pre-segmented objects). Although there already exist
benchmarks such as the so-called ‘Caltech 5’ (faces, airplanes, motorbikes, cars
rear, spotted cats) and UIUC car side images, largely used by the community
of image recognition, it appears now that the developed methods are achieving
such good performance that they have effectively saturated on these datasets,
and thus the datasets are failing to challenge the next generation of algorithms.
Such saturation can arise because the images used do not explore the full range
of variability of the imaged visual class. Some dimensions of variability include:
clean vs. cluttered background; stereotypical views vs. multiple views (e.g., side
views of cars vs. cars from all angles); degree of scale change, amount of occlusion;
the presence of multiple objects (of one or multiple classes) in the images.

Given this problem of saturation of performance, the Visual Object Classes
Challenge was designed to be more demanding by enhancing some of the di-
mensions of variability listed above compared to the databases that had been
available previously, so as to explore the failure modes of different algorithms.
Four object classes were selected: motorbikes, bicycles, cars and people. Twelve
teams entered the challenge. This book includes a contributed review chapter
about the methods and the results achieved by the participants.
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Recognizing Textual Entailment
Semantic analysis of language has been addressed traditionally through inter-
pretation into explicitly stipulated meaning representations. Such semantic in-
terpretation turned out to be a very difficult problem, which led researchers to
approximate semantic processing at shallow lexical and lexical-syntactic levels.
Usually, such approaches were developed in application-specific settings, without
having an encompassing application-independent framework for developing and
evaluating generic semantic approaches.

The Recognizing Textual Entailment (RTE) challenge was an attempt to form
such a generic framework for applied semantic inference in text understanding.
The task takes as input a pair of text snippets, called text (T) and hypothesis (H),
and requires determining whether the meaning of T (most likely) entails that of
H or not. The view underlying the RTE task is that different natural language
processing applications, including question answering, information extraction,
(multi-document) summarization, and machine translation, have to address the
language variability problem and recognize that a particular target meaning can
be inferred from different text variants. The RTE task abstracts this primary
inference need, suggesting that many applications would benefit from generic
models for textual entailment.

It is worth emphasizing some relevant features of the task, which contributed
to its success:

– RTE is interdisciplinary: the task has been addressed with both machine
learning and resource-based NLP techniques. It also succeeded to bridge, as
a common benchmark, over different application-oriented communities.

– RTE was a really challenging task: RTE-1, in several respects, was a simpli-
fication of the complete task (e.g., we did not consider temporal entailment),
but it proved to be at the state of the art of text understanding.

– The challenge attracted 17 participatants and made a strong impact in the
research community, followed by a related ACL 2005 workshop and a dozen
more conference publications later in 2005, which used the publicly available
RTE-1 dataset as a standard benchmark.

February 2006 Joaquin Quiñonero-Candela
Ido Dagan

Bernardo Magnini
Florence d’Alché-Buc

MLCW 2005
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Abstract. This Chapter presents the PASCAL1 Evaluating Predictive
Uncertainty Challenge, introduces the contributed Chapters by the par-
ticipants who obtained outstanding results, and provides a discussion
with some lessons to be learnt. The Challenge was set up to evaluate
the ability of Machine Learning algorithms to provide good “probabilis-
tic predictions”, rather than just the usual “point predictions” with no
measure of uncertainty, in regression and classification problems. Parti-
cipants had to compete on a number of regression and classification tasks,
and were evaluated by both traditional losses that only take into account
point predictions and losses we proposed that evaluate the quality of the
probabilistic predictions.

1 Motivation

Information about the uncertainty of predictions, or predictive uncertainty, is
essential in decision making. Aware of the traumatic cost of an operation, a
surgeon will only decide to operate if there is enough evidence of cancer in
the diagnostic. A prediction of the kind “there is 99% probability of cancer”
is fundamentally different from “there is 55% probability of cancer”, although
both could be summarized by the much less informative statement: “there is
cancer”. An investment bank trying to decide whether to invest or not in a
given fund might react differently at the prediction that the fund value will
increase by “10%± 1%” than at the prediction that it will increase by “10%±
20%”, but it will in any case find any of the two previous predictions way more
useful than the point prediction “the expected value increase is 10%”. Predictive
uncertainties are also used in active learning to select the next training example
which will bring most information. Given the enormous cost of experiments

1 Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL)
Network of Excellence, part of the IST Programme of the European Community,
IST-2002-506778.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 1–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with protein binding chips, a drug making company will not bother making
experiments whose outcome can be predicted with very low uncertainty.

Decisions are of course most often based on a loss function that is to be mini-
mized in expectation. One common approach in Machine Learning is to assume
knowledge of the loss function, and then train an algorithm that outputs de-
cisions that directly minimize the expected loss. In a realistic setting however,
the loss function might be unknown, or depend on additional factors only de-
termined at a later stage. A system that predicts the presence of calcification
from a mammography should also provide information about its uncertainty.
Whether to operate or not will depend on the particular patient, as well as on
the context in general. If the loss function is unknown, expressing uncertainties
becomes crucial. Failing to do so implies throwing information away.

One particular approach to expressing uncertainty is to treat the unknown
quantity of interest (“will it rain?”) as a random variable, and make to predic-
tions in the form of probability distributions, also known as predictive distribu-
tions. We will center our discussion around this specific representation of the
uncertainty. But, how to produce reasonable predictive uncertainties? What is
a reasonable predictive uncertainty in the first place?

Under the Bayesian paradigm, posterior distributions are obtained on the
model parameters, that incorporate both the uncertainty caused by the noise,
and by not knowing what the true model is. Integrating over this posterior al-
lows to obtain the posterior distribution on the variables of interest; the predic-
tive distribution arises naturally. Whether the resulting predictive distribution
is meaningful depends of course on the necessary prior distribution, and one
should be aware of the fact that inappropriate priors can give rise to arbitrarily
bad predictive distributions. From a frequentist point of view, this will be the
case if the prior is “wrong”. From a Bayesian point of view, priors are neither
wrong nor right, they express degrees of belief. Inappropriate priors that are
too restrictive, in that they discard plausible hypotheses about the origin of the
data, are sometimes still used for reasons of convenience, leading to unreasonable
predictive uncertainties (Rasmussen and Quiñonero-Candela, 2005). If you be-
lieve your prior is reasonable, then the same should hold true for the predictive
distribution. However, this distribution is only an updated belief — the extent
to which it is in agreement with reality will depend on the extent to which the
prior encompasses reality.

It is common in Machine Learning to not consider the full posterior distribu-
tion, but to rather concentrate on its mode, also called the Maximum a Posteriori
(MAP) approach. The MAP approach being equivalent to maximum penalized
likelihood, one could consider that any method based on minimizing a regularized
risk functional falls under the MAP umbrella. The MAP approach produces pre-
dictions with no measure of the uncertainty associated to them, like “it will rain”;
other methods for obtaining predictive uncertainties are then needed, such as
Bagging for example (Breiman, 1996). More simplistic approaches would consist
in always outputting the same predictive uncertainties, independently of the in-
put, based on an estimate of the overall generalization error. This generalization
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error can in turn be estimated empirically by cross-validation, or theoretically
by means Statistical Learning bounds on the generalization error. This simplis-
tic approach should of course be regarded as a baseline, since any reasonable
method that individually estimates predictive uncertainties depending on the
input could in principle be superior.

It appears that there might not be an obvious way of producing good esti-
mates of predictive uncertainty in the Machine Learning (or Statistical Learning)
community. There is also an apparent lack of consensus on the ways of evalu-
ating predictive uncertainties in the first place. Driven by the urgent feeling
that it might be easier to validate the goodness of the different philosophies
on the empirical battleground than on the theoretical, we decided to organize
the Evaluating Predictive Uncertainty Challenge, with support from the Euro-
pean PASCAL Network of Excellence. The Challenge allowed different Machine
Learning approaches to predictive uncertainty in regression and classification to
be directly compared on identical datasets.

1.1 Organization of This Chapter

We begin by providing an overview and some facts about the Challenge in Sect. 2.
We then move on to describing in detail the three main components of the
Challenge: 1) in Sect. 3 we define what is meant by probabilistic predictions in
regression and in classification, and explain the format of the predictions that
was required for the Challenge, 2) in Sect. 4 we present the loss functions that
we proposed for the Challenge, and 3) Section 5 details the five datasets, two for
classification and three for regression, that we used for the Challenge. In Sect. 6
we present the results obtained by the participants, and in Sect. 7 we focus
in more detail on the methods proposed by the six (groups of) participants
who contributed a Chapter to this book. The methods presented in these six
contributed chapters all achieved outstanding results, and all the dataset winners
are represented. Finally, Sect. 8 offers a discussion of results, and some reflection
on the many lessons learned from the Challenge.

2 An Overview of the Challenge

The Evaluating Predictive Uncertainty Challenge was organized around the fol-
lowing website: http://predict.kyb.tuebingen.mpg.de. The website remains open
for reference, and submissions are still possible to allow researchers to evaluate
their methods on some benchmark datasets.

The results of the Challenge were first presented at the NIPS 2004 Workshop
on Calibration and Probabilistic Prediction in Machine Learning, organized by
Greg Grudic and Rich Caruana, and held in Whistler, Canada, on Friday Decem-
ber 17, 2004. The Challenge was then presented in more depth, with contributed
talks from some of the participants with best results at the PASCAL Challenges
Workshop held in Southampton, UK, on April 11, 2005.
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Using the website, participants could download the datasets (described in
Sect. 5), and submit their predictions. Immediately after submission, the results
obtained where displayed in a table, and sorted according to the loss (given in
Sect. 4). Inspired by the NIPS 2003 Feature Selection Challenge (Guyon et al,
2005), we divided the Challenge chronologically into two parts. In the first part
the competing algorithms were evaluated on a “validation set”, with no limita-
tion on the number of submissions. In the second part, shorter, of duration one
week, the validation targets were made available and participants had to make
a limited number of final submissions on the “test set”. The final ranking of the
Challenge was built according to the test performance.

The reason for having a validation set evaluation in the first part is to allow
for temporary assessment and comparison of the performance of the different
submissions. Simply put, to make the challenge more “fun” and encourage par-
ticipation by immediately allowing to see how the participants were doing in
comparison to others. To discourage participants from trying to guess the vali-
dation targets by making very many submissions, the targets associated to the
validation set were be made public at the start of the second part of the Chal-
lenge, one week before the submission deadline. The participants could then use
them to train their algorithms before submitting the test predictions.

Unlike in the NIPS 2003 Feature Selection Challenge (Guyon et al, 2005),
participants did not need to submit on every of the five datasets to enter the
final ranking. Individual rankings were made for each of the datasets. Indeed,
as discussed in Sect. 5, the nature of the datasets was so diverse that one could
hardly expect the same algorithm to excel in all of them. Our intention was to
evaluate algorithms and methods rather than participants.
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Fig. 1. Number of valid submissions on each day of the Challenge. Notice the break
between the first and the second phase of the Challenge: the 68 valid test submissions
were made on days 28 to 31.
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The Challenge ran for 31 days, and attracted 20 groups of participants. A
total of 280 submissions were made, of which 68 were “final” submissions on the
test set. Figure 1 shows the number of submissions that were made each day of
the Challenge.

The website opened for submissions on November 10 2004, and closed on
December 10 2004. The second phase of the Challenge, with validation targets
available and predictions to be made on the test inputs, started on December
3. The test results were made public on December 11. The website remains
open for submission. After the closing deadline, some interesting submissions
were made, which we include in the results section. Some of the contributed
chapters were also written by participants who made very good post-Challenge
submissions.

2.1 Design of the Website

When we designed the webpage for the Evaluating Predictive Uncertainty Chal-
lenge we had two objectives in mind. First, to build it in as flexible a way as
possible way in order to be able to do minor changes very easily, like for example
including additional losses, even during the competition. The second objective
was a high degree of automation, to be able to for example give instant feed-
back whenever a submission was made. This way the participants were able to
compare their preliminary scores with those the other participants.

The webpage consists of two separate parts, appearance and functionality,
that are kept disjoint possible. An overview is given in Fig. 2. The website’s ap-
pearance, was programmed with the use of PHP and CSS. PHP (PHP Hypertext
Preprocessor) is a widely used open source script language, specially suited for
easy website development, that can be embedded into HTML code. We used it
to define the website’s global structure on a higher level, that is to dynamically
create HTML code. CSS (cascading style-sheets) is a simple standard for defin-
ing the style of a website. While the website’s structure was created by PHP
via HTML, CSS was used to define its final look. PHP was also used to im-
plement a part of the website’s functionality like managing the ftp upload and
the interaction with external applications. The remaining functional part was
implemented using Python and MySQL. Python is an interpreted, interactive,
object-oriented programming language that combines a very clear syntax with
a remarkable power. Although it is not open source, it is absolutely free. We
used it in the project for mathematical computations, to compute the scores of
the submissions, and to verify that the submissions were correctly formatted.
MySQL is a key part of LAMP (Linux, Apache, MySQL, PHP/Perl/Python)
and the world’s most popular open source database. We used it to maintain
a database of all information relevant to the submissions, as well ad the error
scores under the different losses we used.

The appearance of the Challenge website is shown in 3. The structural frame-
work of the website was implemented by the exclusive use of PHP. The structure
of the navigation bar is defined in an separate file, used by formatting functions to
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Fig. 2. Top: The website’s functional units and the programming languages used to
implement them. Bottom: Interaction control between user, website and database.
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Fig. 3. Screenshot of the website’s result page

determine the actual HTML code. That way new pages can easily be integrated
in or removed from the existing website structure. Formatting functions are also
used to put together the navigation bar itself, the contents of the different pages
and to produce the final HTML code. All this is transparent to the users, all
that is sent to them is pure HTML.

Example Process Flow. Let us describe the interaction between the differ-
ent single components given above during the submission of predictions. This
is also shown in the right diagram of figure 2. After checking the validity of
informations entered by the user into the form of the submission page, the sub-
mission is uncompressed into a temporary directory and the format of the pre-
diction files is checked. If errors are found at this stage, they are collected and
jointly reported to the user. If no errors are found, the information related to
the submission, like the description of the method, the submission time-stamp,
the name of the participant, etc, are stored in a MySQL table and the eval-
uation scores are computed and inserted into the database. After moving the
submitted file to a backup directory, a “successful submission” message is given
to the user. At this point, the results of this submission are already available
from the results table. If the user enters the results page, the evaluation scores
for this challenge type and the default dataset are requested from database,
sorted according to a default score, formatted by PHP and displayed. The
user can change sorting the results according to a different loss, request the
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descriptions of other submissions, or access the results for a different dataset.
Every time she does so, a completely new result table is requested from the
database.

3 Probabilistic Predictions in Regression and
Classification

The two modelling tasks addressed in the Challenge were binary classification
and scalar output regression. For classification let the two classes be labelled by
“+1” and “-1”. Probabilistic predictions were required: for a each test input x∗,
the participant was required to provide the predictive (or posterior) probability
of the label of that case being of class “+1”:

p(y∗ = +1|x∗) ∈ [0, 1] , p(y∗ = −1|x∗) = 1− p(y∗ = +1|x∗) . (1)

For regression, participants were required to specify the probability density
function of the output y∗ associated to the test input x∗. Two possibilities are
offered. The first, simpler one, is to describe the predictive density in a paramet-
ric form by means of a Gaussian density function. The predictive mean m∗ and
variance v∗ need to be specified:

p(y∗|x∗) ∼
1√

2πv∗
exp
(
−‖y∗ −m∗‖2

2v∗

)
. (2)

In some situations more complex predictive densities are appropriate (for exam-
ple multi-modal). To allow participants to approximately specify any predictive
density function we allowed them to describe it by means of any given number
N of quantiles [qα1 , . . . , qαN ] such that:

p(y∗ < qαj |x∗) = αj , 0 < αj < 1 . (3)

Imposing 0 < αj < 1 avoids that some regions of the output space be given
zero probability, which is unreasonable under the loss we use (see Sect. 4). The
remaining probability mass, equal to α1 + (1 − αN ), is accounted for by two
exponential tails of the form p̂(y|x) ∝ exp(−|y|/b).

Figure 4 gives an example of a predictive density being specified by quantiles.
The participants need to specify the quantiles and their values. To recover the
estimated predictive density p̂(y∗|x∗) from the quantiles, we need to distinguish
between three cases:

1. if qα1 ≥ y∗ > qαN and αi and αi+1 are such that qαi ≥ y∗ > qαi+1 then

p̂(y∗|x∗) =
αi+1 − αi

qαi+1 − qαi

, (4)
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Fig. 4. Specifying the predictive density with quantiles. Example where the quantiles
q0.2 = −2, q0.3 = −1, q0.8 = 1 and q0.9 = 3 are specified. The exponential tails
guarantee that distribution integrates to 1.

2. if y < qα1 then from the lower exponential tail:

p̂(y∗|x∗) = z1 exp
(
−|y∗ − qα1 |

b1

)
,

z1 = p̂(qα1 |x∗) =
α2 − α1

qα2 − qα1

,∫ qα1

−∞
p̂(qα1 |x∗) = α1 ⇐⇒ b1 =

α1

z1
.

(5)

3. if qαN ≥ y then from an upper exponential tail:

p̂(y∗|x∗) = zN exp
(
−|y∗ − qαN |

bN

)
,

zN = p̂(qαN |x∗) =
αN − αN−1

qαN − qαN−1

,∫ ∞

qαN

p̂(qα1 |x∗) = (1 − αN ) ⇐⇒ bN =
(1− αN )

zN
.

(6)

In addition to the loss that takes into account the probabilistic nature of
the predictions we will also compute the standard mean squared error loss (see
Sect. 4). Since we only obtain predictive densities from the participants, we need
to compute their mean, which is the optimal point estimator under the squared
loss. For the case where quantiles are specified, computing the predictive mean
is easily done by computing the following three contributions:

– The contribution of the quantiles to the mean is:

mq =
N−1∑
i=1

[
qαj + qαj+1

2

]
(αj+1 − αj) (7)
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– The contribution of the lower exponential tail is:

mlt = z1

∫ ∞

0
(qα1 − y∗) exp

(
−y∗

b1

)
= z1(qα1b1 − b1

2) = α1(qα1 −
α2

1

z1
) (8)

– Similarly, the contribution of the upper exponential tail is:

mut = zN

∫ ∞

0
(qαN + y∗) exp

(
− y∗

bN

)
= zN (qαN bN + bN

2)

= (1 − αN )
[
qαN +

(1− αN )2

zN

] (9)

The estimate of the mean is obtained by adding up the terms:

m = mq + mlt + mut. (10)

4 Loss Functions Proposed

Algorithms that perform well under classical losses, for hard decisions in clas-
sification and, scalar predictions in regression, do not necessarily perform well
under losses that take into account predictive uncertainties. For this reason, we
did evaluate the performance with losses of both natures.

In Sect. 4.1 we describe the losses used for classification, and in Sect. 4.2 those
used for regression. We will denote the actual target associated to input xi by
ti. In classification ti will take the value “+1” or “-1”, and in regression a value
in R. In Sect. 4.3 we justify the use of losses based on the logarithm for the
evaluation of probabilistic predictions.

4.1 Losses for Classification

We used three losses for classification. The classic average classification error
(relative number of errors, or 0/1 loss), the negative log probability (log loss,
or negative cross entropy), and the “lift loss”. The final ranking was established
according to the log loss, the two other losses being used only for comparison.

The Average Classification Error

L =
1
n

⎡⎣ ∑
{i|ti=+1}

1{p(yi = +1|xi) < 0.5}+
∑

{i|ti=−1}
1{p(yi = +1|xi) ≥ 0.5}

⎤⎦
(11)

where 1{z} is an indicator function, equal to 1 if z=true, and to 0 if z=false.
This is the classic 0/1 loss, obtained by thresholding the predictive probabilities
at 0.5. Its minimum value is 0, obtained when no test (or validation) examples
are missclassified; it is otherwise equal to the fraction of missclassified examples
relative to the total number of examples.
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Fig. 5. NLP loss when predicting the class of a single test point that actually belongs
to class “+1”. Observe how the loss goes to infinity as the model becomes increasingly
certain that the point belongs to the wrong class.

The Negative Log Probability (NLP) Loss

L = − 1
n

⎡⎣ ∑
{i|ti=+1}

log p(yi = +1|xi) +
∑

{i|ti=−1}
log [1− p(yi = +1|xi)]

⎤⎦ (12)

Notice that this loss penalizes both over and under-confident predictions. Over-
confident predictions can be infinitely penalized, which should discourage pre-
dictive probabilities equal to zero or one. Zero is the minimum value of this
loss, that could be achieved if one predicted correctly with 100% confidence. If
one predicts otherwise, the worse one predicts, the larger the loss. This loss is
also referred to as ”negative cross-entropy loss”. Figure 5 shows NLP loss in-
curred when predicting the class of a single point xi that belongs to class “+1”.
The figure illustrates how the penalty becomes infinite as the predictor becomes
increasingly certain that the test point belongs to the wrong class.

An interesting way of using this loss, is to give it relative to that of the random
uninformative predictor, that always predicts 0.5. If one takes the difference
between the log loss of a given algorithm and that of the random predictor one
obtains the average gain in information (in bits if one takes base 2 logarithms).

The LIFT Loss. Although we decided not to rely on this loss to rank the sub-
missions, which we ranked according to the log loss instead, we have decided to
still explain it here, since it might be useful to some readers for other purposes.
The “LIFT loss” is based on the area under the lift loss curve, and is minimum
when that area is maximum. We define it in such a way that it is equal to 1
for an average random predictor. As we will explain, the LIFT loss is the area lost
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Fig. 6. Explaining the LIFT loss. The curve is the lift loss of the ideal predictor, and
the line above it is a simple upper bound on it. The shaded region is the area under
the average loss curve of a random predictor. The LIFT loss is defined as the ratio
between two areas. The numerator is given by the area encompassed by the upper
bound lift curve and the lift curve of the predictor being evaluated. The denominator
is given by the area encompassed between the upper bound lift curve and that of the
average random predictor. In this way the LIFT loss is the area lost relative to the
ideal predictor, normalized by the loss of the average random predictor.

to the ideal predictor by the evaluated predictor, normalized by the area lost to
the ideal predictor by the average random predictor. The reason why we build
a loss based on the area under the lift loss, rather than looking at a particular
value of the lift loss is similar to the reason why the area under the Area Under
the ROC Curve (AUC) (Hanley and McNeil, 1982) has become a popular loss.
In the absence of a specific point at which to evaluate the lift loss, we go for a
measure that integrates over all its values.

The lift loss is obtained by first sorting the predictive probabilities with pi =
p(yi = +1|xi) for the n test points in decreasing order: ps1 ≥ ps2 ≥ . . . ≥ psn .
The obtained reordering contained in the si’s is applied to the test targets, and
for k = 1, . . . , n the lift loss is defined as:

l(k/n) =
1

n̄+

1
k

k∑
i=1

1{tsi = +1} , n̄+ =
n+

n
, (13)

where n+ is the number of test examples that belong to class “+1”. Notice that
the lift loss is always, positive, that l(1) = 1 and that l(k/n) ≤ 1/n̄+.

Figure 6 shows in blue the lift curve for an ideal predictor that would get
a perfect ordering. In the figure we have set n̄+ = 0.3. For 0 ≤ k/n ≤ n+,
all ysk

=“+1”, and therefore the lift loss is equal to 1/n+ (from Eq. 13). For
k/n > n+, all ysk

=“-1” and therefore the lift loss is l(k/n) = n/k. The average
lift loss of a random predictor is l(k/n) = 1 for all k. The shaded gray region
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in the figure represents the area under the average lift loss of such a random
predictor, whose surface is equal to 1. In magenta we show a simple linear upper
bound to the ideal lift curve, where the n/k decaying part of the ideal loss is
replaced by a linear upper bound.

The area under the upper bound curve to the lift loss of the ideal predictor
is given by:

AI = 1 +
1
2

(
1

n̄+
− 1
)

(n̄+ + 1) , (14)

while the area under the lift loss curve for the predictor we want to evaluate is
given by

A =
1
n

n∑
k=1

l(k/n) . (15)

In order to obtain a loss that is equal to 1 for the average random predictor,
we define the LIFT loss as the ratio between the area lost by the predictor being
evaluated and the area lost by the average random predictor:

L =
AI −A
AI − 1

(16)

Notice that L � 0 is the minimum loss, L ≈ 1 is the average loss of a random
predictor, and L > 1 is worse than random.

4.2 Losses for Regression

We used two losses to evaluate performance in the regression tasks. The first
is the classic average normalized mean squared error (nMSE), which only takes
into account the means of the predictive distributions (these are the optimal
point estimates under the nMSE loss). The second loss is the average negative
log predictive density (NLPD) of the true targets. We used the NLPD to rank
the results of the participants.

The nMSE Loss

L =
1
n

n∑
i=1

(ti −mi)2

var(t)
(17)

where mi is the mean of the predictive distribution p(yi|xi). Observe that we
normalize the MSE wrt. to the variance of the true targets: predicting the em-
pirical mean of the training targets, independently of the test input, leads thus
to a normalized MSE of close to 1. In practice of course, we don’t know the
variance of the true test targets, and we simply estimate var(t) empirically by
computing the sample variance of the test targets.

The NLPD Loss

L = − 1
n

n∑
i=1

log p(yi = ti|xi) (18)
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Fig. 7. NLPD loss (up to a constant) incurred when predicting at a single point with
a Gaussian predictive distribution. In the figure we have fixed ‖ti −mi‖2 = 1 and show
how the loss evolves as we vary the predictive variance vi. The optimal value of the
predictive variance is equal to the actual squared error given the predictive mean.

This loss penalizes both over and under-confident predictions. To illustrate this,
let us take a closer look at the case of Gaussian predictive distributions. For a
predictive distribution with mean mi and variance vi the NLPD loss incurred
for predicting at input xi with true associated target ti is given by:

Li =
1
2

[
log vi +

(ti −mi)2

vi

]
+ c , (19)

where c is a constant, independent of mi and vi. Given mi, the optimal value of
vi is (ti −mi)2. Figure 7 illustrates the variation of Li as a function of vi when
(ti −mi)2 = 1.

The NLPD loss favours conservative models, that is models that tend to be
under-confident rather than over-confident. This is illustrated in Fig. 7, and can
be deduced from the fact that logarithms are being used. An interesting way of
using the NLPD is to give it relative to the NLPD of a predictor that ignores
the inputs and always predicts the same Gaussian predictive distribution, with
mean and variance the empirical mean and variance of the training data. This
relative NLPD translates into a gain of information with respect to the simple
Gaussian predictor described.

4.3 Discussion About Losses

Both log losses, NLP and NLPD, have the property of infinitely penalizing wrong
predictions made with zero uncertainty. It might be argued that this is too strong
a penalty. However, on the one hand if one is to take probabilistic predictions
seriously, it might be desirable for consistency to discourage statements made
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with 100% confidence, that turn out to be wrong. On the other hand, think
about the binary classification problem. If n data points are observed, it might
seem ambitious to have predictive uncertainties smaller than 1/n: one has just
not observed enough data to be more confident than that! So one obvious tech-
nique to avoid infinite penalties in classification would be to replace those pre-
dictive probabilities smaller than 1/n by 1/n, and those larger than 1 − 1/n
by 1− 1/n.

In regression, using the NLPD can be dangerous for certain specific types of
outputs. Take for example the case where in a regression problem the outputs
take values from a (potentially large) finite discrete set. One obvious strategy
to minimize the NLPD in that case would be to distribute the available prob-
ability mass equally on tiny intervals one around each discrete output value.
Since the NLPD only cares about density, the NLPD can be made arbitrarily
small by decreasing the width of the intervals. Of course, there are machine
precision limitations in practice. In this Challenge we had two datasets, Stere-
opsis (with outputs very close to discrete) and Gaze (with discrete outputs),
where the NLPD could be exploited in this way (see Sect. 5). One way out
of this issue would be to limit the minimum interval size when specifying pre-
dictive distributions by means of histograms, detailed in Sect. 4.2. The con-
tributed Chapter by Kohonen and Suomela addresses this potential problem
with the NLPD, and proposes an alternative loss for probabilistic predictions in
regression.

For classification, the mutual information between the true class labels and
the predicted class labels is sometimes used as a measure of performance. The
mutual information however is an aggregate measure, that only depends on the
conditional probabilities of predicting one class given that another class is true. It
is totally insensitive to individual predictive probabilities, and therefore useless
for our purposes. The Area Under the ROC Curve (AUC) is another common
measure of performance, for classifiers that are able to output some number
whose magnitude relates to the degree of belief that a point belongs to one class
rather than to the other. The AUC score is fully determined by the ordering
of these scalar predictions, and does not capture anything at all about calibra-
tion. In fact, the AUC score ignores the fact that the outputted numbers are
probabilities. These are the reasons why we did not used the AUC score in this
Challenge.

5 Datasets Proposed

We proposed two datasets for classification, and 3 for regression tasks for the
Challenge, summarized in Table 1. All datasets are “real world data” in the sense
that they were not synthesized nor fabricated, but rather measured or extracted
from a real phenomenon.

The Gatineau and Outaouais datasets come from industry, and we are unfor-
tunately not allowed to reveal any details about them. They were kindly donated
by Yoshua Bengio, to whom we are very grateful.
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Table 1. Datasets proposed for the Challenge. dim: input dimension. # Tr, # Val and
# Test are respectively the number of training, validation and test cases. SV and ST
are respectively the number of submissions during the validation and during the test
phase of the Challenge.

Classification
Name dim # Tr # Val # Test SV ST
Catalysis 617 873 300 700 44 11
Gatineau 1092 3000 2176 3000 52 27

Regression
Name dim # Tr # Val # Test SV ST
Stereopsis 4 192 300 500 18 8
Gaze 12 150 300 427 50 16
Outaouais 37 20000 9000 20000 22 5

Catalysis. This dataset comes from the Yeast Functional Catalog2, and was
kindly prepared by Alexander Zien at the Max Planck Institute for Biological
Cybernetics. The binary targets are obtained from assigning the functional cat-
egories of all yeast proteins to one of two classes. These two classes roughly
correspond to presence (or absence) of catalytic activity. The inputs are gene
expression levels of the genes encoding those proteins. The dataset is quite bal-
anced, there are approximately as many positive as negative examples.

Gatineau. (Secret data) This is a very unbalanced binary classification dataset,
with less than 10% positive examples. The data is also very hard to model, which
makes the average classification (0/1 Loss) useless in practice. Models have to
compete in terms of their probabilistic predictions.

Stereopsis. This dataset was collected at the Max Planck Institute for Bio-
logical Cybernetics, for a detailed account see (Sinz et al, 2004). The dataset
was obtained by measuring the 3 dimensional location of a pointer attached to
a robot arm by means of two high resolution cameras. The resulting 4 dimen-
sional inputs correspond to the two pairs of coordinates on both cameras focal
planes. Figure 8 illustrates one particularity of this dataset, that turns out to
be of central importance when analyzing the results: when collecting the data,
measurements were taken at a set of parallel planes, giving the impression that
the variable to be estimated (the depth) was in fact naturally clustered around
the discrete set of distances of the planes to the cameras.

Gaze. This dataset was also collected at the Max Planck Institute for Biolog-
ical Cybernetics, with the help of Kienzle to whom we are very grateful. The
targets are the pixel value of the horizontal position of a target displayed on a
computer monitor. The corresponding 12-dimensional inputs are a set of mea-
surements from head mounted cameras, that focus on markers on the monitor

2 http://mips.gsf.de
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Fig. 8. Test targets of the Stereopsis datasets plotted against their index. The targets
are clearly clustered around what appears to be 10 discrete values. In fact, there is
structure within each “cluster”. This discretization is solely an artifact of the way the
data was collected, and has nothing to do with its nature.

and estimate the positions of the eyes of the subject looking at the monitor.
This experimental setup is prone to severe outliers, since the cameras occasion-
ally loose their calibration. It was indeed the case that there were severe outliers
in the data, which the participants had to deal with, as reported in their con-
tributed Chapters in the following. Another strong peculiarity of this dataset
was that, being pixel values, the targets were discrete! This was exploited for in-
stance by Kurogi et. al (see their contributed Chapter in this Volume) to “abuse”
the NLPD loss. See Sect. 4.3 for a discussion on abusing the NLPD loss. This is
just an example of the fact that losses and datasets should not be independent,
but rather the opposite, see Sect. 8.

Outaouais. (Secret data) This is a regression dataset with very structured
inputs, strongly clustered. This was noticed and exploited by Kohonen and
Suomela, see Sect. 6.

6 Results of the Challenge

We now give the results of the Challenge for each of the datasets, following
the order in which we presented them in table 1. We only provide a short list
of the best performing entries. The complete tables can be found online, in
the Challenge webpage: http://predict.kyb.tuebingen.mpg.de. The names
of the participants who have contributed a Chapter to this Volume are shown
in bold characters in the results tables. All dataset winners have contributed a
chapter to this volume, in addition to some other participants with best results.
The contributed Chapters are presented in Sect. 7.
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The entries made before the validation targets were released are marked with
a less than sign ‘<’, meaning “before” the final submission period. The entries
made after the deadline of December 10th 2004 (post-Challenge entries) are
marked with a greater than sign ‘>’, meaning “after”. The remaining entries
(with no mark) were made after the validation targets were available, and be-
fore the submission deadline of December 10th, 2004. The entries made before
the validation targets were released only benefited from the training targets,
while the final entries benefited both from the training and validation targets.
The test targets have never been released, therefore the post-Challenge entries
had only the training and validation targets available. Some of the participants
who made post-Challenge entries have also contributed invited chapters to this
volume.

The results are compared to a baseline method. In classification, the baseline
outputs the empirical training class frequencies independently of the inputs. In
regression, the baseline is a Gaussian predictive distribution independent of the
inputs, with mean and variance equal to the empirical mean and variance of the
training targets. In Fig. 9 we present a scatter plot of the entries in the tables,
one loss versus the other, for each dataset.

Catalysis (Classification)

Method NLP 01L Author
Bayesian NN 0.2273 0.249 Neal, R
< Bayesian NN 0.2289 0.257 Neal, R
SVM + Platt 0.2305 0.259 Chapelle, O
> Bagged R-MLP 0.2391 0.276 Cawley, G
> Bayesian Logistic Regression 0.2401 0.274 Neal, R
Feat Sel + Rnd Subsp + Dec Trees 0.2410 0.271 Chawla, N
Probing SVM 0.2454 0.270 Zadrozny, B & Langford, J
baseline: class frequencies 0.2940 0.409

(NLP: average negative log probability, 01L: average zero-one loss)

The winner was Radford Neal with Bayesian Neural Networks. Radford Neal
also produced the second best entry, with the same model but learning only
from the training targets during the “validation” part of the Challenge, there-
fore not benefitting from the validation targets. The third best submission is
a support vector machine by Olivier Chapelle, that used Platt scaling (Platt,
1999) to produce calibrated probabilistic predictions. There is another sup-
port vector machine submission by Zadrozny and Langford, with lower rank-
ing, that used Probing (Langford and Zadrozny, 2005) to obtain probabilistic
predictions. Cawley’s post-Challenge submission based on neural networks uses
Bagging (Breiman, 1996) instead of Bayesian averaging. Bayesian logistic regres-
sion, a post-Challenge submission by Radford Neal, outperforms Nitesh Chawla’s
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Fig. 9. Visualization of results, non-probabilistic loss vs. probabilistic loss. The circles
represent the participant’s entries, the square the baseline method that ignores the
inputs. Top (a-c): Regression, NLPD vs. nMSE. Outaouais is the dataset for which
both losses are most highly correlated. For Stereopsis, the entry with lowest NLPD
has the highest nMSE, and for Gaze there are a number of submissions with very low
nMSE that have a very high NLPD: this might be due to the outliers present in this
dataset. Bottom (d-e): Classification, NLP vs. 0/1 Loss. While for Catalysis both losses
seem correlated, for Gatineau the 0/1 Loss is vacuous, and the only informative loss is
really the NLP.
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decision trees, which won the Gatineau dataset. This might be an indication
that the performance of these methods is quite dataset dependent.

Gatineau (Classification)

Method NLP 01L Author
Feat Sel + Rnd subsp + Dec Trees 0.1192 0.087 Chawla, N
Feat Sel + Bagging + Dec Trees 0.1193 0.089 Chawla, N
Bayesian NN 0.1202 0.087 Neal, R
< Bayesian NN 0.1203 0.087 Neal, R
Simple ANN Ensemble 0.1213 0.088 Ohlsson, M
EDWIN 0.1213 0.087 Eisele, A
> Bayesian Logistic Regression 0.1216 0.088 Neal, R
> ANN with L1 penalty 0.1217 0.087 Delalleau, O
> CCR-MLP 0.1228 0.086 Cawley, G
Rnd Subsp + Dec Trees 0.1228 0.087 Chawla, N
Bagging + Dec Trees 0.1229 0.087 Chawla, N
> R-MLP 0.1236 0.087 Cawley, G
Probing J48 0.1243 0.087 Zadrozny, B & Langford, J
> Bagged R-MLP (small) 0.1244 0.087 Cawley, G
SVM + Platt 0.1249 0.087 Chapelle, O
baseline: class frequencies 0.1314 0.087

(NLP: average negative log probability, 01L: average zero-one loss)

The 0/1 loss is not informative for the Gatineau dataset: under this loss,
none of the methods beats a baseline classifier that always predicts class ‘-
1’. The dataset is very unbalanced, with about only 9% examples from the
less frequent class ‘+1’, which lead most methods to also classify all test ex-
amples as members of class ‘-1’. In this situation probabilistic predictions be-
come of great importance. The contestants managed to perform significantly
better than the baseline classifier, which outputs a probability of belonging
to class ‘+1’ of 0.087, independently of the input. This probability is equal
to the empirical class frequency. The two winning entries, by Nitesh Chawla,
correspond to decision trees with feature selection and averaging. For the win-
ner entry averaging consists in randomly sub-sampling the feature space, and
for the second best entry in Bagging. Interestingly both ensemble methods
give very similar performance. Feature selection appears to be decisive for im-
proving the performance of the decision trees used, as can be seen from the
decision tree entries without feature selection. Radford Neal’s Bayesian Neu-
ral Network achieved the 3rd and 4th best results, when trained on train-
ing and validation, and training targets only respectively. Other Neural Net-
works are represented, in Delalleau and Cawley’s post-Challenge entries. Inter-
estingly, SVMs with Platt scaling perform much worse on this dataset than on
Catalysis.
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Stereopsis (Regression)

Method NLPD nMSE Author
Mixture of Bayesian Neural Nets -2.077 2.38e-3 Snelson & Murray
Compet Assoc Nets + Cross Val -0.669 1.39e-6 Kurogi, S et al
> Mixt of LOOHKRR Machines -0.402 3.86e-4 Cawley, G
> Gaussian Process Regression -0.351 8.25e-5 Chapelle, O
> Inflated Var MLP Committee 0.309 9.59e-5 Cawley, G
KRR + Regression on the variance 0.342 9.60e-5 Chapelle, O
< Hybrid: Neural Net 0.940 1.52e-4 Lewandowski, A
Mixture Density Network Ensemble 1.171 2.62e-4 Carney, M
baseline: empirical Gaussian 4.94 1.002
Modelling the experimental setting 209.4 2.49e-4 Kohonen & Suomela

(NPLD: negative log predictive density, nMSE: normalized mean squared error)

The winning entry, by Snelson and Murray, had the worst nMSE loss. How-
ever, this entry achieved the lowest NLPD by providing multi-modal predictive
distributions, which is a natural choice given the clustered nature of the outputs,
see Fig. 8. The entry by Kohonen and Suomela scored extremely low under the
NLPD loss with unimodal Gaussian predictive distributions, with too small vari-
ances. As detailed in their chapter, this might not be a problem as long as the
prediction falls within the right cluster. However, a single prediction that fell
in the wrong cluster blew the NLPD loss. Excluding that case, Kohonen and
Suomela’s entry would have ranked first in Stereopsis. In their chapter, Koho-
nen and Suomela discuss the appropriateness of the NLPD loss. The second
best entry, competitive associative networks, achieved a nMSE loss an order of
magnitude smaller than the second best. It did not win because it provided
under-confident unimodal, Gaussian predictive distributions. Mixtures of leave-
one-out heteroscedastic kernel ridge regressors (LOOHKRR) (post-Challenge)
was third, with unimodal Gaussian predictive distributions as well.

Gaze (Regression)

Method NLPD nMSE Author
Compet Assoc Nets + Cross Val -3.907 0.032 Kurogi, S et al
LLR Regr + Resid Regr + Int Spikes 2.750 0.374 Kohonen & Suomela
> LOOHKRR 5.180 0.033 Cawley, G
> Heteroscedastic MLP Committee 5.248 0.034 Cawley, G
Gaussian Process regression 5.250 0.675 Csató, L
KRR + Regression on the variance 5.395 0.050 Chapelle, O
< Neural Net 5.444 0.029 Lewandowski, A
Rand Forest with OB enhancement 5.445 0.060 Van Matre, B
NeuralBAG and EANN 5.558 0.074 Carney, M
Mixture Density Network Ensemble 5.761 0.089 Carney, M
baseline: empirical Gaussian 6.91 1.002
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The winners, Kurogi et al. with competitive associative networks, achieved a
NLPD loss spectacularly lower than that of the second best entry. The authors
took advantage of a flaw of the NLPD loss for this dataset. Indeed, the out-
puts of the Gaze dataset take discrete values. Kurogi et al. provided predictive
distributions by means of quantiles, to specify predictive histograms with one
bin around each discrete output level. By making the bins small enough, any ar-
bitrarily low value of the NLPD can be achieved. This inappropriateness of the
NLPD loss for discrete-valued regression problems was also exploited by the sec-
ond best entry, although to a lesser extent. More details are given in the chapter
contributed by Kohonen and Suomela. The remaining entries did not abuse the
NLPD loss. The lowest nMSE loss was achieved by Lewandowski with a neural
network to estimate the predictive mean, and another network to estimate the
predictive variance. This entry did not achieve excellent predictive uncertainties.
It must be noted though, that it did only used the training targets, and not vali-
dation targets, for training. The best entry during made before the deadline, that
did not abuse the NLPD loss was a Gaussian process by Lehel Csató. Leave-one-
out heteroscedastic kernel ridge regression (LOHKRR), a post-Challenge submis-
sion, ranked third. This submission provided Gaussian predictive distributions,
with one regressor to model the mean, and another to model the variance. A
committee of multi-layer perceptrons, also post-Challenge, ranked fourth.

Outaouais (Regression)

Method NLPD nMSE Author
> Sparse GP method -1.037 0.014 Keerthi & Chu
> Gaussian Process regression -0.921 0.017 Chu, Wei
Classification + Nearest Neighbour -0.880 0.056 Kohonen, J
Compet Assoc Nets + Cross Val -0.648 0.038 Kurogi S et al
> Small Heteroscedastic MLP -0.230 0.201 Cawley, G
Gaussian Process regression 0.090 0.158 Csató, L
Mixture Density Network Ensemble 0.199 0.278 Carney, M
NeuralBAG and EANN 0.505 0.270 Carney, M
baseline: empirical Gaussian 1.115 1.000

The winning entry before the deadline, by Kohonen and Suomela, was not
achieved by any conventional Machine Learning “black box” method, but rather
by a “data-mining” approach. Nearest neighbours were used to make predic-
tions. The input space was divided into clusters, and a cluster dependent dis-
tribution of the outputs was empirically estimated, for each cluster. Test pre-
dictive distributions were subsequently obtained by attributing the test input
to one of the clusters. Kohonen and Suomela won in spite of not having the
best nMSE score. Competitive associative networks ranked second, achieving
the lowest nMSE loss before the submission deadline. It is interesting to see
that two post-Challenge submissions outperform all the rest both in terms of
nMSE and NLPD loss. These two submissions are based on Gaussian Processes:
the winning entry managed to use the entire training set thanks to a sparse
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approximation, while the second used a full GP trained only on a subset of the
training data.

7 Presentation of the Invited Chapters

This volume includes six additional contributed chapters, written by participants
who achieved outstanding results in the Evaluating Predictive Uncertainty Chal-
lenge. All dataset winners and seconds are represented, as well as the authors
of some of the post-Challenge submissions. There is high variety in the meth-
ods used. In classification, neural networks are used with Bayesian averaging
by Radford Neal, and with Bagging by Gavin Cawley. Decision trees are used
with Bagging and with random sub-samples of the inputs by Nitesh Chawla.
Support vector machines and Gaussian Processes are used by Olivier Chapelle.
In regression neural networks are used with Bayesian averaging by Ed Snelson
and Iain Murray, and as committees by Gavin Cawley. Competitive associative
networks with cross-validation, which can be seen as a gating network of local
experts, are used by Shuichi Kurogi, Miho Sawa and Shinya Tanaka. Kernel
methods are represented as Gaussian processes, in Olivier Chapelle’s submis-
sion, and as heteroscedastic leave-one-out kernel ridge regression on the mean
and on the variance by Gavin Cawley. Datamining is used in Jukka Kohonen’s
submission to the Outaouais dataset, where he used nearest neighbours together
with a gating classifier. Jukka Kohonen and Jukka Suomela do also provide the
single submission that was not made using a “black box” model: for Stereop-
sis, they deduce from the name of the dataset the physical underlying model of
two cameras looking at one object. In their chapter, Jukka Suomela and Jukka
Kohonen additionally provide with a discussion on the kind of losses that seem
appropriate for evaluating probabilistic predictions.

The contributed Chapters are, in order of appearance in this volume:

Bayesian Neural Networks
Radford M. Neal

The author describes his use of Bayesian neural networks for the Catalysis and
Gatineau datasets. Use was made of the author’s publicly available3 Flexible
Bayesian Modelling (FBM) software. Since no information was revealed about
the datasets at the time of the competition, the author decided to use vague pri-
ors with a complex neural network architecture. The author describes how model
complexity is automatically adjusted through Bayesian averaging. In addition,
the author comments on his post-Challenge entry, based on Bayesian logistic
regression, which achieved a fair performance.

A Pragmatic Bayesian Approach to Predictive Uncertainty
Iain Murray and Ed Snelson

The authors explain how they used a Bayesian approach tailored to the Stereop-
sis dataset. First, a probabilistic classifier based on Radford Neal’s FBM software
3 http://www.cs.utoronto.ca/∼radford/fbm.software.html
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serves as a soft gating network, that allows the combination of a mixture of local
regression experts, each trained on a cluster of the Stereopsis outputs, see Fig. 8.

Decision Trees with Feature Selection and Random Subspaces
Nitesh V. Chawla

The author first explains why decision trees are not suited for probabilistic
classification when used directly, nor when used with over-simplistic smoothing
schemes such as Laplace or m-estimates. He then argues that ensemble methods
allow to obtain large improvements in the predictive probabilities from decision
trees. He discusses the use of two ensemble methods: random subsets and Bag-
ging. The author also points out the importance that feature selection had for
his good results. Finally, a discussion is given on how to improve performance
on highly unbalanced datasets, such as Gatineau.

Heteroscedastic Kernel Regression Methods
Gavin Cawley, Nicola Talbot and Olivier Chapelle

The approach proposed in this work is to directly model the predictive distribu-
tion. For regression, a Gaussian predictive distribution is chosen. Its mean and
variance are explicitly modelled separately by kernel ridge regression, and learn-
ing is achieved by assuming that the loss is the NLPD, and directly minimizing
it. A leave-one-out scheme is used to avoid biased variance estimates.

Competitive Associative Nets and Cross-Validation for Estimating
Predictive Uncertainty on Regression Problems
Shuichi Kurogi, Miho Sawa and Shinya Tanaka

Competitive associative nets (CANs) are presented. These are piece-wise linear
approximations to non-linear functions. The input space is divided into a Voronoi
tessellation, with a linear model associated to each region. For the Stereopsis and
Outaouais datasets, Gaussian predictive distributions were provided, where the
means were directly obtained from CANs trained to minimize the leave-one-out
mean squared error. The variances were then estimated within the Voronoi re-
gions by means of K-fold cross-validation. For the Gaze dataset, the authors
took advantage of the discrete outputs to abuse the NLPD. The authors speci-
fied the predictive distribution by means of quantiles, and concentrated all the
mass around tiny intervals centered around the integer output values.

Lessons Learned in the Challenge: Making Predictions and Scoring
Them
Jukka Suomela and Jukka Kohonen

The authors present their winning entry for the Outaouais dataset: a pragmatic
data-mining approach, based on a gating classifier followed by nearest neighbour
regression. They also explain how they abused the NLPD loss on the discrete
outputs Gaze dataset, in a similar but less extreme way than Kurogi et al. This
motivates a very important discussion by the authors, on the more general prob-
lem of defining good losses for evaluating probabilistic predictions in regression.
The authors propose to use of the continuous ranked probability score (CRPS),
which does not suffer from the disadvantages of the NLPD loss.
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8 Discussion

The wealth of methods successfully used by the participants to the Challenge
indicates that there was not a single universally good way of producing good
predictive uncertainties. However, averaging was common in many of the best
submissions, see Fig. 10 for a qualitative impression in classification. Both classi-
fication winners used averaging: Radford Neal used Bayesian averaging of neural
networks, and Nitesh Chawla decision trees averaged over random subsets of
the inputs. Chawla’s bagged decision trees achieved second position. In regres-
sion, averaging was used by the winning entry for the Stereopsis dataset with a
Bayesian mixture of neural networks. Other successful entries for regression that
used averaging include mixtures of kernel ridge regressors, bagged multi-layer
perceptrons (MLPs) and committees of MLPs. Leave-one-out cross-validation
was also found in many successful entries. It was used for example by Kurogi,
Sawa and Tanaka with competitive associative networks (CANs), and by Cawley,
Talbot and Chapelle with kernel ridge regression.

In terms of architectures, neural networks had a strong presence, and generally
achieved very good results. Other architectures, like decision trees, Gaussian
Processes and support vector machines also gave good results. Interestingly, an
approach from datamining by Jukka Kohonen won the Outaouais regression
dataset, later outperformed by two post-Challenge Gaussian Processes entries.

The Challenge revealed a difficulty inherent to measuring in general. While
the goal was to evaluate “honest” predictive uncertainties, in practice the loss
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Fig. 10. Qualitative display of some classification results: 0/1 loss (average error rate)
versus Negative Log Probability (NLP). Whenever averaging was used, the kind of
averaging is indicated between brackets.
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biased the predictive distributions of the participants. An example of this is the
approach of Cawley, Talbot and Chapelle for regression, consisting in providing
Gaussian predictive distributions tuned to minimize the NLPD loss. The authors
would certainly have provided a different predictive distribution, if a different
loss had been used.

The use of the NLPD loss turned out to be clearly inappropriate for the
Gaze dataset. The outputs of this dataset take values from a finite discrete
set. This encourages a simple strategy to achieve an arbitrarily small loss (the
NLPD is unbounded from below). It is enough to specify a predictive his-
togram, with one bin encompassing each output discrete value. Making the bins
narrow enough allows to arbitrarily increase the amount of probability den-
sity on the targets, and to therefore attain any arbitrarily small value of the
NLPD, the being machine precision. This inadequacy of the NLPD for the Gaze
dataset was exploited by two groups of participants, Kurogi, Sawa and Tanaka,
and Snelson and Murray, who achieved respectively the best and second best
results.

We have seen that the accuracy according to a point-prediction-based loss
does not always give the same ranking as a loss which takes uncertainties into
account, and that for some datasets like Gatineau, only the loss that evaluates
probabilistic predictions is useful. However, it seems that defining good losses for
probabilistic predictions is hard, since the losses might encourage strategies that
are loss-dependent Maybe one way of encouraging unbiased and “honest” predic-
tive distributions would be to apply several losses that encourage contradictory
strategies. Another way could be not to reveal the loss under which predictions
will be evaluated.

It would have been very interesting to empirically evaluate in this challenge a
very recent paradigm for probabilistic predictions, based on “conformal predic-
tions” (Vovk, Gammerman and Shafer, 2005).Conformal predictors are capable
of producing accurate and reliable point predictions, while providing information
about their own accuracy and reliability. This work was unfortunately published
after the closing deadline of the Evaluating Predictive Uncertainty Challenge.
Perhaps future competitions will allow to evaluate its practical utility.
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Bottou, editors, Advances in Neural Information Processing Systems 17, pages 545–
552, Cambridge, Massachussetts, 2005. The MIT Press.

James A. Hanley and Barbara J. McNeil. The meaning and use ofthe Area under a
Receiver Operating Characteristic ROC Curve. Radiology, 143(1):29–26, 1982.
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Classification with Bayesian Neural Networks

Radford M. Neal
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I submitted entries for the two classification problems — “Catalysis” and
“Gatineau” — in the Evaluating Predictive Uncertainty Challenge. My entry
for Catalysis was the best one; my entry for Gatineau was the third best, behind
two similar entries by Nitesh Chawla.

The Catalysis dataset was later revealed to be about predicting a property
of yeast proteins from expression levels of the genes encoding them. The nature
of the Gatineau dataset has not been revealed, for proprietary reasons. The two
datasets are similar in number of input variables that are available for predicting
the binary outcome (617 for Catalysis, 1092 for Gatineau). They differ substan-
tially in the number of cases available for training (1173 for Catalysis, 5176 for
Gatineau) and in the fractions of cases that are in the two classes (43%/57% for
Catalysis, 9%/91% for Gatineau).

For both problems, I used Bayesian neural network models, implemented using
Markov chain Monte Carlo methods. This methodology is described in the book
based on my thesis (Neal 1996). Lampinen and Vehtari (2001) provide a more
recent review and case studies. Markov chain Monte Carlo methods are discussed
in a review of mine (Neal 1993), and in a number of other books, such that of
Liu (2001).

The software I used is freely available from my web site, as part of my software
package for Flexible Bayesian Modeling (I used the version of 2004-11-10). The
command scripts I used for this competition are also available from my web site.

Multilayer-perceptron neural networks are flexible models capable of repre-
senting a wide class of functions as the parameters (the “weights” and “biases”)
of the network are varied. For binary classification problems, the real-valued
function of the inputs, f(x), defined by the network is used to produce the prob-
ability of class 1 for a case with these inputs. I used the logistic function to
produce class probabilities, as follows:

P (class 1 |x) = 1/(1 + exp(−f(x)) (1)

Of the many possible neural network architectures, I chose to use an archi-
tecture with two layers of “hidden units”, which is flexible enough to efficiently
represent quite complex relationships, but which can also behave much like a
simpler architecture if that is favoured by the data. The function, f(x), com-
puted by this network can be expressed in terms of functions for units in the
first hidden layer, whose values are denoted by gk(x), for k = 1, . . . , G, and units
in the second hidden layer, whose values are denoted by h�(x), for � = 1, . . . , H.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 28–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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For a training or test case with input vector x, of length p, the output of the
network can be expressed as follows:

f(x) = c +
H∑

l=1

w�h�(x) (2)

h�(x) = tanh
(
b� +

G∑
k=1

vk�gk(x)
)

(3)

gk(x) = tanh
(
ak +

p∑
j=1

ujkxj

)
(4)

The parameters of the network are the “biases”, ak, b�, and c, and the “weights”
ujk, vk�, and w�. Provided that G and H , are fairly large, varying these param-
eters produces a large variety of functions, f(x), which in turn define a variety
of class probability functions.

Traditional neural network training methods select a single “best” set of pa-
rameters by minimizing the “error” on the training set. For classification prob-
lems, the error is often the sum over all training cases of minus the log probability
of the correct class. A “weight decay” penalty proportional to the sum of the
squares of the weights is sometimes added. This penalty is a means of avoid-
ing “overfitting”, by encouraging small weights, which generally correspond to
smoother f(x). The parameters found by minimizing the error plus penalty are
then used to make predictions for test cases.

Bayesian training departs from traditional methods in two ways, which to-
gether provide a more principled approach to using a complex network while
avoiding overfitting. The Bayesian framework also provides a way of automati-
cally determining which input variables are most relevant.

The first difference between traditional and Bayesian training is that Bayesian
methods do not use a single set of parameter values to make predictions for test
cases. Instead, the predictive probabilities produced by networks with many sets
of parameter values are averaged. These sets of parameters are sampled from
the “posterior distribution” of network parameters, described below. Since this
distribution is extremely complex, Markov chain sampling methods must be
used, in which one or more realizations of a Markov chain having the posterior
distribution as its asymptotic equilibrium distribution are simulated until they
reach a good approximation to this equilibrium distribution. Sets of network
parameters from many subsequent iterations of these Markov chains are then
used to produce predictions for the test cases.

The second distinctive aspect of Bayesian training is that it uses not only the
information in the training data, but also “prior” information regarding the likely
values of the parameters. Sometimes, we may have quite specific prior informa-
tion regarding the class probability function, which translates into information
about the parameters of the network. For the challenge problems, however, no
information was released about the actual situation until after the competition,
so only very general prior information could be used. This is also the situation
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for some real problems, either because little is known beforehand, or because
expressing what is known in suitable mathematical form is too difficult.

The prior information used in Bayesian training takes the form of a “prior”
probability density function over the parameters of the network. The information
from the data is contained in the “likelihood”, which is the probability of the
actual classes in the training cases, given the inputs for these training cases,
seen as a function of the network parameters. The product of the prior density
and the likelihood is (after normalization) the “posterior” probability density
function for the parameters. It is from this posterior distribution that we sample
parameter values in order to make predictions for test cases, as described above.

Specifying the prior distribution is a crucial part of Bayesian modeling. For
the two-layer neural network model used here, one simple option would be to
give each parameter a Gaussian distribution with mean zero and some specified
standard deviation, with all parameters being independent. Unless we have very
specific information about the problem, however, such a prior would be too inflex-
ible. It would fix the likely scales of the weights, and hence the overall magnitude
and scale of variation in f(x), even though we don’t know enough to say what
suitable values for these would be. Accordingly, although Gaussian distributions
with mean zero are often used for weights and biases, the standard deviations of
these distributions are typically unknown “hyperparameters”, which are them-
selves given prior distributions (usually rather broad ones). The introduction of
hyperparameters is an indirect way of making the parameters be dependent in
the prior, since they each depend on the hyperparameter controlling their stan-
dard deviation. The effect is that, for instance, a large value for w1 tends to go
with a large value for w2 as well.

Very general prior information can be incorporated into the model by deciding
which groups of parameters will share a hyperparameter controlling their prior
standard deviation. Almost always, one would want to use different hyperparam-
eters for the ujk, the vk�, and the w�, since they play quite different roles in the
network. Dividing the weights into smaller groups can also be useful, however. In
particular, we may wish to use a different hyperparameter for the ujk associated
with each input, j. This allows the Bayesian procedure to “learn” that one in-
put is less relevant than another, by using a smaller hyperparameter for the less
relevant input, with the result that the weights associated with that input will
also be small. This scheme is known as “Automatic Relevance Determination”
(ARD).

For the two classification datasets in the challenge, I used identical network
architectures, having two hidden layers, as described above, with G = 16 and
H = 8. The prior distributions used were also almost identical. ARD priors were
used for both problems, on the assumption that probably not all of the large
number of input variables are highly relevant. Inputs were standardized to have
mean zero and standard deviation one, in an attempt (in the absence of real
prior information) to equalize the expected effect of a one-unit change in the
various inputs. Slightly different priors were used for the ARD hyperparameters
for the two datasets, since in preliminary runs the relevance of inputs appeared
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to be more variable for Gatineau than for Catalysis. This manual adjustment is
a substitute for making the variance of the prior for the ARD hyperparameters
be a higher-level hyperparameter, which is quite possible, but not implemented
in my software package.

The Markov chain Monte Carlo methods used for the two problems were
also very similar, with slight differences to tune them to the requirements of
the different posterior distributions. For each problem, I did two independent
Markov chain sampling runs, each of which took approximately four days on
a 3 GHz Pentium machine. I used parameter sets from the latter parts of both
runs to make predictions. In the context of a competition, it is natural to do such
long runs, since longer runs may give at least slightly better results. However,
quite similar results were obtained when using only the first tenth of each run.

For complete details on the priors and Markov chain Monte Carlo methods
used, see the scripts available from my web page.

On the Catalysis dataset, my method achieved an average negative log prob-
ability over test cases of 0.2273, and a classification error rate of 0.249, better
than any other method (the corresponding figures for the next best method were
0.2305 and 0.259). On the Gatineau dataset, my method achieved an average
negative log probability over test cases of 0.1202, slightly worse than the best
result of 0.1192, achieved by Nitesh Chawla. Both his and my methods predicted
the same (more common) class for all test cases. The highest probability for the
less frequent class produced by my method was 0.329. The resulting error rate
was 0.087, the frequency of the less common class. No method for the Gatineau
dataset had an error rate significantly better than this.

After the competition, I submitted predictions found using Bayesian logistic
regression — essentially, a neural network with no hidden units — for which the
class probabilities are derived using equation (1), but with f(x) given by

f(x) =
p∑

j=1

βjxj (5)

As the prior for βj , I used a heavy-tailed t distribution, with 2.5 degrees of
freedom for Catalysis and 1.5 degrees of freedom for Gatineau. The width of the
t distribution was a hyperparameter. Predictions were made using Markov chain
Monte Carlo.

The results using logistic regression were quite good, but not as good as with
the neural network model. For Catalysis, the average negative log probability
over test cases was 0.2401, and the error rate was 0.2743. This would have
been the third-best entry if it had been submitted during the competition. For
Gatineau, the average negative log probability over test cases was 0.1216, and
the error rate was 0.088. This would have been the sixth-best entry if it had
been submitted during the competition. The Bayesian logistic regression model
predicted that three of the test cases would be in the less common class; none
of these predictions were correct. These mistaken predictions may have been
due to the presence of occasional extreme input values in the Gatineau dataset,
which can cause a linear logistic model to produce extreme probabilities. The
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tanh non-linearity in the neural network’s hidden units tends to limit the effect
of extreme values.

The good results I obtained in this competition demonstrate that Bayesian
models using ARD priors can successfully deal with around a thousand inputs,
without any preliminary selection of inputs. In entries to an earlier competition
focused on feature selection (Neal and Zhang 2006), I dealt with larger numbers
of inputs (up to 100,000) by either selecting a smaller number (up to about a
thousand), or by reducing dimensionality using Principal Components Analysis.
Failure to properly account for varying relevance of inputs may not only reduce
classification accuracy, but also distort predictive probabilities — for example, a
model that doesn’t know that some inputs are irrelevant may produce an under-
confident prediction for a test case that differs from the training cases in such
an irrelevant input.

Another challenge when dealing with complex problems is deciding what type
of model is most appropriate. In this competition, I adopted the strategy of using
a single rather flexible model, which can behave in various ways depending on the
values found for the hyperparameters. Accordingly, I made only one submission
for each dataset (apart from one submission for each in the preliminary phase
of the competition, when only the initial portion of the training set, excluding
the “validation” cases, was available). This strategy of using the most complex
model that is practically feasible (which I also advocated in (Neal 1996)) worked
well for these problems.
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Abstract. We describe an approach to regression based on building a
probabilistic model with the aid of visualization. The “stereopsis” data
set in the predictive uncertainty challenge is used as a case study, for
which we constructed a mixture of neural network experts model. We
describe both the ideal Bayesian approach and computational shortcuts
required to obtain timely results.

1 Introduction

We describe our treatment of the “stereopsis” regression data set in the predic-
tive uncertainty challenge. Our aim was to construct an appropriate statistical
model of the data, and use Bayesian inference to form the required predictive
distributions given the data. Our starting point was some simple exploratory
visualization of the data.

The stereopsis data set is very amenable to visualization, as it has only
four input dimensions, and structure quickly reveals itself. For example plot-
ting various input dimensions against each other, as in Figure 1(a), shows some
clear clustering in the input space. There are 10 distinct branches of points,
each with some interesting substructure. Figure 1(b) shows a one dimensional
projection of the training inputs plotted against the training outputs. This
projection was made by doing a least squares linear fit to the training data,
ŵ = argminw

∑
n(y(n)−w�x(n))2, and plotting the targets y against projected

inputs ŵ�x. The training outputs also seem to be grouped into 10 discrete clus-
ters, so one might guess that there is a correspondence between the clustering in
input space, and the clustering in output space. Further visualization confirmed
that this was the case. Zooming in on a cluster in Figure 1(b), it becomes clear
that there is also substructure relevant for regression within each output cluster.

When we see obvious structure from simple visualizations like Figure 1, it
makes us curious about the data generating process. Are the input points sam-
pled from some natural distribution on the space of possible inputs? In which
case we might not worry about generalizing well to input points far away from
those already observed. Alternatively the clustering in input and output space
may be an artifact of a particular choice of experiments that have been done.
Then some new test positions may lie in other parts of the input space outside
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Fig. 1. Visualization of stereopsis dataset. (a) The first and third dimensions of the
input space are plotted against each other. (b) The training outputs are plotted against
ŵ�x, the input points projected onto the least squares linear regression weight vector.
The test input projections onto the same weight vector are plotted as the vertical lines.

the regions observed in the training data. In which case, we would need to con-
centrate on building a global model that extrapolates well outside the observed
clusters with appropriate uncertainties. In a real world task we would probably
have information regarding the locations of future predictions.

Unknown to us, the ‘stereopsis’ task was to infer the depth of an object from
stereo image information [1]. The data were generated by attaching an LED to
a robot arm and recording the spatial location via the arm’s spatial encoders
and the LED image positions on two stereo cameras. The robot arm was then
moved in a structured way in different discrete planes of depth whilst data were
recorded. With this small amount of information it is clear where the almost
discrete nature of the outputs (the depths) comes from, and also the clustering
in the inputs. It is also clear that for a model to be useful it must be able to
extrapolate away from the training data clusters, as we will need to be able to
predict the whole range of depths well.

The nature of a machine learning competition is a little different. The data
are presented with no information except a slight clue in the title! Clearly with
all the structure visible, we could still make a good guess that this was caused
by a certain choice of experimental sampling. We are also given the test inputs;
a projection of these is shown in Figure 1(b). From this it seems plausible, as
in most machine learning competitions, that the test data have been produced
from the same sampling distribution as the training data. Therefore, in order to
perform well in the competition it made sense to model the cluster structure.
This is described in the next section.
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2 Mixture of Experts Model

As described above, we based our model on intuitions gained from visualizing
the training data and the test input locations. Further visualization of each of
the ten clusters in figure 1 showed that the targets seemed to vary smoothly with
any linear projection of the input space. We chose to model the targets within
each cluster as noisy observations around a smooth function of the input space.
To complete the model we defined a conditional distribution for belonging to a
particular cluster given its input location. This is a mixture of experts model
[2], which we refer to as “H”:

p(y|x, θ,H) ≡
∑

k

p(y|x,wk,Hk)p(k|x,wgate,Hgate), (1)

where k indexes the experts and θ ≡ {wk,wgate} summarizes any free parameters
in the models. We wanted flexible models for both the gating model, Hgate,
specifying the conditional probability of choosing an expert given input location,
and for each expert’s regression model Hk. The groups over which the gating
model puts a distribution have a clear ordering, see figure 1(b). This makes
learning p(k|x) an ordinal regression task, although for simplicity we considered
it to be a standard multi-way classification problem. We chose to use neural
networks [3] for both the regression and classification problems. Each neural
network had a single layer of 15 units; we thought this would be sufficiently
flexible while being manageable in the time available. Without further knowledge
about the data, any flexible models such as Gaussian processes would have been
equally sensible.

Each cluster in the training data only contains a small number of data points
that will be useful for training that cluster’s regression model Hk. Therefore,
there is a danger of over-fitting if we optimized the many parameters of the
flexible models we chose. We could have chosen simpler models, but it might
have been difficult to capture the non-linear structure we observed within the
clusters. It is also possible that careful regularization could avoid over-fitting.
Instead we decided to take our model seriously, and as far as possible perform
the correct coherent inference given our assumptions; this is achieved by the
ideal Bayesian approach.

3 Ideal Bayesian Inference

Our target is p(y|x, D,H), the predictive distribution for an output y sampled
at a new location x given previously observed data D and our modeling assump-
tions, H. Our model has many free parameters, θ, corresponding to the weights
in the classifier Hgate and each of the regression neural networks Hk. As θ are
unknown, we must marginalize these out:

p(y|x, D,H) =
∫

p(y, θ|x, D,H) dθ =
∫

p(y|x, θ,H)p(θ|D,H) dθ. (2)
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The integrand consists of two parts. The first, p(y|x, θ,H) from equation (1),
describes the predictive distribution given known parameters. The second part
is the posterior over parameters from Bayes’ rule:

p(θ|D,H) =
p(D|θ,H)p(θ|H)

p(D|H)
∝ p(D|θ,H)p(θ|H), (3)

which requires a prior over parameters p(θ|H) and a likelihood, which under our
i.i.d. model is a product of terms:

p(D|θ,H) =
∏
n

p(y(n)|x(n), θ,H). (4)

Each term, specified in (1), involves summing over the latent class assignment
k(n). In order to obtain results more quickly we chose to approximate (1) by
assuming we knew the class assignments for the training data based on the
clusters in figure 1(b). While this is not the ideal procedure, it saved time and
seemed a reasonable approximation given how well separated the targets were.

For the prior over parameters p(θ|H) we used the same hierarchical prior
as in the neural network regression and classification examples in Neal’s FBM
documentation [4]. It is possible that the regression experts p(y|x,wk,Hk) should
be related, especially now we know how the data were generated. Therefore it
would make sense to introduce a priori correlations between the parameters,
wk, of the experts. We chose not to do this; we assume our experts obtained
parameters independently. As a result we probably did not make best use of the
data.

The above theory says that the predictive distribution (2) is available without
reference to how the input locations x were chosen, or what the predictions will
be used for. Normally a loss function would only be necessary if we wanted to
use the predictive distribution, eg for making a decision. Then, given the loss
function L(yguess, ytrue), which specifies the penalty for predicting yguess when
the test target is ytrue, we would minimize our expected loss:

yguess = argmin
∫
L(yguess, y) p(y|x, D,H) dy, (5)

where again, the predictive distribution is independent of the loss function. In
the challenge the loss function depended on the distribution itself and we had
to decide which quantiles to report. It turns out that both loss functions used
in this challenge, mean squared error (MSE) and negative log predictive density
(NLPD) have a consistency property: the expected loss is minimized by reporting
the predictive distribution that actually reflects our beliefs.

In practice we will experience computational difficulties. As is often the case,
the posterior in (3) has no simple form and the integral in (2) is intractable.
A variety of approximate approaches exist. When using an approximation, the
predictive distribution that results is, frankly, wrong: it does not correspond
to the correct rational inference for combining our model with the data. The
seriousness of this problem may depend on the loss function, although we did
not use this to guide our approximation.
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4 Monte Carlo Approximation

Here we present a standard Monte Carlo approach for predictive distributions.
The first step is to draw S samples from the posterior distribution over param-
eters (3). These could be used to approximate the integral in (2):

p(y|x, D,H) =
∫

p(y|x, θ,H)p(θ|D,H) dθ

≈
S∑

s=1

p(y|x, θ(s),H), θ(s) ∼ p(θ|D,H).
(6)

However, this does not easily give us the quantiles required for reporting the
whole distribution. Draws from the predictive distribution, y(s) ∼ p(y|x, D,H),
will be more useful. These can be obtained by first drawing a set of parameters,
θ(s) ∼ p(θ|D,H), then drawing y(s) ∼ p(y|x, θ(s),H). Quantiles of the predictive
distribution may be approximated by drawing many samples and using the em-
pirical quantiles of the set of samples. For implementational reasons we found ap-
proximate quantiles for each expert’s distribution p(y|x, D,Hk) separately, and
then combined these distributions using the mixing fractions p(k|x, D,Hgate).

All of these sampling procedures are frequentist not Bayesian in nature. They
give unbiased procedures, which are correct in the limit of an infinite number
of samples under fairly general conditions. If our procedures used independent
samples, then the errors in estimators of expectations are usually nearly Gaus-
sian distributed and estimators of quantiles are also well understood as Beta
distributed “order statistics”.

In this case, independent sampling is intractable. Markov Chain Monte Carlo
(MCMC) methods allow drawing correlated samples from p(θ|D,H) [5]. Also,
given a valuable parameter sample, θ(s), it makes sense to draw multiple samples
from p(y|x, θ(s),H), which are correlated samples from p(y|x, D,H). Diagnosing
the errors from these approximations remains a difficult problem; our approach
was pragmatic. We ran a trial run of MCMC using only the training set and
checked our results made reasonable predictions on the validation set. We then
performed a longer run using both the training and validation sets for our final
results. Strictly the Bayesian framework does not need a separate validation set
at any stage, but we wished to check that the approximate inference procedure
gave sensible results.

All of the above approximations were performed on neural networks with
hierarchical priors by Radford Neal’s FBM software [4].

5 Discussion

We exploited an artificial cluster structure of the stereopsis data, which should
not necessarily be done in a real world modeling situation, eg [1]. This suggests
some alternative formats for future competitions. Firstly, the standard assump-
tion that the test data should come from the same input distribution as the
training data could be relaxed. Secondly some information about the data could
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be given to competitors to guide modeling. This goes somewhat against a com-
mon view that a machine learning algorithm should be a general purpose black
box. Competitors would need to tailor their methods using the information given
about the training and test data generating processes. From this format it may
be more difficult to achieve a consensus as to which machine learning algorithm
performs best generally, but it may be more realistic, and some useful modeling
approaches may come out of it.

These reservations aside, the approach outlined in the previous sections per-
formed well in the competition, although was the mixture of experts approach
really necessary? Initially we had tried to construct predictive distributions us-
ing only a single, global neural network regression model (we also tried Gaussian
processes). Our visualizations indicated that the resulting error bars were too
conservative. The added flexibility in the mixture model gave better NLPD scores
on the validation set.

The ideal Bayesian approach assumes that all dependence on the data is con-
tained in the likelihood. By looking at the data before constructing our model
we were effectively using the data twice and risked over-fitting. As a result it
is likely that we would not perform well on points drawn from a different in-
put distribution. Fortunately for us, the competition did not reflect what often
happens when a system is deployed: the input distribution changes.

It is unlikely we would have considered the model we used without any vi-
sualization. In a real application we would still recommend looking at the data
to suggest suitable models. However, choosing one model by hand, as we did,
is potentially dangerous. Better would be to consider a range of possibilities as
well, eg: other settings for k and some simpler models. Predictions from different
models can be combined quantitatively by Bayesian model averaging:

p(y|x, D) =
∑

i

p(y|x, D,Hi)p(Hi|D). (7)

This could be more robust than our approach using one model, if the clustering
assumptions of our model turned out to be inappropriate for the test set.

Our approach scored an NLPD score considerably higher than other entrants
to the competition. We believe the (nearly) Bayesian approach we followed was
largely responsible. Firstly when regressing the individual clusters we integrated
over uncertainty in the neural net parameters using MCMC, which avoided over-
fitting. Secondly we were able to integrate over uncertainty in our classification
parameters. This resulted in predictive distributions with ten modes, one for each
expert, Hk. Putting probability mass in all of these locations makes us robust
to classification errors. If we had chosen to use only one expert for predictions
we would risk obtaining an arbitrarily bad NLPD score.

Figure 2 shows on a log scale a typical predictive distribution given a new
test input, from our competition submission. One of the experts Hk is favored
over the others; it contributes the sharp spike close to y = 220. Notice how the
predictions from the experts far from the most probable spike give broader, less
certain predictions. This is because the new test input is far from the training
inputs for those particular experts. The constant density between the spikes
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Fig. 2. A predictive log probability density constructed from quantiles submitted to
the competition by us for a typical point in the test set. The vertical bar shows the
corresponding mean of the predictive distribution.

results from an artifact of the way we combined the quantiles from each expert.
The tail masses from adjacent experts was spread uniformly across the gap
between them. We hoped that such artifacts would have low enough densities
not to matter.

Also notice that the mean of the distribution in figure 2 does not coincide with
any of the predictive spikes. This happens on most of our test set predictions,
resulting in a poor mean squared error score; in fact we scored last on MSE score.
The mean of a predictive distribution is fairly sensitive to small changes in the
probability mass assigned to extreme predictions. In this case, small changes in
the distribution of mass amongst the experts, p(k|x, D,Hgate), can have a large
effect. We made ourselves robust for NLPD score by placing mass on all modes,
but at the expense of poor MSE score. The MSE score would have been most
likely much improved if we had done hard classification.

6 Conclusions

This case study illustrated some of our opinions on how to construct models that
capture predictive uncertainty:

– Visualization helps in understanding data when constructing probabilistic
models, especially in the absence of any further domain knowledge.

– Bayesian inference provides a natural framework for finding predictive dis-
tributions given modeling assumptions. It can help avoid overfitting when
limited data are available.

– Looking at the data before specifying modeling assumptions and using ap-
proximations both fall outside the Bayesian framework. By checking on a val-
idation set, we found approximate Bayesian procedures still behaved robustly.



40 I. Murray and E. Snelson

References
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Abstract. Decision trees, a popular choice for classification, have their
limitation in providing probability estimates, requiring smoothing at the
leaves. Typically, smoothing methods such as Laplace or m-estimate are
applied at the decision tree leaves to overcome the systematic bias in-
troduced by the frequency-based estimates. In this work, we show that
an ensemble of decision trees significantly improves the quality of the
probability estimates produced at the decision tree leaves. The ensemble
overcomes the myopia of the leaf frequency based estimates. We show
the effectiveness of the probabilistic decision trees as a part of the Pre-
dictive Uncertainty Challenge. We also include three additional highly
imbalanced datasets in our study. We show that the ensemble methods
significantly improve not only the quality of the probability estimates
but also the AUC for the imbalanced datasets.

1 Introduction

Inductive learning identifies relationships between the attributes values of train-
ing examples and the class of the examples, thus establishing a learned function.
Decision trees [BFOS84, Qui87, Qui92] are a popular classifier for inductive in-
ference. Decision trees are trained on examples comprised of a finite number of
predicting attributes with class labels and a learned model is established based
on tests on these attributes. This learning mechanism approximates discrete val-
ued functions as the target attribute. The type of training examples applicable
to decision trees are diverse, and could range from the consumer credit records
to medical diagnostics.

Decision trees typically produce crisp classifications, that is the leaves carry
decisions for individual classes. However, that is not sufficient for various ap-
plications. One can require a score output from a supervised learning method
to rank order the instances. For instance, consider the classification of pixels in
mammogram images as possibly cancerous [WDB+93]. A typical mammography
dataset might contain 98% normal pixels and 2% abnormal pixels. A simple de-
fault strategy of guessing the majority class would give a predictive accuracy
of 98%. Ideally, a fairly high rate of correct cancerous predictions is required,
while allowing for a small to moderate error rate in the majority class. It is more
costly to predict a cancerous case as non-cancerous, than otherwise. Thus, a
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probabilistic estimate or ranking of cancerous cases can be decisive for the prac-
titioner. The cost of further tests can be decreased by thresholding the patients
at a particular rank. Secondly, probabilistic estimates can allow one to thresh-
old ranking for class membership at values < 0.5. Thus, the classes assigned at
the leaves of the decision trees have to be appropriately converted to reliable
probabilistic estimates. However, the leaf frequencies can require smoothing to
improve the “quality” of the estimates [PD03, PMM+94, SGF95, Bra97]. A clas-
sifier is considered to be well-calibrated if the predicted probability approaches
the empirical probability as the number of predictions goes to infinity [GF83].
The quality of probability estimates, resulting from decision trees, has not been
measured as is proposed in the PASCAL Challenge on Evaluating Predictive
Uncertainty.

In this Chapter, we report on our experience in the NIPS 2004 Evaluating
Predictive Uncertainty Challenge [QC05].

2 Probabilistic Decision Trees with C4.5

A decision tree is essentially in a disjunctive-conjunctive form, wherein each path
is a conjunction of the attributes-values and the tree by itself is a disjunction of
all these conjunctions. An instance arriving at the root node, takes the branch
it matches based on the attribute-value test and moves down the tree following
that branch. This continues until a path is established to a leaf node, providing
the classification of the instance. If the target attribute is true for the instance,
it is called a “true example”; otherwise it is called a ’negative example’. The
decision tree learning aims to make “pure” leaves, that is leaves in which all the
examples belong to one particular class. This growing procedure of the decision
tree becomes its potential weakness for constructing probability estimates.

The leaf estimates, which are a natural calculation from the frequencies at the
leaves, can be systematically skewed towards 0 and 1, as the leaves are essentially
dominated by one class. For notational purposes, let us consider the confusion
matrix given in Figure 1. TP is the number of true positives at the leaf, FP
is the number of false positives, and C is the number of classes in the dataset.
Typically, the probabilistic (frequency-based) estimate at a decision tree leaf is:

P (c|x) = TP/(TP + FP ) (1)

However, simply using the frequency derived from the correct counts of classes
at a leaf might not give sound probabilistic estimates [PD03, ZE01]. A small leaf
can potentially give optimistic estimates for classification purposes. For instance,
the frequency based estimate will give the same weights to leaves with the fol-
lowing (TP, FP ) distributions: (5, 0) and (50, 0). The relative coverage of the
leaves and the original class distribution is not taken into consideration. Given
the evidence, a probabilistic estimate of 1 for the (5, 0) leaf is not very sound.
Smoothing the frequency-based estimates can mitigate the aforementioned prob-
lem [PD03].
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Fig. 1. Confusion matrix

Aiming to perfectly classify the given set of training examples, a decision tree
may overfit the training set. Overfitting is typically circumvented by deploying
various pruning methodologies. Pruning involves evaluating every node of the
decision tree and the subtree it may root, as a potential candidate for removal.
A node is converted into a leaf node by assigning the most common classification
associated at that node. But pruning deploys methods that typically maximize
accuracies. Pruning is equivalent to coalescing different decision regions obtained
by thresholding at feature values. This can result in coarser probability estimates
at the leaves. While pruning improves the decision tree generalization, it can give
poorer estimates as all the examples belonging to a decision tree leaves are given
the same estimate. We used C4.5 decision trees for our experiments [Qui92].

2.1 Improving Probabilistic Estimates at Leaves

One way of improving the probability estimates given by an unpruned decision
tree is to smooth them to make them less extreme. One can smooth these esti-
mated probabilities by using the Laplace estimate [PD03], which can be written
as follows:

P (c|x)Laplace = (TP + 1)/(TP + FP + C) (2)

Laplace estimate introduces a prior probability of 1/C for each class. Again
considering the two pathological cases of TP = 5 and TP = 50, the Laplace
estimates are 0.86 and 0.98, respectively, which are more reliable given the evi-
dence.

However, Laplace estimates might not be very appropriate for highly imbal-
anced datasets [ZE01]. In that scenario, it could be useful to incorporate the prior
of positive class to smooth the probabilities so that the estimates are shifted to-
wards the minority class base rate (b). The m-estimate [Cus93] can be used as
follows [ZE01]:

P (c|x)m = (TP + bm)/(TP + FP + m) (3)

where b is the base rate or the prior of positive class, and m is the parameter
for controlling the shift towards b. Zadrozny and Elkan (2001) suggest using m,
given b, such that bm = 10.
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However, these smoothing estimates also cannot completely mitigate the effect
of overfit and overgrown trees. We use ensemble methods to further “smooth” out
the probability estimates at the leaves. Each leaf will potentially have a different
P (c|x) due to different training set composition. Averaging these estimates will
improve the quality of the estimates, as it overcomes the bias introduced by the
systematic error caused by having axis-parallel splits. The overfitting will also
be countered as the variance component will be reduced by voting or averaging.

3 Ensemble Methods

“To solve really hard problems, we’ll have to use several different rep-
resentations..... It is time to stop arguing over which type of pattern-
classification technique is best..... Instead we should work at a higher
level of organization and discover how to build managerial systems to
exploit the different virtues and evade the different limitations of each
of these ways of comparing things. [Min91]”

3.1 Random Subspaces

The random subspace method, introduced by Ho [Ho98], randomly selects dif-
ferent feature dimensions and constructs multiple smaller subsets. A classifier is
then constructed on each of those subsets, and a combination rule is applied in
the end for prediction on the testing set. For each random subspace a decision
tree classifier is constructed. The random subspaces are particularly useful when
there is a high redundancy in the feature space and for sparse datasets with
small sample sizes.

The feature vector, where m is the number of features, can be represented as
X = (x1, x2, ..., xm−1). Then, multiple random subspaces of size m× p are se-
lected, k times, where p is the size of the randomly selected subspace,
Xk

p {(x1, x2, ..., xp)|p < (m− 1)}.
The hyperplanes constructed for each tree will be different, as each tree is

essentially constructed from a randomly selected subset of features. The classifi-
cation can either be done by taking the most popular class attached to the test
example or by aggregating the probability estimate computed from each of the
subspaces. Each tree has a different representation of the training set (different
P (x|c)), thus resulting in a different function for P (c|x) at each leaf. The classi-
fication assigned by the individual decision trees is effectively invariant for test
examples that are different from the training examples in the unselected dimen-
sions. The random subspaces are similar to the uncertainty analyses framework
that simulates the distribution of an objective by sampling from the distribution
of model inputs, and re-evaluating the objective for each selected set of model
inputs.

We let the trees grow fully to get precise estimates, as the averaging would
then reduce the overall variance in the estimates. Let Lj(x) indicate the leaf that
an example x falls into; let P (c|Lj(x)) indicate the probability that an example
x belongs to class c at leaf Lj; let the number of trees in the ensemble be K.
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P (̂c|Lj(x)) =
P (c, Lj(x))∑nc

k=1 P (ck, Lj(x))
(4)

gc(x) =
1
K

K∑
i=1

P (̂c|Lj(x)) (5)

gc(x) averages over probabilities conditioned on reaching a particular leaf (L).
Each leaf is, in essence, defining its own region of probability distribution. Since,
the trees are constructed from random subspaces, the regions can be of different
shapes and sizes.

The random subspace method can be outlined as follows:

1. For each k=1,2,..K
(a) Select a p dimensional random subspace, Xk

p , from X .
(b) Construct the decision classifier, Ck

p using C4.5.
(c) Smooth the leaf frequencies by Laplace or m-estimate.

2. Aggregate the probability estimates by each of the Ck classifiers. Output
gc(x).

The individual classifiers can be weaker than the aggregate or even the global
classifier. Moreover, the subspaces are sampled independently of each other. An
aggregation of the same can lead to a reduction in the variance component of the
error term, thereby reducing the overall error [DB98, Bre96]. There is a popular
argument that diversity among the weak classifiers in an ensemble contributes to
the success of the ensemble [KW03, Die00]. Classifiers are considered diverse if
they disagree on the kind of errors they make. Diversity is an important aspect
of the ensemble techniques — bagging, boosting, and randomization [Die00].
Diversity, thus, is a property of a group of classifiers. The classifiers might be
reporting similar accuracies, but be disagreeing on their errors. One can, for
example, construct a correlation measure among the rank-orders provided by
each of the individual classifiers to get an estimate of diversity. In addition,
the random subspace technique also counters the sparsity in the data, as the
subspace dimensionality gets smaller but the training set size remains the same.

3.2 Bagging

Bagging, [Bre96], has been shown to improve classifier accuracy. Bagging ba-
sically aggregates predictions (by voting or averaging) from classifiers learned
on multiple bootstraps of data. According to Breiman, bagging exploits the in-
stability in the classifiers [Qui96], since perturbing the training set can produce
different classifiers using the same learning algorithm, where the difference is in
the resulting predictions on the testing set and the structure of the classifier. For
instance, the decision trees learned from bootstraps of data will not only have
different representations but can also have disagreements in their predictions.
It is desired that the classifiers disagree or be diverse as the averaging or vot-
ing their predictions will lead ot a reduction in variance resulting in improved
performance.
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[Dom97] empirically tested two alternative theories supporting bagging: (1)
bagging works because it approximates Bayesian model averaging or (2) it works
because it shifts the priors to a more appropriate region in the decision space. The
empirical results showed that bagging worked possibly because it counter-acts
the inherent simplicity bias of the decision trees. That is, with M different bags,
M different classifiers are learned, and together their output is more complex
than that of the single learner. Bagging has been shown to aid improvement in
the probability estimates [PD03, BK99]. The bagging procedure can be outlined
as follows:

1. For each k=1,2,..K
(a) Randomly select with replacement 100% of the examples from the train-

ing set X , to form a subsample Xk.
(b) Construct a decision tree classifier, Ck, from Xk.
(c) Smooth the leaf frequencies for each of the Ck classifiers by Laplace or

m-estimate.
2. Aggregate the probability estimates by each of the Ck classifiers. Output

gc(x).

4 Challenge Entry

The characteristics of the datasets prompted us to look at different stages of
modeling. The high dimensionality introduced the sparsity in the feature space.
Thus, we wanted to have feature selection as the first stage. As we will see
in the subsequent sections, feature selection significantly reduced the number
of relevant features to be used for modeling. Moreover, feature selection also
curtailed the data sparsity issue. For feature selection we used information gain
using entropy based discretization [FK93]. We then selected all the features with
information gain greater than 0. We then generated ensembles with bagging and
random subspaces using probabilistic decision trees as the base classifiers. Thus,
our challenge entry comprised of the following steps. Note that our final best
submission was with random subspaces.

1. Feature Selection
2. C4.5 Decision Trees

– Fully grown and Laplace correction at the leaves
3. Ensembles

– Random subspaces
– Bagging

Challenge Datasets. The following classification datasets were provided for the
Challenge.

1. Catalysis has 617 features and 1,173 examples in the final training set. The
testing set has 300 examples.

2. Gatineau has 1,092 features and 5,176 examples in the final training set. It
is a highly unbalanced dataset with the positive class comprising only 8.67%
of the entire dataset. The testing set has 3000 examples.
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4.1 Feature Selection Results

As we mentioned, our first step with both the datasets involved feature selection.
We noted in our validation study that feature selection significantly improved the
performance. Moreover, feature selection was particularly amenable for random
subspaces as the feature relevance was now (approximately) uniformly spread.
We, thus, selected the following number of features for both the datasets:

– 312 features for catalysis. Thus, almost 50% reduction in the total number
of features. Figure 2 shows the information gain of the selected features for
the catalysis dataset. There are not very high ranking features. The average
information gain is 0.029 with a standard deviation of 0.0120.
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Fig. 2. Information Gain of the selected features for the catalysis dataset
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Fig. 3. Information Gain of the selected features for the gatineau dataset
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– 131 features for gatineau. Thus, only 11% of the total number of features
was retained. Figure 3 shows the information gain of the selected features
for the gatineau dataset. The information gain of features is even lower for
the gatineau dataset. The average information gain is 0.0061 and standard
deviation is 0.0034.

4.2 Ensembles

After feature selection, we implemented random subspaces by setting p = 50
and p = 25 for catalysis and gatineau, respectively. We used K = 30 decision
tree classifiers for both the datasets. We also learned 30 bags each for both the
datasets. However, bagging did not improve the performance as much as the ran-
dom subspaces. We attribute that to the sparsity of the dataset. Tables 1 and 2
show the final results of our entries. It is evident from the Tables that feature
selection formed an important element of our entry.

Figures 4 and 5 show the probability distributions achieved after applying the
ensemble methods. It is evident from the Figures that the ensemble methods
improved the probability mass, and overcame the limitations of skewed proba-
bility estimates from the decision tree leaves. The ensembles successfully over-
came the bias and variance limitations associated with the decision tree leaves
estimates. As expected, the gatineau dataset shows an interesting trend with
Laplace smoothing. Gatineau is highly imbalanced, thus the Laplace estimate,
which is trying to correct the probability estimate by adding 1

C is still being bi-
ased towards the minority class. Thus, there is no significant difference between
the probability estimates from leaf frequencies and the ones generated from from
applying Laplace smoothing. However, the ensembles improve the quality of the

Table 1. Challenge Results for the Catalysis dataset. FS: Feature Selection; RS: Ran-
dom Subspaces. This entry was ranked Fourth at the time of Challenge termination in
December, 2004.

Method NLP OIL LIFT
FS + RS 2.41e-1 2.714e-1 2.371e-1

RS 2.485e-1 2.843e-1 2.534e-1
FS + Bagging 2.49e-1 3e-1 2.565e-1

Bagging 2.51e-1 2.971e-1 2.649e-1

Table 2. Challenge Results for the Gatineau dataset. FS: Feature Selection; RS: Ran-
dom Subspaces. This entry was ranked First at the time of Challenge termination in
December, 2004.

Method NLP OIL LIFT
FS + RS 1.192e-1 8.7e-2 7.408e-1

RS 1.228e-1 8.7e-2 7.555e-1
FS + Bagging 1.193e-1 8.867e-2 7.311e-1

Bagging 1.229e-1 8.7e-2 7.506e-1
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Fig. 4. a) Probability Distribution using the leaf frequencies as estimates. b) Proba-
bility distribution by smooting leaf frequencies using Laplace estimates. c) Probability
Distribution using random subspaces as ensemble methods. The probabilities are gc(x)
that are averaged from the smoothed leaf estimates.

Table 3. Post-Challenge Entry. These are our best results so far.

Dataset Method NLP OIL LIFT
Catalysis FS + RS 2.4076e-1 2.7e-1 2.2874e-1
Gatineau FS + RS 1.2475e-1 0.87e-1 7.4835e-1

estimates. Then, we applied m-estimate smoothing by setting the base rate to
compensate for the high class imbalance. As one can see, the resulting probability
estimates follow a much better distribution.

As the Post-challenge participation, we increased the ensemble size and im-
plemented m − estimate for smoothing the decision tree leaves. This further
improved our performance on the gatineau dataset, while maintaining similar
performance (marginally better) on the catalysis dataset. Table 3 contains those
results.
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Fig. 5. a) Probability distribution using the leaf frequencies as estimates. b) Proba-
bility distribution by smooting leaf frequencies using Laplace estimates. c) Probability
distribution using random subspaces as ensemble methods. The probabilities are gc(x)
that are averaged from the smoothed leaf estimates. d) Probability Distribution using
random subspaces as ensemble methods. The probabilities are gc(x) that are averaged
from the m-estimate smoothed leaf probability estimates.

5 Experiments with Imbalanced Datasets

A dataset is imbalanced if the classes are not approximately equally represented
[CHKK02, JS02]. There have been attempts to deal with imbalanced datasets in
domains such as fraudulent telephone calls [FP96], telecommunications manage-
ment [ESN96], text classification [LR94, DPHS98, MG99, Coh95] and detection
of oil spills in satellite images [KHM98].

Distribution/cost sensitive applications can require a ranking or a probabilis-
tic estimate of the instances. For instance, revisiting our mammography data
example, a probabilistic estimate or ranking of cancerous cases can be decisive
for the practitioner. The cost of further tests can be decreased by thresholding
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Table 4. Dataset distribution

Dataset Majority Class Minority Class
Satimage 5809 626

Mammography 10923 260
Oil 896 41
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Fig. 6. a) NLP as the ensemble size varies for the Satimage dataset. b) NLP as the
ensemble size varies for the Mammography dataset. c) NLP as the ensemble size varies
for the Oil dataset.

the patients at a particular rank. Secondly, probabilistic estimates can allow one
to threshold ranking for class membership at values < 0.5. Hence, the classes
assigned at the leaves of the decision trees have to be appropriately converted
to probabilistic estimates [PD03]. This brings us to another question: What is
the right probabilistic estimate for imbalanced datasets?

We added the following three imbalanced datasets to our study for empirically
evaluating the effect of the smoothing parameters and ensembles. These datasets
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Fig. 7. a) AUC as the ensemble size varies for the Satimage dataset. b) AUC as the
ensemble size varies for the Mammography dataset. c) AUC as the ensemble size varies
for the Oil dataset.

vary extensively in their size and class proportions, thus offering different. Table 4
shows the class distribution.

1. The Satimage dataset [BM98] has 6 classes originally. We chose the smallest
class as the minority class and collapsed the rest of the classes into one as was
done in [PFK98]. This gave us a skewed 2-class dataset, with 5809 majority
class samples and 626 minority class samples.

2. The Oil dataset was provided by Robert Holte [KHM98]. This dataset has
41 oil slick samples and 896 non-oil slick samples.

3. The Mammography dataset [WDB+93] has 11,183 samples with 260 calci-
fications. If we look at predictive accuracy as a measure of goodness of the
classifier for this case, the default accuracy would be 97.68% when every
sample is labeled non-calcification. But, it is desirable for the classifier to
predict most of the calcifications correctly.

We report the same NLP loss estimate as used in the Challenge. In addition,
we also report the Area Under the ROC Curve. The purpose of the AUC is to see
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if ranking of the exemplars is affected by improving the quality of the probability
estimates. Figure 6 shows the trend of NLP as the ensemble size varies. The
single tree estimates are much weaker when no smoothing is applied, as one
might expect. This is particularly more critical for the imbalanced datasets,
when the positive class is more relevant. However, the ensembles are sufficient
in overcoming the bias and variance at the leaves without using the Laplace
estimate. The same trend is observed for all the three imbalanced datasets.

Figure 7 shows the AUC’s for the three datasets. Again, the single tree AUC
using leaf frequencies as the probability estimates is very low, which is also af-
firmed by the high NLP. And the AUC’s significantly improve with ensembles
and Laplace smoothing. This results show that there is a relationship between
the AUC’s and the quality of the probability estimates as established by the
NLP. Improving the quality of the estimates not only provides a better spread
of probabilities but also improves the ranking of exemplars, thus impacting
the AUC.

6 Summary

We summarized our entry for the NIPS 2004 Evaluating Predictive Uncertainty
Challenge. We show that ensembles of decision trees, particularly random sub-
spaces, can generate good probability estimates by smoothing over the leaf fre-
quencies. The ensembles overcome the bias and variance arising from the homo-
geneous and small decision tree leaves. We show that decision trees are a viable
strategy for probability estimates and rank among the best methods reported in
the challenge. The ensembles are able to overcome the bias in estimates arising
from the axis-parallel splits of decision trees, resulting in smoother estimates.
We also saw that the prior smoothing at the leaves using Laplace estimate did
not offer much gain with ensembles. However, Laplace smoothing did provide
significant improvements over just using leaf frequencies.

We also added three highly imbalanced datasets to our study. We show that
the rank-order of the exemplars and the resulting AUC is related to the quality
of the probability estimates. For most of the applications requiring imbalanced
datasets, the resulting rank-order of examples or P (Xp > Xn) can be very im-
portant, where Xp is the positive class example. Thus, having reliable probability
estimates is important for an improved rank-ordering.

As a part of ongoing work, we are investigating evolutionary techniques to
carefully prune away members of the ensemble that don’t contribute to the
qualaity of the final probability estimation [SC05]. It is important for the classi-
fiers in an ensemble to assist each other and cancel out their errors, resulting in
higher accuracy. If all the classifiers are in complete agreement, then the averag-
ing will not result in any changes in the probability estimates (each estimate will
be the same). Thus, we would like to identify the more “collaborative” members
of the ensemble, and assign higher weights to their predictions. We can, for ex-
ample, select those classifiers from the ensemble that particularly optimize on
the NLP loss function.
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Abstract. In many regression tasks, in addition to an accurate estimate
of the conditional mean of the target distribution, an indication of the
predictive uncertainty is also required. There are two principal sources
of this uncertainty: the noise process contaminating the data and the
uncertainty in estimating the model parameters based on a limited sam-
ple of training data. Both of them can be summarised in the predictive
variance which can then be used to give confidence intervals. In this pa-
per, we present various schemes for providing predictive variances for
kernel ridge regression, especially in the case of a heteroscedastic regres-
sion, where the variance of the noise process contaminating the data is
a smooth function of the explanatory variables. The use of leave-one-out
cross-validation is shown to eliminate the bias inherent in estimates of
the predictive variance. Results obtained on all three regression tasks
comprising the predictive uncertainty challenge demonstrate the value
of this approach.

1 Introduction

The standard framework for regression is the following: Given a training set

D = {(xi, yi)}�i=1 , xi ∈ X ⊂ R
d, yi ∈ R, (1)

the goal is to infer a function μ(x) which predicts the best value (in the least
squares sense) of the target function on any test point x. However, in some
situations, it is also useful to know the confidence of this prediction. For this
reason, we also want to infer a function σ(x) corresponding to the uncertainty
of our prediction. For instance, the result of our prediction could be a statement
of the form: “with 95% confidence, I think that the target associated with point
x is in the interval [μ(x) − 2σ(x), μ(x) + 2σ(x)]”. It is important to note that
this uncertainty comes from two independent components:

1. The noise in the data
2. The uncertainty in the estimation of the target function
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Typically, the first contribution is preponderant when there are a lot of training
data, while the second one becomes more important when they are few training
data. Let us illustrate this by two extreme examples. First, imagine that X = x0
and P (y|x0) is normally distributed with mean 0 and variance σ. After seeing
� examples, the empirical mean is near from the true target (0 in this case and
the distance is of the order σ√

�
). Thus, when � is large, we can predict the target

value very accurately (i.e. the conditional mean), but because of the noise, we
are not so sure about the target associated with an unseen test point. Another
extreme example is the following: suppose that we know that there is no noise in
the data, but that we are given a test point which is infinitely far away from the
other training samples. Then, we are just completely unsure of the conditional
mean. In summary, one can say that the uncertainty of the prediction is the sum
of two terms:

Uncertainty in the conditional mean + estimated noise level.

In this paper, we will try to estimate this uncertainty directly, by considering
that the goal is to infer a function from X to R×R

+, x �→ (μ(x), σ(x)) where
the loss associated to a test point (x, y) is

log σ2(x) +
[μ(x)− y]2

σ2(x)
. (2)

Let us now be more precise by giving the definitions of the following quantities:

Conditional mean. This is true mean Ey|xy where the expectation is taken
with respect to the true data generating process.

Predictive mean. We define this quantity as μ(x), the first output of the
function being inferred. This is an estimate of the conditional mean given a
training set.

Conditional variance. We do not define it as the true noise level but in asso-
ciation with a predictive mean as

Ey|x(y − μ(x))2 = (Ey|xy − μ(x))2 + Ey|x(y − Ey|xy)2.

Predictive variance. Similarly to the predictive mean, this is defined as σ2(x),
the square of the second output argument of the inferred function.

At this point, we would like to make the following remarks:

– The reason for considering the loss (2) is that it is (up to a constant) the
negative log probability of a test point under the Gaussian predictive distri-
bution with mean μ(x) and variance σ2(x), as used in [1].

– From the above definitions, the best predictive mean and variance for the
loss (2) are the conditional mean and variance.

– The loss might seem arbitrary and from a decision theory point of view,
one should consider the loss associated with the action taken based on the
prediction (μ(x), σ(x)). However, this still seems a reasonable “generic” loss.
More generally, it is worth noting that a loss function is always necessary
whenever a prediction is required.
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– Instead of computing a predictive mean and variance, one could compute a
predictive distribution (and the loss would be negative log predictive prob-
ability). But estimating a function instead of two real numbers is a more
complicated inference problem and for the sake of simplicity, we do not con-
sider it here. Note that in binary classification, the problem is much simpler
as there is only real number to estimate, P (y = 1|x).

The algorithm we propose in this paper alternates between updates of the
predictive mean and of the predictive variance. For fixed σ, the predictive mean
μ is modelled using an heteroscedastic kernel ridge regression algorithm. Het-
eroscedastic here just means that the error on a given training point xi is
weighted by σ−2(xi) (cf equation (2)). For fixed μ, a regression is performed
on log σ in order to minimise (2). Again a regularised kernel regression algo-
rithm is used for this purpose. Note that for learning the conditional variance,
one should not use the same set of training points as the one used to learn
the conditional mean since (μ(xi) − yi)2 is not an unbiased estimator of the
conditional variance at xi if this point has been used to learn μ. Instead of a
considering a “fresh” training set, we will use the leave-one-out procedure.

The basic algorithm that we use is Kernel Ridge Regression [2]. Considering
the strong link of this algorithm with Gaussian Processes [3], the reader might
wonder why we do not use this latter to estimate the predictive variances. The
two reasons for this are:

1. We consider the more general case of heteroscedastic noise (i.e. whose vari-
ance depends on the input location).

2. We aim at showing that predictive variances can be calculated in a non
Bayesian framework. However, we do not pretend that this approach is su-
perior to the Bayesian approach. One of our main motivation is to answer
the usual Bayesian criticism that standard non Bayesian methods do not
provide predictive variances.

2 Kernel Ridge Regression

Kernel ridge regression (KRR) [2], or equivalently the least-squares support vec-
tor machine (LS-SVM) [4] provides perhaps the most basic form of kernel learn-
ing method. Given labelled training data (1), the kernel ridge regression method
constructs a linear model μ(x) = w · φ(x) + b in a fixed feature space F given
by a fixed transformation of the input space, φ(x) : X → F . However, rather
than specifying F directly, it is induced by a positive-definite kernel function [5]
K : X × X → R, which defines the inner product between vectors evaluated in
F , i.e. K(x, x′) = φ(x) ·φ(x′). Kernel functions typically used in kernel learning
methods include the spherical or isotropic Gaussian radial basis function (RBF)
kernel,

K(x, x′) = exp
{
−κ‖x− x′‖2

}
(3)

where κ is a kernel parameter, controlling the locality of the kernel, and the
anisotropic Gaussian RBF kernel,
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K(x, x′) = exp

{
−

d∑
i=1

κi [xi − x′
i]

2

}
(4)

which includes separate scale parameters, κ = (κ1, κ2, . . . , κd), for each input
dimension. The “kernel trick” allows us to create powerful linear models in high,
or even infinite-dimensional feature spaces, using only finite dimensional quanti-
ties, such as the kernel or Gram matrix, K = [kij = K(xi, xj)]

�
i,j=1 (for a more

detailed introduction to kernel learning methods, see [6, 7]). The kernel ridge
regression method assumes that the data represent realisations of the output of
some deterministic process that have been corrupted by additive Gaussian noise
with zero mean and fixed variance, i.e.

yi = μ(xi) + εi, where εi ∼ N (0, σ2), ∀ i ∈ {1, 2, . . . , �}.

As in conventional linear ridge regression [8], the optimal model parameters
(w, b) are determined by minimising a regularised loss function representing the
penalised negative log-likelihood of the data,

1
2
γ||w||2 +

�∑
i=1

[μ(xi)− yi]
2 .

The parameter γ can either be interpreted as a regularisation parameter or as
an inverse noise variance. As shown in a more general setting in Section 3, the
optimal w can be expressed as w =

∑�
i=1 αiφ(xi), where α is found by solving

the following linear system,[
K + γI 1

1� 0

] [
α
b

] [
y
0

]
.

2.1 A Simple Model for Heteroscedastic Data

The kernel ridge regression model assumes the target data represent realisations
of a deterministic system that have been corrupted by a Gaussian noise process
with zero mean and constant (homoscedastic) variance. This is unrealistic in
some practical applications, where the variance of the noise process is likely
to be dependent in some way on the explanatory variables. For example, in
environmental applications, the variability in the intensity of sunlight reaching
ground level is more variable in Spring, Summer and Autumn as, at least in the
United Kingdom, the Winter sky is predominantly overcast. A less restrictive
approach is based on the assumption of a heteroscedastic, where the variance
of the Gaussian noise is made a function of the explanatory variables. It is
well known that for a model trained to minimise the squared error, the output
approximates the conditional mean of the target data. Therefore, if we then train
a second kernel ridge regression model to predict the squared residuals of the
first, the output of the second model will be an estimate of the conditional mean
of the squared residuals, i.e. the conditional variance of the target distribution.
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This method was suggested in the case of multi-layer perceptron networks (see
e.g. [9]) by Satchwell [10] and applied to the problem of automotive engine
calibration by Lowe and Zapart [11].

There are two problems with this method: the first one is that the squared
residual is not an estimate of the conditional variance. Indeed, imagine that
some over-fitting occurred while modelling the conditional mean: the squared
residuals can then be very small not reflecting the true conditional variance.
The second problem is that while modelling the conditional mean, the amount
of regularisation is the same over all the space, while intuitively, one would like to
regularise more in noisy regions. The first problem will be addressed in section 5
and the second one in the following section.

3 Heteroscedastic Kernel Ridge Regression

A more natural method of modelling heteroscedastic data fits the models of
the predictive mean and predictive variance, or equivalently the predictive stan-
dard deviation, simultaneously, using a likelihood function corresponding to a
Gaussian noise process with data-dependant variance, i.e.

p(D|w) =
�∏

i=1

1√
2πσ(xi)

exp

{
− [μ(xi)− yi]

2

2σ2(xi)

}

where w represents the parameters of the combined model. A linear model of
the conditional mean, μ(x) = wμ · φμ(x) + bμ is then constructed in a feature
space Fμ corresponding to a positive definite kernel Kμ(x, x′) = φμ(x) ·φμ(x′).
Similarly, the standard deviation being a strictly positive quantity, a linear
model of the logarithm of the predictive standard deviation, log σ(x) = wσ ·
φσ(x) + bσ is constructed in a second feature space, Fσ, induced by a second
positive-definite kernel Kσ(x, x′) = φσ(x) · φσ(x′). The optimal model param-
eters, (wμ, bμ.wσ, bσ), are determined by minimising a penalised negative log-
likelihood objective function,

L =
1
2
γμ‖wμ‖2 +

1
2
γσ‖wσ‖2 +

1
2

�∑
i=1

{
log σ(xi) +

[μ(xi)− yi]2

2σ2(xi)

}
, (5)

with regularisation parameters, γμ and γσ, providing individual control over the
complexities of the models of the predictive mean and standard deviation respec-
tively (c.f. [12, 13]). Note that (5) is the regularised objective function associated
with the loss (2). The use of a heteroscedastic loss leads to an important interac-
tion between the data misfit and regularisation terms comprising the objective
function : The squared error term is now weighted according to the estimated
local variance of the data. As a result, the influence of the regularisation term
is now increased in areas of high predictive variance. This is in agreement with
our intuition that more flexible models are more easily justified where ampli-
tude of the noise contaminating the data is low and meaningful variations in



Estimating Predictive Variances with Kernel Ridge Regression 61

the underlying deterministic system we hope to model are obscured to a lesser
degree. The log σ(xi) term penalises unduly high predictive standard deviations.
It should be noted that it is possible for the negative log-likelihood term in (5) to
go to minus infinity if the predictive variance goes to zero and μ(xi) = yi. One
could circumvent this problem by adopting a suitable prior on bσ, to indicate
that we do not believe in very small predictive variances. However, this might
not be enough and a more principled solution is presented in section 5. From a
theoretical point of view, it is known that the ERM principle is consistent [14],
so it might seem surprising that the minimiser of (5) would not yield functions
giving a good test error (2), as the number of points goes to infinity. The reason
why ERM could fail here is that the loss is unbounded and thus the convergence
results about ERM do not apply.

A straight-forward extension of the representer theorem [15, 16, 17] indicates
that the minimiser of this objective function can be expressed in the form of a
pair of kernel expansions: For the model of the predictive mean,

wμ =
�∑

i=1

αμ
i φμ(xi) =⇒ μ(x) =

�∑
i=1

αμ
i Kμ(xi, x) + bμ,

and similarly for the model of the predictive standard deviation,

wσ =
�∑

i=1

ασ
i φσ(xi) =⇒ log σ(x) =

�∑
i=1

ασ
i Kσ(xi, x) + bσ.

The resulting model is termed a heteroscedastic kernel ridge regression (HKRR)
machine [18, 17] (see also [19]). An efficient iterative training algorithm for this
model alternates between updates of the model of the predictive mean and up-
dates of the model of the predictive standard deviation.

3.1 Updating the Predictive Mean

Ignoring any terms in the objective function (5) that do not involve wμ or bμ, a
simplified cost function is obtained, which is used to update the parameters of
the model of the predictive mean, μ(xi),

Lμ =
1
2
γμ‖wμ‖2 +

1
2

�∑
i=1

λi [μ(xi)− yi]
2 (6)

where λ−1
i = 2σ2(xi). This is essentially equivalent to the cost function for a

weighted least-squares support vector machine (LS-SVM) [4]. Minimising (6) can
be recast in the form of a constrained optimisation problem,

min J =
1
2
‖w‖2 +

1
2γμ

�∑
i=1

λiε
2
i (7)

subject to
yi = wμ · φμ(xi) + bμ + εi, ∀ i ∈ {1, 2, . . . , �}, (8)
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The Lagrangian for this optimisation problem gives the unconstrained minimi-
sation problem,

L =
1
2
‖wμ‖2 +

1
2γμ

�∑
i=1

λiε
2
i −

�∑
i=1

αμ
k {w

μ · φμ(xi) + bμ + εi − yi} , (9)

where αμ = (αμ
1 , αμ

2 , . . . , αμ
� ) ∈ R

� is a vector of Lagrange multipliers.

∂L
∂wμ

= 0 =⇒ wμ =
�∑

i=1

αμ
i φμ(xi) (10)

∂L
∂bμ

= 0 =⇒
�∑

i=1

αμ
i = 0 (11)

∂L
∂εi

= 0 =⇒ αμ
i =

λiεi

γμ
, ∀i ∈ {1, 2, . . . , �} (12)

Using (10) and (12) to eliminate w and ε = (ε1, ε2, . . . , ε�), from (9), we find
that

�∑
j=1

αμ
j φμ(xj) · φμ(xi) + bμ +

γμαμ
i

λi
= yi ∀ i ∈ {1, 2, . . . , �} (13)

Noting that Kμ(x, x′) = φμ(x) · φμ(x′), the system of linear equations can be
written more concisely in matrix form as[

Kμ + γμZ 1
1T 0

] [
αμ

b

] [
y
0

]
,

where Kμ =
[
kμ

ij = Kμ(xi, xj)
]�
i,j=1

and Z = diag{λ−1
1 , λ−1

2 , . . . , λ−1
� }. The

parameters for the model of the predictive mean can then be obtained with a
computational complexity of O(�3) operations.

3.2 Updating the Predictive Standard Deviation

Similarly, neglecting terms in the objective function (5) that do not involve wσ or
bσ, a simplified cost function is obtained, which is used to update the parameters
of the model of the predictive standard deviation, σ(xi), dividing through by γσ,

Lσ =
1
2
‖wσ‖2 +

1
2γσ

�∑
i=1

[zi + ξi exp{−2zi}] , (14)

where ξi = 1
2 [μ(xi)− yi]

2 and zi = log σ(xi). The reason for this latter
re-parametrisation is that (14) yields an unbounded and convex optimisation
problem.

A closed form expression for the minimum of this objective function is not
apparent, and so it is minimised via an iteratively re-weighted least-squares
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(IRWLS) procedure [20], which is effectively equivalent to a Newton’s method.
Indeed, at each iteration, a quadratic approximation of the objective function
around the solution is performed and this quadratic approximation is minimised
analytically, yielding an updated solution. Consider the negative log-likelihood
for a single training pattern,

li = zi + ξi exp{−2zi},

with first and second derivatives, with respect to zi, given by

∂li
∂zi

= 1− 2ξi exp{−2zi} and
∂2li
∂z2

i

= 4ξi exp{−2zi}.

As we are interested only in minimising the negative log-likelihood, we substitute
a weighted least-squares criterion, providing a local approximation of li only up
to some arbitrary constant, C, i.e.

qi = βi[ηi − zi]2 ≈ li + C,

Clearly, we require the gradient and curvature of qi and li, with respect to zi, to
be identical, and therefore

∂2qi

∂z2
i

=
∂2li
∂z2

i

=⇒ βi = 2ξi exp{−2zi},

∂qi

∂zi
=

∂li
∂zi

=⇒ ηi = zi −
1

2βi
+

1
2
.

The original objective function (14) for the model of the predictive standard
deviation, can then be solved iteratively by alternating between updates of ασ

and bσ via a regularised weighted least-squares loss function,

L̃σ =
1
2
‖w‖2 +

1
2γσ

�∑
i=1

βi[ηi − zi]2, (15)

and updates of the weighting coefficients, β = (β1, β2, . . . , β�), and targets, η =
(η1, η2, . . . , η�), according to,

βi = 4ξi exp{−2zi} and ηi = zi −
2
βi

+
1
2
. (16)

The weighted least-squares problem (15) can also be solved via a system of
linear equations, with a computational complexity of O(�3) operations, using
the methods described in section 3.1.

4 Model Selection

While efficient optimisation algorithms exist for the optimisation problems defin-
ing the primary model parameters for kernel machines, generalisation perfor-
mance is also dependent on the values of a small set of hyper-parameters, in
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this case the regularisation and kernel parameters. The search for “good” values
of these hyper-parameters is an activity known as model selection. A common
model selection strategy seeks to minimise a cross-validation [21] estimate of
some appropriate performance statistic, such as the mean squared error or nega-
tive log-likelihood. The k-fold cross-validation procedure partitions the available
data into k disjoint subsets of approximately equal size. A series of k models are
then fitted, each using a different combination of k−1 subsets. The model selec-
tion criterion (2) is then evaluated for each model, in each case using the subset
of the data not used in fitting that model. The k-fold cross-validation estimate
of the model selection criterion is then taken to be the mean of the criterion
on the “test” data for each model. The most extreme form of cross-validation,
in which each partition consists of a single pattern, is known as leave-one-out
cross-validation [22].

5 Unbiased Estimation of the Predictive Variance

Maximum likelihood estimates of variance, whether homoscedastic or
heteroscedastic are known to be biased. If over-fitting is present in the model
of the predictive mean, then the apparent variance of training data is reduced
as the model attempts to “explain” the realisation of the random noise process
corrupting the data to some degree. This will cause any estimate of the con-
ditional variance based on the predictive mean to be unrealistically low. For
this reason, the conditional variance should be estimated using training sam-
ples which have not been used to estimate the conditional mean. In this study,
we use instead a leave-one-out cross-validation estimate for the predictive vari-
ance. As a result, the model of the predictive variance is effectively fitted on
data that has not been used to fit the model of the predictive mean, where
in principle no over-fitting can have occurred and so the bias in the predictive
variance is eliminated. This approach is equally valid for estimating the con-
stant variance of a conventional kernel ridge regression model, for estimates of
predictive variance made by a second kernel ridge regression model, or for the
joint model of predictive mean and variance implemented by the heteroscedas-
tic kernel ridge regression model. Fortunately, this approach is computationally
feasible, as leave-one-out cross-validation can be performed efficiently in closed
form for kernel learning methods minimising a (weighted) least-squares cost
function [23].

5.1 Efficient Leave-One-Out Cross-Validation of Kernel Models

Consider a linear regression model ŷ(x) = w ·φ(x) + b constructed in a feature
space induced by a positive definite kernel, where the parameters (w, b) are given
by the minimiser of a regularised weighted least-squares objective function,

L =
�∑

i=1

λi [yi −w · φ(xi)− b]2 + γ‖w‖2.
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The parameters of the resulting kernel expansion, ŷ(x) =
∑�

i=1 αiK(xi, x) + b,
are given by the solution of a system of linear equations,[

K + γΛ 1
1T 0

] [
α
b

]
=
[
y
0

]
where Λ = diag

{
λ−1

1 , λ−1
2 , . . . , λ−1

�

}
. Let H represent the “hat” matrix, which

maps the targets onto the model outputs, i.e. ŷ = Hy, such that

H = [hij ]
�
i,j=1 = [K 1]

[
K + γΛ 1

1T 0

]−1

(17)

For the sake of notational convenience, let ŷj = ŷ(xj). During each iteration of
the leave-one-out cross-validation procedure, a regression model is fitted using
all but one of the available patterns. Let ŷ

(−i)
j represent the output of the model

for the jth pattern during the ith iteration of the leave-one-out procedure and
ŷ(−i) =

(
ŷ
(−i)
1 , ŷ

(−i)
2 , . . . , ŷ

(−i)
�

)
. Note that given any training set and the corre-

sponding learned model, if one adds a point in the training set with target equal
to the output predicted by the model, the model will not change since the cost
function will not be increased by this new point. Here, given the training set
with the point xi left out, the predicted output are by definition ŷ(−i) and they
will not change if the point xi is added with target ŷ

(−i)
i

ŷ(−i) = Hy∗, where y∗
j =

{
yj if j �= i

ŷ
(−i)
j if j = i

. (18)

Subtracting yi from both sides of the ith equation in the system of linear equa-
tions (18),

ŷ
(−i)
i − yi =

�∑
j=1

hijy
∗
j − yi

=
∑
j �=i

hijyj + hiiŷ
(−i)
i − yi

=
�∑

j=1

hijyj − yi + hii

{
ŷ
(−i)
i − yi

}
= ŷi − yi + hii

{
ŷ
(−i)
i − yi

}
This may be rearranged in order to obtain a closed form expression for the the
residual for the ith training pattern during the ith iteration of the leave-one-
out cross-validation procedure, e−i

i , in terms of the residual for a model trained
on the entire dataset for that pattern, ei, and the ith element of the principal
diagonal of the hat matrix, hii,

e
(−i)
i = yi − ŷ

(−i)
i =

yi − ŷi

1− hii
=

ei

1− hii
(19)

Note that the diagonal elements of the hat matrix lie in the range [0, 1], and
so the residuals under leave-one-out cross-validation can never be smaller in
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magnitude than the residuals for a model trained on the entire dataset. There-
fore any estimate of predictive variance based on leave-one-out cross-validation
will also be greater than the estimate based on the output of a model trained
on the entire dataset, thereby reducing, if not actually eliminating, the known
conservative bias in the latter. Another derivation of the leave-one-out error is
given in Appendix A.

5.2 Experimental Demonstration

In this section we use a synthetic regression problem, taken from Williams [13],
in which the true predictive standard deviation is known exactly, to demonstrate
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Fig. 1. Arithmetic mean of the estimate of the predictive mean and ± one standard de-
viation credible interval for (a) simple heteroscedastic kernel ridge regression (HKRR)
and (b) leave-one-out heteroscedastic kernel ridge regression (LOOHKRR) models for
a synthetic regression problem, (c) and (d) display the corresponding means of the
estimated predictive standard deviation for the HKRR and LOOHKRR models re-
spectively. All graphs show average results computed over 1000 randomly generated
datasets (see text for details).
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that the leave-one-out heteroscedastic kernel ridge regression (LOOHKRR)
model provides almost unbiased estimates of the predictive standard deviation.
The univariate input patterns, x, are drawn from a uniform distribution on the
interval (0, π); the corresponding targets, y, are drawn from a univariate Normal
distribution with mean and variance that vary smoothly with x:

x ∼ U(0, π), and y ∼ N
(

sin
{

5x

2

}
sin
{

3x

2

}
,

1
100

+
1
4

[
1− sin

{
5x

2

}]2)
.

Figure 1, parts (a) and (b), show the arithmetic mean of the predictive mean
and ± one standard deviation credible interval for simple and leave-one-out
heteroscedastic kernel ridge regression models respectively, over 1000 randomly
generated realisations of the dataset, of 64 patterns each. A radial basis function
kernel was used, with width parameter, κ = 2, for both the model of the predic-
tive mean and the model of the predictive standard deviation, the regularisation
parameters were set as follows: γμ = γσ = 1 (the hyper-parameters we delib-
erately chosen to allow some over-fitting in the model of the predictive mean).
In both cases the fitted mean is, on average, in good agreement with the true
mean. Figure 1, parts (c) and (d), show the arithmetic mean of the predictive
standard deviation for the simple and leave-one-out heteroscedastic kernel ridge
regression models. The simple heteroscedastic kernel ridge regression model, on
average, consistently under-estimates the conditional standard deviation, and so
the predicted credible intervals are optimistically narrow. The mean predictive
standard deviation for the leave-one-out heteroscedastic kernel ridge regression
model is very close to the true value. This suggests that the estimation of the
predictive standard deviation is essentially unbiased as the expected value is
approximately equal to the true value.

6 Gaussian Process Models

Gaussian Processes (GP) for regression [3] are powerful non parametric prob-
abilistic models. They makes use of a prior covariance matrix of the targets y
which has the form

Kij = a(K(xi, xj) + γδij),

where K is any kernel function (for instance, the one defined in equation (3)), a is
the amplitude parameter and γ is the noise to signal ratio parameter. Those pa-
rameters, as well as the hyper-parameters of the kernel are found by minimising
the negative log evidence

log det K + y�K−1y. (20)

Note that a can be found in closed form,

a =
y�K−1

a=1y

n
.
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The mean prediction is the same as in homoscedastic kernel ridge regression
(without bias),

μ(x) = k�(x)K−1y,

with k�(x) = a(K(x1, x), . . . ,K(xn, x)). The difference between kernel ridge
regression and Gaussian Processes is that GP give a natural estimation of the
predictive uncertainty as:

σ2(x) = aγ + aK(x, x)− k�(x)K−1k(x). (21)

Note that the first term is constant and is the estimated noise level. The sum
of the two others corresponds to the uncertainty in the mean prediction: for
instance, it is large when the test point is far away from the training data.

Let us compare the leave-one-out predictive variances given by our method
and by GP. For GP, if we let the point i out of the training set, its predictive
variance will be:

a(Kii −K�
ı̄i (Kı̄ı̄)−1Kı̄i) =

a

K−1
ii

=
y�K−1y

nK−1
ii

, (22)

where Kı̄̄ı is the matrix K with the i-th column and row removed. This is not
completely exact as one should recompute a once the point i is out of the training
set. But usually, values of hyper-parameters are not really affected by the leave-
one-out procedure. For our method, the leave-one-out error on the point i is
given by (

[K−1y]i
K−1

ii

)2

. (23)

We can see that the two expressions are similar, but the GP takes the data
less into account (the numerator is constant). This is not surprising, as in gen-
eral, Bayesian methods rely more on the prior and less on the data. This yields
near optimal predictions when the prior correctly reflects our knowledge of the
problem, but can be suboptimal when there is prior mismatch. We will illustrate
this point by the following toy problem. We want to model the step function on
[−1, 1], f(t) = 1 if t > 0, 0 otherwise. For this purpose, we used the Gaussian
kernel (3). Note that this kernel is not the best suited for this task because it
is smooth and stationary whereas the target function is not. The kernel width
κ and the ridge γ have been optimised by minimising the negative log evidence
(20). 100 points xi have been chosen uniformly spaced in the interval [−1, 1] and
the targets have been corrupted with a Gaussian noise of standard deviation 0.1.
The data and the mean prediction (which is the same for GP and kernel ridge
regression) are plotted in the left of figure 2.

Given a test point x and the mean prediction μ(x), the “optimal” predic-
tive variance (which we actually defined in the introduction as the conditional
variance) is obtained by minimising the loss (2) and is

σ2(x) = Ey|x(μ(x) − y)2 = (μ(x)− f(x))2 + noise variance,



Estimating Predictive Variances with Kernel Ridge Regression 69

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

GP
Optimal

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 2. Step function toy problem. Left: Training points and mean prediction. Right:
GP predictive variance and the “optimal” one (given the mean). Bottom: Leave-one-out
errors and the resulting predictive variance learned by the proposed method.

where f(x) is the (unknown) target function. In our toy problem, we know the
target function and the noise variance, so we can compute this optimal predictive
uncertainty, as shown in the right of figure 2. We can see that this “optimal”
predictive variance is very large around 0. This is because the mean prediction
is not very good in this region and ideally, the predictive variance needs to be
increased in regions where the mean prediction is far form the target function.
However, when the kernel function used by the GP is stationary and the points
are equally spaced, the predictive variance (21) given by the GP is almost con-
stant, as shown in the right of figure 2: in this case, it is unable to see that the
predictive variance should be increased around 0. The leave-one-out errors are
plotted as dots in the bottom of figure 2. The first observation is that the misfit
around 0 is well captured. However, the variance of the leave-one-out errors in
the flat regions is high. This is directly related to the noise in the targets. For in-
stance, it can happen that “by chance”, the leave-one-out error on a given point
is almost 0; but that does not mean that we are necessarily sure of the value of
the function at this point. That is the reason why we have to perform a regres-
sion for the predictive variance (cf section 3.2). For this toy problem, we took
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the same kernel and regularisation parameter as used for the mean prediction
and minimised (14), with ξi being the leave-one-out error on xi. The estimated
predicted variance is plotted at the bottom of figure 2. For this toy problem, the
average negative log likelihoods (2) computed on a large test set are: -3.17 for
the “optimal”, -2.93 for our method and -2.3 for the GP. We would like to point
out that in most real world examples, GP give reasonable predictive variances.
This toy problem is just an illustration of what can happen in the case of a
“prior mismatch” and how a non Bayesian method can overcome this difficulty.

As an aside, it is interesting to note that even if the leave-one-out predictive
variance (22) for GP and the leave-one-out error (23) can be quite different, their
average should be similar, as they are both estimate of the test error. On our
toy problem, they were respectively 0.0447 and 0.0459, while the test error was
0.0359. We can try to see this similarity from an analytical point of view. First
note that the gradient of (20) with respect to the ridge parameter should be 0,
yielding

trace K−1 =
1
a

∑
[K−1y]2i .

So the mean of (22) can be rewritten as

1
n

∑ 1
K−1

ii

∑
[K−1y]2i∑

K−1
ii

,

which is very similar to the mean of (23),

1
n

∑(
[K−1y]i

K−1
ii

)2

,

if the variance of the K−1
ii is small.

7 Results for Challenge Benchmark Datasets

In this section, we detail results obtained on the three non-linear regression
benchmark problems considered by the predictive uncertainty challenge, namely
gaze, stereopsis and Outaouais. The methods that we considered are the
following:

KRR. Conventional kernel ridge regression with fixed variance prediction based
on the training set MSE.

KRR + LOO. Conventional kernel ridge regression with fixed variance pre-
diction based on the leave-one-out estimate of the MSE.

KRR + KRR. Conventional kernel ridge regression with predictive variance
via kernel ridge regression on the residuals over the training set.

KRR + LOO + KRR. Conventional kernel ridge regression with predictive
variance via kernel ridge regression on the leave-one-out residuals.

HKRR. Heteroscedastic kernel ridge regression.
LOOHKRR. Heteroscedastic kernel ridge regression with unbiased estimation

of the predictive variance. This is the method described in this paper.
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7.1 Gaze

Table 1 shows the negative logarithm of the predictive density (NLPD) and
mean squared error (MSE) for various kernel ridge regression-based models
over training, validation and test partitions of the gaze benchmark dataset.
A visual inspection of the data revealed that columns 3 and 4 of the valida-
tion and test partitions contained a small number of outliers (large negative
values well outside the range of values observed in the training data). These
outliers were “repaired” via a simple missing data imputation procedure based
on linear regression. An isotropic Gaussian radial basis function kernels were
used throughout, with model selection based on minimisation of the the 10-
fold cross-validation estimate of the MSE (for standard kernel ridge regression
models) or NLPD (for the heteroscedastic kernel ridge regression models). The
use of leave-one-out cross-validation in fitting the model of the predictive vari-
ance also provides demonstrably better performance, with the KRR+LOO and
KRR+LOO+KRR outperforming the KRR, and KRR+KRR models respec-
tively. The very poor performance of the KRR+KRR model provides a graphic
example of the dangers associated with the unrealistically low estimates of pre-
dictive variance provided by existing approaches. In the case of the HKRR and
LOOHKRR models, the NLPD is lower for the HKRR model because it pro-
vides a better model of the conditional mean. It should be noted, however,
that the differences in test set NLPD between models, with the exception of
the KRR and KRR+KRR, are generally very small and unlikely to be really
meaningful.

Table 1. Performance of various models, based on kernel ridge regression, on the gaze
dataset, in terms of mean squared error (MSE) and negative log predictive density
(NLPD) over the training and validation partitions

Mean Train Set Valid Set Test Set Train Set Valid Set Test Set
description NLPD NLPD NLPD MSE MSE MSE

KRR 4.723 5.776 5.8172 0.01165 0.03654 0.04029
KRR+LOO 4.912 5.292 5.3077 0.01165 0.03653 0.04029
KRR+KRR 5.003 12.119 7.6011 0.01165 0.03653 0.04029

KRR+LOO+KRR 4.857 5.282 5.2951 0.01165 0.03653 0.04029
HKRR 5.119 5.248 5.2650 0.02574 0.03272 0.03607

LOOHKRR 4.881 5.305 5.3214 0.01159 0.03677 0.04051

7.2 Stereopsis

Table 2 shows the negative logarithm of the predictive density (NLPD) and
mean squared error (MSE) for various kernel ridge regression models over train-
ing, validation and test partitions of of the stereopsis benchmark dataset. An
anisotropic Gaussian radial basis function kernels and model selection based on
validation set NLPD are used throughout. The labels for the first six models
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Table 2. Performance of various models, based on kernel ridge regression, on the
stereopsis dataset, in terms of mean squared error (MSE) and negative log predictive
density (NLPD) over the training and validation partitions. Two values of the NLPD
for the test set are given; the first gives the NLPD computed over the entire test set,
the second excludes the problematic pattern #162.

Model Train Set Valid Set Test Set Test Set Train Set Valid Set Test Set
description NLPD NLPD NLPD 1 NLPD 2 MSE MSE MSE

KRR -0.5930 +0.0241 +1.8742 -0.1124 1.464×105 3.481×105 3.095×105

KRR+LOO -0.4917 -0.1889 +0.7189 -0.2559 1.464×105 3.481×105 3.095×105

KRR+KRR -0.6194 +0.0620 +1.4088 -0.0805 1.464×105 3.481×105 3.095×105

KRR+LOO+KRR -0.5835 -0.2459 +0.4924 -0.2718 1.464×105 3.481×105 3.095×105

HKRR -0.3940 -0.2061 +1.6928 -0.1306 2.176×105 3.041×105 3.369×105

LOOHKRR -0.4813 -0.1798 +2.8873 -0.0803 1.725×105 2.599×105 2.860×105

KRR + Quant. Var. -0.2726 -0.0872 +0.2626 -0.1238 1.288×105 3.892×105 3.447×105

KRR Mixture -2.3967 -1.5538 +121.00 -1.6173 0.025×105 0.169×105 1.681×105

are as described for the gaze dataset. An investigation of the test data revealed
that the negative log-likelihood for one of the test patterns dominated the con-
tribution from the other patterns, as shown in Figure 3 (a). An advantage of
generating a predictive distribution, rather than a single point prediction, is
that it is possible to detect potential outliers in the test data (i.e. observations
that cannot be reconciled with an otherwise accurate model of the data). If
we choose to interpret the results as indicating, for instance a data entry er-
ror, and delete pattern number 162, the resulting test-set NLPD statistics are
much more closely in accord with the corresponding validation set statistics.
Looking at the data in more detail, we can see that the test targets are clus-
tered into 10 relatively compact clusters. Pattern #162 belongs to the cluster
of values lying between 150 and 170, Figure 3 (b). Figure 3 (c) the projection
of points with targets lying between 150 and 170 onto the first two principal
components of the corresponding input features (excluding pattern #162). This
shows that the input features for pattern #162 are atypical of patterns with
a target of ≈ 160. Figure 3 (d) shows the results obtained using simple lin-
ear regression on all patterns belonging to this cluster, excluding pattern #162
(blue circles). It can be seen that there is a reasonably strong correlation be-
tween the predicted and true target values. The prediction of this model on
pattern #162 predicts a much lower target value, suggesting that the relation-
ship between target and input features for pattern #162 is different than that
for the rest of the cluster. The predicted targets for a KRR model based on
the entire training partition are also shown (green × and black square). Again
the model predicts a target significantly lower than the given target value. This
suggests the model may well be correct in assigning a very low likelihood to
pattern #162.

The results for the stereopsis dataset are more equivocal than those for the
gaze dataset. Again, a modest improvement in validation and test set NLPD is
obtained through the use of leave-one-out cross-validation in fitting the model
of the conditional variance, in the case of KRR/KRR+LOO and KRR+KRR/
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Fig. 3. Analysis of stereopsis dataset: (a) The negative log-likelihood is dominated
by the contribution from pattern #162. (b) Illustration of the discrete nature of the
test targets. (c) Plot of the projection of points with targets lying between 150 and
170 onto the first two principal components of the corresponding input features. (d)
Regression results demonstrate that pattern #162 is clearly an outlier.

KRR+LOO+KRR models. However in this case, both HKRR and LOOHKRR
models perform poorly. This may be because the data were not collected ran-
domly across the pattern space and this complicates the regularisation of the
model.

The last two rows of Table 2 relate to further experiments inspired by the
solution of Snelson and Murray, who noticed that the targets for this dataset
were strongly clustered into ten compact groups. The KRR + Quant. Var. model
adopted a KRR model of the predictive mean, and then estimated the constant
variance separately for each cluster. The KRR mixture model used a KRR model
to estimate the predictive mean of the target distribution and one of a set of ten
KRR models used to estimate the predictive variance within each cluster, de-
pending on the estimate of the predictive mean. The KRR Mixture model clearly
provides a substantial improvement in the achievable validation set NLPD. How-
ever the clustering of the target values was later revealed to be an artifact of
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the data collection process, and so this improvement is essentially meaningless
as this approach would not be feasible in operation.

7.3 Outaouais

The outaouais dataset is the largest of the challenge benchmarks, and is too
large (20, 000 training patterns and 37 features) to easily apply kernel learning
methods directly. We therefore modelled this dataset using a multi-layer per-
ceptron network (e.g. [9]), with a heteroscedastic loss function [13] similar to
that used in training the heteroscedastic kernel ridge regression model. Bayesian
regularisation with a Laplace prior [24] was used to avoid over-fitting the train-
ing data and to identify and prune redundant connections. It is interesting to
note that this, rather dated, technique performed quite creditably, as shown in
Table 3.

Table 3. Performance of various models on the outaouais dataset, in terms of mean
squared error (MSE) and negative log predictive density (NLPD) over the training,
validation and test partitions. All the numbers are multiplied by 100.

Model Train Test Valid Train Test Valid
description NLPD NLPD NLPD MSE MSE MSE

Gaussian process -92.55 -92.13 -92.55 0 1.727 0
Classification + NN -152.4 -87.95 -152.4 0 5.635 0

CAN + CV -86.68 -64.81 -87.59 1.784 3.774 1.636
Heteroscedastic MLP -32.99 -23.04 -22.15 19.55 20.13 19.27

Gaussian Process 3.246 9.019 11.79 14.9 15.8 16.48
MDN Ensemble 17.93 19.93 19.56 27.72 27.83 27.99

NeuralBAG/EANN 47.68 50.5 49.44 26.71 27.03 26.63
baseline 109.5 111.5 112.4 10 10 10

8 Conclusions

In this paper, we have shown that the assumption of a heteroscedastic (input
dependent) noise structure can improve the performance of kernel learning meth-
ods for non-linear regression problems. The resulting estimate of the predictive
variance provides a useful estimate of the uncertainty inherent in the usual es-
timate of the predictive mean. We have also demonstrated that leave-one-out
cross-validation, which can be implemented very efficiently in closed form for
a variety of kernel learning algorithms, can be used to overcome the bias in-
herent in (penalised) maximum likelihood estimates of predictive variance. It
would be interesting to compare the leave-one-out cross-validation method in-
vestigated here with the Bayesian scheme proposed by Bishop and Qazaz [25],
which instead marginalises over the estimate of the predictive mean in fitting
the model of the predictive variance, or the Gaussian process treatment of
Goldberg et al. [26].
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Appendix A: An Alternative Derivation of the
Leave-One-Out Error

We present here an other derivation of (19). Suppose that the point x1 is taken
out of the training set. Let α(−1) and b(−1) the parameters found by kernel ridge
regression and let us write the following block matrix decomposition:[

K + γΛ 1
1T 0

]
=
[

m11 m1
�

m1 M1

]
≡M

Then [
α(−1)

b(−1)

]
= M1

−1[y2 . . . yn 0]�

And

ŷ
(−1)
1 = m1

�[α(−1) b(−1)]�

= m1
�M1

−1[y2 . . . yn 0]�

= m1
�M1

−1[m1 M1][α b]�

= m1
�M1

−1m1 α1 + m1
�[α2 · · ·αn b]�

On the other hand, the first row of the vector equality M [α b]� = y gives
y1 = m11α1 + m1

�[α2 · · ·αn b]�. And thus we get

y1 − ŷ
(−1)
1 = α1(m11 −m1

�M1
−1m1)

=
α1

(M−1)11
(24)
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The last equality comes from block matrix inversion (also known as Schur com-
plement). Thus computing the leave-one-out error only requires the inversion of
the matrix M (and this matrix has been previously inverted to find the coeffi-
cients α and b of the kernel ridge regression algorithm).

This result is the same as (19). Indeed, the denominator 1 − hii is the i-th
diagonal element of

I −
[

K 1
1� 0

]
M−1 =

(
M −

[
K 1
1� 0

])
M−1 = γΛM−1.

The first equality comes from the definition of H (17). Finally, combining with
(12) (with λi = λi and γμ = γ), we get

ei

1− hii
=

eiλi

γ(M−1)ii

=
αi

(M−i)ii

.

Note that even though (19) and (24) are equal, the latter might be more numer-
ically stable when γ is very small: indeed, in this case hii ≈ 1.
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Abstract. This article describes the competitive associative net called
CAN2 and cross-validation which we have used for making prediction
and estimating predictive uncertainty on the regression problems at the
Evaluating Predictive Uncertainty Challenge. The CAN2 with an effi-
cient batch learning method for reducing empirical (training) error is
combined with cross-validation for making prediction (generalization)
error small and estimating predictive distribution accurately. From an
analogy of Bayesian learning, a stochastic analysis is derived to indicate
a validity of our method.

1 Introduction

This article describes the method which we have used for making prediction
error small and estimating predictive uncertainty accurately on the regression
problems at the Evaluating Predictive Uncertainty Challenge held as a part of
NIPS 2004 Workshop on Calibration and Probabilistic Prediction in Machine
Learning [1]. In the Challenge, the participants can use any learning method
for predicting target values and estimating the accuracy of the predictions (or
model uncertainty), and then the results are ranked by negative log probability
density (NLPD) while normalized mean squared error (MSE) is also evaluated.

Our first decision was to use our competitive associative net called CAN2.
The CAN2 uses competitive and associative schemes [2, 3] for learning efficient
piecewise linear approximations to nonlinear functions. This approach has been
shown effective in several areas such as function approximation, control, rainfall
estimation and time series predictions [7, 8, 9, 10, 11]. We believe the success of
the CAN2 lies in a combination of the following properties: Firstly the learning
methods are simple and efficient: a gradient method for competitive learning and
recursive least squares for associative learning. Secondly an exploration heuristic
based on an “asymptotic optimality” criterion (see appendix) helps overcome
local minima problems with the gradient method.

For achieving smaller NLPD, we had better estimate the uncertainty for each
target value as accurately as possible, where the Bayesian learning scheme is
one of the methods to deal with this task theoretically and practically [4, 5, 6].
Although several implementations of the Bayesian scheme using conventional
feed forward neural networks have been developed so far, we had not been ready

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 78–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Competitive Associative Nets and Cross-Validation 79

to incorporate the CAN2 into the Bayesian paradigm, which will be for our
future work. Instead of the Bayesian scheme, we had utilized cross-validation
[12, 13, 14, 15] for estimating the distribution of predictions obtained by means
of the CAN2, where the Voronoi regions for piecewise linear approximation by
the CAN2 are utilized for estimating the variance from region to region in the
input space, while the effectiveness of this method was not so clear but we are
going to make a stochastic analysis in this article.

Further, we had put an effort to achieving smaller prediction error or smaller
MSE for test data, because the estimation of predictive distribution can be di-
vided into estimating the mean value of predictive distribution and then obtain-
ing error distribution, where the performance of the former can be measured by
the MSE for test data. So, our method for reducing NLPD consists of reducing
the prediction error first and then estimating the error distribution. Since the
learning algorithm of the CAN2 is for minimizing empirical (training) error, we
had utilized cross-validation for making prediction (generalization) error small as
well as estimating predictive distribution accurately. The validity of the method
is also stochastically analyzed in this article.

In the next section, we show the CAN2 as a predictor, and then present and
examine the cross-validation method for reducing prediction error and estimating
predictive uncertainty, where we try to show the validity of the present method
by mean of stochastic approach. In Sec. 3, the procedure and the strategies for
obtaining small NLPD as well as small MSE on the regression problems at the
Challenge are summarized.

2 CAN2 and Cross-Validation for Making Predictions
and Estimating Predictive Uncertainty

In order to focus on estimating predictive uncertainty, we first show the CAN2
for making predictions briefly, and then explain and examine cross-validation for
estimating predictive uncertainty. See appendix for the batch learning method
of the CAN2 for reducing empirical (training) error.

2.1 CAN2 for Making Predictions

Suppose there is an input-output system which is fed by a k-dimensional vector
xj � (xj1, xj2, · · · , xjk)T ∈ R

k×1 and outputs a scalar yj ∈ R for j = 1, 2, · · · as
follows;

yj � f(xj) + dj , (1)

where f(·) is a nonlinear function, dj is zero-mean noise with the variance σ2
d.

A CAN2 has N units (see Fig. 1). The ith unit has a weight vector wi �
(wi1, · · · , wik)T ∈ R

k×1 and an associative matrix (or a row vector) M i �
(Mi0, Mi1, · · · , Mik) ∈ R

1×(k+1) for i ∈ I = {1, 2, · · · , N}. The CAN2 approxi-
mates the above function f(x) by

ŷ � f̂(x) � ỹc � M cx̃, (2)
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Fig. 1. Schematic diagram of the CAN2

where x̃ � (1, xT )T ∈ R
(k+1)×1 denotes the (extended) input vector to the

CAN2 and ỹc = M cx̃ is the output value of the cth unit of the CAN2, and the
cth unit has the weight vector wc closest to the input vector x, or

c � c(x) � argmin
i∈I

‖x−wi‖. (3)

The above function approximation partitions the input space V = R
k into the

Voronoi (or Dirichlet) regions

Vi � {x
∣∣ i = argmin

j∈I
‖x−wj‖}, (4)

for i ∈ I, and performs piecewise linear approximation of the function f(x).
Note that the CAN2 has been introduced for utilizing competitive and as-

sociative schemes, on which there are differences to other similar methods. For
example, the method of local linear models [16] uses linear models obtained
from K-nearest neighbors of input vectors while the CAN2 utilizes linear mod-
els (associative memories) optimized by the learning involving competitive and
associative schemes. The CAN2 may be viewed as a mixture-of-experts model
that utilizes linear models as experts and competitive scheme as gating. Although
the MARS (multivariate adaptive regression splines) model [17] as a mixture-
of-experts model executes continuous piecewise linear approximation, the CAN2
executes discontinuous one intending for optimizing each linear model in the
corresponding Voronoi region.
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2.2 Cross-Validation and the Loss for Tuning Parameter Values

Since the learning method of the CAN2 is for reducing empirical error, we use
cross-validation described below for reducing prediction error by means of tuning
the parameter values of the CAN2.

Let Dn = {(xj, yj) | j = 1, 2, · · · , n} be a given training dataset, and assume
xi ∈ Dn for i = 1, 2, · · · , n are i.i.d. (independently and identically distributed)
in the population. Let Dm be a dataset consisting of m data sampled from Dn,
and a predictor (a learning machine, or the CAN2 for us) with parameter values
denoted by θ learns Dm and approximates the target value yj by ŷj = f̂(xj) =
f̂(xj ; Dm, θ) corresponding to an input vector xj. Then, we define the mean
squared error loss given by

L(Dl; Dm, Dn, θ) � 1
l

l∑
j=1

∥∥∥yj − f̂(xj ; Dm, θ)
∥∥∥2

, (5)

where Dl = {(xρ(i), yρ(i)) | i = 1, 2, · · · , l} indicates a dataset sampled with a
certain sequence ρ(i) from the population.

K-fold cross-validation, a.k.a. V -fold or multifold cross-validation, is described
as follows; let D

n/K
j for j = 1, 2, · · · , K be the datasets called folds which parti-

tion Dn with almost the same size, where n/K is not always the integer but we
use this expression for simplicity. Then, the loss is given by

LCV (K) � 1
K

K∑
j=1

L
(
D

n/K
j ; Dn\Dn/K

j , Dn, θ
)

. (6)

When K = n as a special case, K-fold cross-validation is called leave-one-out
cross-validation whose loss, therefore, is given by

LLOOCV � LCV (n) =
1
n

n∑
j=1

L (dj ; Dn\dj , D
n, θ) , (7)

where dj = (xj , yj) ∈ Dn. Note that, for the Challenge, we simply had selected
the parameter values θ∗ of the predictor (or the CAN2) which had minimized
the above loss.

2.3 Stochastic Feature of Cross-Validation Applied to Regression
Problems

We here would like to make a stochastic interpretation of cross-validation for
examining the validity of our strategies which we have used for the Challenge;
first, we suppose the target value yj and the prediction f̂(xj) = f̂(xj , D

n, θ)
have the relation given by the Gaussian function,

p(yj | xj , D
n, θ) � 1√

2πσ
exp

(
−‖yj − f̂(xj)‖2

2σ2

)
(8)
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Then, the mean squared error loss for a dataset Dl = {(xρ(i), yρ(i)) | i =
1, 2, · · · , l} sampled from the population is derived as

L(Dl; Dn, Dn, θ) � 1
l

l∑
j=1

‖yρ(j) − f̂(xρ(j))‖2

= 2σ2

⎡⎣−1
l

l∑
j=1

log p(yρ(j) | xρ(j), D
n, θ)− log(

√
2πσ)

⎤⎦
� 2σ2

[
−
∫ ∫

log p(y | x, Dn, θ)q(y|x)q(x)dxdy − log(
√

2πσ)
]

= 2σ2
[∫

KL(q(y|x)‖p(y|x, Dn, θ))q(x)dx + c

]
(9)

where q(x) and q(y|x) indicate the population probabilities,

KL(q(y|x) ‖ p(y|x, Dn, θ)) �
∫

q(y|x) log
q(y|x)

p(y|x, Dn, θ)
dy (10)

is the Kullback distance between q(y|x) and p(y|x, Dn, θ) for each x, and

c � −
∫ ∫

q(y|x) log(q(y|x))q(x)dxdy − log(
√

2πσ) (11)

is a constant independent to Dn and θ. Here, note that L(Dl; Dn, Dn, θ) indi-
cates the training (empirical) error when Dl is the training dataset Dn, and the
generalization (prediction) error when Dl is independent to Dn, where however
in many cases the generalization error is evaluated over Dl with no datum in
Dn, which is also assumed by the cross-validation methods. Thus, the loss of
K-fold cross-validation is written stochastically as

LCV (K) � 2σ2

⎡⎣ 1
K

K∑
j=1

∫
X

n/K
j

KL(q(y|x)‖p(y|x, Dn\Dn/K
j , θj))q(x)dx + c

⎤⎦ ,

(12)

where X
n/K
j is the region which involves x of (x, y) ∈ D

n/K
j . When Dn is large

enough for every Dn\Dn/K
j to involve sufficient number of data so that the

predictor (the CAN2) can approximate the function to be learned sufficiently,
then the predictive distribution by the predictor which has learned Dn\Dn/K

j is
supposed to be almost the same for all j, and we can write

LCV (K) � 2σ2

⎡⎣ 1
K

K∑
j=1

∫
X

n/K
j

KL(q(y|x)‖p(y|x, Dn−n/K , θ))q(x)dx + c

⎤⎦

� 2σ2
[∫

KL(q(y|x)‖p(y|x, Dn−n/K , θ))q(x)dx + c

]
, (13)
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where we suppose that the data in D
n/K
j are independent to Dn−n/K because

the data in Dn are i.i.d and that X
n/K
j for all j covers all input space because

Dn = ∪jD
n/K
j . On the other hand, the generalization loss over the population

is represented as

Lgen � 2σ2
[∫

KL(q(y|x)‖p(y|x, Dn, θ))q(x)dx + c

]
. (14)

Thus, from the above two equations, we can see that a large K (≤ n), espe-
cially the maximum value K = n or leave-one-out cross-validation, is desirable
for estimating the generalization loss Lgen by the cross-validation loss LCV (K).
However, this result is obtained when Dn is sufficiently large, otherwise LCV (K)
may involve bias and variance from the generalization loss much more. In fact,
it is often noted that the loss of leave-one-out cross-validation has low bias but
sometimes involves high variance [15].

Actually, at the Challenge, we have applied leave-one-out cross-validation to
stereopsis and gaze datasets because the change of the loss is smooth and uni-
modal for the change of parameter values (especially the number of units) of the
CAN2 so that we can select the parameter value which minimizes the loss. How-
ever, we have used K = 20-fold cross-validation for outaouais dataset, because
the size of the dataset is very large (20,000) and a large K takes a huge compu-
tational cost. Here, we show that the above assumption that Dn is sufficiently
large for deriving Eq.(13) is consistent with the following data obtained. Namely,
for the stereopsis training dataset (n = 192), the number of units selected for
approximating the function to be learned is N = 6 for lower resolution and
N = 16 for higher resolution (see below for multi resolution prediction for stere-
opsis dataset), which indicates n/N = 32 and 12 data on average are available
for training each k = 4 dimensional linear model (associative memory), which
seems to indicate that Dn is sufficiently large. For the gaze training dataset
(n = 150), the selected number of units is N = 3, and then n/N = 50 seems
sufficiently larger than k = 12. For the outaouais training dataset (n = 20000),
the selected number is N = 330 and then n/N = 60.6 seems to be sufficiently
larger than k = 37 (practically k = 32 because we have almost neglected five
elements; see below for details). Thus, it is supposed that the cross-validation
loss is almost the same as the generalization loss, and then the prediction f̂(x)
is almost the same as the mean value of the predictive distribution.

2.4 Estimation of Predictive Uncertainty

There are two methods to submit predictive uncertainty at the Challenge, one is
the mean and the variance of the Gaussian distribution and the other is the set
of quantiles that describe the predictive distribution. We have used the former
for stereopsis and outaouais datasets, and the latter for gaze dataset as follows.

Estimating Gaussian Distribution. We set the mean value of the Gaussian
distribution by the prediction by the CAN2 after tuning the parameter values by
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K-fold cross-validation described above (K = n = 192 for stereopsis and K = 20
for outaouais). We had estimated the predictive gaussian variance for each ŷj

as follows; by means of K-fold cross-validation, the variance of predictions for
x in the Voronoi region Vi can be estimated by the mean square error for the
validation dataset D

n/K
j (j = 1, 2, · · · , K) given by

σ̂2
i (x) �

K∑
j=1

∑
xl∈Vi∩X

n/K
j

‖yl − f̂(xl)‖2

∑
xl∈Vi

1
. (15)

In order to clarify this estimation, we suppose q(y|x) = p(y|x, Dn−n/K , θ∗) =
(1/(
√

2πσKi)) exp(−‖y−f̂(x)‖2/(2(σKi)2)), and derive a stochastic expression as

σ̂2
i (x) � 2 (σKi)

2
[
−
∫ ∫

Vi

log p(y | x, Dn−n/K , θ∗)q(y|x)q(x)dxdy−log(
√

2πσ)
]

≡ (σKi)2, (16)

where θ∗ indicates the parameter values of the CAN2 which has minimized
the cross-validation loss LCV (K). Although this estimation had been applied to
the predictive variance which we have submitted for steraopsis and outaouais
datasets, a meaning of this estimation is that the estimated variance is the one
for the training dataset Dn−n/K and we may had better use different K as
described in the next section which we had applied to gaze dataset.

Estimating Quantiles Describing Distribution. Since the target values of
gaze dataset are integer, the quantiles describing the discreet distribution instead
of using the gaussian variance was supposed to improve the NLPD, and we had
put an effort to estimate precise predictive distribution. First of all, we have to
care that gaze dataset involves outliers or input vectors far from the cluster of
other input vectors (see Fig. 2). However, the distribution of all data is supposed
to be not affected by the outliers so much because they are not so many. Only
the treatment we had done for such outliers is that if the input vector xj has
negative xj3 or xj4 we describe its distribution by the gaussian variance with
the value 4500 which is identified by cross-validation, while the distribution of
other data are described by the quantiles obtained as follows.

For obtaining predictive distribution, we first calculate the sum of distribu-
tions of prediction error obtained via K-fold cross-validations for several K,
namely we had estimated the predictive distribution by

p̂(e|Dn) � 1
C

∑
K∈JK

K∑
j=1

∑
x∈X

n/K
j

p(e|x, Dn\Dn/K
j , θ∗) (17)

where e indicates the prediction error e = f̂(x)−y, C is the constant for normal-
izing p̂(e|Dn) and JK is a set of K of K-fold cross-validation, and we actually
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Fig. 2. Outliers of gaze dataset

had used JK = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 21, 25, 30, 50,
75, 150} for the submission. Here, note that we at first used the distribution
obtained only via JK = {K = n = 150} or leave-one-out cross-validation, with
which we could not have small NLPD owing supposedly that the number of data
is not large enough to approximate the distribution to be obtained (see Fig. 3(a),
where p̃(e|Dn) is the quantized p̂(e|Dn) introduced below). Further, if we use
all integer values from K = 2 to 150, the result had not been so different and it
takes a huge computational cost. Note that this method is ad hoc, but we try
to make an interpretation in the next section. Next, we calculate the predictive
distribution for the input data x given by

p̂(y|x, Dn) � p̂(f̂(x) + e|x, Dn). (18)

Finally, since the target values of gaze dataset are integer, it is ideal to express
the distribution by p̃(y|Dn) =

∑
m p̂(y|x, Dn)δ(y − m) with the Dirac delta
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Fig. 3. Estimated distribution of prediction error p̃(e|Dn) and the cumulative distri-

bution F̃ (e|Dn) =
∫ e

−∞
p̃(z, Dn)dz. The distribution is the sum of the prediction error

distributions obtained by K-fold cross-validation for K ∈ JK and (a) JK = {150}, (b)
JK = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 21, 25, 30, 50, 75, 150}, (c)
JK consisting of all integers from 2 to 150, which are obtained with the given training
dataset(n = 150). (d) is of JK = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 21,
25, 30, 50, 75, 150, 200, 300, 450} for the dataset (n = 450) consisting of the training
data (n = 150) and validation data (n = 300). See text for details.

function δ(y), which however cannot be dealt with by the evaluation program
“eval.py” 1 thus we approximate the distribution as

p̃(y|x, Dn) � 1

C̃

mmax∑
m=mmin

p̂(y|x, Dn)dT (y −m) (19)

where C̃ is the constant for normalizing p̃(y|x, Dn),

dT (y) �
{

1 if |y| ≤ T
0 otherwise (20)

is the pulse function with T (we have used T = 5.5× 10−5).
1 The evaluation program “eval.py” is the python program that has been provided

from the web page[1].
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Stochastic Analysis of the Method. Although the aim of the above method
is for estimating the predictive distribution of p(y|x, Dn), it is not so clear
whether p̂(y|x, Dn) in Eq.(19) adequately estimates p(y|x, Dn) or not. In or-
der to clarify it, suppose that Dn is large enough for every Dn\Dn/K

j to involve
sufficient number of data for approximating the function to be learned, then for
every K and j the predictive distribution by the predictor which learns Dn\Dn/K

j

is supposed to be almost the same as the predictive distribution to be obtained
p(y|x, Dn). Thus, for obtaining the distribution over the input space, the error
distribution

p̂(e|Dn−n/K) �
K∑

j=1

∑
x∈X

n/K
j

p(e|x, Dn\Dn/K
j , θ∗) (21)

for all K and the normalized sum

p̂(e|Dn) ≡ 1
C

∑
K∈JK

p̂(e|Dn−n/K) (22)

are also suppose to be almost the same as the predictive error distribution to
be obtained. Thus, p̂(y|x, Dn) = p̂(f̂(x) + e|x, Dn) is supposed to estimate
p(y|x, Dn).

The validity of the above interpretation seems to depend on the supposi-
tion that Dn is large enough for every D

n−n/K
j to involve sufficient number of

data for approximating the function to be learned. Since the optimized num-
ber of units of the CAN2 is N = 3 for gaze training dataset Dn = D150, a
unit is supposed to learn (n − n/K)/N = 25 to 49.7 training data on average
for K = 2 to 150, which seems sufficient for learning by the k = 12 dimen-
sional linear model(or associative matrix). Thus, it is considered that the above
method works. Actually, we have had the best NLPD for gaze dataset at the
Challenge.

It is embarrassing, but we here have to note that the submitted predictions
had been generated with the dataset with n = 450 consisting of the training
data (n = 150) and the validation data (n = 300) although the submitted
distribution had been produced via the original training data (n = 150) as
described above, which means that we should have submitted the distribution
calculated with the combined training dataset with n = 450, then the numerical
values described above are slightly changed as follows; the optimized number of
units is N = 6, so that the average number of data for a unit, (n − n/K)/N ,
ranges from 37.5 (K = 2) to 74.8 (K = 450) which is much sufficient enough
for learning by the k = 12 dimensional linear model. Thus, the distribution
of prediction error with JK = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16,
18, 21, 25, 30, 50, 75, 150, 200, 300, 450} (see Fig. 3(d)) is smoother than
Fig. 3(b) submitted. With this distribution, we may be able to make the NLPD
smaller.
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3 Procedure and Strategies for Solving Regression
Problems at the Challenge

Here, we summarize the procedure and the strategies for achieving small MSE
and then small NLPD in solving regression problems at the Challenge.

Step 1. Tune roughly the scale of every element of input vectors so that all
elements may distribute equally on the input space as much as possible, or
actually, for the lth element of input vectors xj = (xj1, · · · , xjl, · · · , xjk)T (j =
1, 2, · · · , n), tune al and bl of the linear transformation xjl := alxjl + bl. These
parameters will be tuned precisely at the cross-validation step shown below.
Further, we have tuned bl as well as al so that all the data (training, valid and
test) will be in the unit hyper-cube.

Example. An example of the original and tuned distributions is shown in Fig. 4,
where the tuned one is obtained after the cross-validation shown below. From this
figure, the original distribution for xj2 seems sparse relatively to the distribution
for xj1 and the difference seems to be reduced in the tuned distribution.

Step 2. When the target values seem to take only discrete values, identify the
values, and let the predictor (learning machine) output only such discrete values.

Example. The target values of gaze dataset take only integer values, and those
of stereopsis dataset seem to cluster around the discrete values y = 11.8561m+
123.818 for m = 1, 2, · · · (see Fig. 5), while we will apply multi-resolution pre-
diction for stereopsis dataset as shown in Step 4 described bellow.

Step 3. Apply K-fold cross-validation to tune the parameters of the learning
machine so that the mean square error loss LCV (K) become smaller. The pa-
rameters al and bl for scaling the lth element are also tuned precisely here. As
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Fig. 5. The chunks of target values yj of stereopsis training data

mentioned before, we have used leave-one-out cross-validation or K = n for
stereopsis (n = 192), and gaze (n = 150) datasets, and K = 20 for outaouais
dataset.

Example. For outaouais dataset, al for l = 25, 32, 33, 34 and 36 have been set very
small so that those elements have been neglected. We do not tune al for stere-
opsis and gaze datasets so much because the result looks like to have achieved a
sufficient level.

Step 4. When the output values of the predictor have been restricted as
described in Step 2, store the loss LCV (K), say L1

CV (K), and every prediction

error e(xj) = yj − f̂(xj ; Dn\Dn/K
l(j) , θ∗) (j = 1, 2, · · · , n) obtained via the cross-

validation with the optimal parameter θ∗, say θ1∗, where D
n/K
l(j) indicates the

fold which includes xj . Further, train e(xj) (j = 1, 2, · · · , n) as target val-
ues of input vectors xj via cross-validation, and obtain the loss LCV (K), say
L2

CV (K), for the prediction of e(xj). When L2
CV (K) with optimized parameter

values, say θ2∗, is smaller than L1
CV (K) we make the final predictions given by

ŷj = f̂(xj ; Dn, θ1∗) + f̂(xj ; Dn, θ2∗), which we say multi-resolution prediction.
Otherwise we make the final predictions given by ŷj = f̂(xj ; Dn, θ1∗).

Example. The loss L2
CV (K) had been smaller than L1

CV (K) not for gaze but for
stereopsis dataset, so that we execute the multi-resolution prediction for stere-
opsis dataset.

Step 5. Obtain the predictive variance of the Gaussian distribution or the
predictive quantile distribution as described in Sec. 2.4.

4 Conclusion

We have described the CAN2 and cross-validation which we have used for mak-
ing prediction error small and estimating predictive distribution accurately on
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the regression problems at Evaluating Predictive Uncertainty Challenge. We
have also shown stochastic analysis of the method for estimating predictive un-
certainty from an analogy of the Bayesian learning theory. Although we have
obtained good score at the Challenge with the same procedure and strateges
applied to all of the three regression problems, it is clarified in this article that
our method largely depends on the supposition that given training dataset is
sufficiently large. Thus, in order to improve the present method for dealing with
smaller datasets, it may be useful and possible to incorporate Bayesian scheme
which uses variable learning machines for generating predictive distribution while
cross-validation uses variable datasets smaller than given training dataset.

The authors would like to thank the organizers who have promoted this Chal-
lenge, from which we could have obtained various information on prediction
problems and we could improved our method by means of solving the problems.
Finally, we would like to note that our works on the CAN2 are partially sup-
ported by the Grant-in-Aid for Scientific Research (B) 16300070 of the Japanese
Ministry of Education, Science, Sports and Culture.
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Appendix: Batch Learning Method for the CAN2

The batch learning method that we have used for the Challenge is supposed to
have contributed to solving the problems effectively and efficiently because its
performance in learning finite number of training data has been shown higher
than online learning method for the CAN2[11]. Here, we summarize the method
as follows, where several parts are modified from [11] and constant values speci-
fied for the Challenge are presented; let us denote the training set of input-output
data by D � {(xj , yj = f(xj) + dj) | j ∈ J � {1, 2, · · · , n}}, the set of input
vectors by X � {xj | j ∈ J}, and the set of output values by Y � {yj | j ∈ J}.
The learning of the CAN2 is designed for minimizing the energy or the mean
square error given by

E � 1
n

∑
i∈I

∑
x∈Xi

‖e(x)‖2 =
∑
i∈I

Ei, (23)

by means of modifying wi and M i for i = 1, 2, · · · , N , where e(x) � f̂(x) −
f(x) � M c(x)x̃ − f(x) is the training (empirical) error, Xi = {x ∈ X ∩
Vi} is the set of training input vectors in the Voronoi region Vi, and Ei �
(1/n)

∑
x∈Xi

‖e(x)‖2 is the energy of the region.
This minimization problem is a nonlinear one, and we repeat the optimization

iteration consisting of a batch modification of wi for all i ∈ I, and a batch
modification of M i for all i ∈ I, followed by reinitialization, as follows.

Modification of Weight Vectors. Provided that M i (i ∈ I) are constant, we
can optimize wi via the following gradient method; let the boundary of a Voronoi
region Vi and the adjacent Vl with the width Wθ (< 1; we have used 0.2) be

Wil �
{

x

∣∣∣∣ x ∈ Xi ∪Xl and

∣∣(2x−wi −wl)T (wi −wl)
∣∣

‖wi −wl‖2
≤Wθ

}
. (24)

When a training vector x is in Wil and moves from Vi to Vl (or from Vl to Vi)
owing to the change of wi by Δwi, the energy E increases by (1/n)(e2

i (x) −
e2

l (x))× s where s � sign(ΔwT
i (x−wi)), while E does not change when x ∈ Vi
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and s = 1 or x ∈ Vl and s = −1. Thus, the increase of E is discontinuous, but
it can be stochastically approximated by

ΔE � 1
2n

ΔwT
i ξi, (25)

where

ξi �
∑
l∈Ai

∑
x∈Wil

(e2
i (x)− e2

l (x))
x−wi

||x−wi||
, (26)

and Ai is the index set of Vl adjacent to Vi. Thus, in order to decrease E, we
modify the weight vectors as Δwi = −γξi, or

wi :=wi − γξi (27)

for i ∈ I, where := indicates the substitution. We use the learning rate

γ � γ0

1 + t/t0

dx

dξ
, (28)

where γ0 (< 1; we have used 0.05) is a positive constant, t (= 0, 1, 2, · · · ) indi-
cates global time or the number of batch modification having done so far, and t0
is a constant. For all cases in solving the regression problems of the Challenge,
we have used t0 = 5, and t is terminated at 100 until when the training (empiri-
cal) error had converged in all cases. Note that the part t/t0 is augmented from
[11] for faster convergence. The parameter dx is the maximum width between
the elements xjl of xj as follows

dx � max
l=1,··· ,k

⎛⎝max
i∈J
j∈J

|xil − xjl|

⎞⎠ , (29)

and dξ is the maximum value of the element ξil of ξi as follows,

dξ � max
l=1,··· ,k

max
i∈I

ξil. (30)

Thus, γ = (γ0/(1 + t/t0))(dx/dξ) guarantees that the absolute value of the ele-
ment of weight change, |Δwij | = |γξij |, is less than the maximum span of the
elements of input vectors, dx = maxl,i,j |xil − xjl| multiplied by (γ0/(1 + t/t0)).

All initial weight vectors wi (i ∈ I) are set by the vectors selected randomly
from the training input vectors xj (j ∈ J) at only the first batch learning
iteration.

Modification of Associative Matrices. Provided that the weight vectors
wi (i ∈ I) are constant, the nonlinear problem of minimizing E =

∑
i∈I Ei

becomes a linear one to minimize

Ei =
1
n
‖M iX̃i − Y i‖2 (31)
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for each i, and the solution is given by M i = Y iX̃
+
i , where X̃

+
i is the generalized

inverse of the matrix X̃i ∈ R
(k+1)×ni which consists of x̃ = (1, xT )T for all

x ∈ Xi, and Y i ∈ R
1×ni is the matrix consisting of y = f(x) + d for all

x ∈ Xi. In order to avoid the situation where ni or the number of the vectors
in Xi is so small that the approximation error may become large, we do not
use the unit with ni = 0 for modifying wi and M i and calculating the output
of the CAN2 until the reinitialization (see below) is triggered. Further, for Xi

with ni ≥ 1, we compensate training vectors near Vi up to a certain number
nθ (we have used 3 for all cases), or search the training vectors in

Bi � {xj |xj ∈ X\Xi, ‖xj −wi‖ ≤ ‖xl −wi‖ for xl ∈ X\Bi, |Bi| = nθ − ni},
(32)

where |Bi| is the number of the vectors in Bi, and then set Xi := Xi ∪ Bi for

calculating M i = Y iX̃
+
i . Further, for stable learning performance accompanied

with modifying wi (i ∈ I), we do not directly calculate M i = Y iX̃
+
i , but apply

the following RLS (recursive least square) method,

M i := M i +
(y −M ix̃) x̃T Ψ i

1 + x̃T Ψ ix̃
, (33)

where Ψ i ∈ R
(k+1)×(k+1) is also updated as

Ψ i := Ψ i −
Ψ ix̃x̃T Ψ i

1 + x̃T Ψ ix̃
, (34)

and the above two updates are applied for all x ∈ Xi and the corresponding
y ∈ Yi for all i ∈ I once at each batch iteration. Further, at only the first batch
iteration, we set the initial values to the matrices as M i = O and Ψ i = I/ε,
respectively, where O and I are the null (zero) and unit matrices, respectively,
and ε is a small constant (we have used ε := 10−4).

Reinitialization. The gradient method for modifying wi shown above has the
local minima problem. To overcome the problem, the condition called asymptotic
optimality for a large number of weight vectors has been derived and the online
learning methods embedding this condition are shown effective [8, 9]. Here, we
also embed it to the present batch learning, as follows; first suppose there are
many input data and weight vectors, and let the energy be given by

E =
∑
i∈I

∫
Vi

‖ei(x)‖2p(x)dx =
∑
i∈I

Ei, (35)

where p(x) is the probability density function of the training data x. Further,
suppose the area of Vi is small and p(x) is approximated by a constant pi in
each Vi, and f(x) is the function of class C2, then we have

E =
∑
i∈I

Ei =
∑
i∈I

(Cipiv
1+4/k
i + σ2

2pivi)

≥N−4/k‖C(x)p(x)‖ 1
1+4/k

+ σ2
d, (36)
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where Ci � C(wi) is called quantization coefficient which represents the com-
plexity of f(x) at x=wi (see [8, 9] for details). And ‖g(x)‖α =

(∫
V
|g(x)|αdx

)1/α,
‖C(x)p(x)‖ 1

1+4/k
is constant for the given f(x) and p(x). Further, the right hand

side of Eq.(36) is the minimum of E and the equality holds iff

αi � Cipiv
1+4/k
i = constant for all i ∈ I. (37)

This equation represents the condition of asymptotic optimality, which can be
used as follows.

From Eq.(23), Eq.(36) and Eq.(37), the square error Si of the ith unit is given
by

Si �
∑

x∈Xi

‖e(x)‖2 � nαi + σ2
dni. (38)

On the other hand, when there is a region Vi where f(x) is approximated by a
linear function which may be achieved with many weight vectors, then Ci and
αi are 0, and we can estimate the variance of the noise di by

σ̂2
d := min{Si/ni | i ∈ I and ni ≥ θU}, (39)

where θU is a constant much larger than the dimension k of x because Si = 0
for the optimum M i when ni ≤ k is not appropriate for estimating σ2

d. Then,
from Eq.(38) and Eq.(39), we can estimate αi as

α̂i :=
Si − σ̂2

dni

n
. (40)

In order to decide whether αi (i ∈ I) satisfy the asymptotic optimality of Eq.(37)
or not, we use the following condition

α̂i

〈α̂i〉
≥ θα and

H

ln(N)
≤ θH , (41)

where θα (> 1; we have used 5) and θH (< 1; we have used 0.7) are positive con-
stants, 〈α̂i〉 is the mean of α̂i, and H is the entropy given by

H � −
∑
i∈I

αi∑
j∈J αj

ln

(
αi∑

j∈I αj

)
. (42)

When the above condition in Eq.(41) is fulfilled, we reinitialize the s(j)th unit
that has the jth smallest α̂i for all i ∈ I (the unit with ni = 0 as described
above is supposed to have the smallest α̂i = 0), and move it near to the b(j)th
unit that satisfies the former inequality in Eq.(41) and have the jth biggest α̂i

for all i ∈ I, as follows

ws(j) := wb(j) + θr(xc(b(j)) −wb(j)), (43)
Ms(j) := M b(j), (44)

where xc(b(j)) is the training vector nearest to wb(j). We use the value θr = 1.9,
which guarantees that the region Vs(j) of the new ws(j) involves at least one
training vector xc(b(j)).
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Abstract. In this paper we present lessons learned in the Evaluating
Predictive Uncertainty Challenge. We describe the methods we used in
regression challenges, including our winning method for the Outaouais
data set. We then turn our attention to the more general problem of
scoring in probabilistic machine learning challenges. It is widely accepted
that scoring rules should be proper in the sense that the true generative
distribution has the best expected score; we note that while this is useful,
it does not guarantee finding the best methods for practical machine
learning tasks. We point out some problems in local scoring rules such as
the negative logarithm of predictive density (NLPD), and illustrate with
examples that many of these problems can be avoided by a distance-
sensitive rule such as the continuous ranked probability score (CRPS).

1 Introduction

In this paper we present lessons learned in the Evaluating Predictive Uncertainty
Challenge (EPUC). The challenge was organised by Joaquin Quiñonero Candela,
Carl Edward Rasmussen, and Yoshua Bengio, and the deadline for submission
was in December 2004. The challenge consisted of five tasks: two classification
tasks (where the targets are discrete, in this case binary), and three regression
tasks (where the targets are continuous). We describe the methods we used in
the regression tasks, and some lessons to learn from the methods and from the
results. We have included our winning method for the ‘Outaouais’ data set, our
abuse of the scoring method in the ‘Gaze’ data set, as well as our miserable
failure with the ‘Stereopsis’ data set.

Inspired by observations made in the regression tasks, we will turn our atten-
tion to the more general problem of scoring in probabilistic machine learning
challenges. Probabilistic predictions take the form of discrete distributions for
classification tasks, and of continuous distributions for regression tasks. Scoring
in classification is better understood, especially in the case of binary classifica-
tion. In this paper, we focus on regression.

Ideally, the scoring function would guide competitors’ work: by selfishly max-
imising their own score they would also work towards a common good in machine
learning research and practice. It is widely accepted that scoring rules should be
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proper in the sense that the true generative distribution has the best expected
score. We note that while this is useful, it does not guarantee finding the best
methods for practical machine learning tasks.

We will discuss what else is required of a scoring rule in addition to proper-
ness. We will point out some problems in using local scores, which depend only
on the predictive density exactly at the true target value. We illustrate with ex-
amples that many of these problems can be avoided by using distance sensitive
scores, which also depend on how much predictive probability mass is placed
near the true target. As an example of a local rule we will consider the logarith-
mic score and the corresponding loss function, negative logarithm of predictive
density (NLPD). As an example of a distance sensitive rule we will consider the
continuous ranked probability score (CRPS).

Finally, we will briefly discuss how one can represent continuous predictions.
Both in challenges and in practical applications there is obviously a need for
a finite representation. We observe that a sample can be used as a very simple
representation of an arbitrary distribution, provided that one is using a non-local
scoring rule such as CRPS.

This paper is organised as follows. In Section 2, we describe the methods we
used in the challenge. The general problem of scoring in probabilistic challenges
is discussed in Section 3. Section 4 is devoted to discussing what other properties
of scoring functions would be useful in addition to properness. Finally, we discuss
in Section 5 how one can represent continuous predictions by finite samples. We
conclude by proposing experimenting with distance sensitive scoring rules in
future probabilistic challenges.

2 Selected Regression Methods

In the EPUC challenge, probabilistic predictions were required. Instead of a
single point estimate of the target value, we were required to predict a probability
distribution for each target, expressing how likely we thought each possible value
was, given the training data and the known input values for the target.

The predictions were evaluated by using the so called NLPD loss. This loss
function, and scoring in general, will be discussed in detail in Sections 3 and
4. For now, it is enough to note that the score was a function of the predicted
probability density at the location of the true target.

No other information of data sets was given in addition to raw data and the
name of the data set. The competitors did not know what kind of phenomenon
they were dealing with.

Each data set was divided into three parts: training, validation, and test
data. For simplicity, we will usually regard both training and validation data
as training data, as this was the setting during the final phase of the challenge.

2.1 Outaouais

In the so called ‘Outaouais’ data set, the amount of data was relatively large.
There were 37 input variables, and as many as 29 000 training samples. Some
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of the input variables contained only discrete values, while some other input
dimensions were continuous.

No obvious easy solutions or quick wins were found by visual observation. To
gain more information on the data, we tried k-nearest-neighbour methods with
different values of k, different distance metrics, etc. We noticed that very small
values of k produced relatively good predictions, while the results with larger
neighbourhoods were much worse.

We next focused on 1-nearest-neighbour and studied the data more closely,
checking which input variables were typically close to each other for nearest
neighbours. We noticed that there seemed to be a surprisingly large number
of discrete input variables whose values were often equal for a pair of nearest
neighbours.

The discrete dimensions were clearly somewhat dependent. Starting with an
initial set of possibly dependent discrete dimensions, we formed a collection of
input dimensions which could be used to group all data points into classes. As
a greedy heuristic, we kept adding dimensions which left much more than one
training point in most classes.

The results were surprising. We found a set of 23 dimensions which classified
all training input into approximately 3 500 classes, each typically containing 1
to 14 training points. Next we checked if any of these classes occurred in the test
data, too. It turned out that both training and test input could be classified into
approximately 3 500 classes, each typically containing 13 or 14 points. Almost
all classes contained both training and test points. Thus, given a test point we
almost always had some training points in the same class.

Next we focused on those classes which contained large numbers of training
samples. For each class, the data points looked as if they were time series data.
There was one dimension which we identified as “time”. Naturally we do not
know if the dimension actually represents time. However, having this kind of
metaphors to support human thinking proved to be useful.

Fig. 1 shows training points from five different classes. This figure illustrates
well typical behaviour in all classes: usually the target values changed slowly with
time within each class, but there were also some classes with more variation.

If we had had to just predict the values, we could have fitted a smooth curve
within each class. However, in this challenge we needed probabilistic predictions.
We had 29 000 training points. Thus we could calculate empirical error distri-
butions for pairs of samples within one class, conditioned on the discretised
distance in the “time” dimension.

In other words, we first answered the following question: If we know that
two points, x1 and x2, are in the same class, and the “time” elapsed between
measuring x1 and x2 is roughly T , what is the expected distribution of the
difference of target values y1 and y2?

We created 27 empirical distributions, one for each discretised time difference.
Actually only 14 distributions are needed, others are mirror images. Fig. 2 shows
histograms of three of these empirical distributions. For comparison, we also show
Gaussian distributions with the same mean and the same variance. The empirical
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Fig. 1. Examples of some classes in the ‘Outaouais’ data set. Each set of connected
dots corresponds to training points in a certain class. From the figure it is obvious that
within one class, target values change only slightly in a short time interval.
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Fig. 2. Three precomputed error distributions for the ‘Outaouais’ data set, contrasted
to Gaussians with the same mean and the same variance. The first figure corresponds
to the shortest “time” interval (approx. 0.034 units) while the last figure corresponds
to the longest “time” interval (approx. 13 · 0.034 = 0.442 units). Compare with Fig. 1.

distributions are clearly non-Gaussian, and their Pearson kurtoses range from
6 to 22, while a Gaussian would have a kurtosis of 3.

Now we were ready for prediction: For a given test input, we classified it, and
picked the nearest neighbour value within the same class, measuring the distance
in the “time” dimension. We discretised the distance and took the corresponding
empirical error distribution. Then we predicted the target value of the neighbour
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plus the error distribution. Thus, each prediction had a shape similar to one of
the graphs in Fig. 2, shifted horizontally.

Our mean square error (0.056) was worse than what some other competitors
had achieved (0.038). However, the NLPD loss was the lowest: -0.88 for us, -0.65
for the second place. Thus, our predictive distributions were more accurate.

If our method is viewed as a dimensionality reduction, one can see that 23
input dimensions (the ones used for classification) were converted into one class
identifier; 1 “time” dimension was used as is; and 13 dimensions were discarded.
Thus we reduced the dimensionality from 37 to 2 with very simple methods.

There is at least one thing to learn here: surprisingly naive methods may work
if you can use large amounts of real data to estimate probability distributions.
One may also consider whether the construction of training and test data was
really compatible with the intended practical application. In practice one might
have to make predictions before there are any known samples in the same class.
Did we learn the phenomenon or just abuse the construction of the data?

2.2 Gaze

In the ‘Gaze’ data set, input was 12-dimensional, and there were only 450 training
and validation samples. Sparsity of the data called for some kind of dimension-
ality reduction.

We visually inspected the (xj , y) scatter plots of each input variable xi versus
the target y, for j = 1, . . . , 12. Two of the input dimensions, j = 1 and j = 3,
revealed a definite, albeit noisy regression structure (Fig. 3). The other 10 input
dimensions appeared less useful for predicting y, and were discarded.

In the validation data, a few x3 values were conspicuously low (Fig. 3); likewise
in the test data. To avoid huge losses from erroneous regression estimates, we
applied a manually chosen outlier detection rule (x3 < 0). The outlying x3 values
were simply replaced with the sample mean. The values after this preprocessing
step will be denoted x̃3.

For further reduction of dimensionality, we linearly combined x1 and x̃3 into
one quantity, z = w1x1 + w3x̃3, with w chosen by cross-validation so as to
maximise prediction accuracy within the training data.

We now had a one-dimensional regression problem of predicting y from z. For
this task, we chose a standard regression method, namely local linear regression
[1] where the local weights were assigned using a Gaussian kernel.
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Fig. 3. ‘Gaze’ scatter plots of input variable x3 versus regression target y
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Fig. 4. LLR point estimates and standard error bounds for ‘Gaze’ data

Local linear regression (LLR) provides, for each unknown target, a point es-
timate ŷ. For probabilistic prediction, we also need the distribution of the error
ε = ŷ − y. A standard practice is to estimate its variance with a local or global
average of the squared errors for the training data [2]; or more generally, with
an arbitrary smoother of the squared errors. After experimenting with different
smoothers, we decided that a homoscedastic (i.e. constant-variance) error model
with variance σ̂2 =

∑n
i=1(ŷ−y)2/n was accurate enough. Furthermore, the error

distribution appeared more or less normal in the training and validation data
sets.

Assuming normally distributed errors, we could thus predict N(ŷi, σ̂
2) for

target i, where ŷ is the point estimate from local linear regression, and σ̂2 is the
global estimate of error variance. Such predictions are illustrated in Fig. 4.

A closer look at the training and validation data revealed that all target values
were integers ranging from 122 to 1000. Since arbitrary predictive distributions
were allowed, it seemed pointless to assign any significant probability mass to
non-integral target values. Doing so could, in fact, be seen as a failure to report
a pronounced feature of the target distribution.

Accordingly, we concentrated the predicted probability on the integers. Be-
cause the number of quantiles seemed to be limited by allowed file size, we did
this only for a part of the distribution. We discretised the predicted Gaussian
into 7 equiprobable brackets, delimited by the i/7 quantiles for i = 1, . . . , 6.
The probability in the central bracket was then mostly reallocated around the
integers within the bracket (Fig. 5). Limited only by the floating point precision,
the spikes on the integers were 2 · 10−13 units wide. As a result, each spike could
be assigned a very high probability density, about 1.5 · 1010. If a target indeed
coincides with such a spike, we would thus gain a negative logarithmic score of
− log2 1.5 · 1010 ≈ −23 for that target.

What did we learn from this regression task? The methods we applied were
quite standard. The distinctive feature of our second-ranking solution was ex-
ploiting the integrality of the targets. It would be fair to say that this was
an abuse of the scoring method. On the other hand, assuming that the scor-
ing method faithfully represents what kind of prediction is being sought for,
one could argue that NLPD essentially mandates that the competitors submit
every bit of information they possibly can about the test targets, including the
fact that they are precisely on the integers. We will return to this topic in
Section 4.
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Fig. 5. Successive prediction stages for ‘Gaze’. Left: The original Gaussian. Centre:
Discretised Gaussian. Right: Centre bracket replaced with narrow spikes on integers.

2.3 Stereopsis

The ‘Stereopsis’ data set had only 4 input dimensions. Visual inspection of the
data showed clear, regular structure. The name of the set was an additional hint:
the word “stereopsis” means stereoscopic vision. Based on studies, we formed a
hypothesis of the physical phenomenon that had created the data.

The assumed model was as follows: The input data consists of two coordinate
pairs, (x1, y1) and (x2, y2). Each pair corresponds to the location of the image of
a calibration target, as seen by a video camera. The target data corresponds to
the distance z between the calibration target and a fixed surface. Both cameras
are fixed. The calibration target is moved in a 10 × 10 × 10 grid. The grid is
almost parallel to the surface from which distances are measured.

Naturally we had no idea if this model is right. However, having some visual
model of the data helps in choosing the methods. Having a model in mind, we
proceeded in two phases.

1. We first classified the data into 10 distance classes. Each class was supposed
to correspond to one 10× 10 surface in the grid. Distances (training target
values) within each class are close to each other.

2. Within each class, we fitted a low-order surface to the training points.

The first part, classification, seemed trivial. We used a linear transformation
to reduce dimensionality to 1, and used 9 threshold values to separate the classes.

In the second part, the physical model guided the selection of the parame-
terisation of each surface. It turned out that simply mapping the coordinates
of one camera, (x1, y1), to the polynomial (1, x1, y1, x1y1) made it possible to
find a highly accurate linear fitting. Higher order terms seemed to cause only
over-fitting, while leaving the x1y1 term out produced worse results in validation.

This particular polynomial makes sense if we assume that the grid is formed
by defining four corner points of each surface and interpolating linearly. Errors
due to lens distortions may be large in x and y dimensions, but their effect on
almost parallel surfaces in the z dimension are minor.

Given this prediction method, there are two error sources in these predictions.
Firstly, there is the possibility of a classification error. However, we assumed that
classifications are correct. When the classifier was formed by using only training
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points, all validation samples were classified correctly and with large margins.
This assumption turned out to be a fatal mistake.

Secondly, there is the distance between the surface and the true target. We
assumed that this error is primarily contributed by Gaussian noise in measure-
ments. Variance was estimated for each surface by using the training samples.
Thus, we submitted simple Gaussian predictions.

The results were a bit disappointing. There was a huge NLPD loss. It turned
out that 499 of the 500 test samples were predicted well. 1 of the 500 samples
was completely incorrect. This was a classification mistake and one huge loss
was enough to ruin the score of the entire prediction. We, obviously, should not
have trusted the simple classification method too much.

In addition to that single classification mistake, is there anything one can
learn from this effort? If our guess of the model is correct, and the real objective
was training a computer vision system to estimate distances, this method is
completely useless. However, it did predict almost all test points well. This is
due to learning the structure of the calibration process, not due to learning how
to calculate the distance from stereo images. The lesson learned: One needs to
be careful when choosing the training and validation data. For example, random
points in continuous space instead of a grid could have helped here to avoid this
problem.

3 About Challenges and Scoring

Probabilistic machine learning challenges, such as the EPUC challenge, can give
us new empirical information on applying machine learning in practical prob-
lems. Ideally, one would gain information on which methods work well in practice.
One could also learn more on how to choose the right tool for a given problem,
and how to choose parameters. However, as we will see, one needs to be careful
when choosing the scoring rules used in the competition.

The quality of a machine learning method can be defined in various ways. We
narrow the scope by ignoring issues such as computational complexity. We will
focus on how useful the predictions would be in a practical application.

3.1 Notation and Terminology

For scoring rules, we use the notation used by Gneiting and Raftery [3]. Let P
be the predictive distribution and let x be the true target. A scoring rule is any
function S(P, x). Given a distribution Q(x), we use S(P, Q) for the expected
value of S(P, x) under Q, i.e. S(P, Q) =

∫
S(P, x)Q(x) dx.

If P is a probability distribution, we use P (x) to denote its density function,
and P (X ≤ x) to denote cumulative density.

3.2 Modelling a Challenge

In our model of a competition, training inputs X = (xj), training targets Y =
(yj), and test inputs T = (ti) are given to competitors while true test targets
U = (ui) are not yet published.
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The competition consists of three phases:

1. Each competitor k ∈ K chooses a machine learning method fk, forms a
hypothesis hk = fk(X, Y ), and use the hypothesis to form a personal prob-
ability distribution Qk,i = hk(ti).

2. The competitor chooses a prediction Pk,i = gk(Qk,i) by using any function
gk. The prediction Pk = (Pk,i) and a description of the method (fk, gk) are
reported to the organiser.

3. Each competitor is assigned a score sk = 1
|U|
∑

S(Pk,i, ui).

In our model, fk encodes essentially everything one needs in order to re-use
the same method in a new, similar problem. In addition to a machine learning
algorithm, it describes all rules the expert used for, say, choosing the right pa-
rameters. Evaluating fk(X, Y ) may require not only computer resources but also
work by a human expert.

Competitors typically have no a priori knowledge on the phenomenon. Thus
a competitor’s personal probability distribution, Qk,i, is formed solely by using
the method fk, as described above.

However, a competitor does not necessarily want to report her honest per-
sonal probability distribution. Perhaps her expected personal utility would be
maximised by reporting an overconfident prediction. This could be caused either
by the peculiar nature of her utility function, or by the general characteristics
of the scoring method being applied in the competition. Instead of denying the
possibility of such human behaviour, we have added in our model the mapping
gk which the competitor uses for forming her prediction. This model, where the
competitors seek to maximise their personal utilities, is in line with Bernardo and
Smith’s argumentation that “the problem of reporting inferences is essentially a
special case of a decision problem” [4, p. 68].

We are explicitly requiring that the methods are revealed. Otherwise there
is little one can learn from the results of the competition. However, the score
does not depend on the structure of fk. The whole point of these competitions
is evaluating methods by their practical results, not by their theoretical merits.

The score does not depend directly on Qk,i, either. While the competition
organisers could, in principle, use fk to re-calculate Qk,i, the amount of hu-
man work involved could be huge. Thus we are left with scoring the reported
predictions, Pk,i.

The EPUC challenge conforms to this model. The requirement of reporting
(fk, gk) is implemented by asking the winners to present their methods.

3.3 Results of a Challenge

Let us assume that the competitor k̃ achieved one of the highest scores. In spite
of all limitations mentioned above, we would like to be able to learn something
on fk̃. Ideally, fk̃ should now be among the strong candidates for use in similar
practical machine learning problems. Obviously, this is not always true, a trivial
counterexample is a competition where all participants were novices and all
predictions were useless.
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Competitors have many degrees of freedom for choosing what to do in the
competition. On the other hand, there is relatively little what the organiser of
the competition can do in order to affect the quality of the results. Assuming
the data sets are fixed, the organiser can only choose the set of competitors K
and the scoring rule S.

In this paper, we concentrate on the task of choosing the scoring rule. We will
not discuss the task of choosing the competitors. However, we briefly note that in
order to find good methods fk, the set of competitors should preferably contain
a number of leading machine learning experts. On the other hand, participation
is voluntary. If the experts notice that the scoring rules of the competition are
poorly designed, they may be reluctant to participate. Thus choosing the scoring
rules plays a role even in the task of choosing the competitors.

3.4 Scoring and Linearity of Utilities

A score as such has little meaning. In this paper, we assume that each competitor
has a utility function which depends linearly on her score, sk. This is a strong
assumption. It may be hard to implement in a competition. If reputation, fame
and publicity are the only prize, typically the winner takes it all.

However, a non-linear dependency makes it hard to analyse competitions. If,
for example, only the winning score has a high utility, competitors are encouraged
to take a risk with overconfident predictions. A small chance for a winning score
would have a better expected utility than a safe medium-level score. In such a
setting, the winners could be those who were lucky, not those who used the best
methods. Competitors can also be risk-averse; in that case they might choose
to play it safe and report underconfident predictions. Both risk-seeking and
risk-averse patterns of behaviour have been observed in probability forecasting
competitions; see, for example, Sanders [5].

Implementing a linear utility has been studied in the literature. A typical
construction involves a single-prize lottery where the winning probabilities are
proportional to the scores. See, for example, Smith’s construction [6].

3.5 Scoring in a Challenge

There is a rich literature on scoring probabilistic predictions, both for discrete
probability distributions (classification) and for continuous probability distribu-
tions (regression) [7, 8, 9]. Much of the work is related to atmospheric sciences
for obvious reasons [5, 10, 11, 12]. In this subsection, we will look at the scoring
from the point of view of probabilistic machine learning challenges.

Matheson and Winkler [13] summarise three common uses for scoring rules.
First, scoring rules can be used to encourage assessors make careful assessments.
Second, scoring rules can be used to keep assessors honest. Finally, scoring rules
can be used to measure the goodness of predictions. We will soon see that this
list applies well to a machine learning challenge.
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The direct requirements for a scoring rule are two-fold:

1. The scoring rule should encourage experts to work seriously in order to find
a good method, fk.

2. The final score should reflect how good the method fk is.

These two requirements correspond directly to two applications on Matheson
and Winkler’s list: encouraging good assessments and measuring the goodness
of predictions.

However, the scores reflect the quality of the method only indirectly. There
are two layers of indirection: First, we are scoring fk by using a sample. The
second issue is that we are not scoring the quality of the competitor’s personal
probability hk(ti) but the quality of her reported probability gk(hk(ti)) for an
arbitrary gk.

For the first issue there is little we can do besides using a relatively large and
representative test set. By using a sample mean sk = 1

|U|
∑

S(Pk,i, ui) we are
estimating the expected value of the score and determining the quality of the
estimator is standard statistics.

The second issue is more subtle. Ideally we would like to have gk(x) = x for
all k. This is needed not only for making it easier to analyse the competition but
also for encouraging careful assessments. If the connection between competitors’
work and the final score becomes more indirect and complicated, the competitors
cannot see where they should focus their attention.

One can naturally ask: why not simply require that competitors use the iden-
tity function as gk. We were assuming, after all, that competitors report both fk

and gk, and the reported fk and gk could be manually checked by a competition
organiser, if needed. Unfortunately, competitors could incorporate the mapping
gk in their reported fk and let gk be the identity function. Nothing would be
gained but the goal of the competition would be missed. The method fk would
no longer be a good way of estimating probabilities, it would only be a way of
maximising the score. Its use in practical problems would be limited.

Instead of requiring, the competitors should be encouraged, by the design of
the challenge, to use an identity function as gk. This is what Matheson and
Winkler refer to as keeping assessors honest. If the scoring rule is such that for a
competitor, the identity function is the best choice of gk in terms of her expected
score, we gain a lot. The competition organiser can announce this fact and the
competitors can check it. Now the competitors can concentrate on developing a
method to estimate true probabilities of the phenomenon.

A scoring method with this useful property is called proper. Focusing on proper
scoring rules is similar to focusing on truthful or strategyproof mechanisms in
the field of mechanism design.

3.6 Proper Scoring Rules

The problem of keeping assessors honest is easily expressed and well understood.
See, for example, Gneiting and Raftery [3] for a modern treatment on the subject.
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A scoring rule is called proper if S(Q, Q) ≥ S(P, Q) for all P and Q. A scoring
rule is strictly proper if it is proper and if S(Q, Q) = S(P, Q) only if Q = P . If a
predictor’s personal probability is Q, under proper scoring she gains nothing, on
average, by predicting anything else than Q. Under strictly proper scoring she
always loses, on average, by predicting anything else than Q.

Proper scoring rules have gained a lot of attention in the literature. There
are large families of proper and strictly proper scoring rules [3, 7, 13]. However,
properness by itself has only limited use in encouraging careful assessments and
measuring the goodness of predictions. Strict properness essentially guarantees
that if one works hard enough to make a perfect prediction by deducing the
true generative distribution, one is expected to gain more than other competi-
tors. However, a useless prediction can achieve almost as high a score as the
perfect prediction. We will later see examples of this. As a competitor’s utility
depends both on the score and on the work required, an easy and highly scored
solution is inviting. This problem will be reflected also in measuring the good-
ness of predictions. If competitors were encouraged to focus on highly scored but
useless predictions, that is also what the highest scoring methods are expected
to be.

In summary, properness is useful, it allows a large variety of alternative scoring
rules, and it is not enough by itself. Properness is a good starting point. The
next section illustrates what else should be expected from a good scoring rule.

4 Beyond Properness

While keeping assessors honest can be formulated and solved in a uniform way
for all problems, encouraging careful assessments and measuring the goodness
depends on the application. This is intimately tied to the question of how we
value the information provided by different kinds of probabilistic predictions.

Scoring rules can be divided into local and non-local rules. In a local rule [14],
the score of a predictive distribution P depends on the predictive density at the
true target value only, that is, on P (x). A non-local scoring rule may take into
account also other characteristics of the predictive distribution. An interesting
class of non-local scoring rules are distance sensitive rules [15, 16], which favour
predictions that place probability mass near the target value, even if not exactly
at the target.

It is an intriguing question whether a scoring rule should be local or not.
Statistical inference problems may be vaguely divided into “pure inference prob-
lems” where the goal is simply to gain information about the targets, and “prac-
tical problems” where we seek information in order to solve a particular decision
problem. Bernardo [4, 14] states that in a pure inference setting, a local scoring
rule should be used. However, in many practical settings there seems to be a
need for non-local rules.

In order to help make this discussion more concrete, we introduce two proper
scoring rules which have been proposed for scoring continuous predictions: the
negative log predictive density (NLPD), which is a local rule, and the continuous
ranked probability score (CRPS), which is non-local.
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4.1 NLPD

NLPD is the scoring function which was used, for example, in the EPUC chal-
lenge. NLPD stands for negative log estimated predictive density. It is a loss
function: large values imply poor performance. To make it compatible with our
framework, we derive a scoring function by changing the sign. The result is
simply the logarithmic score (see, for example, Matheson and Winkler [13]):

SNLPD(P, x) = log P (x). (1)

In this text we will use the terms NLPD score and the logarithmic score inter-
changeably. Both refer to the scoring function defined in Equation (1).

The NLPD score is obviously local. In fact, under suitable smoothness con-
ditions, it is essentially the only proper scoring rule which is also local [14]. If
locality is indeed desirable, this is a strong argument in favour of the NLPD.

4.2 CRPS

CRPS stands for continuous ranked probability score. CRPS is a generalisation
of the idea of the ranked probability score (RPS), introduced by Epstein [11] for
scoring in probabilistic classification.

Epstein observed that existing proper scoring rules did not use the concept
of distance. However, the classes may represent, for example, ranges of measure-
ments. In this case the classes are not independent.

Epstein uses weather forecasting as an example: It is assumed that the classes
represent consecutive temperature ranges, A predicts (0.1, 0.3, 0.5, 0.1), B pre-
dicts (0.5, 0.3, 0.1, 0.1), and the fourth class corresponds to the observed tem-
perature. If the ordering of the classes is ignored, both predictions would obtain
the same score.

However, these predictions are not equivalent for a typical user of the pre-
diction. Given the prediction B, the user would be prepared for much colder
weather than given the prediction A. Epstein developed this line of thought fur-
ther to estimate the expected utility of the user of the prediction. For example,
given the prediction B above, the user’s utility is low as she had to prepare for
cold weather while preparation was not needed. With a number of simplifying
assumptions, and after normalising the scores, Epstein derived his recommenda-
tion for a scoring rule, the ranked probability score. Murphy [17] showed that
this score is proper.

In order to simplify notation, let us define a probability distribution function
Rx based on the observed value x, such that Rx(X ≤ i) = 0 for all i < x, and
Rx(X ≤ i) = 1 for all i ≥ x. Now we can present RPS as follows:

SRPS(P, x) = 1− 1
n− 1

n−1∑
i=1

(P (X ≤ i)−Rx(X ≤ i))2. (2)

Here n is the number of classes. We see that the ranked probability score is a lin-
ear transform of the square error between the predicted and observed cumulative
distribution functions.
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This can be directly generalised to a continuous distribution. Thus we obtain
the continuous ranked probability score which was introduced, and proved to be
proper, by Matheson and Winkler [13]:

SCRPS(P, x) = −
∫

(P (X ≤ u)−Rx(X ≤ u))2 w(u) du. (3)

Here w(u) is arbitrary weight. NLPD and CRPS scores are illustrated in Fig. 6.

Fig. 6. An illustration of the NLPD and CRPS scores. In these figures, grey areas
illustrate predicted probability density functions. Solid lines are used to show the cor-
responding cumulative distribution. Dashed vertical bars show the true target. The
first part, (a), shows the NLPD score: it is logarithm of the predicted density near
the true target values, as indicated by the horizontal dotted line. The second part,
(b), shows the CRPS score: it is the square error between the predicted and observed
cumulative distribution functions, the error is illustrated by a vertical striped pattern.

The CRPS is a non-local rule, and in general, it favours predictions that
put a lot of probability mass near the target. We will refer to this property as
distance-sensitivity. Its exact definition varies in the literature; CRPS is sensitive
to distance according to Staël von Holstein’s “tail sums” definition [15], but not
according to Murphy’s “symmetric sums” definition [16].

4.3 Locality Versus Distance-Sensitivity

Let us now continue the discussion of the relative merits of local and distance
sensitive scoring rules. We will here accept the view of Bernardo [14] that sta-
tistical inference about an unknown quantity is essentially a decision problem,
where one tries to maximise the expected utility of information attained by doing
inference. A central question is then how to define the utility of information.
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Recall the distinction of “pure inference problems” and “practical problems”.
In a practical problem, the application at hand may dictate a particular scoring
function, related to the end utility of making decisions based on partial infor-
mation. Such a scoring function is quite often non-local.

On the other hand, in a pure inference problem, there is no immediate practi-
cal application. One simply wants to gain knowledge about the targets. Bernardo
states that in such a setting, one should maximise the expected gain of infor-
mation [4, p. 72]. This leads to requiring a local scoring function, and if also
properness and smoothness are desired, essentially choosing the NLPD.

While Bernardo’s argument is otherwise compelling, it rests on an important
hidden assumption: that if one desires to gain knowledge (about the value of a
target quantity), one should then indeed maximise the amount of information
gained. This implicitly means that all information about the target value is
treated as equal in value; for example, that learning the tenth decimal of an
unknown quantity is just as valuable as learning its first decimal.

For regression tasks, where the target values are continuous, we find such
equivalence rather unnatural even in pure inference; more so if the inference
task is in any way related to a practical setting, such as inferring the value
of a physical magnitude. This is particularly evident when we consider how
probabilistic predictions can be used.

When using a probabilistic prediction, the predicted distribution tells us how
likely various undesirable or difficult situations are. Then, the costs of prepar-
ing for those situations can be compared to the probabilities and the potential
damages in case of no protection. We list here some examples from various fields:

1. Weather prediction: Difficult situations can be, for example, very high or
low temperatures, heavy rain, storms, etc. The costs of preparing for those
situations can range from carrying an umbrella to cancelling flights.

2. Financial sector: Undesirable situations can be financial risks in investments.
Preparing for those situations may involve, for example, bidding a lower price
and the possibility of losing a deal.

3. Measuring distances: An undesirable situation can be, for example, a robot
colliding with an obstacle. Preparing for that situation might require slowing
down and thus spending more time.

In all of these examples, if the undesirable situation did not realise, the prepa-
rations were done in vain. In that case, all other factors being equal, a prediction
which estimated a high risk of an undesirable situation is more costly than a pre-
diction which did not do so.

Furthermore, usually some undesirable situations are more severe than others.
The more extreme situations are possible, the more costly preparations we may
need to do. Thus, the practical use of a prediction depends on the distance
between the true target and the predicted probability mass.

In all examples described above, the concept of distance plays a role: In
weather prediction, the practical significance of small and large differences in
predicted temperatures was already illustrated in Epstein’s [11] example in Sec-
tion 4.2 above. In financial sector, if an investment was actually highly profitable,
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Fig. 7. An illustration of the concept of distance. Both predictions, (a) and (b), will
gain the same NLPD score, while the CRPS score is much lower in case (b). The
CRPS score corresponds well to the practical applicability of the predictions: given
the prediction (b), the user of the prediction needs to be prepared for a wide range of
different values, making her utility lower.

having a prediction of possible low profits may be relatively harmless while hav-
ing a prediction of possible large losses may lead into the wrong decision. When
measuring distances, if a wall is actually at the distance of 200 cm, predicting a
possible obstacle at the distance of 196 cm is typically harmless, while predicting
a possible obstacle at 5 cm may make robot navigation much harder.

The concept of distance is commonly used in many non-probabilistic loss
functions designed for regression tasks: consider, for example, the square loss.
We argue that it should also be taken into account in probabilistic loss functions.
Fig. 7 illustrates how the CRPS score takes the distance into account, while the
NLPD score ignores it. It should be noted that in this example, both predictions
contain exactly the same amount of information, while the practical value of
this information differs. In practical applications, not every bit of information is
worth the same. We will elaborate this issue further in the next section.

4.4 Information Which Is of Little Use

Typically, knowing the finest details of a probability distribution function is
of very little use. When predicting a real value in the range [0, 1], accurately
predicting the first decimal digit is of much higher practical use than accurately
predicting the second (or tenth) decimal digit. This issue is closely related to the
concept of distance: knowing the first decimal digit corresponds to a prediction
where all probability mass is concentrated in a small range.

Let us assume that A predicts correctly the first decimal digit of the true target
(all values with the right 1st digit having the same probability) and B predicts



Lessons Learned in the Challenge: Making Predictions and Scoring Them 111

correctly the second decimal digit. Both predictors gain the same amount of
information. Furthermore, the NLPD score will be the same for both predictors.
However, we can easily see that the CRPS score is much higher for the prediction
A. Actually, with respect to the CRPS score, the prediction B is not much
better than a prediction where nothing is known. This is well in balance with
the practice: knowing, say, the second decimal digit of rainfall is typically of
no practical use if the more significant digits are uncertain. The user of the
prediction would have to be prepared for all kinds of weathers.

In the EPUC challenge, the problem of useless information can be illustrated
by the ‘Stereopsis’ data set. As mentioned above in Section 2.3, one possible
approach consists of classifying points to 10 distance classes, and predicting
within each class. Our failure could have been avoided by assigning a positive
probability for each of these classes, and by giving predictions with 10 narrow
Gaussians instead of only 1 narrow Gaussian distribution. This may gain a good
NLPD score, yet be of no practical use in a computer vision application.

4.5 Point Masses

In practical regression settings, one often encounters the problem of point masses.
By this we mean that the predictor has some reason to believe that in an oth-
erwise continuous target domain, there are special values which have a nonzero
mass. There are several different sources of this problem.

Fig. 8 illustrates how a predictor may use this information. Part (a) presents
the original prediction before information on point masses is used. Part (b) shows
how a competitor may slightly modify her prediction to reflect her belief that
there are point masses.

The spikes can be made arbitrarily high, and at the same time their probability
mass can be made very small simply by limiting their width. Thus adding spikes
can leave the predicted density outside the spikes virtually unchanged.

If the true target does not match any of those spikes, neither NLPD nor
CRPS score is considerably changed when comparing predictions (a) and (b).
Thus, adding spikes is relatively harmless from a competitor’s point of view.

However, if the true target indeed happens to match one of the predicted
spikes, the NLPD score for prediction (b) is arbitrarily high while the CRPS
score for prediction (b) is still essentially the same as for prediction (a). Thus,
the NLPD score strongly encourages working towards finding some discrete point
masses, while the CRPS score does not reward for it unless the point masses are
large enough to considerably change the density function.

If there is at least one match with any predicted spike in any of the test
targets, the NLPD score is dominated by that spike. If the NLPD score is used
and any such point masses are found, there is little reason for predictors to make
any efforts to model any other aspects of the phenomenon.

Thus, this problem, too, is primarily related to encouraging careful assess-
ments. It seriously affects measuring the goodness of predictions: the existence
of such point masses may be trivial and uninteresting, while NLPD score may
be dominated by them.
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Fig. 8. An illustration of the problem of point masses. Part (a) shows the original
prediction. Part (b) shows how a competitor may slightly modify her prediction if she
has a reason to believe there is a nonzero point mass. The competitor has added an
extremely narrow spike in the predicted density function. The probability mass of the
spike can be made low, and density everywhere else can be left virtually unchanged.

In practice the format in which the predictions are submitted may not al-
low arbitrarily high and arbitrarily narrow spikes. For example, the range and
precision of IEEE floating point numbers effectively limited this problem in the
EPUC challenge. However, such limits are quite unsatisfactory and arbitrary
and still allow manipulating scores by using some narrow spikes.

Thus, using any local scoring rule which is based on the value of the prob-
ability density function at the location of the true target should be avoided in
this kind of challenges unless data sets are selected very carefully in order to
avoid the problem of point masses. Non-local scoring rules which are based on
comparing cumulative distribution functions are better in this respect.

Now we will have a look at some practical examples of point masses. We have
three categories of point mass problems. These categories are based on features
of the data sets of the EPUC challenge, and thus clearly relevant in the context
of probabilistic challenges.

Known Targets. The first category is the case of known targets. For example,
the first version of the ‘Stereopsis’ data set in the EPUC challenge accidentally
contained some overlap between training and test data. This should not affect
the results of the challenge: each competitor has the same knowledge, and the
scores of these overlapping known points would simply be an additive constant
in final scores. However, for the NLPD score, this additive constant would be
infinity, ruining the final scores. For the CRPS score, the constant would be zero.

Special Values in the Target Domain. The second category deals with
special values in the target domain. For example, the ‘Outaouais’ training data
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contained 250 points where the target was exactly zero. Thus, it is likely that
also the test data set of comparable size contains some targets that are zero.

Such special values may occur if missing data are represented as zeroes. There
may also be a natural reason why a continuous physical variable really has a
nonzero point mass somewhere, precipitation being a good example [3].

Discrete Target Domain. The third category is the case of discrete target
domain. The ‘Gaze’ data set had integral target values. Modifying predictions
to reflect this trivial fact improved NLPD scores considerably.

Discrete target values are actually relatively typical in practical applications:

– The target domain may actually be integral; the prediction task might deal
with counting some occurrences.

– Financial quantities such as money and shares are almost always expressed
with a fixed precision.

– Devices which measure physical quantities usually work with finite precision.

One may argue that at least discrete target domains could be dealt with
by interpreting them as classification tasks instead of regression tasks, and by
asking for discrete predictions instead of continuous predictions. However, the
set of possible values may be large or infinite, making this approach impractical.

5 Representing Predictions

One needs a finite representation for continuous probability distributions. A
single Gaussian is not flexible enough in order to represent arbitrary predictions.

In the EPUC challenge, the other alternative was a set of quantiles, essentially
a histogram with exponential tails (see Fig. 5 for an example). Quantiles are
flexible but handling quantile predictions in, for example, mathematical software
is a bit complicated. One typically needs to handle the histogram part and the
tails separately, making program code more complicated and error-prone.

There is a need for simpler ways to represent continuous predictions, both
in challenges and in practical applications. One possible idea would be using a
sample. One could simply draw a finite set of sample values randomly from the
predicted distribution and report those.

Naturally, one could then use density estimation to recover an approximation
of the original distribution. However, this would not simplify matters at all, and
one would also need to specify the parameters used in density estimation. By
using suitable scoring methods, there is an easier solution.

One could interpret a finite sample literally as a probability distribution with a
finite set of point masses. This is illustrated in Fig. 9. The density function would
consist of infinitely high and narrow spikes, while the cumulative distribution
function would consist of a finite number of steps.

In most cases, the true target value would not match exactly any point mass.
The expected NLPD loss would be infinite. However, the shape of the cumulative
distribution function would be close to the original distribution. Thus, if one
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Fig. 9. An illustration of using samples to represent predictions. In this example, the
prediction was given as a sample of five points. It corresponds to a probability distri-
bution with five spikes.

used the CRPS score, a finite set of sample points would give approximately the
same score as a quantile prediction, but with considerably less complexity. A
key difference with quantile predictions is that there would be no need to handle
tails in any special way. CRPS is well-defined even if the target is outside the
range of the sample points.

This line of thought may be also used to guide the selection of the scoring
method. Clearly, a finite sample cannot represent accurately all aspects of a
continuous distribution, such as the shape of the density function in low-density
areas. Such details are not much reflected in the CRPS score, either. If we have
a practical problem where the CRPS score can be used, it means that we are not
interested in such details, and thus we can use samples to represent predictions.
Conversely, if we cannot use a sample, it may be because we are interested in
such details, and then we probably should not be using CRPS.

While evaluating the CRPS score in equation (3) may be difficult for an arbi-
trary prediction [3], it is straightforward if a prediction is represented as a finite
sample. One may actually interpret this process as a (possibly randomised) ap-
proach to approximate numerical integration. By letting the competitors perform
sampling, they may use arbitrarily complicated predictions. Scoring will be also
fair in the sense that the organiser of the challenge does not need to use any
randomised or approximate method when evaluating submitted predictions.

Finite samples arise naturally in the context of ensemble prediction. For exam-
ple, by running a weather model with several slightly perturbed initial conditions
we can obtain an ensemble of different point predictions for, say, tomorrow’s
temperature. Typically the ensemble is then converted into a probability distri-
bution of suitable form. But if predictions are represented as finite samples, no
conversion is needed: the ensemble itself can serve as the representative sample.

6 Conclusion

In this paper, we reported our methods in the regression tasks of the Evaluat-
ing Predictive Uncertainty Challenge. The tasks also demonstrated some pitfalls
in using the well-known NLPD score. We analysed the problem of organising
a probabilistic machine learning challenge and proposed two possible improve-
ments for future challenges:
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1. One can avoid many pitfalls, if one uses a distance-sensitive scoring method
such as CRPS.

2. Description and implementation of the scoring methods can be simplified, if
predictions are represented as samples.

We accept that NLPD is the method of choice for the tasks it was designed for:
truly continuous, pure inference tasks where every bit of information is worth the
same. Unfortunately, one often encounters regression tasks that do not conform
to this idealised model, even if they appear so on the surface.

CRPS is not the only possible solution. Whether there are other distance-
sensitive scoring methods which reflect significantly better the practical value of
predictions is still an open question.

We assumed that the competitors’ utilities depend linearly on their scores.
Further research is needed on this issue. Firstly, one can pay more attention on
implementing linear utilities in challenges. Secondly, more research can be done
on modelling challenges where the winner takes it all.
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15. Staël von Holstein, C.A.S.: A family of strictly proper scoring rules which are
sensitive to distance. Journal of Applied Meteorology 9 (1970) 360–364

16. Murphy, A.H.: The ranked probability score and the probability score: A compar-
ison. Monthly Weather Review 98 (1970) 917–924

17. Murphy, A.H.: On the “ranked probability score”. Journal of Applied Meteorology
8 (1969) 988–989



The 2005 PASCAL Visual Object Classes
Challenge

Mark Everingham1, Andrew Zisserman1, Christopher K.I. Williams2,
Luc Van Gool3, Moray Allan2, Christopher M. Bishop10, Olivier Chapelle11,

Navneet Dalal8, Thomas Deselaers4, Gyuri Dorkó8, Stefan Duffner6,
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Abstract. The PASCAL Visual Object Classes Challenge ran from
February to March 2005. The goal of the challenge was to recognize
objects from a number of visual object classes in realistic scenes (i.e.
not pre-segmented objects). Four object classes were selected: motor-
bikes, bicycles, cars and people. Twelve teams entered the challenge. In
this chapter we provide details of the datasets, algorithms used by the
teams, evaluation criteria, and results achieved.

1 Introduction

In recent years there has been a rapid growth in research, and quite some success,
in visual recognition of object classes; examples include [1, 5, 10, 14, 18, 28, 39, 43].
Many of these papers have used the same image datasets as [18] in order to
compare their performance. The datasets are the so-called ‘Caltech 5’ (faces,
airplanes, motorbikes, cars rear, spotted cats) and UIUC car side images of [1].
The problem is that methods are now achieving such good performance that they
have effectively saturated on these datasets, and thus the datasets are failing to
challenge the next generation of algorithms. Such saturation can arise because
the images used do not explore the full range of variability of the imaged visual

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 117–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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class. Some dimensions of variability include: clean vs. cluttered background;
stereotypical views vs. multiple views (e.g. side views of cars vs. cars from all
angles); degree of scale change, amount of occlusion; the presence of multiple
objects (of one or multiple classes) in the images.

Given this problem of saturation of performance, the Visual Object Classes
Challenge was designed to be more demanding by enhancing some of the di-
mensions of variability listed above compared to the databases that had been
available previously, so as to explore the failure modes of different algorithms.

The PASCAL1 Visual Object Classes (VOC) Challenge ran from February
to March 2005. A development kit of training and validation data, baseline al-
gorithms, plus evaluation software was made available on 21 February, and the
test data was released on 14 March. The deadline for submission of results was
31 March, and a challenge workshop was held in Southampton (UK) on 11 April
2005. Twelve teams entered the challenge and six presented their findings at the
workshop. The development kit and test images can be found at the website
http://www.pascal-network.org/challenges/VOC/.

The structure of the remainder of the chapter is as follows. Section 2 de-
scribes the various competitions defined for the challenge. Section 3 describes
the datasets provided to participants in the challenge for training and testing.
Section 4 defines the classification competitions of the challenge and the method
of evaluation, and discusses the types of method participants used for classifica-
tion. Section 5 defines the detection competitions of the challenge and the method
of evaluation, and discusses the types of method participants used for detection.
Section 6 presents descriptions of the methods provided by participants. Sec-
tion 7 presents the results of the classification competitions, and Section 8 the
results for the detection competitions. Section 9 concludes the chapter with dis-
cussion of the challenge results, aspects of the challenge raised by participants
in the challenge workshop, and prospects for future challenges.

2 Challenge

The goal of the challenge was to recognize objects from a number of visual object
classes in realistic scenes. Four object classes were selected, namely motorbikes,
bicycles, cars, and people. There were two main competitions:

1. Classification: For each of the four classes, predicting the presence/
absence of an example of that class in the test image.

2. Detection: Predicting the bounding box and label of each object from the
4 target classes in the test image.

Contestants were permitted to enter either or both of the competitions, and to
tackle any or all of the four object classes. The challenge further divided the
competitions according to what data was used by the participants for training
their systems:
1 PASCAL stands for pattern analysis, statistical modelling and computational learn-

ing. It is the name of an EU Network of Excellence funded under the IST Programme
of the European Union.
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1. Training using any data excluding the provided test sets.
2. Training using only the data provided for the challenge.

The intention in the first case was to establish just what level of success could
currently be achieved on these problems, and by what method. Participants
were free to use their own databases of training images which might be much
larger than those provided for the challenge, additional annotation of the images
such as object parts or reference points, 3D models, etc. Such resources should
potentially improve results over using a smaller fixed training set.

In the second case, the intention was to establish which methods were most
successful given a specified training set of limited size. This was to allow judge-
ment of which methods generalize best given limited data, and thus might scale
better to the problem of recognizing a large number of classes, for which the
collection of large data sets becomes an onerous task.

3 Image Sets

Two distinct sets of images were provided to participants: a first set containing
images both for training and testing, and a second set containing only images
for testing.

3.1 First Image Set

The first image set was divided into several subsets:

train: Training data

val: Validation data (suggested). The validation data could be
used as additional training data (see below).

train+val: The union of train and val.

test1: First test set. This test set was taken from the same distri-
bution of images as the training and validation data, and
was expected to provide an ‘easier’ challenge.

In the preliminary phase of the challenge, the train and val image sets were
released with the development kit. This gave participants the opportunity to try
out the code provided in the development kit, including baseline implementa-
tions of the classification and detection tasks, and code for evaluating results.
The baseline implementations provided used the train set for training, and
demonstrated use of the evaluation functions on the val set. For the challenge
proper, the test1 set was released for evaluating results, to be used for testing
alone. Participants were free to use any subset of the train and val sets for
training. Table 1 lists statistics for the first image set.

Examples of images from the first image set containing instances of each
object class are shown in Figure 1. Images were taken from the PASCAL im-
age database collection; these were provided by Bastian Leibe & Bernt Schiele
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Table 1. Statistics of the first image set. The number of images (containing at least
one object of the corresponding class) and number of object instances are shown.

train val train+val test1
images objects images objects images objects images objects

motorbikes 107 109 107 108 214 217 216 220
bicycles 57 63 57 60 114 123 113 123
people 42 81 42 71 84 152 84 149

cars 136 159 136 161 272 320 275 341

Fig. 1. Example images from the first image set. From top to bottom: motorbikes,
bicycles, people, and cars. The original images are in colour.

(TU-Darmstadt), Shivani Agarwal, Aatif Awan & Dan Roth (University of Illi-
nois at Urbana-Champaign), Rob Fergus & Pietro Perona (California Institute
of Technology), Antonio Torralba, Kevin P. Murphy & William T. Freeman
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(Massachusetts Institute of Technology), Andreas Opelt & Axel Pinz (Graz Uni-
versity of Technology), and Navneet Dalal & Bill Triggs (INRIA).

The images used in the challenge were manually selected to remove dupli-
cate images, and very similar images taken from video sequences. Subjective
judgement of which objects are “recognizable” was made and images contain-
ing annotated objects which were deemed unrecognizable were discarded. The
subjective judgement required that the object size (in pixels) was sufficiently
large, and that the object could be recognized in isolation without the need for
“excessive” contextual reasoning e.g. “this blob in the distance must be a car
because it is on a road.” Images where the annotation was ambiguous were also
discarded, for example images of many bicycles in a bike rack for which correct
segmentation of the image into individual objects proves impossible even for a
human observer.

The images contain objects at a variety of scales and in varying context.
Many images feature the object of interest in a “dominant” position, i.e. in the
centre of the image, occupying a large area of the image, and against a fairly
uniform background. The pose variation in this image set is somewhat limited,
for example most motorbikes appear in a “side” view, and most cars in either
“side” or “front” views (Figure 1). Pose for the bicycles and people classes is
somewhat more variable. Most instances of the objects appear un-occluded in
the image, though there are some examples, particularly for people (Figure 1)
where only part of the object is visible.

Annotation. All the images used in the first image set had already been an-
notated by contributors of the data to the PASCAL image databases collection.
The annotation was not changed for the challenge beyond discarding images
for which the annotation was considered incomplete, ambiguous, or erroneous.
For each object of interest (e.g. cars), the annotation provides a bounding box
(Figure 2a); for some object instances additional annotation is available in the
form of a segmentation mask (Figure 2b) specifying which pixels are part of the
object.

(a) Bounding box (b) Segmentation mask

Fig. 2. Annotation of objects available for training. (a) all objects are annotated with
their bounding boxes. (b) some objects additionally have a pixel segmentation mask.
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Each object is labelled with one of the object classes used in the challenge:
motorbikes, bicycles, people or cars; in addition, the original PASCAL object
class labels were included in the annotation. For some object instances these
specify a more detailed label, typically corresponding to a pose of the object
e.g. PAScarSide and PAScarRear respectively identify side and rear views of a
car. Participants were free to use this information, for example the group from
TU-Darmstadt chose to only train on side views (Section 6.2).

3.2 Second Test Set

In the first image set, images from the original pool of data were assigned ran-
domly to training sets (train+val) and test set (test1). This follows stan-
dard practice in the machine learning field in which training and test data are

Fig. 3. Example images from the test2 test set. From top to bottom: motorbikes,
bicycles, people, and cars. The original images are in colour. There is greater variability
in scale and pose, and more occlusion than the images of test1 shown in Figure 1.
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Table 2. Statistics of the test2 image set. The number of images (containing at least
one object of the corresponding class) and number of object instances are shown.

test2
images objects

motorbikes 202 227
bicycles 279 399
people 526 1038

cars 275 381

assumed to be drawn from the same distribution. To enable a more difficult set
of competitions a second test set (test2) was also prepared, intended to give a
distribution of images with more variability than the training data. This image
set was collected from Google Images specifically for the challenge. Example im-
ages from test2 are shown in Figure 3. The image set is less homogenous than
the first image set due to the wide range of different sources from which the
images were taken. Some images resembling the composition of those in the first
image set were selected, but also images containing greater variation in scale,
pose, and level of occlusion. Table 2 lists statistics for the test2 image set.

3.3 Negative Examples

For both training and testing it is necessary to have a pool of negative images not
containing objects of a particular class. Some other work has used a fixed negative
image set of generic “background” images for testing; this risks oversimplifying
the task, for example finding images of cars might reasonably be achieved by
finding images of roads; if however the negative image set contains many images
of roads with no cars, the difficulty of the task is made more realistic.

The challenge treated both the classification and detection tasks as a set of
binary classification/detection problems (Sections 4, 5) e.g. car vs. non-car, and
made use of images containing other object classes as the negative examples.
For example in the car detection task, images containing motorbikes (but
no cars) were among the negative examples; in the motorbike detection task,
images containing cars (but no motorbikes) became negative examples. Because
the contexts in which the four object classes appear might be considered similar,
e.g. cars, motorbikes, bicycles and people may all appear in a street scene, re-use
of the images in this way should make for a more realistic (and harder) task.

4 Classification Task

The goal in the classification task is to determine whether a given image contains
at least one instance of a particular object class. The task was treated as four
independent binary classification tasks i.e. “does this image contain an object
of type x?” where x was either motorbike, bicycle, people or cars. Treating
the task in this way enables the use of the well-established Receiver Operating
Characteristic (ROC) for examining results. Other work has also considered the
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“forced choice” scenario i.e. “is this an image of a motorbike, a bicycle, a person,
or a car?”; this scenario is inapplicable in the context of the challenge since a
single image may contain instances of objects from more than one class.

4.1 Evaluation of Results

Evaluation of results was performed using ROC curve analysis. This required
that participants’ methods output a “confidence” for an image, with large values
indicating high confidence that the object class of interest is present. Figure 4
shows an example ROC curve, obtained by applying a set of thresholds to the
confidence output by a method. On the x-axis is plotted the proportion of false
positives (how many times a method says the object class is present when it is
not); on the y-axis is plotted the proportion of true positives (how many times
a method says the object class is present when it is). The ROC curve makes
it easy to observe the trade-off between the two; some methods may recognize
some small proportion of objects very accurately but fail to recognize many,
where others may give more balanced performance.

A definitive measure for quantitative evaluation of ROC curves is not possible
since, depending on the application, one might wish to place different emphasis
on the accuracy of a method at low or high false positive rates. The challenge
used two measures to avoid bias: (i) the Equal Error Rate (EER) measures the
accuracy at which the number of false positives and false negatives are equal.
This measure somewhat emphasizes the behaviour of a method at low false
positive rates which might be reasonable for a real-world application; (ii) the
Area Under Curve (AUC) measures the total area under the ROC curve. This
measure penalizes failures across the whole range of false positives, e.g. a method
which recognizes some large proportion of instance with zero error but fails on
the remaining portion of the data. In practice, in the experiments, the method
judged “best” by each of the two measures was typically the same.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER

AUC

false positives

tr
ue

 p
os

iti
ve

s

Fig. 4. Example Receiver Operating Characteristic (ROC) curve for the classification
task. The two quantitative measures of performance are illustrated: the Equal Error
Rate (EER) and Area Under Curve (AUC).
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4.2 Competitions and Participation

Four competitions were defined for the classification task, by the choice of train-
ing data: provided for the challenge, or the participant’s own data; and the test
set used: the “easier” test1 images, or the “harder” test2 images. Table 3 sum-
marizes the competitions. For each competition, performance on each of the four
object classes was evaluated. Participants were free to submit results for any or
all of the object classes.

Table 4 lists the participation in competitions 1 and 2, which used the pro-
vided train+val image set for training. Nine of the twelve participants entered
results for these competitions. All but one tackled all object classes (see Sec-
tion 4.3). Half the participants submitted results for both test sets. No results
were submitted for competitions 3 and 4, in which data other than the provided
train+val image set could be used.

Table 3. Competitions for the classification task, defined by the choice of training
data and test data

No. Task Training data Test data

1 Classification train+val test1
2 Classification train+val test2
3 Classification not VOC test1 or test2 test1
4 Classification not VOC test1 or test2 test2

Table 4. Participation in classification competitions 1 and 2 which used the provided
train+val image set for training. Bullets indicate participation in the competition for
a particular test set and object class.

test1 test2
motorbikes bicycles people cars motorbikes bicycles people cars

Aachen • • • • • • • •
Darmstadt • – – • • – – •
Edinburgh • • • • • • • •

FranceTelecom – – – – – – – –
HUT • • • • • • • •

INRIA-Dalal – – – – – – – –
INRIA-Dorko – – – – – – – –
INRIA-Jurie • • • • – – – –

INRIA-Zhang • • • • • • • •
METU • • • • – – – –

MPITuebingen • • • • • • • •
Southampton • • • • – – – –

4.3 Overview of Classification Methods

Section 6 gives full details of the methods used by participants. The approaches
used for the classification task can be broadly divided into four categories:
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Distributions of Local Image Features. Most participants took the ap-
proach of capturing the image content as a distribution over local image features.
In these methods a set of vector-valued descriptors capturing local image con-
tent is extracted from the image, typically around “interest” points; the image is
represented by some form of probability distribution over the set of descriptors.
Recognition is carried out by training a classifier to distinguish the distributions
for a particular class.

All participants in this category used the SIFT descriptor [32] to represent
the appearance of local image regions.

All but one participant (INRIA-Jurie) used “interest point” detection algo-
rithms to define points about which local descriptors were extracted, including
the Harris and LoG detectors. Aachen additionally extract descriptors around
points on a fixed coarse grid; INRIA-Jurie extracted descriptors around points
on a dense grid at multiple scales.

Four participants: Aachen, Edinburgh, INRIA-Jurie, and INRIA-Zhang used
a “bag of words” representation. In these methods, local descriptors are assigned
a discrete “visual word” from a dictionary obtained by clustering. The image rep-
resentation is then a histogram over the dictionary, recording either the presence
of each word, or the number of times each word occurs in the image.

Two participants MPITuebingen and Southampton used an alternative
method based on defining a kernel between sets of extracted features. Both
participants used the Bhattacharyya kernel; for Southampton this was defined
by a Gaussian distribution in SIFT feature space, while MPITuebingen used a
“minor kernel” to lift the calculation into a kernel feature space.

All but two participants in this category used a support vector machine (SVM)
classifier. Aachen used a log-linear model trained by iterative scaling; Edinburgh
used a functionally equivalent model trained by logistic regression.

Recognition of Individual Local Features. METU proposed a method also
employing interest point detection and extraction of local features; the SIFT
descriptor and colour features were used. In the METU method, rather than
examining the entire distribution of local descriptors for an image, a model is
learnt which assigns a class probability to each local feature; a class is assigned
to the image by a noisy-or operation on the class probabilities for each local
feature in the image.

Recognition Based on Segmented Regions. HUT proposed a method com-
bining features extracted both from the entire image and from regions obtained
by an image segmentation algorithm; features included colour, shape and texture
descriptors. A number of Self Organizing Maps (SOMs) defined on the different
feature spaces were used to classify descriptors obtained from the segmented
regions and the whole image, and these results were combined to produce an
overall classification.

Classification by Detection. Darmstadt adopted the approach of “classifica-
tion by detection” in which a detector for the class of object is applied to the
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image and the image assigned to the object class if a sufficiently confident detec-
tion is found. The method is described more fully in Section 5.3. This approach
is of particular interest since it is able to show “why” the object class is assigned
to the image, by highlighting the image area thought to be an instance of the
object class.

4.4 Discussion of Classification Methods

Most participants used “global” methods in which a descriptor of the overall
image content is extracted; this leaves the task of deciding which elements of
the descriptor are relevant to the object of interest to the classifier. All of these
participants used only the class label attached to an image for training, ignoring
additional annotation such as the bounding boxes of objects in the image.

One possible advantage of “global” methods is that the image description
captures information not only about the object of interest e.g. a car, but also
it’s context e.g. the road. This contextual information might prove useful in
recognizing some object classes; however, the risk is that the system may fail
to distinguish the object from the context and thus show poor generalization to
other environments, for example recognizing a car in a street vs. in a field.

The approach used by METU uses very local information: the classification
may be based on a single local feature in the image; interestingly, the learning
method used here ignores the bounding box information provided. HUT com-
bined global and more local information by computing feature descriptors from
both the whole image and segmented regions.

Darmstadt’s “classification by detection” approach explicitly ignores all but
the object, using bounding boxes or segmentation masks for training, and looking
at local evidence for testing; this ensures that the method is modelling the object
class of interest rather than statistical regularities in the image background, but
may also fail to take advantage of contextual information.

The Darmstadt method is able to give a visual explanation of why an image
has been classified as containing an object of interest, since it outputs bound-
ing boxes for each object. For some of the other methods (Aachen, Edinburgh,
METU, HUT) it might be possible to obtain some kind of labelling of the objects
in the image by back-projecting highly-weighted features into the image.

Only two participants explicitly incorporated any geometric information:
HUT included shape descriptors of segmented regions in their image representa-
tion, and the Darmstadt method uses both local appearance of object parts and
their geometric relations. In the global methods, geometric information such as
the positions of object parts might be implicitly encoded, but is not transpar-
ently represented.

5 Detection Task

The goal in the detection task is to detect and localize any instances of a partic-
ular object class in an image. Localization was defined as specifying a ‘bounding
box’ rectangle enclosing each object instance in the image. One detection task
was run for each class: motorbikes, bicycles, people, and cars.
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5.1 Evaluation of Results

Evaluation of results was performed using Precsion/Recall (PR) curve analysis.
The output required from participants’ methods was a set of bounding boxes with
corresponding “confidence” values, with large values indicating high confidence
that the detection corresponds to an instance of the object class of interest.
Figure 5 shows an example PR curve, obtained by applying a set of thresholds
to the confidence output by a method. On the x-axis is plotted the recall (what
proportion of object instances in the image set have been detected); on the y-axis
is plotted the precision (what proportion of the detections actually correspond
to correct object instances). The PR curve makes it easy to observe the trade-
off between the two; some methods may have high precision but low recall, for
example detecting a particular view of an object reliably, where other methods
may give more balanced performance. Use of Precision/Recall as opposed to the
Receiver Operating Characteristic was chosen to provide a standard scale for
evaluation which is independent of the algorithmic details of the methods, for
example whether a “window scanning” mechanism or other means were used.
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Fig. 5. Example Precision/Recall (PR) curve for the detection task. The solid line
denotes measured performance (perfect precision at zero recall is assumed). The dots
indicate the corresponding interpolated precision values used in the average precision
(AP) measure.

As in the classification case, a definitive measure for quantitative evaluation
of PR curves is not possible, because of the possible requirements for differ-
ent emphasis at low or high recall. The challenge used the interpolated Aver-
age Precision (AP) measure defined by the Text Retrieval Conference (TREC).
This measures the mean precision at a set of eleven equally spaced recall levels
[0, 0.1, . . . , 1]:

AP =
1
11

∑
r∈{0,0.1,...,1}

pinterp(r)

The precision at each recall level r is interpolated by taking the maximum pre-
cision measured for a method for which the corresponding recall exceeds r:
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pinterp(r) = max
r̃:r̃≥r

p(r̃) (1)

where p(r̃) is the measured precision at recall r̃.
Figure 5 shows the interpolated precision values for the measured curve shown.

Use of the interpolated precision ameliorates the effects of different sampling of
recall that each method may produce, and reduces the influence of the “saw-
tooth” pattern of temporary false detections typical of PR curves. Because the
AP measure includes measurements of precision across the full range of recall,
it penalizes methods which achieve low total recall (failing to detect some pro-
portion of object instances) as well as those with consistently low precision.

Evaluation of Bounding Boxes. Judging each detection output by a method
as either a true positive (object) or false positive (non-object) requires comparing
the corresponding bounding box predicted by the method with ground truth
bounding boxes of objects in the test set. To be considered a correct detection,
the area of overlap ao between the predicted bounding box Bp and ground truth
bounding box Bgt was required to exceed 50% by the formula

ao =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(2)

The threshold of 50% was set deliberately low to account for inaccuracies in
bounding boxes in the ground truth data, for example defining the bounding
box for a highly non-convex object, e.g. a side view of a motorbike or a car with
an extended radio aerial, is somewhat subjective.

Detections output by a method were assigned to ground truth objects satisfy-
ing the overlap criterion in order ranked by the (decreasing) confidence output.
Lower-ranked detections of the same object as a higher-ranked detection were
considered false positives. The consequence is that methods producing multi-
ple detections of a single object would score poorly. All participants included
algorithms in their methods to arbitrate between multiple detections.

5.2 Competitions and Participation

Four competitions were defined for the detection task, by the choice of training
data: provided for the challenge, or the participant’s own data; and the test
set used: the “easier” test1 images, or the “harder” test2 images. Table 5
summarizes the competitions. For each competition, performance on each of the
four object classes was evaluated. Participants were free to submit results for
any or all of the object classes.

Table 6 lists the participation in competitions 5 and 6, which used the provided
train+val image set for training. Five of the twelve participants entered results
for these competitions. All five of these participants tackled the motorbike class,
four the car class, and three the people class. Edinburgh submitted baseline
results for all four classes. The concentration on the motorbike and car classes
is expected as these are more typical “opaque” objects which have attracted
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Table 5. Competitions for the detection task, defined by the choice of training data
and test data

No. Task Training data Test data

5 Detection train+val test1
6 Detection train+val test2
7 Detection not VOC test1 or test2 test1
8 Detection not VOC test1 or test2 test2

Table 6. Participation in the detection task. Bullets indicate participation in the
competition for a particular test set and object class.

test1 test2
motorbikes bicycles people cars motorbikes bicycles people cars

Aachen – – – – – – – –
Darmstadt • – – • • – – •
Edinburgh • • • • • • • •

FranceTelecom • – – • • – – •
HUT – – – – – – – –

INRIA-Dalal • – • • • – • •
INRIA-Dorko • – • – – – – –
INRIA-Jurie – – – – – – – –

INRIA-Zhang – – – – – – – –
METU – – – – – – – –

MPITuebingen – – – – – – – –
Southampton – – – – – – – –

most attention in the object recognition community; recognition of more “wiry”
objects (bicycles) or articulated objects (people) has been a recent development.

Only one participant, INRIA-Dalal, submitted results for competitions 7 and
8, in which training data other than that provided for the challenge could be
used. This participant submitted results for the people class on both test1 and
test2 image sets.

5.3 Overview of Detection Methods

Section 6 gives full details of the methods used by participants. The approaches
used for the detection task can be broadly divided into three categories:

Configurations of Local Image Features. Two participants: Darmstadt
and INRIA-Dorko used an approach based on local image features. These meth-
ods use interest point detectors and local image features represented as “visual
words”, as used by many of the methods in the classification task. In contrast
to the classification task, the detection methods explicitly build a model of the
spatial arrangement of the features; detection of the object then requires image
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features to match the model both in terms of appearance and spatial configura-
tion. The two methods proposed differed in terms of the feature representation:
patches of pixels/SIFT descriptors, clustering method for dictionary or “code-
book” learning, and voting scheme for detection. Darmstadt used a Minimum
Description Length (MDL) method to refine ambiguous detections and an SVM
classifier to verify detections. INRIA-Dorko added a measure of discriminative
power of each visual word to the voting scheme.

Window-Based Classifiers. Two participants: FranceTelecom and INRIA-
Dalal used “window-based” methods. In this approach, a fixed sized window
is scanned over the image at all pixel positions and multiple scales; for each
window, a classifier is applied to label the window as object or non-object, and
positively labelled windows are grouped to give detections. FranceTelecom used a
Convolutional Neural Network (CNN) classifier which applies a set of successive
feature extraction (convolution) and down-sampling operations to the raw input
image. INRIA-Dalal used a “histogram of oriented gradient” representation of
the image window similar to computing SIFT descriptors around grid points
within the window, and an SVM classifier.

Baseline Methods. Edinburgh proposed a set of “baseline” detection meth-
ods. Confidence in detections was computed either as the prior probability of a
class from the training data, or using the classifier trained for the classification
task. Several baseline methods for proposing bounding boxes were investigated
including simply proposing the bounding box of the entire image, the mean
bounding box from the training data, the bounding box of all strong interest
points, or bounding boxes based on the “purity” of visual word representations
of local features with respect to a class.

5.4 Discussion of Detection Methods

There have been two main approaches to object detection in the community:
(i) window-based methods, which run a binary classifier over image windows, ef-
fectively turning the detection problem into a large number of whole-image clas-
sification problems; (ii) parts-based methods, which model objects as a collection
of parts in terms of local appearance and spatial configuration. It is valuable that
both these approaches were represented in the challenge. The methods proposed
differ considerably in their representation of object appearance and geometric
information. In the INRIA-Dalal method, a “holistic” representation of primi-
tive local features (edges) is used; the position of features is encoded implicitly
with respect to a fixed coordinate system. The FranceTelecom method might
be understood as learning the approximate position of local object parts; the
convolution operations can be viewed as part detection, and the sub-sampling
steps introduce “slack” in the coordinate frame. The Darmstadt and INRIA-
Dorko methods explicitly decompose the object appearance into local parts and
their spatial configuration. It is particularly interesting to see how these methods
compare across more rigid objects (cars/motorbikes), and those for which the
shape of the object changes considerably (people).
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6 Participants

Twelve participants took part in the challenge. We include here participants’
own descriptions of the methods used.

6.1 Aachen

Participants: Thomas Deselaers, Daniel Keysers, Hermann Ney
Affiliation: RWTH Aachen, Aachen, Germany

E-mail: {deselaers,keysers,ney}@informatik.rwth-aachen.de
WWW: http://www-i6.informatik.rwth-aachen.de/

The approach used by the Human Language Technology and Pattern Recog-
nition group of the RWTH Aachen University, Aachen, Germany, to participate
in the PASCAL Visual Object Classes Challenge consists of four steps:
1. patch extraction
2. clustering
3. creation of histograms
4. discriminative training and classification

where the first three steps are feature extraction steps and the last is the actual
classification step. This approach was first published in [12] and was extended
and improved in [13].

The method follows the promising approach of considering objects to be con-
stellations of parts which offers the immediate advantages that occlusions can
be handled very well, that the geometrical relationship between parts can be
modelled (or neglected), and that one can focus on the discriminative parts of
an object. That is, one can focus on the image parts that distinguish a certain
object from other objects.

The steps of the method are briefly outlined in the following paragraphs.

Patch Extraction. Given an image, we extract square image patches at up to
500 image points. Additionally, 300 points from a uniform grid of 15×20 cells
that is projected onto the image are used. At each of these points a set of square
image patches of varying sizes (in this case 7× 7, 11× 11, 21× 21, and 31× 31
pixels) are extracted and scaled to a common size (in this case 15 × 15 pixels).

In contrast to the interest points from the detector, the grid-points can also
fall onto very homogeneous areas of the image. This property is on the one
hand important for capturing homogeneity in objects which is not found by the
interest point detector and on the other hand it captures parts of the background
which usually is a good indicator for an object, as in natural image objects are
often found in a “natural” environment.

After the patches are extracted and scaled to a common size, a PCA dimen-
sionality reduction is applied to reduce the large dimensionality of the data,
keeping 39 coefficients corresponding to the 40 components of largest variance
but discarding the first coefficient corresponding to the largest variance. The
first coefficient is discarded to achieve a partial brightness invariance. This
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approach is suitable because the first PCA coefficient usually accounts for global
brightness.

Clustering. The data are then clustered using a k-means style iterative split-
ting clustering algorithm to obtain a partition of all extracted patches. To do
so, first one Gaussian density is estimated which is then iteratively split to ob-
tain more densities. These densities are then re-estimated using k-means until
convergence is reached and then the next split is done. It has be shown ex-
perimentally that results consistently improve up to 4096 clusters but for more
than 4096 clusters the improvement is so small that it is not worth the higher
computational demands.

Creation of Histograms. Once we have the cluster model, we discard all
information for each patch except its closest corresponding cluster centre identi-
fier. For the test data, this identifier is determined by evaluating the Euclidean
distance to all cluster centres for each patch. Thus, the clustering assigns a clus-
ter c(x) ∈ {1, . . . C} to each image patch x and allows us to create histograms
of cluster frequencies by counting how many of the extracted patches belong to
each of the clusters. The histogram representation h(X) with C bins is then de-
termined by counting and normalization such that hc(X) = 1

LX

∑LX

l=1 δ(c, c(xl)),
where δ denotes the Kronecker delta function, c(xl) is the closest cluster centre
to xl, and xl is the l-th image patch extracted from image X , from which a total
of LX patches are extracted.

Training and Classification. Having obtained this representation by his-
tograms of image patches, we define a decision rule for the classification of
images. The approach based on maximum likelihood of the class-conditional dis-
tributions does not take into account the information of competing classes during
training. We can use this information by maximizing the class posterior prob-
ability

∏K
k=1
∏Nk

n=1 p(k|Xkn) instead. Assuming a Gaussian density with pooled
covariances for the class-conditional distribution, this maximization is equivalent
to maximizing the parameters of a log-linear or maximum entropy model

p(k|h) =
1

Z(h)
exp

(
αk +

C∑
c=1

λkchc

)
,

where Z(h) =
∑K

k=1 exp
(
αk +

∑C
c=1 λkchc

)
is the renormalization factor. We

use a modified version of generalized iterative scaling. Bayes’ decision rule is
used for classification.

Conclusions. The method performs well for various tasks (e.g. Caltech
{airplanes, faces, motorbikes}), was used in the ImageCLEF 2005 Automatic
Annotation Task2 where it performed very well, and also performed well in the
PASCAL Visual Object Classes Challenge described in this chapter. An impor-
tant advantage of this method is that it is possible to visualize those patches
2 http://ir.shef.ac.uk/imageclef2005/
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which are discriminative for a certain class, e.g. in the case of faces it was learned
that the most discriminative parts are the eyes.

6.2 Darmstadt

Participants: Mario Fritz, Bastian Leibe, Edgar Seemann, Bernt Schiele
Affiliation: TU-Darmstadt, Darmstadt, Germany

E-mail: mario.fritz@informatik.tu-darmstadt.de

We submit results on the categories car and motorbike obtained with the Im-
plicit Shape Model (ISM) [28] and the Integrated Representative Discriminant
(IRD) approach [19]. The ISM in itself is an interesting model, as it has recently
shown impressive results on challenging object class detections problems [30].
The IRD approach augments the representative ISM by an additional discrimi-
nant stage, which improves the precision of the detection system.

Local Feature Representation. We use local features as data representation.
As scale-invariant interest point detector we use difference-of-Gaussians and as
region descriptor we use normalized raw pixel patches. Even though there exist
more sophisticated descriptors, we want to point out that due to the rather
high resolution of 25×25 pixels the representation is quite discriminant. The
high dimensionality of the resulting features is taken care of by the quantization
of the feature space via soft-matching to a codebook. More recently [35] [41]
we have used more efficient feature representation for the task of object class
detection.

Codebook. In both approaches, we use a codebook representation as a first
generalization step, which is generated by an agglomerative clustering scheme.
Up to now, our approaches have only been evaluated on single viewpoints. In
order to stay consistent with those experiments, we only selected side views from
the training set. This leaves us with 55 car images and 153 motorbike images for
building the codebook and learning the model.

Learning and Evaluating the Model. The basic idea of the ISM is to repre-
sent the appearance of an object by a non-parametric, spatial feature occurrence
distribution for each codebook. When using the model for detection, local fea-
ture are computed from the test image and afterwards matched to the codebook.
Based on these matches, the spatial distributions stored in the ISM can be used
to accumulate evidence for object hypothesis characterized by position in the
image and size of the object. For a more detailed description - in particular how
to achieve scale-invariance - we refer to [29].

MDL Hypothesis Verification Stage. As the ISM facilitates the use of seg-
mentation masks for increased performance, we included the provided annota-
tions in the training. Given this information, a pixel-level segmentation can be
inferred on the test images. On the one hand this information can be fed back
in the recognition loop for interleaved recognition and segmentation [28]. On
the other hand, the problem of accepting a subset of ambiguous hypothesis in
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an image can be formulated as an optimization problem in a MDL framework
based on the inferred figure and background probabilities[28]. For both methods
submitted to the challenge we make use of the MDL stage.

SVM with Local Kernel of IRD Approach. The SVM validation stage is
trained on detections and false alarms of the ISM on the whole training set for
cars and motorbikes. We want to point out, that both systems work on the same
data representation, so that the SVM makes full use of the information provided
by the ISM. A hypothesis consists of an inferred position of the object centre in
the image, an inferred object scale and a set of features that are consistent with
this hypothesis. Based on this information, the SVM is used to eliminate false
positives of the representative ISM model during detection. The whole process
is illustrated in Figure 6.

Besides the fact, that it is appealing to combine representative and discrim-
inant models from a machine learning point of view, we also profit from the
explicit choices of the components: While part of the success of the ISM is a
result of its capability for “across instances” learning, the resulting hypothesis
can lack global consistency which result in superfluous object parts. By using
an SVM with a kernel function of appearance and position we enforce a global

(a) (b)

(c) (d)

Fig. 6. Darmstadt: Illustration of the IRD approach. (a) input image; (b) detected
hypothesis by the ISM model using a rather low threshold; (c) input to the SVM stage;
(d) verified hypothesis.
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consistency again. The benefit of enforcing global consistencies were studied in
more detail in [30].

Experiments. All experiments were performed on the test-sets exactly as spec-
ified in the PASCAL challenge. For computational reasons, the test images were
rescaled to a uniform width of 400 pixels. We report results on both the object
detection and the present/absent classification task. Detection performance is
evaluated using the hypothesis bounding boxes returned by the ISM approach.
For the classification task, an object-present decision is taken if at least one hy-
pothesis is detected in an image. Since our integrated ISM+SVM approach allows
for an additional precision/recall trade-off, we report two performance curves for
the detection tasks. One for optimal equal error rate (EER) performance and
one for optimized precision (labelled “ISMSVM 2” in the plots).

Notes on the Results. The models were exclusively trained on side-views.
As the test data also includes multiple viewpoints, 100 % recall is not reachable
given the used training scheme. Given that test-set 1 contains only side-views
for the motorbikes and approximately 59% side-views for the cars and 39% and
12% for test-set 2 respectively, we detect nearly all side-views with a high level
of precision.

6.3 Edinburgh

Participants: Tom Griffiths, Moray Allan, Amos Storkey, Chris Williams
Affiliation: University of Edinburgh, Edinburgh, UK

E-mail: moray@sermisy.org

Experiments. Our aim in these experiments was to assess the performance
that can be obtained using a simple approach based on classifiers and detectors
using SIFT representations of interest points. We deliberately did not use state-
of-the-art class-specific detectors.

All the systems described below begin by detecting Harris-Affine interest
points in images3 [37]. SIFT representations are then found for the image re-
gions chosen by the interest point detector [32]. The SIFT representations for all
the regions chosen in the training data are then clustered using k-means. A test
image can now be represented as a vector of activations by matching the SIFT
representation of its interest point regions against these clusters and counting
how many times each cluster was the best match for a region from the test image.
This approach was suggested by recent work of Csurka, Dance et al. [10].

All the systems were trained only on the provided training data (train),
with parameters optimised using the provided validation data (val). The test
data sets were only used in the final runs of the systems to obtain results for
submission. All the detectors described below assume a single object of interest
per image.

3 We used code from the Oxford Visual Geometry Group available at http://www.
robots.ox.ac.uk/ vgg/research/affine/.
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Edinburgh bof Classifier. This classifier uses logistic regression4, based on a
1500-dimensional bag-of-features representation of each image. Interest points
were detected using the Harris-Affine region detector and encoded as SIFT de-
scriptors. These were pooled from all images in the training set and clustered
using simple k-means (k = 1500). The 1500-dimensional bag-of-features repre-
sentation for each image is computed by counting, for each of the 1500 cluster
centres, how many regions in the image have no closer cluster centre in SIFT
space.

Edinburgh meanbb Detector. This näıve approach is intended to act as a base-
line result. All images in the test set are assigned the class probability as their
confidence level. This class probability is calculated from the class frequency as
the number of positive examples of the class in the training set divided by the
total number of training images.

All detections are made using the class mean bounding box, scaled according
to the size of the image. The class mean bounding box is calculated by finding
all the bounding boxes for this class in the training data, and normalising them
with respect to the sizes of the images in which they occur, then taking the
means of the normalised coordinates.

Edinburgh wholeimage Detector. This näıve approach is intended to act as a
baseline result. All images in the test set are assigned the class probability as
their confidence level. The object bounding box is simply set to the perimeter
of the test image.

Edinburgh puritymeanbb Detector. We define the ‘purity’ of a cluster with
respect to an object class as the fraction of all the Harris-Affine interest points
in the training images for which it is the closest cluster in SIFT space (subject
to a maximum distance threshold t) that are located within a bounding box for
an object of the class.

In detection, the centre of the bounding box is set as the weighted mean
of the location of all Harris-Affine interest points in the test image, where the
weight of each interest point’s location is the purity of its nearest cluster in SIFT
space (with respect to the current object class, subject to a maximum distance
threshold t).

The size and shape of the bounding box for all detections was set to that of
the class mean bounding box, scaled according to the size of the image. The
class mean bounding box was calculated as for the Edinburgh meanbb method.

Confidences are calculated by the bag-of-features classifier, as described for
Edinburgh bof, with the addition of a maximum distance threshold t (so de-
scriptors very far from any cluster do not count).

Throughout, t was set to three times the standard deviation of the distances
of all SIFT descriptors from their nearest cluster centre, a value chosen by ex-
periment on the validation data.

4 We used the Netlab logistic regression function, glm.
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Edinburgh siftbb Detector. This detector assigns the confidence levels cal-
culated by the bag-of-features classifier, as described for Edinburgh bof, while
bounding boxes are predicted as the tight bounding box of the interest points
found in the image by the Harris-Affine detector.

Discussion. Our entries consisted of one straightforward ’bag-of-features’ ap-
proach to classification and four simple approaches to the detection task. In
comparison to other entries tackling the classification task, the performance of
our bag-of-features classifier was almost always behind that of the competitors.
By the area under ROC curve measure (AUC), it achieved only 0.77, 0.72, 0.60
and 0.80 on the four object categories compared with 0.88, 0.82, 0.82 and 0.91
for the next highest competitor in each case. In all but the final category (cars),
this meant our entry was the poorest performer.

Following discussions at the challenge workshop, we modified our approach in
two small ways and performance improved considerably, to 0.89, 0.87, 0.81 and
0.85. The changes we made were to: 1) train our classifier on the train+val data
set instead of only the train data set; and 2) normalise the bag-of-feature rep-
resentation vectors. This first modification provided substantially more training
data with which to refine the decision boundary of the classifier, leading to a
small improvement in performance. The fact that the second modification led to
such a significant performance increase suggests it is the proportions of the differ-
ent visual words in the image that are useful for classification rather than their
absolute number. This makes sense, as the images (and the objects within them)
are commonly of different sizes and hence the number of features representing
them varies.

Our approaches to the detection task were intended as simple baselines from
which to judge the more complex approaches of the other competitors. Such
baselines were widely acknowledged as useful by attendees at the workshop, and
serve to highlight the real progress made in tackling this challenging task by the
other entries.

6.4 FranceTelecom

Participants: Christophe Garcia, Stefan Duffner
Affiliation: France Télécom division R&D, Cesson Sévigné, France

E-mail: christophe.garcia@francetelecom.com
WWW: http://www.francetelecom.com/rd/

The proposed system, called Convolutional Object Finder (COF), is based on
a convolutional neural network architecture inspired from our previous work on
face detection [20]. It automatically synthesises simple problem-specific feature
extractors and classifiers, from a training set of object and non-object patterns,
without making any assumptions concerning the features to be extracted or
the areas of the object pattern to be analysed. Once trained, for a given object,
the COF acts like a fast pipeline of simple convolution and subsampling modules
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input: 52x30

c1: 48x26 s1: 24x13

c2: 22x11 s2: 11x5 n1

n2

Fig. 7. FranceTelecom: Architecture of the Convolutional Object Finder (COF) system

that treat the raw input image as a whole, at different scales, without requiring
any local pre-processing of the input image (brightness correction, histogram
equalisation, etc.).

The COF system consists of six layers, excepting the input plane (retina) that
receives an image area of fixed size (52×30 pixels in the case of motorbikes) to
be classified as object or non-object (see Fig.7). Layers c1 through s2 contain a
series of planes where successive convolutions and subsampling operations are
performed.

These planes are called feature maps as they are in charge of extracting and
combining a set of appropriate features. Layer n1 contains a number of partially
connected sigmoid neurons and layer n2 contains the output unit of the network.
These last two layers carry out the classification task using the features extracted
in the previous layers.

The neural network is fully trained using a modified version of the backpropa-
gation algorithm, by receiving object and non-object images with target answer
+1 and−1 respectively. The positive training sets (object images) are augmented
by virtual examples, generated by slightly rotating, translating and scaling the
original object images. In order to reduce the number of false alarms, the set
of negative (non-object) examples is iteratively constructed by a bootstrapping
procedure. It uses a set of scenery images that do not contain the object to
detect, in order to extract non-object image areas that produce a positive output
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Fig. 8. FranceTelecom: Different steps of object localisation

value (false alarm) greater than a certain threshold. This threshold is initialised
with a high value (e.g. 0.8) and is gradually decreased (until 0.0), throughout
the iterative learning process, so that a rough class boundary is quickly found
in the first iterations and refined later on.

In order to detect objects at different scales, the COF system is placed into a
multi-scale framework as depicted in Fig. 8.

The input image is repeatedly subsampled by a factor of 1.2, resulting in a
pyramid of images (step 1). Each image of the pyramid is then filtered by our con-
volutional network COF (step 2). After this processing step, object candidates
(pixels with positive values in the result image) in each scale are mapped back to
the input image scale (step 3). They are then grouped according to their prox-
imity in image and scale spaces. Each group of object candidates is fused into a
representative object whose centre and size are computed as the centroids of the
centres and sizes of the grouped objects, weighted by their individual network
responses (step 4). After applying this grouping algorithm, the set of remaining
representative object candidates serve as a basis for finer object localisation and
false alarm dismissal (step 5). This finer localisation consists of a local search
with smaller scale steps in a limited area around each object candidate. In order
to remove false alarms, the sum of positive network outputs over the local search
space is computed at each candidate position and candidate areas with a value
below a certain threshold are rejected.

Experimental results show that the proposed system is very robust with re-
spect to lighting, shape and pose variations as well as noise, occlusions and
cluttered background. Moreover, processing is fast and a parallel implementa-
tion is straightforward. However, it should be noticed that detection results can
be drastically enhanced if a large training set of thousands of object images is
made available. As future extensions, we plan to enhance the COF system by
allowing a variable aspect ratio for the retina image that will help to cope with
highly variable 3D object shapes and poses.
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6.5 HUT

Participants: Ville Viitaniemi, Jorma Laaksonen, Markus Koskela
Affiliation: Helsinki University of Technology, Helsinki, Finland

E-mail: {ville.viitaniemi,jorma.laaksonen,
markus.koskela}@hut.fi

Overview of the PicSOM System. For all the experiments we used a similar
setup utilising our general purpose content-based image retrieval system named
PicSOM [26]. Given a set of positive and negative example images, the system
looks through the image collection and returns images most similar to the posi-
tive and most dissimilar to the negative examples. The system operates in its in-
teractive mode by the principles of query by pictorial example and relevance feed-
back. In these experiments, however, the system was operated in batch mode, as
if the user had given relevance feedback on all images in the training set at once.

The basic principle of the PicSOM system is to use Self-Organizing Maps
(SOMs), which are two-dimensional artificial neural networks, to organise and
index the images of the collection. The SOM orders images so that visually
similar images – in the sense of some low-level statistical feature – are mapped
to the same or nearby map units in a two-dimensional grid. The PicSOM system
inherently uses multiple features, creates a separate index for each of them and
uses them all in parallel when selecting the retrieved images. In our current
experiments, we used the system to give a qualification value for every image in
the test set. That way we could order them in the order of descending similarity
to the corresponding set of training images.

The visual features that were used to describe the images were chosen among
the ones that were already available in the PicSOM system. These are targeted
to the general domain image description, i.e. the feature set was not specialised
a priori to the target image classes. The set of available features consisted of:

– MPEG-7 content descriptors ColorLayout, DominantColor, EdgeHistogram,
RegionShape and ScalableColor

– average colour in CIE L*a*b* colour space
– first three colour moments in CIE L*a*b* colour space
– Fourier descriptors of object contours
– a texture feature measuring the relative brightness of neighbouring pixels

Details of the Experimental Procedure. The PicSOM system was applied
to the image classification task using the following procedure:

1. The training set images were projected to the parallel feature SOMs.
2. The distance of the projection of a given test image was locally compared

with the nearby projections of positive and negative training images. This
was achieved by kernel smoothing the SOM surface field defined by the
positive and negative training impulses.

3. The results from the parallel feature SOMs were summed together.
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IMAGE DATABASE

COLOR SOM TEXTURE SOM

Fig. 9. HUT: An example of using two parallel SOM indices for segmented images in
the PicSOM system. The colour and texture SOMs are trained with image segments
and each segment is connected to its best-matching map unit on each SOM.

In the time frame of the VOC challenge, we were not able to utilise the train-
ing set annotations beyond the presence/absence information, i.e. the bounding
boxes and other additional annotations were not used.

System parameters were tuned using the validation set performance as an op-
timisation criterion. Feature selection was performed based on the performance
in the validation set. As the performance measure we used the area under the
ROC curve. All four target classes were processed separately and the optimi-
sations led us to use four different sets of features. We used all four optimised
feature sets for all four classes. This resulted in the total of 16 result sets sub-
mitted. Other parameters, such as the size of the SOMs, were not optimised.
The final results were obtained by using only the union of the provided training
and validation data sets in the training of the SOMs in the system.

The training, validation and testing set images were automatically segmented
to a few parallel segmentations with predetermined numbers of segments. Vi-
sual features were extracted from both the segments and the whole images.
Separate SOMs were trained for the segment features and the whole-image
features. Figure 9 illustrates the use of the image segments and the parallel
SOMs.

6.6 INRIA-Dalal

Participants: Navneet Dalal, Bill Triggs
Affiliation: INRIA Rhône-Alpes, Montbonnot, France

E-mail: {navneet.dalal,bill.triggs}@inrialpes.fr
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Introduction. INRIA participated in eight of the object detection challenges
with its Histogram of Oriented Gradient (HOG) object detector: competitions
5 and 6 for classes Motorbike, Car, Person and competitions 7 and 8 for class
Person.

In use, the detector scans the image with a detection window at multiple
positions and scales, running an object/non-object classifier in each window.
Local maxima of “object” score are found, and if the score is above threshold a
detection is declared. The classifier is a linear SVM over our HOG feature set,
trained using SVM-Light [22, 23].

The Histogram of Oriented Gradient feature set is described in detail in [11].
Here we focus on giving information not available in [11], but briefly, after some
optional input normalization, we calculate image gradients at each pixel, use the
gradient orientation to select an orientation channel and the gradient magnitude
as a weight to vote into it, and accumulate these votes over small local regions
called cells. Each cell thus contains a weighted gradient orientation histogram.
The cells are gathered into somewhat larger spatial blocks, and the block’s his-
tograms are normalized as a group to provide local illumination invariance. The
final descriptor is the concatenated vector of all channels of all cells of all blocks
in the detection window. To reduce aliasing, the implementation includes careful
spatial and angular interpolation and spatial windowing of the cells within each
block. The blocks are usually chosen to overlap so (modulo windowing effects)
each cell’s histogram appears several times with different normalizations. The
window is usually chosen somewhat (10-20%) larger than the object as including
context helps recognition.

Data Preparation. For training and validation we use the size-normalized
object boxes from the positive train and val sets. The corresponding negatives
are sampled randomly from negative images. To allow for context we include an
8 or 16 pixel margin around the image window. Table 7 lists the window sizes
and key parameters of each detector.

HOG Parameter Optimization. HOG descriptors have a number of pa-
rameters to set. This was done using the PASCAL train and val sets respec-
tively for training and validation. For the window sizes given in table 7, the
following settings turned out to be optimal for all of the object classes: taking
the square root of image intensities before computing gradients; 20◦ orienta-
tion bins (9 in 180◦ or 18 in 360◦); 2×2 blocks of 8×8 pixel cells; and an inter
block stride of 8 pixels (so each cell belongs to 4 blocks). Two settings changed

Table 7. The key parameters for each trained detector

Class Window Avg. Size Orientation Normalization Margin
Size Bins Method (see §6.6)

Person 56×112 Height 80 9 (0−180◦) L2-Hys 12
Car 112×56 Height 40 18 (0−360◦) L2-Hys 8
Motorbike 144×80 Width 112 18 (0−360◦) L1-Sqrt 4
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from class to class. (i) Including the signs of gradients (i.e. using orientation
range 0−360◦ rather than 0−180◦) is helpful for classes in which local con-
trasts typically have consistent signs (e.g. cars and motorcycles with their dark
tyres on light rims), and harmful for less consistent classes (e.g. humans with
their multicoloured clothing). (ii) Regarding normalization, L2-Hys (L2-norm
followed by Lowe-style clipping and renormalization [32]) and L1-Sqrt (L1-norm
followed by square root, i.e., v →

√
v/(‖v‖1 + ε) typically have comparable

performance, but for the motorbike class L1-Sqrt significantly outperforms L2-
Hys. We suspect that this happens because L1-Sqrt provides more robustness
against the rapid fine-detail gradient changes that are common in motorcycle
wheels.

Multi-scale Detection Framework. To use the above window-based classifier
for object detection, it is scanned across the image at multiple scales, typically
firing several times in the vicinity of each object. We need to combine these
overlapping classifier hits to produce a detection rule that fires exactly once for
each observed object instance. We treat this as a maximum finding problem in
the 3D position-scale space. More precisely, we convert the classifier score to a
weight at each 3D point, and use a variable bandwidth Mean Shift algorithm [9]
to locate the local maxima of the resulting 3D “probability density”. Mean Shift
requires positive weights, and it turns out that clipped SVM scores max(score, 0)
work well. The (variable) bandwidth for each point is given by (σxs, σys, σs)
where s is the detection scale and σx, σy, σs are respectively the x, y and scale
bandwidths. We use σs = 30% and set (σx, σy) to (8, 16) for the Person class
and (16, 8) for the Motorbike and Car classes – i.e. proportional to the aspect
ratio of the detection window, as in practice the multiple detections tend to be
distributed in this way.

We perform one final step. The challenge rules consider detections to be false
if they have less than 50% area overlap with the marked object box, and as
our detection windows have been slightly enlarged to include some background
context, we need to shrink them again. Different classes occupy different amounts
of their bounding boxes on average, so we do this adaptively. For each class, we
learn a final classifier on the combined train+val data set (with settings chosen
by validation on val after training on train). Using this classifier on train+val,
we calculate precision-recall curves for several different window shrinkage factors
and choose the factor that gives the best overall performance. Table 7 lists the
chosen shrinkage margins in pixels relative to the detection window size. Note
that this tuning is based on training data. For each challenge we performed just
one run on test set, whose results were submitted to the challenge.

Additional Comments. We did not have time to optimize the window size
of our motorbike classifier before the challenge, but afterwards we found that
larger windows are preferable – 144 × 80 here, versus 112 × 56 in our original
challenge submission. The performance of the new classifier is comparable to the
two best results in the challenge.
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6.7 INRIA-Dorko

Participants: Gyuri Dorkó, Cordelia Schmid
Affiliation: INRIA Rhône-Alpes, Montbonnot, France

E-mail: {gyuri.dorko,cordelia.schmid}@inrialpes.fr

Introduction. We have participated in the localization competition for people
and motorbikes. Our method combines class-discriminative local features with
an existing object localization technique to improve both its speed and per-
formance. Our system learns the spatial distribution of the object positions for
automatically created discriminative object-parts, and then, uses the generalized
Hough-transform to predict object locations on unseen test images.

Feature Extraction. Images are described by sparse local features extracted
with a scale-invariant interest point operator. We use a modified version of the
multi-scale Harris detector [21]. Interest regions are described by the Scale Invari-
ant Feature Transform (SIFT) [32] computed on a 4x4 grid and for 8 orientation
bins, resulting in a 128 dimensional descriptor.

Training. We first learn a vocabulary of size 1200 from the scale-invariant
features of the training set. We use expectation-maximization (EM) to estimate
a Gaussian Mixture Model with a diagonal covariance matrix. Then, we assign
a rank to each cluster based on its discriminative power as in [15]. Our criterion
is derived from the likelihood score, and prefers rare but very discriminative
object-parts. The rank for cluster Ci is defined as:

P̃+(Ci) =

∑
vj∈D+ P (Ci|vj)∑

vj∈D+ P (Ci|vj) +
∑

vj∈D− P (Ci|vj)
(3)

where D+ and D− are the set of descriptors extracted from positive and nega-
tive images respectively and P (Ci|vj) is the probability of component Ci given
descriptor vj. We then learn the spatial distribution of the object positions and
scales for each cluster. For each training image, we assign all descriptors inside
the rectangle locating the object to its cluster (by MAP), and record the centre
(x,y) and the scale (width and height) of the rectangle with respect to the as-
signed cluster. This step is equivalent to [29] with the difference that we collect
the width and height separately and that we do not use the figure-ground seg-
mentation of the object. The output of our training is a list of clusters with the
following properties:

– the mean and variance representing the appearance distribution of the clus-
ter,

– a probabilistic score for its discriminative power,
– and a spatial distribution of the object positions and scales.

Localization by Probabilistic Hough Voting. The localization procedure
on a test image is similar to the initial hypothesis generation of Leibe et al.
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Motorbike People

Fig. 10. INRIA-Dorko: Example detections on test images for motorbike (left) and
people (right). Blue (dark) points are eliminated due to feature selection, and yellow
(bright) points vote for the best solution (yellow rectangle). Non-yellow rectangles
indicate false detections with lower confidence.

[29]. The difference is that we incorporate the discriminative capacity into the
voting scheme: only the 100 most discriminative clusters participate in the vot-
ing, and the probabilistic score is integrated into the voting scheme. This allows
better confidence estimations for the different hypotheses. Our algorithm is the
following. The extracted scale-invariant features of the test image are assigned
to the closest cluster by appearance (MAP). Then, the chosen clusters vote for
possible object locations and scales (4D space). In practice we simplified the
voting scheme from [29] by only allowing one cluster per descriptor to vote, and
extended their formulation by weighting each vote with the discriminative score
from (3). The predicted object locations and scales are found as maxima in the
4D voting space using the Mean-Shift[8] algorithm with a scale-adaptive balloon
density estimator[9, 29]. The confidence level for each detection is determined
by the sum of the votes around the object location in the voting space. Fig. 10
shows example detections on test images.

6.8 INRIA-Jurie

Participants: Frederic Jurie, Gyuri Dorkó, Diane Larlus, Bill Triggs
Affiliation: INRIA Rhône-Alpes, Montbonnot, France

E-mail: frederic.jurie@inrialpes.fr

We participated in the competition 1 for all four categories.
Our method is based on an SVM classifier trained on feature vectors built

using local image descriptors. Our approach is purely appearance based, i.e.
it does not explicitly use the local structures of object classes. The learning
consists of four steps (see Fig. 11). First, we extract local image features using
a dense multi-scale representation. Our novel clustering method is then applied
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Fig. 11. INRIA-Jurie: Outline of the learning steps. See text for details.

to build a codebook of visual words. This codebook is used to compute “bag of
features” representation for each image, similar to [10], then an SVM classifier
is trained to separate between object images and the background (the other
classes of the database). In the following we describe in detail each step of our
method.

Feature Extraction. Overlapping local features are extracted on each scale
according to a regular grid defined to be sufficiently dense to represent the entire
image. Our parameters are set to extract approximately 20000 regions per image.
Each region is then represented by a 128 dimensional SIFT descriptor [32], i.e.
a concatenated 8-bin orientation histograms on a 4x4 grid.

Codebook Creation. The extracted set of dense features has two important
properties. First, it is very highly populated; the large number of features per
image leads to a total of several hundred thousand for the entire training set
(train+val). Second, the dense feature set is extremely unbalanced as was
shown in [24]. Therefore, to obtain a discrete set of labels on the descriptors we
have designed a new clustering algorithm [27] taking into account these prop-
erties. The method has two main advantages. It can discover low populated
regions of the descriptor space, and it can easily cope with a large number of
descriptors.

(a) (b) (c)

Fig. 12. INRIA-Jurie: Biased sampling. (a) assumes that we discovered 2 new centres
in the previous step, which is marked by the two black points. (b) The influence radius
determines an affectation ball around each centre. (c) All descriptors within these balls
are removed and the remaining portion is then random sampled.
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Our iterative approach discovers new clusters at each step by consecutively
calling a sampling and a k-median algorithm (see Fig. 11) until the required
total number of clusters are found. In order to decrease the importance of highly
populated regions we use biased sampling: new regions are discovered far enough
from previously found centres. This is realized by introducing an influence radius
to affect points close to already found centres. All affected descriptors are then
excluded from any further sampling. Fig. 12 illustrates our sampling step. The
influence radius (r = 0.6) and the total number of clusters (k = 2000) are
parameters of our method.

The biased sampling is followed by the online median algorithm proposed by
Mettu and Plaxton [34]. Their method is based on the facility location problem
and chooses the centres one by one. At each iteration of our algorithm we discover
20 new centres by this algorithm.

We keep all the parameters of our codebook creation algorithm fixed and set
by our earlier experience, i.e. they are not tuned for the PASCAL Challenge
database. For the creation of the codebook we originally cropped the training
images based on the provided bounding boxes, but later we discovered that our
result remain the same using the full images. (ROC curves are reported with the
cropped images.)

Image Quantization. Both learning and testing images are represented by the
bag of features approach [10], i.e by frequency histograms computed using the
occurrence of each visual word of our codebook. We associate each descriptor
to the closest codebook element within the predefined influence radius. Our
association discards descriptors that fall out of all affectation balls; they are
considered as outliers. To measure the distance between SIFT features we used
the Euclidean distance as in [32].

Classification. We used the implementation of [6] to train linear SVM classifiers
on the normalized image histograms. In the first set of experiments (indicated
by dcb p1 on our reports) we trained the SVMs on binary histograms, each bin
indicating the presence or absence of the codebook elements. In the second set
of experiments (indicated by dcb p2), a standard vector normalisation is used.

6.9 INRIA-Zhang

Participants: Jianguo Zhang, Cordelia Schmid
Affiliation: INRIA Rhône-Alpes, Montbonnot, France

E-mail: {jianguo.zhang,cordelia.schmid}@inrialpes.fr

Abstract. Our approach represents images as distributions of features extracted
from a sparse set of keypoint locations and learns a Support Vector Machine
classifier with a kernel based on an effective measure for comparing distributions.
Results demonstrate that our approach is surprisingly effective for classification
of object images under challenging real-world conditions, including significant
intra-class variations and substantial background clutter.
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Fig. 13. INRIA-Zhang: Architecture of the approach

Introduction. Fig. 13 illustrates the different steps of our approach. We first
compute a sparse image representation by extracting a set of keypoint locations
and describing each keypoint with a local descriptor. We then compare image
distributions based on frequency histograms of visual words. Finally, images are
classified with a χ2-kernel and a Support Vector Machine (SVM).

A large-scale evaluation of our approach is presented in [44]. This evalua-
tion shows that to achieve the best possible performance, it is necessary to
use a combination of several detectors and descriptors together with a classifier
that can make effective use of the complementary types of information con-
tained in them. It also shows that using local features with the highest pos-
sible level of invariance usually does not yield the best performance. Thus,
a practical recognition system should seek to incorporate multiple types of
complementary features, as long as their local invariance properties do not
exceed the level absolutely required for a given application. An investigation
of the influence of background features on recognition performance shows the
pitfalls of training on datasets with uncluttered or highly correlated back-
grounds, since this yields disappointing results on test sets with more complex
backgrounds.

Sparse Image Representation. We use two complementary scale-invariant
detectors to extract salient image structures: Harris-Laplace [37] and Lapla-
cian [31]. Harris-Laplace detects corner-like structures, whereas the Laplacian
detects blob-like ones. Both detectors output circular regions at a characteristic
scale.

SIFT features [32] are used to describe the scale normalized regions; it has
been shown to outperform a set of existing descriptors [38]. SIFT computes
the gradient orientation histogram for the support region. We use 8 orientation
planes. For each orientation, the gradient image is sampled over a 4×4 grid of
locations, resulting in a 128 feature vector.

For the training images and test set 1 of the PASCAL challenge (1373 images
in total), the average number of points detected per image is 796 for Harris-
Laplace and 2465 for the Laplacian. The minimum number of points detected



150 M. Everingham et al.

for an image is 15 for Harris-Laplace and 71 for the Laplacian. This illustrates
the sparsity of our image representation.

Comparing Distributions of Local Features. We first construct a visual
vocabulary from the local features and then represent each image as a his-
togram of visual words. The vocabulary for the PASCAL challenge is obtained as
follows: 1) We randomly select 50000 descriptors from the training images of
one class. 2) We cluster these features with k-means (k = 250). 3) We concate-
nate the cluster centres of the 4 classes to build the global vocabulary of 1000
words.

A histogram measures the frequency of each word in an image. Each feature
in the image is assigned to the closest word. We use the χ2 distance to compare
histograms:

χ2 =
∑

i

(h1(i)− h2(i))2

h1(i) + h2(i)

where h1 and h2 are the histograms of two different images.

Kernel-Based Classification. We use an extended Gaussian kernel [7]:

K(Si, Sj) = exp(−1/A ·D(Si, Sj))

where D(Si, Sj) is the χ2 distance and Si, Sj are vocabulary histograms. The
resulting χ2 kernel is a Mercer kernel.

Each detector/descriptor pair can be considered as an independent channel.
To combine different channels, we sum their distances, i.e., D =

∑
Di, i = 1, ..., n

where Di is the similarity measure of channel i. The kernel parameter A is
obtained by 5-fold cross validation on the training images.

For classification, we use Support Vector Machines [40]. For a two-class prob-
lem the decision function has the form g(x) =

∑
i αiyiK(xi, x)−b, where K(xi, x)

is the value of a kernel function for the training sample xi and the test sample
x. The yi ∈ {−1, +1} and αi are the class label and the learned weight of the
training sample xi. b is a learned threshold parameter. The training samples
with αi > 0 are usually called support vectors.

We use the two-class setting for binary detection, i.e., classifying images as
containing or not a given object class. If we have m classes (m = 4 for the
PASCAL challenge), we construct a set of binary SVM classifiers g1, g2, ..., gm,
each trained to separate one class from the others. The SVM score is used as a
confidence measure for a class (normalized to [0, 1]).

Conclusions. Our bag-of-keypoints method achieves excellent results for object
category classification. However, successful category-level object recognition and
localization is likely to require more sophisticated models that capture the 3D
shape of real-world object categories as well as their appearance. In the devel-
opment of such models and in the collection of new datasets, bag-of-keypoints
methods can serve as effective baselines and calibration tools.
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6.10 METU

Participants: Ilkay Ulusoy1, Christopher M. Bishop2

Affiliation: 1Middle Eastern Technical University, Ankara, Turkey
2Microsoft Research, Cambridge, UK

E-mail: ilkay@metu.edu.tr, cmbishop@microsoft.com

We follow several recent approaches [32, 37] and use an interest point detec-
tor to focus attention on a small number of local patches in each image. This
is followed by invariant feature extraction from a neighbourhood around each
interest point. Specifically we use DoG interest point detectors, and at each in-
terest point we extract a 128 dimensional SIFT feature vector [32]. Following
[3] we concatenate the SIFT features with additional colour features comprising
average and standard deviation of (R, G, B), (L, a, b) and (r = R/(R + G + B),
g = G/(R + G + B)), which gives an overall 144 dimensional feature vector.

We use tn to denote the image label vector for image n with independent
components tnk ∈ {0, 1} in which k = 1, . . .K labels the class. Each class can
be present or absent independently in an image. Xn denotes the observation for
image n and this comprises a set of Jn feature vectors {xnj} where j = 1, . . . , Jn.
Note that the number Jn of detected interest points will in general vary from
image to image.

On a small-scale problem it is reasonable to segment and label the objects
present in the training images. However, for large-scale object recognition in-
volving thousands of categories this will not be feasible, and so instead it is
necessary to employ training data which is at best ‘weakly labelled’. Here we
consider a training set in which each image is labelled only according to the
presence or absence of each category of object.

Next we associate with each patch j in each image n a binary label τnjk ∈
{0, 1} denoting the class k of the patch. These labels are mutually exclusive, so
that

∑K
k=1 τnjk = 1. These components can be grouped together into vectors

τnj. If the values of these labels were available during training (corresponding to
strongly labelled images) then the development of recognition models would be
greatly simplified. For weakly labelled data, however, the {τnj} labels are hidden
(latent) variables, which of course makes the training problem much harder.

Consider for a moment a particular image n (and omit the index n to keep the
notation uncluttered). We build a parametric model yk(xj,w) for the probability
that patch xj belongs to class k. For example we might use a simple linear-
softmax model with outputs

yk(xj,w) =
exp(wT

k xj)∑
l exp(wT

l xj)

which satisfy 0 � yk � 1 and
∑

k yk = 1. The probability of a patch label τj to
be class k is then given directly by the output yk:

p(τj|xj) =
K∏

k=1

yk(xj,w)τjk
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Next we assume that if one, or more, of the patches carries the label for a
particular class, then the whole image will. Thus the conditional distribution of
the image label, given the patch labels, is given by

p(t|τ) =
K∏

k=1

⎡⎣1− J∏
j=1

[1− τjk]

⎤⎦tk ⎡⎣ J∏
j=1

[1− τjk]

⎤⎦1−tk

In order to obtain the conditional distribution p(t|X) we have to marginalize
over the latent patch labels. Although there are exponentially many terms in
this sum, it can be performed analytically for our model to give

p(t|X) =
∑

τ

⎧⎨⎩p(t|τ)
J∏

j=1

p(τj|xj)

⎫⎬⎭
=

K∏
k=1

⎡⎣1−
J∏

j=1

[1− yk(xj,w)]

⎤⎦tk
⎡⎣ J∏

j=1

[1− yk(xj,w)]

⎤⎦1−tk

(4)

Given a training set of N images, which are assumed to be independent, we
can construct the likelihood function from the product of such distributions, one
for each data point. Taking the negative logarithm then gives the following error
function

E (w) = −
N∑

n=1

K∑
k=1

{tnk ln [1− Znk] + (1− tnk) lnZnk}

where we have defined

Znk =
Jn∏
j=1

[1− yk (xnj,w)]

The parameter vector w can be determined by minimizing this error (which cor-
responds to maximizing the likelihood function) using a standard optimization
algorithm such as scaled conjugate gradients [4]. More generally the likelihood
function could be used as the basis of a Bayesian treatment, although we do not
consider this here.

Once the optimal value wML is found, the corresponding functions yk(x,wML)
for k = 1, . . . , K will give the posterior class probabilities for a new patch
feature vector x. Thus the model has learned to label the patches even though
the training data contained only image labels. Note, however, that as a conse-
quence of the noisy ‘OR’ assumption, the model only needs to label one fore-
ground patch correctly in order to predict the image label. It will therefore
learn to pick out a small number of highly discriminative foreground patches,
and will classify the remaining foreground patches, as well as those falling on
the background, as ‘background’ meaning non-discriminative for the foreground
class.

An example of patch labelling and image classification for each class is given
in Figure 14.
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Fig. 14. METU: One patch labelling example for each class (motorbike, bike, people
and car). Red and green dots denote foreground and background respectively. The
patch labels are obtained by assigning each patch to the most probable class.

6.11 MPITuebingen

Participants: Jan Eichhorn, Olivier Chapelle
Affiliation: Max Planck Institute for Biological Cybernetics,

Tübingen, Germany
E-mail: {jan.eichhorn,olivier.chapelle}@tuebingen.mpg.de

Main Concepts. For the absent/present object categorization task we used a
Support Vector Classifier. Each image is converted to a collection of Local Image
Descriptors (LIDs) and a kernel for sets is applied to this representation.

As LID we used the widely known SIFT-descriptors [32] but instead of the
standard difference of Gaussians multiscale interest point detector we applied
a basic Harris corner detector at one single scale. Each image was converted
to a collection of LIDs where each LID contains coordinates, orientation and
appearance of a particular salient region whose location was selected by the
interest point detector (IPD). Note that, no data dependent post-processing of
the LIDs was performed (as for example PCA or clustering in the appearance
space of the training set).
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For the successful use of Support Vector Classifiers it is necessary to define
a kernel function appropriate for the underlying type of data representation.
This function acts as a similarity measure (in our application for images) and
should reflect basic assumptions about similarity in the categorization sense. For
technical reasons it has to be a positive definite function.

To measure the similarity of two images, a possible strategy could be to find
salient image regions of similar appearance (e.g. in SIFT-space) and thereby
establishing a geometrical correspondence between the objects on the images
(implicitly assuming that similar regions represent similar object parts).

In our method we avoid the complications of finding correspondences be-
tween images and neglect all geometry information at scales larger than the size
of the extracted salient regions. In practice this means we ignore the coordinates
of the LID and simply use its appearance part. Consequently the representa-
tion of a single image is reduced to a set of appearance vectors. On top of
this representation we can now apply a kernel function for sets, the so called
Bhattacharyya kernel [25]. Details of this kernel are described in the following
Section. As a minor kernel we always used a standard Gaussian RBF-kernel
kRBF(x, x′) = exp(− ‖x−x′‖

2σ2 ).
Maybe it is interesting to note that we observed a decreasing performance

when using during training the segmentation mask of the objects that was pro-
vided with the datasets. This behaviour might indicate that the method can use
information from the image background to infer the absence or presence of an
object. In case of more realistic datasets and true multi-class categorization this
effect should vanish.

Bhattacharyya Kernel [25]. The name of this kernel function arises from the
fact that it is based on the Bhattacharyya affinity, a similarity measure that is
defined for probability distributions:

kbhatt(p, p′) =
∫ √

p(x) · p′(x) dx

To define a kernel function between two sets L and L′, it was suggested in
[25] to fit a Gaussian distribution to each of the sets: L ∼ N (μ, Σ) and L′ ∼
N (μ′, Σ′). Then, the value of the Bhattacharyya kernel is the Bhattacharyya
affinity of the corresponding Gaussians, which can be formulated as a closed
expression

Kbhatt(L,L′) =|Σ|− 1
4 |Σ′|− 1

4 |Σ†| 12

exp
[
−1

4
(
μ�Σ−1μ + μ′�Σ′−1μ′)+

1
2
μ†�

Σ†μ†
]

where Σ† = 2
(
Σ−1 + Σ′−1

)−1 and μ† = 1
2

(
Σ−1μ + Σ′−1μ′).

Since the Gaussian approximation reflects only a limited part of the statistics
of the empirical distribution, the authors further propose to map the set elements
into a feature space induced by a minor kernel. The Bhattacharyya affinity can
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be computed in feature space by use of the kernel trick and doing so allows
to capture more structure of the empirical distribution. However, in feature
space the covariance matrices of each of the sets (Σ and Σ′ respectively) are
structurally rank-deficient and therefore it is necessary to involve a regularization
step before computing the inverse:

Σ̃−1 = (Σ + η ·Tr(Σ) · I)−1

Hereby a new parameter η is introduced, which adjusts the amount of regular-
ization. The larger η is the more similar the two covariance matrices appear and
the more the kernel depends only on the difference of the set means5.

A more detailed analysis of other kernel functions for images represented by
LIDs is under review for publication. A preliminary version can be found in a
technical report [16].

6.12 Southampton

Participants: Jason D. R. Farquhar, Hongying Meng, Sandor Szedmak,
John Shawe-Taylor

Affiliation: University of Southampton, Southampton, UK
E-mail: ss03v@ecs.soton.ac.uk

Introduction. Our method consists of two main phases, as shown in Figure 15,
a machine vision phase which computes highly discriminative local image fea-
tures, and a machine learning phase which learns the image categories based
upon these features. We present two innovations: 1) the Bhattacharyya kernel
is used to measure the similarity of the sets of local features found in each im-
age, and, 2) an extension of the well-known SVM, called SVM 2K, is used to
combine different features and improve overall performance. Each of the main
components of our approach is described next.

Image Feature Extraction. On every image an interest point detector is ap-
plied to find the interesting local patches of the image (usually centred around
corners). The types of the detectors used were, Multi-scale Harris-Affine, and
Laplacian of Gaussians (LoG). To reduce the feature dimension and increase ro-
bustness to common image transformations (such as illumination or perspective)
a local feature is generated for each patch using the SIFT descriptor. For more
details see [32] or [36].

Dimensionality Reduction. As the dimension of the SIFTs is relatively high
dimensionality reduction is used to improve the generalisation capability of the
learning procedure and diminish the overall training time. The two types of
dimensionality reduction tried are: Principal Component analysis (PCA), which
finds directions of maximum variance in the input data, and Partial Least

5 If the covariance matrices are identical (Σ = Σ′) the Bhattacharyya kernel reduces
to: Kbhatt(L,L′) = exp

(
− 1

4 (μ − μ′)�Σ−1(μ − μ′)
)
.
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Fig. 15. Southampton: General classification schema

Squares Regression (PLS) [2], which finds directions of maximum covariance
between input data and output labels.

PDF Computation. Image feature generation and dimensionality reduction
output a set of local descriptors per image. As most machine learning algorithms
cannot cope with variable length feature sets, previously histograms have been
used to map these to a fixed length representation. An alternative approach is
to model the set of features as a probability distribution (PDF) over feature
space and then define a kernel between PDFs, which can be used in any ker-
nelised learning algorithm, such as the SVM. We assumed that the set of image
features follow Gaussian distribution and then the Bhattacharyya kernel [25],
K(Pr1(x), Pr2(x)) =

∫ √
Pr1(x)

√
Pr2(x)dx, was used to measure similarity of

them.

Classifier Learning. To date only maximum margin based classifiers have been
used, specifically either a conventional SVM [42] or our modified multi-feature
SVM, called SVM 2K. As shown in Figure 16, SVM 2K combines two distinct
feature sources (or kernels) to maximise the output classifier performance. The
details can be found in [33].

Experiments. Three learning methodologies within the framework outlined
above were submitted which differed only in the types of interest point detector
used (LoG or multi-scale Harris affine) and the classifier used (SVM or SVM 2K),

Classifier Learning
Classifier A

Classifier B

Test Kernels

Kernel
B

differenceLimit
between

decision values

AKernel
A

SVM

BSVM

Combined
Classifier

Labels

Fig. 16. Southampton: SVM 2K combines feature vectors arriving from distinct sources
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with both LoG and Harris-Affine features used for SVM 2K. From initial exper-
iments it was found that a 20 dimensional PLS reduction gave best performance
so this was applied in all cases.

7 Results: Classification Task

7.1 Competition 1: test1

Table 8 lists the results of classification competition 1. In this competition, train-
ing was carried out using only the train+val image set, and testing performed
on the test1 image set. For each object class and submission, the EER and AUC
measures are listed. Some participants submitted multiple results, and results
for all submissions are shown. The ROC curves for the competition are shown
in Figures 18–21, with each figure showing the results for a particular object
class. In these figures, only the “best” result submitted by each participant is
shown to aid clarity; the EER measure was used to choose the best result for
each participant.

The INRIA-Jurie method performed consistently best in terms of both EER
and AUC, achieving EER of 0.917–0.977 depending on the class. This method
uses the “bag of words” representation with local descriptors extracted at points

Table 8. Results for competition 1: classification, train using the train+val image
set and test on the test1 image set. For each object class and submission, the EER
and AUC measures are shown. Note that some participants submitted multiple results.
Bold entries in each column denote the “best” methods for that object class according
to EER or AUC.

Motorbikes Bicycles People Cars
Submission EER AUC EER AUC EER AUC EER AUC

Aachen: ms-2048-histo 0.926 0.979 0.842 0.931 0.861 0.928 0.925 0.978
Aachen: n1st-1024 0.940 0.987 0.868 0.954 0.861 0.936 0.920 0.979

Darmstadt: ISM 0.829 0.919 – – – – 0.548 0.578
Darmstadt: ISMSVM 0.856 0.882 – – – – 0.644 0.717

Edinburgh: bof 0.722 0.765 0.689 0.724 0.571 0.597 0.793 0.798
HUT: final1 0.921 0.974 0.795 0.891 0.850 0.927 0.869 0.956
HUT: final2 0.917 0.970 0.816 0.895 0.833 0.931 0.908 0.968
HUT: final3 0.912 0.952 0.781 0.864 0.845 0.919 0.847 0.934
HUT: final4 0.898 0.960 0.767 0.880 0.857 0.921 0.909 0.971

INRIA-Jurie: dcb p1 0.968 0.997 0.918 0.974 0.917 0.979 0.961 0.992
INRIA-Jurie: dcb p2 0.977 0.998 0.930 0.981 0.901 0.965 0.938 0.987

INRIA-Zhang 0.964 0.996 0.930 0.982 0.917 0.972 0.937 0.983
METU 0.903 0.966 0.781 0.822 0.803 0.816 0.840 0.920

MPITuebingen 0.875 0.945 0.754 0.838 0.731 0.834 0.831 0.918
Southampton: develtest 0.972 0.994 0.895 0.961 0.881 0.943 0.913 0.972

Southampton: LoG 0.949 0.989 0.868 0.943 0.833 0.918 0.898 0.959
Southampton: mhar.aff 0.940 0.985 0.851 0.930 0.841 0.925 0.901 0.961
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Fig. 17. Equal error rate (EER) results for classification competitions 1 and 2 by class
and test set. The “best” (in terms of EER) result obtained for each class and each test
set is shown. Note that results were much better for the test1 set than for the test2
set. There is perhaps surprisingly little difference in performance across classes.

on a dense grid. Performance of the INRIA-Zhang method was very similar;
this method also uses the bag of words representation, but uses interest point
detection to extract a sparser set of local features. For three of the classes, the
ROC curves for the two methods intersect several times, making it impossible
to determine which method performs best overall; only for the “cars” class was
the performance of the INRIA-Jurie method consistently better over the whole
range of the ROC curve (Figure 21).

Performance of two of the other methods using distributions of local features:
Aachen and Southampton, was also similar but typically slightly worse than
the INRIA methods, though the Southampton method performed particularly
well on the “motorbikes” class. The Aachen method uses a log-linear model for
classification, and the Southampton method the Bhattacharyya kernel instead
of the bag of words representation.

The MPITuebingen method, which is similar to the Southampton method in
the use of the Bhattacharyya kernel had consistently lower performance; reasons
might include differences in the method for extraction of local features. The
Edinburgh method, which is very similar to the INRIA-Zhang method gave
consistently worse results; Section 6.3 discusses the likely reasons for this.

The HUT method, which is based on segmented image regions, performed
comparably to the methods based on local features for all but the “bicycles”
class; the poorer performance on this class might be anticipated because of the
difficulty of segmenting a bicycle from the background. The METU method,
based on individual local descriptors, performed worse than the methods using
the global distribution of local features except on the “motorbikes” class.

The “recognition by detection” method submitted by Darmstadt did not per-
form well on this competition. Darmstadt chose to train only using side views,
and this will have limited the performance. Another possible reason is that there
was correlation between the object class presence and the appearance of the
background, which this method is unable to exploit.
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Fig. 18. ROC curves for motorbikes in competition 1: classification, train using the
train+val image set and test on the test1 image set. The best result in terms of EER
from each participant is shown, with curves ranked by decreasing EER. The axes cover
a range equal to two times the maximum EER of the submitted results.
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Fig. 19. ROC curves for bicycles in competition 1: classification, train using the
train+val image set and test on the test1 image set. The best result in terms of
EER from each participant is shown, with curves ranked by decreasing EER. The axes
cover a range equal to two times the maximum EER of the submitted results.
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Fig. 20. ROC curves for people in competition 1: classification, train using the
train+val image set and test on the test1 image set. The best result in terms of
EER from each participant is shown, with curves ranked by decreasing EER. The axes
cover a range equal to two times the maximum EER of the submitted results.
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Fig. 21. ROC curves for cars in competition 1: classification, train using the train+val
image set and test on the test1 image set. The best result in terms of EER from each
participant is shown, with curves ranked by decreasing EER. The axes cover a range
equal to two times the maximum EER of the submitted results.

7.2 Competition 2: test2

Table 9 lists the results of classification competition 2. In this competition, train-
ing was carried out using only the train+val image set, and testing performed
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Table 9. Results for competition 2: classification, train using the train+val image
set and test on the test2 image set. For each object class and submission, the EER
and AUC measures are shown. Note that some participants submitted multiple results.
Bold entries in each column denote the “best” methods for that object class according
to EER or AUC.

Motorbikes Bicycles People Cars
Submission EER AUC EER AUC EER AUC EER AUC

Aachen: ms-2048-histo 0.767 0.825 0.667 0.724 0.663 0.721 0.703 0.767
Aachen: n1st-1024 0.769 0.829 0.665 0.729 0.669 0.739 0.716 0.780

Darmstadt: ISM 0.663 0.706 – – – – 0.551 0.572
Darmstadt: ISMSVM 0.683 0.716 – – – – 0.658 0.683

Edinburgh: bof 0.698 0.710 0.575 0.606 0.519 0.552 0.633 0.655
HUT: final1 0.614 0.666 0.527 0.567 0.601 0.650 0.655 0.709
HUT: final2 0.624 0.693 0.604 0.647 0.614 0.661 0.676 0.740
HUT: final3 0.594 0.637 0.524 0.546 0.574 0.618 0.644 0.694
HUT: final4 0.635 0.675 0.616 0.645 0.587 0.630 0.692 0.744

INRIA-Zhang 0.798 0.865 0.728 0.813 0.719 0.798 0.720 0.802
MPITuebingen 0.698 0.765 0.616 0.654 0.591 0.655 0.677 0.717

on the test2 image set. The ROC curves for the competition are shown in
Figures 22–25, with each figure showing the results for a particular object class.
Only the “best” result submitted by each participant is shown to aid clarity; the
EER measure was used to choose the best result for each participant.

Fewer participants submitted results for competition 2 than competition 1.
The best results were obtained by the INRIA-Zhang method both in terms of
EER and AUC, and for all object classes; this method also performed close to
best in competition 1.

The Aachen method performed similarly to the INRIA-Zhang method in com-
petition 2, and better relative to the other methods than it did in competition 1;
it may be that this method offers more generalization which is helpful on the
more variable images in the test2 image set, but not for test1.

Performances of the Edinburgh, HUT, and MPITuebingen methods were all
similar but varied over the object classes. The poorer performance of the Edin-
burgh method on the test1 images was not clear for the test2 images.

In competition 2, the performance of the Darmstadt method was comparable
to the others, whereas it performed poorly in competition 1. It may be that in
the test2 dataset there are fewer regularities in the image context of the object
classes, so methods such as the Darmstadt one, which ignore the background,
are more effective.

7.3 Comparison of Competitions 1 and 2

Figure 17 shows the best EER obtained for each object class in competition 1
(test1) and competition 2 (test2). The test2 image set seems to be much more
challenging; this was the intention in collecting this set of images. In terms of
EER, performance on the test2 images were worse than on the test1 images,
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Fig. 22. ROC curves for motorbikes in competition 2: classification, train using the
train+val image set and test on the test2 image set. The best result in terms of EER
from each participant is shown, with curves ranked by decreasing EER. The axes cover
a range equal to two times the maximum EER of the submitted results.
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Fig. 23. ROC curves for bicycles in competition 2: classification, train using the
train+val image set and test on the test2 image set. The best result in terms of
EER from each participant is shown, with curves ranked by decreasing EER. The axes
cover a range equal to two times the maximum EER of the submitted results.

with EER in the range 0.720–0.798 for the best method, depending on the object
class, compared to 0.917–0.977 for competition 1. Recall that this second test
set was intended to provide a set of images with higher variability than those in
the first image set; it seems that this intention has been met.
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Fig. 24. ROC curves for people in competition 2: classification, train using the
train+val image set and test on the test2 image set. The best result in terms of
EER from each participant is shown, with curves ranked by decreasing EER. The axes
cover a range equal to two times the maximum EER of the submitted results.
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Fig. 25. ROC curves for cars in competition 2: classification, train using the train+val
image set and test on the test2 image set. The best result in terms of EER from each
participant is shown, with curves ranked by decreasing EER. The axes cover a range
equal to two times the maximum EER of the submitted results.
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There is surprisingly little difference in performance of the best methods across
object classes, using either the test1 or test2 image sets. While performance
on the two object classes that the object recognition community might typically
consider ‘easier’: motorbikes and cars, was indeed better than for the other two
classes on the test1 image set, the differences to the other classes are small.
One might expect recognition of bicycles to be much harder because of their
“wiry” structure which makes segmentation from the background difficult, or
means that local features will a contain significant area of background; humans
might be considered difficult to recognize because of the high variability of shape
(e.g. different poses) and appearance (clothes, etc.). It is not possible to offer a
conclusive explanation of the results here; one possibility is unintended regularity
in the background giving a strong cue to the object class. Because none of the
methods used here except the Darmstadt method delineate the object(s) in the
image which result in a positive classification, it is hard to tell which parts of
the image are being used by the classifier.

8 Results: Detection Task
8.1 Competition 5: test1

Table 10 lists the results of detection competition 5. In this competition, training
was carried out using only the train+val image set, and testing performed on
the test1 image set. For each object class and submission, the AP measure is
listed. Some participants submitted multiple results, and results for all submis-
sions are shown. The precision/recall curves for the competition are shown in
Figures 27–30, with each figure showing the results for a particular object class.

Performance of methods on the detection tasks varied much more greatly
than for the classification task, and there were fewer submissions. For the
“motorbikes” class, the Darmstadt method performed convincingly better than

Table 10. Results for competition 5: detection, train using the train+val image set
and test on the test1 image set. For each object class and submission, the AP measure
is shown. Note that some participants submitted multiple results. Bold entries in each
column denote the “best” methods for that object class according to AP.

Submission Motorbikes Bicycles People Cars

Darmstadt: ISM 0.865 – – 0.468
Darmstadt: ISMSVM 0.886 – – 0.489

Darmstadt: ISMSVM 2 – – – 0.439
Edinburgh: meanbb 0.216 0.007 0.000 0.000

Edinburgh: puritymeanbb 0.470 0.015 0.000 0.000
Edinburgh: siftbb 0.453 0.098 0.002 0.000

Edinburgh: wholeimage 0.118 0.119 0.000 0.000
FranceTelecom 0.729 – – 0.353

INRIA-Dalal 0.490 – 0.013 0.613
INRIA-Dorko 0.598 – 0.000 –
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other methods, with an average precision of 0.886. The variant using an SVM
verification stage (ISMSVM) was slightly better than that without it (ISM).
The FranceTelecom method also performed well on this class, giving good
precision across all recall levels, but was consistently outperformed by the Darm-
stadt method. The INRIA-Dorko method, which is a variant of the Darmstadt
method, performed only slightly worse than the Darmstadt method at low recall,
but precision dropped off sharply at recall above 0.5. The Darmstadt submission
used segmentation masks for training, while the INRIA-Dorko method used only
the bounding boxes, and this may account for the difference in results.

The INRIA-Dalal method performed significantly worse for motorbikes than
the other methods. Section 6.6 reports improved results by modifying the window
size used by the detector. In the challenge, performance was close to the better of
the baseline methods provided by Edinburgh. These baseline methods used the
bag of words classifier to assign confidence to detections and predicted a single
bounding box either simply as the mean bounding box taken from the training
data, or as the bounding box of all Harris points in the image; the difference in
performance between these two methods was small. The success of these simple
methods can be attributed to the lack of variability in the test1 data: many
of the motorbikes appear in the centre of the image against a fairly uniform
background.

For the “bicycles” class, the only results submitted were for Edinburgh’s base-
line methods. The method predicting the bounding box as the bounding box of
all Harris points did best, suggesting that uniform background may have been
the reason.

For the “people” class, INRIA-Dalal, INRIA-Dorko and Edinburgh submitted
results. The INRIA-Dalal method performed best but AP was very low at 0.013.
The INRIA-Dorko method and baselines all gave almost zero average precision.
The poor results on this task may be attributed to the small size of the training
set relative to the large variability in appearance of people.

For the “cars” class, the INRIA-Dalal method achieved the highest AP of
0.304. For recall below 0.5, the Darmstadt method also performed well, with the
ISMSVM 2 run giving greater precision than the INRIA-Dalal method; precision
dropped off sharply at higher levels of recall. Darmstadt chose to train only on
side views of cars and this explains the drop off in precision as the method fails
to find cars from other views.

The FranceTelecom method did not perform as well as the INRIA-Dalal or
Darmstadt methods, but was consistently much better than any of the Edinburgh
baselines. The failure of the baselines suggests that the car images exhibited
much less regularity than the motorbike images.

8.2 Competition 6: test2

Table 11 lists the results of detection competition 6. In this competition, training
was carried out using only the train+val image set, and testing performed on
the test2 image set. The precision/recall curves for the competition are shown in
Figures 31–34, with each figure showing the results for a particular object class.
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Table 11. Results for competition 6: detection, train using the train+val image set
and test on the test2 image set. For each object class and submission, the AP measure
is shown. Note that some participants submitted multiple results. Bold entries in each
column denote the “best” methods for that object class according to AP.

Submission Motorbikes Bicycles People Cars

Darmstadt: ISM 0.292 – – 0.083
Darmstadt: ISMSVM 0.300 – – 0.181

Darmstadt: ISMSVM 2 0.341 – – –
Edinburgh: meanbb 0.055 0.000 0.000 0.000

Edinburgh: puritymeanbb 0.116 0.004 0.000 0.000
Edinburgh: siftbb 0.088 0.113 0.000 0.028

Edinburgh: wholeimage 0.020 0.006 0.000 0.005
FranceTelecom 0.289 – – 0.106

INRIA-Dalal 0.124 – 0.021 0.304

Overall performance on the test2 image set was much worse than on the
test1 images. The best results were obtained for motorbikes, and for this class
AP dropped from 0.886 on test1 to 0.341 on test2.

The relative performance of the methods was largely unchanged from that
observed in competition 5. For motorbikes, the Darmstadt method performed
best, and for cars the INRIA-Dalal method. For the “cars” class, the INRIA-
Dalal method performed convincingly better than the Darmstadt method, which
achieved high precision but lower recall in competition 5. The reason for this may
be that the test2 images contain an even lower proportion of side views of cars
than in the test1 data.
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Fig. 26. Average precision (AP) results for detection competitions 5 and 6 by class and
test set. The “best” (in terms of AP) result obtained for each class and each test set is
shown. For the motorbike and car classes the results were much better for the test1
set than for the test2 set. There is a large difference in performance across classes;
however note that few groups submitted results for bicycles and people.
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Fig. 27. PR curves for motorbikes in competition 5: detection, train using the
train+val image set and test on the test1 image set. All results submitted by each
participant are shown, with curves ranked by decreasing AP.
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Fig. 28. PR curves for bicycles in competition 5: detection, train using the train+val
image set and test on the test1 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.

The FranceTelecom method also gave results well above the baselines for the
“motorbikes” class, but results for the “cars” class were poor, with precision
dropping off at very low recall.

For the “people” class, only INRIA-Dalal and Edinburgh submitted results.
The precision/recall curve of the INRIA-Dalal method was consistently above
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Fig. 29. PR curves for people in competition 5: detection, train using the train+val
image set and test on the test1 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.
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Fig. 30. PR curves for cars in competition 5: detection, train using the train+val
image set and test on the test1 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.

any of the baseline methods, but AP was very low at 0.021; this is probably due
to the limited training data.

For all classes except people the Edinburgh baselines did surprisingly well,
though consistently worse than the other methods. In particular, the method
proposing the bounding box of all Harris points gave good results. This suggests
that there may still be a significant bias toward objects appearing on a uniform
background in the test2 images.
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Fig. 31. PR curves for motorbikes in competition 6: detection, train using the
train+val image set and test on the test2 image set. All results submitted by each
participant are shown, with curves ranked by decreasing AP.
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Fig. 32. PR curves for bicycles in competition 6: detection, train using the train+val
image set and test on the test2 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.

8.3 Comparison of Competitions 5 and 6

Figure 26 shows the best AP obtained for each object class in competition 5
(test1) and competition 6 (test2). For the “motorbikes” and “cars” classes,
for which results significantly better than the baselines were achieved, results on
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Fig. 33. PR curves for people in competition 6: detection, train using the train+val
image set and test on the test2 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.
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Fig. 34. PR curves for cars in competition 6: detection, train using the train+val
image set and test on the test2 image set. All results submitted by each participant
are shown, with curves ranked by decreasing AP.

test1 were much better than on test2 suggesting that the second test set is
indeed much more challenging, as was the intention.

Performance across the object classes varied greatly on both test sets. Note
however that for bicycles only results for “baseline” methods were submitted,
and for people results for only two methods were submitted for test1, and only
one method for test2.
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Fig. 35. PR curves for people in competitions 7 and 8: detection, train using any data
other than the provided test sets. Results shown are for the sole submission, from
INRIA-Dalal.

For the test1 images, performance for motorbikes was better than that for
cars, which is interesting since one might expect cars to be easier to recognize
because of their more convex structure. The reason may be due to less variation
in the pose of motorbikes (mostly side views) relative to cars in the test1 images.
Results on the two classes for the test2 images were about equal, suggesting
that there is less bias in the second test set.

8.4 Competitions 7 and 8

Competitions 7 and 8 allowed participants to use any training data other than
the test data provided for the challenge. Only one participant submitted re-
sults: INRIA-Dalal tackled the “people” class on both test sets. Figure 35 shows
precision/recall curves for these results. Average precision was 0.410 for the
test1 images, and 0.438 for the test2 images. These results are strikingly dif-
ferent than those obtained using the same method but only the provided training
data: AP of 0.013 for test1 and 0.021 for test2. This suggests that, certainly
for this method, the size of the training set provided for the “people” class was
inadequate.

9 Discussion

The challenge proved a worthwhile endeavour, with participation from twelve
groups representing nine institutions. A range of methods for object classification
and detection were evaluated providing a valuable snapshot of the state of the
art in these tasks. The experience gained in the challenge, and discussion at the
challenge workshop, resulted in a number of issues for consideration in future
challenges.
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Errors in the Data. Several participants commented on errors in the provided
data. Undoubtedly there remained some errors in the first data set which arose
from incomplete labelling of the original image databases from which the images
were taken. Future challenges should improve the quality of this data. In terms
of evaluation, all participants used the same data so any errors should not have
caused bias toward a particular method. A key aspect of machine learning is
the ability of a learning method to cope with some proportion of errors in the
training data. It might be interesting for future challenges to consider data sets
with known and varying proportion of errors to test methods’ robustness to such
errors.

A related issue is the difficulty of establishing ground truth, particularly for
the detection task. For many images it is hard for a human observer to judge
whether a particular object is really recognizable, or to segment individual ob-
jects, for example a number of bicycles in a bike rack. A unique aspect of the
challenge was that the images were collected without reference to a particular
method, whereas many databases will have been collected and annotated with a
particular approach e.g. window-based or parts-based in mind. Future challenges
might employ multiple annotations of the same images to allow some consensus
to be reached, or increasing the size of the datasets might reduce the effect of
such ambiguity on evaluation results. The results of existing methods might also
be used to judge the “difficulty” of each image.

Limited Training Data. One participant commented that the training data
provided for the person detection task was insufficient. However, there is a move
in the object recognition community toward use of small training sets, as little
as tens of images for some object classes, so there is some value in testing re-
sults with small training sets. Future challenges might consider providing larger
training sets.

Difficulty Level of the Data. One participant commented that the train+val
data was too “easy” with respect to the test data. Images were assigned randomly
to the train, val, and test1 image sets, so the training data should have been
unbiased with respect to test1. It is quite possible that for current methods, the
train+val data was not sufficient to learn a method successful on test2 images.
This is more a comment of current methods than the data itself, for example
most current methods are “view-based” and require training on different views
of an object; other methods might not have such requirements.

Releasing Test Data. In the challenge, the test data with associated ground
truth was released to participants. Code to compute the ROC and PR curves was
given to participants and the computed curves were returned to the organizers.
This protocol was followed to minimize the burden on both participants and
organizers, however, because the participants had access to the ground truth of
the test sets, there was a risk that participants might optimize their methods on
the test sets.

It was suggested that for future challenges the test data and/or ground truth
not be released to participants. This gives two alternatives: (i) release images
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but not ground truth. One problem here is that participants may informally
generate their own ground truth by “eye-balling” their results (this is much less
of a problem in most machine learning contests, where it is hard for humans to
generate predictions based on the input features); (ii) release no test data. This
would require that participants submit binaries or source code to the organizers
who would run it on the test data. This option was not taken for the challenge
because of anticipated problems in running participants’ code developed on dif-
ferent operating systems, with different shared libraries, etc. Submitting source
code e.g. MATLAB code would also raise issues of confidentiality.

Evaluation Methods. Some participants were concerned that the evaluation
measures (EER, AUC, AP) were not defined before results were submitted. In
future challenges it might be productive to specify the evaluation measures,
though this does run the risk of optimizing a method with respect to a particular
measure. It might be useful to further divide the datasets to obtain a more
informative picture of what each method is doing, for example detecting small
vs. large objects, or particular views.

It was also suggested that evaluation of discrimination between classes carried
out more directly (e.g. in the forced-choice scenario), rather than in a set of
binary classification tasks would be informative. Because of the use of images
containing objects from multiple classes, this requires defining new evaluation
measures; one possibility is to measure classification accuracy as a function of a
“refusal to predict” threshold.

Increasing the Number of Classes. Future challenges might increase the
number of classes beyond the four used here. This would be useful to establish
how well methods scale to a large number of classes. Other work has looked at
discrimination of 101 classes [17] but only in the case that each image contains
a single object (using the “forced choice” scenario). New data sets must be
acquired to support evaluation in the more realistic case of multiple objects in
an image. A number of researchers are collecting image databases which could
contribute to this.

Measuring State-of-the-Art Performance. The challenge encouraged par-
ticipants to submit results based on their own (unlimited) training data, but
only one such submission was received. This was disappointing because it pre-
vented judgement of just how well these classification and detection tasks can
be achieved by current methods with no constraints on training data or other
resources. Future challenges should provide more motivation for participants to
submit results from methods built using unlimited resources.
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Abstract. This paper describes the PASCAL Network of Excellence
first Recognising Textual Entailment (RTE-1) Challenge benchmark1.
The RTE task is defined as recognizing, given two text fragments,
whether the meaning of one text can be inferred (entailed) from the other.
This application-independent task is suggested as capturing major infer-
ences about the variability of semantic expression which are commonly
needed across multiple applications. The Challenge has raised noticeable
attention in the research community, attracting 17 submissions from di-
verse groups, suggesting the generic relevance of the task.

1 Introduction

1.1 Rational

A fundamental phenomenon of natural language is the variability of semantic
expression, where the same meaning can be expressed by, or inferred from, differ-
ent texts. This phenomenon may be considered as the dual problem of language
ambiguity, together forming the many-to-many mapping between language ex-
pressions and meanings. Many natural language processing applications, such
as Question Answering (QA), Information Extraction (IE), (multi-document)
summarization, and machine translation (MT) evaluation, need a model for this
variability phenomenon in order to recognize that a particular target meaning
can be inferred from different text variants.

Even though different applications need similar models for semantic variabil-
ity, the problem is often addressed in an application-oriented manner and meth-
ods are evaluated by their impact on final application performance. Consequently
it becomes difficult to compare, under a generic evaluation framework, practical
inference methods that were developed within different applications. Further-
more, researchers within one application area might not be aware of relevant
methods that were developed in the context of another application. Overall,
1 See http://www.pascal-network.org/Challenges/RTE/ for the first and second RTE

challenges.
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there seems to be a lack of a clear framework of generic task definitions and
evaluations for such “applied” semantic inference, which also hampers the for-
mation of a coherent community that addresses these problems. This situation
might be confronted, for example, with the state of affairs in syntactic process-
ing, where clear application-independent tasks, communities (and even standard
conference session names) have matured.

The Recognising Textual Entailment (RTE) Challenge is an attempt to pro-
mote an abstract generic task that captures major semantic inference needs
across applications. The task requires to recognize, given two text fragments,
whether the meaning of one text can be inferred (entailed) from another text.
More concretely, our applied notion of textual entailment is defined as a direc-
tional relationship between pairs of text expressions, denoted by T - the entailing
“Text”, and H - the entailed “Hypothesis”. We say that T entails H if, typi-
cally, a human reading T would infer that H is most likely true. This somewhat
informal definition is based on (and assumes) common human understanding of
language as well as common background knowledge. It is similar in spirit to eval-
uation of applied tasks such as Question Answering and Information Extraction,
in which humans need to judge whether the target answer or relation can indeed
be inferred from a given candidate text. Table 1 includes a few examples from
the dataset along with their gold standard annotation.

As in other evaluation tasks our definition of textual entailment is opera-
tional, and corresponds to the judgment criteria given to the annotators who
decide whether this relationship holds between a given pair of texts or not.
Recently there have been just a few suggestions in the literature to regard en-
tailment recognition for texts as an applied, empirically evaluated, task (see [4],
[6] and [12]).

It seems that major inferences, as needed by multiple applications, can indeed
be cast in terms of textual entailment. For example, a QA system has to identify
texts that entail a hypothesized answer. Given the question “Who painted ‘The
Scream’?”, the text “Norway’s most famous painting, ‘The Scream’ by Edvard
Munch,. . .” entails the hypothesized answer form “Edvard Munch painted ’The
Scream’.” (see corresponding example 568 in Table 1). Similarly, for certain
Information Retrieval queries the combination of semantic concepts and relations
denoted by the query should be entailed from relevant retrieved documents. In
IE entailment holds between different text variants that express the same target
relation. In multi-document summarization a redundant sentence, to be omitted
from the summary, should be entailed from other sentences in the summary. And
in MT evaluation a correct translation should be semantically equivalent to the
gold standard translation, and thus both translations should entail each other.
Consequently, we hypothesize that textual entailment recognition is a suitable
generic task for evaluating and comparing applied semantic inference models.
Eventually, such efforts can promote the development of entailment recognition
“engines” which may provide useful generic modules across applications.

Our applied notion of Textual entailment is also related, of course, to clas-
sical semantic entailment in the linguistics literature. A common definition of
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Table 1. Examples of Text-Hypothesis pairs

ID TEXT HYPOTHESIS TASK VALUE
568 Norway’s most famous painting, “The

Scream” by Edvard Munch, was recov-
ered Saturday, almost three months af-
ter it was stolen from an Oslo museum.

Edvard Munch painted
“The Scream”.

QA True

1586 The Republic of Yemen is an Arab, Is-
lamic and independent sovereign state
whose integrity is inviolable, and no
part of which may be ceded.

The national language of
Yemen is Arabic.

QA True

1076 Most Americans are familiar with the
Food Guide Pyramid– but a lot of people
don’t understand how to use it and the
government claims that the proof is that
two out of three Americans are fat.

Two out of three Ameri-
cans are fat.

RC True

1667 Regan attended a ceremony in Wash-
ington to commemorate the landings in
Normandy.

Washington is located in
Normandy.

IE False

13 iTunes software has seen strong sales in
Europe.

Strong sales for iTunes in
Europe.

IR True

2016 Google files for its long awaited IPO. Google goes public. IR True
2097 The economy created 228,000 new jobs

after a disappointing 112,000 in June.
The economy created
228,000 jobs after diss-
apointing the 112,000 of
June.

MT False

893 The first settlements on the site of
Jakarta were established at the mouth
of the Ciliwung, perhaps as early as the
5th century AD.

The first settlements on
the site of Jakarta were
established as early as the
5th century AD.

CD True

1960 Bush returned to the White House late
Saturday while his running mate was
off campaigning in the West.

Bush left the White
House.

PP False

586 The two suspects belong to the 30th
Street gang, which became embroiled in
one of the most notorious recent crimes
in Mexico: a shootout at the Guadala-
jara airport in May, 1993, that killed
Cardinal Juan Jesus Posadas Ocampo
and six others.

Cardinal Juan Jesus
Posadas Ocampo died in
1993.

QA True

908 Time Warner is the world’s largest me-
dia and Internet company.

Time Warner is the
world’s largest company.

RC False

1911 The SPD got just 21.5% of the vote
in the European Parliament elections,
while the conservative opposition par-
ties polled 44.5%.

The SPD is defeated by
the opposition parties.

IE True

entailment in formal semantics ([3]) specifies that a text t entails another text
h (hypothesis, in our terminology) if h is true in every circumstance (possible
world) in which t is true. For example, in example 13 from Table 1 we’d assume
humans to agree that the hypothesis is necessarily true in any circumstance for
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which the text is true. In such intuitive cases, our proposed notion of textual
entailment corresponds to the classical notions of semantic entailment.

However, our applied definition allows for cases in which the truth of the hy-
pothesis is highly plausible, for most practical purposes, rather than certain. In
Table 1, examples 1586, 1076, 893 and 586 were annotated as True even though
the entailment in this cases is not certain. This seems to match the types of
uncertain inferences that are typically expected from text based applications.
[7] present a first attempt to define in probabilistic terms a coherent notion and
generative setting of textual entailment. For a discussion on the relation between
Textual Entailment and some classical linguistic notions such as presupposition
and implicature see [16]. There is also considerable classical work on fuzzy or
uncertain inference (e.g. [1], [8], [9]). Making significant reference to this rich
body of literature and deeply understanding the relationships between our oper-
ational textual entailment definition and relevant linguistic notions is an ongoing
research topic, and is beyond the scope of this paper. Finally, it may be noted
that from an applied empirical perspective much of the effort is directed at rec-
ognizing meaning-entailing variability at rather shallow linguistic levels, rather
than addressing relatively delicate logical issues as typical in classical literature.

1.2 The Challenge Scope

As a first step towards the above goal we created a dataset of Text-Hypothesis
(T -H) pairs of small text snippets, corresponding to the general news domain
(see Table 1). Examples were manually labeled for entailment - whether T entails
H or not - by human annotators, and were divided into development and test
datasets. Participating systems were asked to decide for each T -H pair whether
T indeed entails H (denoted as True) or not (False), and results were compared
to the manual gold standard.

The dataset was collected with respect to different text processing applica-
tions, as detailed in the next section. Each portion of the dataset was intended to
include typical T -H examples that may correspond to success and failure cases
of the actual applications. The collected examples represent a range of differ-
ent levels of entailment reasoning, based on lexical, syntactic, logical and world
knowledge, at different levels of difficulty.

The distribution of examples in this challenge has been somewhat biased to
choosing nontrivial pairs, and also imposed a balance of True and False examples.
For this reason, systems performances in applicative settings might be different
than the figures for the challenge data, due to different distributions of exam-
ples in particular applications. Yet, the data does challenge systems to handle
properly a broad range of entailment phenomena. Overall, we were aiming at an
explorative rather than a competitive setting, hoping that meaningful baselines
and analyses for the capabilities of current systems will be obtained.

Finally, the task definition and evaluation methodologies are clearly not
mature yet. We expect them to change over time and hope that participants’
contributions, observations and comments will help shaping this evolving
research direction.
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2 Dataset Preparation and Application Settings

The dataset of Text-Hypothesis pairs was collected by human annotators. It
consists of seven subsets, which correspond to typical success and failure settings
in different applications, as listed below. Within each application setting the
annotators selected both positive entailment examples (True), where T is judged
to entail H , as well as negative examples (False), where entailment does not hold
(a 50%-50% split). Typically, T consists of one sentence (sometimes two) while H
was often made a shorter sentence (see Table 1). The full datasets are available
for download at the Challenge website2.

In some cases the examples were collected using external sources, such as avail-
able datasets or systems (see Acknowledgements), while in other cases examples
were collected from the web, focusing on the general news domain. In all cases
the decision as to which example pairs to include was made by the annotators.
The annotators were guided to obtain a reasonable balance of different types of
entailment phenomena and of levels of difficulty. Since many T -H pairs tend to
be quite difficult to recognize, the annotators were biased to limit the proportion
of difficult cases, but on the other hand to try avoiding high correlation between
entailment and simple word overlap. Thus, the examples do represent a useful
broad range of naturally occurring entailment factors. Yet, we cannot say that
they correspond to a particular representative distribution of these factors, or of
True vs. False cases, whatever such distributions might be in different settings.
Thus, results on this dataset may provide useful indications of system capabil-
ities to address various aspects of entailment, but do not predict directly the
performance figures within a particular application.

It is interesting to note in retrospect that the annotators’ selection policy
yielded more negative examples than positive ones in the cases where T and H
have a very high degree of lexical overlap. This anomaly was noticed also by Bos
and Markert, Bayer et al. and Glickman et al. (this Volume), and affected the
design or performance of their systems

2.1 Application Settings

Information Retrieval (IR). Annotators generated hypotheses (H) that may
correspond to meaningful IR queries that express some concrete semantic rela-
tions. These queries are typically longer and more specific than a standard key-
word query, and may be considered as representing a semantic-oriented variant
within IR. The queries were selected by examining prominent sentences in news
stories, and were then submitted to a web search engine. Candidate texts (T )
were selected from the search engine’s retrieved documents, picking candidate
texts that either do or do not entail the hypothesis.

Comparable Documents (CD). Annotators identified T -H pairs by exam-
ining a cluster of comparable news articles that cover a common story. They

2 http://www.pascal-network.org/Challenges/RTE/
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examined “aligned” sentence pairs that overlap lexically, in which semantic en-
tailment may or may not hold. Some pairs were identified on the web using
Google news3 and others taken from an available resource of aligned English
sentences (see Acknowledgments). The motivation for this setting is the common
use of lexical overlap as a hint for semantic overlap in comparable documents,
e.g. for multi-document summarization.

Reading Comprehension (RC). This task corresponds to a typical reading
comprehension exercise in human language teaching, where students are asked
to judge whether a particular assertion can be inferred from a given text story.
The challenge annotators were asked to create such hypotheses relative to texts
taken from news stories, considering a reading comprehension test for high school
students.

Question Answering (QA). Annotators used the TextMap Web Based Ques-
tion Answering system available online (see Acknowledgments). The annotators
used a resource of questions from CLEF-QA4 (mostly) and TREC5, but could
also construct their own questions. For a given question, the annotators chose
first a relevant text snippet (T ) that was suggested by the QA system as in-
cluding the correct answer. They then turned the question into an affirmative
sentence with the hypothesized answer ”plugged in” to form the hypothesis (H).
For example, given the question, “Who is Ariel Sharon?” and taking a candidate
answer text “Israel’s Prime Minister, Ariel Sharon, visited Prague” (T ), the hy-
pothesis H is formed by turning the question into the statement “Ariel Sharon
is Israel’s Prime Minister”, producing a True entailment pair.

Information Extraction (IE). This task is inspired by the Information Ex-
traction application, adapting the setting for pairs of texts rather than a text
and a structured template. For this task the annotators used an available dataset
annotated for the IE relations “kill” and “birth place” produced by UIUC (see
acknowledgments), as well as general news stories in which they identified man-
ually “typical” IE relations. Given an IE relation of interest (e.g. a purchasing
event), annotators identified as the text (T ) candidate news story sentences in
which the relation is suspected to hold. As a hypothesis they created a straight-
forward natural language formulation of the IE relation, which expresses the
target relation with the particular slot variable instantiations found in the text.
For example, given the information extraction task of identifying killings of civil-
ians, and a text “Guerrillas killed a peasant in the city of Flores.”, a hypothesis
“Guerrillas killed a civilian” is created, producing a True entailment pair.

Machine Translation (MT). Two translations of the same text, an automatic
translation and a gold standard human translation (see Acknowledgements), were
compared and modified in order to obtain T -H pairs. The automatic translation

3 http://news.google.com
4 http://clef-qa.itc.it/
5 http://trec.nist.gov/data/qa.html
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was alternately taken as either T or H , where a correct translation corresponds
to True entailment. The automatic translations were sometimes grammatically
adjusted, being otherwise grammatically unacceptable.

Paraphrase Acquisition (PP). Paraphrase acquisition systems attempt to
acquire pairs (or sets) of lexical-syntactic expressions that convey largely equiv-
alent or entailing meanings. Annotators selected a text T from some news story
which includes a certain relation, for which a paraphrase rule from a paraphrase
acquisition system (see Acknowledgements) may apply. The result of applying
the paraphrase rule on T was chosen as the hypothesis H . Correct paraphrases
suggested by the system, which were applied in an appropriate context, yielded
True T -H pairs; otherwise a False example was generated. For example, given
the sentence “The girl was found in Drummondville.” and by applying the para-
phrase rule X was found in Y ⇒ Y contains X , we obtain the hypothesis
“Drummondville contains the girl.” Yielding a False example.

2.2 Additional Guidelines

Some additional annotation criteria and guidelines are listed below:

– Given that the text and hypothesis might originate from documents at dif-
ferent points in time, tense aspects are ignored.

– In principle, the hypothesis must be fully entailed by the text. Judgment
would be False if the hypothesis includes parts that cannot be inferred from
the text. However, cases in which inference is very probable (but not com-
pletely certain) are still judged at True. In example #586 in Table 1 one
could claim that the shooting took place in 1993 and that (theoretically) the
cardinal could have been just severely wounded in the shooting and has con-
sequently died a few months later in 1994. However, this example is tagged
as True since the context seems to imply that he actually died in 1993. To
reduce the risk of unclear cases, annotators were guided to avoid vague ex-
amples for which inference has some positive probability that is not clearly
very high.

– To keep the contexts in T and H self-contained annotators replaced anaphors
with the appropriate reference from preceding sentences where applicable.
They also often shortened the hypotheses, and sometimes the texts, to reduce
complexity.

– Annotators were directed to assume common background knowledge of the
news domain such as that a company has a CEO, a CEO is an employee of
the company, an employee is a person, etc. However, it was considered un-
acceptable to presume highly specific knowledge, such as that Yahoo bought
Overture for 1.63 billion dollars.

2.3 The Annotation Process

Each example T -H pair was first judged as True/False by the annotator that
created the example. The examples were then cross-evaluated by a second judge,
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who received only the text and hypothesis pair, without any additional infor-
mation from the original context. The annotators agreed in their judgment for
roughly 80% of the examples, which corresponded to a 0.6 Kappa level (moder-
ate agreement). The 20% of the pairs for which there was disagreement among
the judges were discarded from the dataset. Furthermore, one of the organizers
performed a light review of the remaining examples and eliminated an additional
13% of the original examples, which might have seemed controversial. Altogether,
about 33% of the originally created examples were filtered out in this process.

The remaining examples were considered as the gold standard for evaluation,
split to 567 examples in the development set and 800 in the test set, and evenly
split to True/False examples. Our conservative selection policy aimed to create a
dataset with non-controversial judgments, which will be addressed consensually
by different groups. It is interesting to note that few participants have indepen-
dently judged portions of the dataset and reached high agreement levels with
the gold standard judgments, of 95% on all the test set (Bos and Markert), 96%
on a subset of roughly a third of the test set (Vanderwende et al.) and 91% on
a sample of roughly 1/8 of the development set (Bayer et al.).

3 Submissions and Results

3.1 Submission Guidelines

Submitted systems were asked to tag each T -H pair as either True, predicting
that entailment does hold for the pair, or as False otherwise. In addition, systems
could optionally add a confidence score (between 0 and 1) where 0 means that the
system has no confidence of the correctness of its judgment, and 1 corresponds
to maximal confidence. Participating teams were allowed to submit results of up
to 2 systems or runs.

The development data set was intended for any system tuning needed. It was
acceptable to run automatic knowledge acquisition methods (such as synonym
collection) specifically for the lexical and syntactic constructs present in the
test set, as long as the methodology and procedures are general and not tuned
specifically for the test data6.

In order to encourage systems and methods which do not cover all entail-
ment phenomena we allowed submission of partial coverage results, for only part
of the test examples. Naturally, the decision as to on which examples the sys-
tem abstains were to be done automatically by the system (with no manual
involvement).

3.2 Evaluation Criteria

The judgments (classifications) produced by the systems were compared to the
gold standard. The percentage of matching judgments provides the accuracy of
the run, i.e. the fraction of correct responses.
6 We presumed that participants complied with this constraint. It was not enforced

in any way.



The PASCAL Recognising Textual Entailment Challenge 185

As a second measure, a Confidence-Weighted Score (cws, also known as Av-
erage Precision) was computed. Judgments of the test examples were sorted by
their confidence (in decreasing order), calculating the following measure:

cws =
1
n

n∑
i=1

#correct − up− to− rank − i

i

where n is the number of the pairs in the test set, and i ranges over the sorted
pairs. The Confidence-Weighted Score ranges between 0 (no correct judgments
at all) and 1 (perfect classification), and rewards the systems’ ability to assign a
higher confidence score to the correct judgments than to the wrong ones. Note
that in the calculation of the confidence weighted score correctness is with respect
to classification - i.e. a negative example, in which entailment does not hold, can
be correctly classified as false. This is slightly different from the common use of
average precision measures in IR and QA, in which systems rank the results by
confidence of positive classification and correspondingly only true positives are
considered correct.

3.3 Submitted Systems and Results

Sixteen groups submitted the results of their systems for the challenge data,
while one additional group submitted the results of a manual analysis of the
dataset (Vanderwende et al., see below). As expected, the submitted systems
incorporated a broad range of inferences that address various levels of textual
entailment phenomena. Table 2 presents some common (crude) types of inference
components which, according to our understanding, were included in the various
systems (see [2] and [13] who propose related breakdowns of inference types).

The most basic type of inference measures the degree of word overlap be-
tween T and H, possibly including stemming, lemmatization, part of speech
tagging, and applying a statistical word weighting such as idf. Interestingly, a
non-participating system that operated solely at this level, using a simple de-
cision tree trained on the development set, obtained an accuracy level of 58%,
which might reflect a knowledge-poor baseline (see [5]). Higher levels of lexical
inference considered relationships between words that may reflect entailment,
based either on statistical methods or WordNet. Next, some systems measured
the degree of match between the syntactic structures of T and H , based on
some distance criteria. Finally, few systems incorporated some form of “world
knowledge”, and a few more applied a logical prover for making the entailment
inference, typically over semantically enriched representations. Different decision
mechanisms were applied over the above types of knowledge, including proba-
bilistic models, probabilistic Machine Translation models, supervised learning
methods, logical inference and various specific scoring mechanisms.

Table 2 shows the results for the runs as submitted to the challenge (later
post-submission results may appear in this Volume). Overall system accuracies
were between 50 and 60 percent and system cws scores were between 0.50 and
0.70. Since the dataset was balanced in terms of true and false examples, a system
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Table 2. Accuracy and cws results for the system submissions, ordered by first author.
Partial coverage refers to the percentage of examples classified by the system out of the
800 test examples. (The results of the manual analysis by Vanderwende at al. (MSR)
are summarized separately in the text.)

that uniformly predicts True (or False) would achieve an accuracy of 50% which
constitutes a natural baseline. Another baseline is obtained by considering the
distribution of results in random runs that predict True or False at random. A
run with cws > 0.540 or accuracy > 0.535 is better than chance at the 0.05 level
and a run with cws > 0.558 or accuracy > 0.546 is better than chance at the
0.01 level.

Unlike other system submissions, Vanderwende et al. (this Volume) report an
interesting manual analysis of the test examples. Each example was analyzed
as whether it could be classified correctly (as either True or False) by taking
into account only syntactic considerations, optionally augmented by a lexical
thesaurus. An “ideal” decision mechanism that is based solely on these levels of
inference was assumed. Their analysis shows that 37% of the examples could (in
principle) be handled by considering syntax alone, and 49% if a thesaurus is also
consulted.
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The Comparable Documents (CD) task stands out when observing the perfor-
mance of the various systems broken down by tasks. Generally the results on this
task are significantly higher than results on the other tasks with results as high as
87% accuracy and cws of 0.95. This behavior might indicate that in comparable
documents there is a high prior probability that seemingly matching sentences
indeed convey the same meanings. We also note that for some systems it is the
success on this task which pulled the figures up from the insignificance baselines.

Our evaluation measures do not favor specifically recognition of positive en-
tailment. A system which does well in recognizing when entailment does not
hold would do just as well in terms of accuracy and cws as a system tailored
to recognize true examples. In retrospect, standard measures of precision, re-
call and f in terms of the positive (entailing) examples would be appropriate as
additional measures for this evaluation. In fact, some systems recognized only
very few positive entailments (a recall between 10-30 percent). None of the sys-
tems performed significantly better than the f=0.67 baseline of a system which
uniformly predicts true.

4 Discussion

As a new task and a first challenge, Textual Entailment Recognition is still
making its first steps towards becoming a mature discipline within the Natural
Language Processing community. We received a lot of feedback from the partic-
ipants and other members of the research community, which partly contributed
to the design of the second challenge (RTE-2) which is planned for 2006. Follow-
ing are some issues that came up at the panels and discussions at the challenge
workshop.

Multi Valued Annotation. In our setting we used a binary {True, False}
annotation - a hypothesis is either entailed from the text or not. An annotation
of False was used to denote both cases in which the truth value of the hypothesis
is either (most likely) false or unknown given the text. Yet, one might want
to distinguish between cases (such as example 1667 in Table 1) for which the
hypothesis is False given the text and cases (such as example 2097) for which
it is unknown whether the hypothesis is True or False. For this reason, a 3-
valued annotation scheme ({True, False, Unknown}; see [10]) was proposed as
a possible alternative. Furthermore, given the fuzzy nature of the task, it is not
clear whether a 3-valued annotation would suffice and so n-valued annotation or
even a Fuzzy logic scheme ([15]) may be considered as well. Allowing for a richer
annotation scheme may enable to include the currently discarded examples on
which there was no agreement amongst the annotators (see Section 2.3).

Assumed Background Knowledge. Textual inferences are based on infor-
mation that is explicitly asserted in the text and often on additional assumed
background knowledge not explicitly stated in the text. In our guidelines (see
Section 2.2) we allowed annotators to assume common knowledge of the news
domain. However, it is not clear how to separate out linguistic knowledge from
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world knowledge, and different annotators might not agree on what constitutes
common background knowledge. For example, in example 1586 in Table 1 one
needs to assume world knowledge regarding Arab states and the Arab language
in order to infer the correctness of the hypothesis from the text. Furthermore,
the criteria defining what constitutes acceptable background knowledge may be
hypothesis dependant. For example, it is inappropriate to assume as background
knowledge that The national language of Yemen is Arabic when judging exam-
ple 1586, since this is exactly the hypothesis in question. On the other hand,
such background knowledge might be assumed when examining the entailment
“Grew up in Yemen” → “Speaks Arabic”. Overall, there seemed to be a con-
sensus that it is necessary to assume the availability of background knowledge
for judging entailment, even though it becomes one of the sources for certain
disagreements amongst human annotators.

Common Preprocessing. Textual Entailment systems typically rely on the
output of several NLP components prior to performing their inference, such as
tokenization, lemmatization, part-of-speech tagging, named entity recognition
and syntactic parsing. Since different systems differ in their preprocessing mod-
ules it becomes more difficult to compare them. In the next Challenge we plan to
supply some common pre-processing of the data in order to enable better system
comparison and to let participants focus on the inference components.

Entailment Subtasks. Textual entailment recognition is a complex task and
systems typically perform multiple sub-tasks. It would therefore be interesting
to define and compare performance on specific relevant subtasks. For example,
[2] and [7] define lexical and lexical-syntactic entailment subtasks and [11] define
an entailment-alignment subtask. Datasets that are annotated for such subtasks
may be created in the future.

Inference Scope. Textual Entailment systems need to deal with a wide range
of inference types. So far we were interested in rather direct inferences that are
based mostly on information in the text and background knowledge. Special-
ized types of inference, such as temporal reasoning, complex logical inference or
arithmetic calculations (see example 1911 from Table 1) were typically avoided
but may be considered more systematically in the future.

5 Conclusions

The PASCAL Recognising Textual Entailment (RTE) Challenge is an initial
attempt to form a generic empirical task that captures major semantic inferences
across applications. The high level of interest in the challenge, demonstrated by
the submissions from 17 diverse groups and noticeable interest in the research
community, suggest that textual entailment indeed captures highly relevant core
tasks.

The results obtained by the participating systems may be viewed as typical for
a new and relatively difficult task (cf. for example the history of MUC bench-
marks). Overall performance figures for the better systems were significantly
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higher than some baselines. Yet, the absolute numbers are relatively low, with
small, though significant, differences between systems. Interestingly, system com-
plexity and sophistication of inference did not correlate fully with performance,
where some of the best results were obtained by rather näıve lexically-based
systems. The fact that quite sophisticated inference levels were applied by some
groups, with 6 systems applying logical inference, provides an additional indica-
tion that applied NLP research is progressing towards deeper semantic reasoning.
Additional refinements are needed though to obtain sufficient robustness for the
Challenge types of data. Further detailed analysis of systems performance, rela-
tive to different types of examples and entailment phenomena, are likely to yield
future improvements.

Being the first benchmark of its types there are several lessons for future sim-
ilar efforts. Most notably, further efforts can be made to create “natural” distri-
butions of Text-Hypothesis examples. For example, T -H pairs may be collected
directly from the data processed by actual systems, considering their inputs and
candidate outputs. An additional possibility is to collect a set of multiple can-
didate texts that might entail a given single hypothesis, thus reflecting typical
ranking scenarios. Data collection settings may also be focused on typical “core”
semantic applications, such as QA, IE, IR and summarization. Some of these im-
provements are planned for the 2nd PASCAL Recognising Textual Entailment
Challenge. Overall, we hope that future similar benchmarks will be carried out
and will help shaping clearer frameworks, and corresponding research communi-
ties, for applied research on semantic inference.
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Abstract. The Bleu algorithm has been used in many different fields.
Another possible application is the automatic recognition of textual en-
tailment. Bleu works at the lexical level, by comparing a candidate text
with several reference texts in order to calculate how close the candidate
text is to the references. In this case, the candidate is the text part of
the entailment and the hypothesis is the unique reference. The algorithm
achieves an accuracy of around 50%. Moreover, in this paper we explore
the application of Bleu-like algorithms, finding that they can reach an
accuracy of around 56%, which proves its possible use as a baseline for
the task of recognizing entailment.

1 Introduction

In the framework of the Pascal Challenge, a fairly new and interesting task was
tackled: the automatic recognition of textual entailment (RTE). It consists of
deciding if a certain expression, a text called the entailment hypothesis (H), can
be inferred by another expression, the text (T), and thus whether it can be said
that T entails H or not.

This task deals with many different linguistic phenomena, such as language
variability, since there are many different possible paraphrasings that can confuse
an automatic system. For instance, if T and H are, respectively:

(1) a. Eyeing the huge market potential, currently led by Google, Yahoo took
over search company Overture Services Inc last year.

b. Yahoo bought Overture.

a human annotator would know that, in this context, “to take over” is another
way to say “to buy”. Hence, he or she would ignore the rest of the information and
would mark the entailment as true. However, this task is not so straightforward
for a computer. In fact, if it is not provided with some kind of resource indicating
the paraphrase between T and H, it would mark the entailment as false.
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Obviously, it is a complex task that needs both a preliminary study to find out
the most suitable techniques that can be applied to solve it, and the development
of new techniques specifically designed for it. This problem has attracted a great
deal of attention from the research community. In particular, seventeen different
systems have been presented in the Pascal Challenge using several Natural Lan-
guage Processing (NLP) techniques. These systems can be grouped according to
the highest linguistic level in which their NLP techniques work:

– Lexical: systems that rely on studying word overlapping and/or statistical
lexical relationships. For instance, the MITRE system [1].

– Syntactic/Semantic: systems that are based on the use of parsers to an-
alyze and to match the sentences according to their syntactic structure. An
example is the UIUC system [2]. They can also be underpinned by the use of
world knowledge and/or the application of some kind of logical prover. For
example, the Stanford system [3].

It is interesting to observe that according to the metrics given by the challenge
organizers [4], the best result was an accuracy of 0.586 achieved by the systems
[1, 5] (both of them working only at the lexical level) and a 0.686 Confidence
Weight Score (CWS) value achieved by the Stanford system [3] (using statisti-
cal lexical relations, WordNet, syntactic matching, world knowledge and logical
inference).

These facts lead us to our main motivation, that is to discuss if this problem
can be addressed with just shallow techniques. If that is not the case, it will
be interesting to know what the advantages of deep analyses are, and how the
results differ from just using shallow techniques.

In this paper, we use the Bleu algorithm [6, 7], that works at the lexical level,
to compare the entailing text (T) with the hypothesis (H). Once the algorithm
was applied, it turned out that, despite its simplicity, it was able to achieve a
result as good as an accuracy of 54% for the development set, and of around a
50% for the test set (CWS=52%).

It is important to highlight that Bleu requires less than two hours program-
ming time and it does not use any NLP resource. On the other hand, it is
our hypothesis that, in order to improve the results, it is appropriate to apply
some NLP techniques. In order to test it, we have also tried other Bleu-like algo-
rithms, increasing the accuracy up to 56% (CWS=54%). These results confirmed
the use of Bleu-like algorithms as a possible baseline for the automatic recog-
nition of textual entailment. Furthermore, they show how a shallow technique
can reach an accuracy of around 56%.

This article is organized as follows: Section 2 explains how Bleu and other
similar algorithms work in general, and next Section 3 details the application
of these algorithms for recognizing entailment and gives the results achieved.
Section 4 explores how shallow and deeper NLP techniques can contribute to
this task. Finally, Section 5 ends with the main conclusions of the paper and
some possible lines of future work.
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2 Bleu-like Algorithms

The Bleu (BiLingual Evaluation Understudy) algorithm was created by Papineni
et al. [6] as a procedure to rank systems according to how well they translate texts
from one language to another. Basically, the algorithm looks for n-gram coinci-
dences between a candidate text (the automatically produced translation) and a
set of reference texts (the human-made translations). This algorithm is as follows:

– For several values of N (typically from 1 to 4), calculate the percentage of
n-grams from the candidate translation that appear in any of the human
translations. The frequency of each n-gram is limited to the maximum fre-
quency with which it appears in any reference.

– Combine the marks obtained for each value of N, as a weighted linear average.
– Apply a Brevity Penalty factor to penalize short candidate texts (which may

have n-grams in common with the references, but may be incomplete). If the
candidate is shorter than the references, this factor is calculated as the ratio
between the length of the candidate text and the length of the reference
which has the most similar length.

It can be seen that Bleu is not only a keyword matching method between
pairs of text. It considers several other factors that make it more robust:

– It takes into account the length of the text in comparison with the lengths of
reference texts. This is because the candidate text should be similar to the
reference texts (if the translation has been well done). Therefore, the fact
that the candidate text is shorter than the reference texts is indicative of a
poor quality translation and thus, Bleu penalizes it with a Brevity Penalty
factor that lowers the score.

– The measure of similarity can be considered as a precision value that calcu-
lates how many of the n-grams from the candidate appear in the reference
texts. This value has been modified, as the number of occurrences of an n-
gram in the candidate text is clipped at the maximum number of occurrences
it has in the reference texts. Therefore, an n-gram that is repeated very often
in the candidate text will not increment the score if it only appears a few
times in the references.

– Thefinal score is the result of theweighted sumof the logarithms of the different
values of the precision, for n varying from 1 to 4. It is not advisable to use higher
values of n since coincidences longer than four-grams are very unusual.

Bleu’s output indicates how similar the candidate and reference texts are.
In fact, the higher the value is, the more similar they are. Papineni et al. report
a correlation above 96% when comparing Bleu’s scores with the human-made
scores [6].

This algorithm has also been applied to evaluate text summarization systems
with the modification that, in this case, the stress is put on the recall rather
than on the precision [8]. This has motivated us to try a similar change in the
original Bleu algorithm.
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In particular, Bleu measures the recall in a rough way by penalizing very
short translations using the Brevity Penalty factor. We have focused on improv-
ing this factor, by calculating it as the percentage of the reference text that is
covered by the candidate text.

The resulting algorithm is called Bleu+recall and it is as follows:

1. For each value of N (typically from 1 to 4), calculate the Modified Unified
Precision (MUPN ) as the percentage of N -grams from the candidate answer
which appears in the reference text.

2. Calculate the weighted linear average of MUPN obtained for each value of
N . Store it in combMUP .

3. Calculate the Modified Brevity Penalty (MBP ) factor, which is intended
to penalize answers with a very high precision, but which are too short, to
measure the recall:
(a) For N from a maximum value (e.g. 10) down to 1, look whether each

N -gram from the candidate text appears in the reference. In that case,
mark the words from the found N -gram, both in the candidate and in
the reference.

(b) The MBP factor is the percentage of the reference that has been found
in the candidate text.

4. The final score is the result of multiplying the MBP factor by ecombMUP .

Bleu+recall has been conveniently applied in the assessment of free-text an-
swers combined with some shallow NLP techniques [9], using the wraetlic tools1

[10]. These techniques are the following:

– Stemming (ST): To reduce each word to its stem or root form to facilitate
the task of finding words with similar meanings but in different morphological
forms. For instance, to match books and book as the former word is just the
plural form of the latter.

– Removal of closed-class words (CC): To ignore functional words that
have been tagged as closed-class words (e.g. prepositions, conjunctions, de-
terminers, etc.) because they do not convey the main meaning of the sen-
tence.

– Word Sense Disambiguation (WSD): To identify the sense in which
polysemous words are used, using WordNet as the repository of word senses
(see Section 3 for more details).

3 Application of Bleu-like Algorithms for Automatically
Recognizing Textual Entailment

The corpus provided by the Pascal RTE Challenge organizers [4] consisted of 567
development entailment pairs and 800 test pairs. They have been gathered so
that different linguistic levels were necessary to automatically judge entailment
1 www.ii.uam.es/∼ealfon/eng/research/wraetlic.html
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Fig. 1. Procedure to automatically recognize textual entailment using a Bleu-like
algorithm

as TRUE or FALSE. They were also selected to produce a balanced corpus
in which half of the entailment were TRUE according to human annotators.
Whenever there was a disagreement between the human annotators about the
nature of a pair, it was discarded.

Figure 1 shows the procedure for recognizing entailment using a Bleu-like
algorithm. The first step is to use the “Separation Module” to split the initial
corpus in two different sets2, one with the T part of the entailment pairs and
the other with the H part.

The second step is to decide whether the candidate text should be considered
as the text part of the entailment (T) or as the hypothesis (and, as a consequence
whether the reference text should be considered as the H or the T part). In order
to make this choice, the length of the T and H parts and the dependency of the
Bleu algorithm on the references should be taken into account. Initially, we
considered the T part as the reference and the H as the candidate. This setting
should have the advantage that the T part is usually longer than the H part and
thus the reference would contain more information than the candidate. It could
help Bleu’s comparison process since the quality of the references is crucial
and, in this case, the number of them has been dramatically reduced to only one
(when in the rest of the applications of Bleu the number of references is always
higher).

Then, the third step is to apply the algorithm as described in Section 2. The
output is a score for each pair that enters the “Judgement module” to give a
TRUE or FALSE value to each pair and also to be used as its confidence score.
We performed an optimization procedure for the development set that chose
the best threshold according to the percentage of success of correctly recognized
entailment pairs. The value obtained was 0.157. Thus, if Bleu’s output is higher
than 0.157 the entailment is marked as TRUE, otherwise as FALSE.

2 For the development sets, another output of this module is a file with the human
annotators judgment for each pair.
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Table 1. Results of using Bleu for recognizing the entailment in the development
sets, considering from the first to seventh columns the T part of the entailment as
the reference text (threshold = 0.157) and, from the eight to the final column the T
part of the entailment as the candidate text (threshold = 0.1). The acronyms in the
columns indicate: task id; number of entailment pairs (NTE); accuracy (A); number of
pairs correctly judged as true (NTR); number of pairs correctly judged as false (NFR);
number of pairs incorrectly judged as true (NTW); and, number of pairs incorrectly
judged as false (NFW).

Task NTE A NTR NFR NTW NFW NTE A NTR NFR NTW NFW
CD 98 77% 39 36 12 11 98 72% 40 31 17 10
IE 70 44% 16 15 20 19 70 50% 23 12 23 12
MT 54 52% 18 10 17 9 54 52% 21 7 20 6
QA 90 41% 9 28 17 36 90 50% 22 23 22 23
RC 103 51% 30 23 28 22 103 50% 33 19 32 19
PP 82 57% 22 25 18 17 82 60% 25 24 19 14
IR 70 44% 10 21 14 25 70 41% 8 21 14 27
Total 567 53% 144 158 126 139 567 54% 172 137 147 111

Table 2. Results for the test set using Bleu (threshold = 0.1). Columns indicate: task
id; confidence-weighted score or average precision (CWS); and, the accuracy.

TASK CWS Accuracy
CD 0.7823 0.7000
IE 0.5334 0.5000
MT 0.2851 0.3750
QA 0.3296 0.4231
RC 0.4444 0.4571
PP 0.6023 0.4600
IR 0.4804 0.4889
TOTAL 0.5168 0.4950

The results achieved are gathered in Table 1 (left). In order to confirm our
insight that considering the T part of the entailment as the reference reaches
better results, we repeated the experiment this time choosing the T part of the
pair as the candidate and the H part as the reference. The results are shown in
Table 1 (right). In this case, the best threshold has been 0.1. This is the value
that has been fixed as threshold for the test set.

It can be seen how the results contradict our insight that the best setting
would be to have the T part as the reference text. In fact, the results are not so
much different for both configurations. A possible reason for this could be that
all cases when Bleu failed to correctly judge the entailment are problematic in
both settings. Bleu cannot deal with these cases neither taking the T part as
the reference text nor taking it as the candidate text.

It is also important to highlight that the average accuracy achieved was of
54%. Moreover, it reached an accuracy of 72% for the Comparable Document
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Table 3. Results for the test set using Bleu+recall (threshold = 0.9). Columns indi-
cate: task id; confidence-weighted score or average precision (CWS); and, the accuracy
considering the T part of the entailment pairs as the candidate text; and, next, then
considering the H part of the pairs as the reference text.

TASK CWS Accuracy CWS Accuracy
CD 0.5847 0.6333 0.4629 0.4800
IE 0.5524 0.5333 0.4311 0.5000
MT 0.4771 0.4667 0.3632 0.4083
QA 0.5517 0.5846 0.5944 0.5000
RC 0.4976 0.5071 0.5872 0.5000
PP 0.4829 0.4600 0.4954 0.5200
IR 0.5091 0.5444 0.3814 0.5000
TOTAL 0.5194 0.5425 0.4730 0.4838

(CD) task. This result was expected since Bleu’s strength relies on making
comparisons between texts in which the lexical level is the most important.

The results for the test set (although a slightly lower than for the development
test) confirm the same conclusions drawn before. In fact, for the first run in which
Bleu was used for all the tasks, it achieved a confidence-weighted score of 52%
and an accuracy of 50%. See Table 2 for details.

It can be seen that the results are better choosing the T part as the candidate
text, and the H part as the reference, contrary to our initial insight. After ana-
lyzing the data set, we have seen that in many cases H is implied by T, but the
reverse is not applicable, i.e. the entailment is unidirectional. This implies that
it may be the case that most of H is covered by T, but a large portion of T is
not covered by H. Therefore, the score returned by BLEU is lower if we consider
T as the reference, because in these cases the hypothesis text is penalized by the
Brevity Penalty Factor.

As can be seen, not only the overall performance continues being similar to
accuracy obtained with the development test. Also, the best task for the test
set keeps being the CD. To highlight this fact, we implemented a preliminary
step of the algorithm in which there was a filter for the CD pairs, and only they
were processed by Bleu. In this way, we created a second run with the CD set
that achieved a CWS of 78% and an accuracy of 70%. This high result indicates
that, although, in general, Bleu should only be considered as a baseline for
recognizing textual entailment, in the case of CD, it can probably be used as a
stand-alone system.

As indicated in Section 2, we have also tried several Bleu-like algorithms.
For all them the threshold to decide whether the entailment should be judged
as TRUE or FALSE was empirically determined as 0.9. They are the following:

– Bleu+recall: Following the procedure previously described but, using the
algorithm described in Section 2 with the new Modified Brevity Penalty
(MBP) factor, which takes into account not only the precision but also the
recall. Table 3 shows the results both for considering the T part of the
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Table 4. Results for the test set using Bleu+recall+ST (threshold = 0.9). Columns
indicate: task id; confidence-weighted score or average precision (CWS); and, the ac-
curacy considering the T part of the entailment pairs as the candidate text; and, next,
considering the H part of the pairs as the reference text.

TASK CWS Accuracy CWS Accuracy
CD 0.5962 0.6200 0.4382 0.4667
IE 0.5475 0.5167 0.4375 0.5000
MT 0.4674 0.5083 0.3735 0.4167
QA 0.5799 0.6000 0.5857 0.5000
RC 0.4746 0.5143 0.5870 0.5000
PP 0.4902 0.4800 0.5257 0.5200
IR 0.5731 0.5556 0.4075 0.5000
TOTAL 0.5333 0.5500 0.4704 0.4825

Table 5. Results for the test set using Bleu+recall+CC (threshold = 0.9). Columns
indicate: task id; confidence-weighted score or average precision (CWS); and, the ac-
curacy considering the T part of the entailment pairs as the candidate text; and, next,
considering the H part of the pairs as the reference text.

TASK CWS Accuracy CWS Accuracy
CD 0.5986 0.6067 0.5141 0.5000
IE 0.5522 0.5750 0.4437 0.5000
MT 0.4614 0.5000 0.5058 0.4667
QA 0.5310 0.5385 0.5896 0.5000
RC 0.4457 0.4500 0.5972 0.5000
PP 0.4703 0.5000 0.5124 0.5200
IR 0.5423 0.5111 0.4011 0.5000
TOTAL 0.5152 0.5300 0.5145 0.4963

entailment as the candidate or the reference and the H part as the reference
or the candidate. It can be seen that while the CWS is kept of around 52%,
the accuracy has been increased up to 54%. Using the T part as the candidate
which continues to be the best configuration.

– Bleu+recall+ST: The improvement observed with the previous algorithm
makes us think that, by further tuning the algorithm, more promising results
could be achieved. Hence, we added an initial pre-processing step in which
both the T and H part of the entailment pairs were stemmed. The results
shown in Table 4 confirm our insight, as with this new step and using the T
part as the candidate, an accuracy of 55% is reached and a CWS of 53%.

– Bleu+recall+CC: Although the removal of stop-words can produce worse
results (e.g. [11]), we were intrigued about the effect of combining this step
with Bleu+recall. However, it turned out that in our case it has also a
negative effect decreasing the accuracy down to 53% and the CWS down
to 52% (see Table 5). Perhaps, it could be solved by only removing certain
stop-words and not all of them.
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Table 6. Results for the test set using Bleu+recall+WSD (threshold = 0.9).
Columns indicate: task id; confidence-weighted score or average precision (CWS); and,
the accuracy considering the T part of the entailment pairs as the candidate text; and,
next, considering the H part of the pairs as the reference text.

TASK CWS Accuracy CWS Accuracy
CD 0.6287 0.6200 0.4231 0.4667
IE 0.5804 0.5583 0.4333 0.5000
MT 0.4848 0.5250 0.3690 0.4167
QA 0.5554 0.5846 0.6028 0.5000
RC 0.4795 0.5143 0.5539 0.4929
PP 0.5351 0.4800 0.5173 0.5200
IR 0.5540 0.5444 0.4009 0.5000
TOTAL 0.5405 0.5550 0.4627 0.4813

Table 7. Results for the test set using Bleu+recall+ST+CC+WSD (threshold =
0.9). Columns indicate: task id; confidence-weighted score or average precision (CWS);
and, the accuracy considering the T part of the entailment pairs as the candidate text;
and, next, considering the H part of the pairs as the reference text.

TASK CWS Accuracy CWS Accuracy
CD 0.6035 0.5867 0.4413 0.4800
IE 0.5631 0.5583 0.4123 0.5000
MT 0.4729 0.4833 0.4613 0.4083
QA 0.5264 0.5615 0.5906 0.5000
RC 0.4739 0.4643 0.6113 0.5000
PP 0.5278 0.5000 0.5063 0.5200
IR 0.5375 0.5222 0.4973 0.5111
TOTAL 0.5267 0.5288 0.4979 0.4925

– Bleu+recall+WSD: This variant of the algorithm incorporates the use of
WordNet 2.0 to identify the sense in which each word from the entailment
pairs is used, using a WSD algorithm similar to [12], as described in [13]
that measures the similarity between the context of the polysemous word
in the entailment pair and the definition of the glosses in WordNet for its
several senses. The gloss more similar to the context of the polysemous word
is the one chosen and thus, the sense associated to that gloss is assigned to
the word. The similarity metric is the cosine similarity based on the Vector
Space Model (VSM). Given that one of the main problems to face when
recognizing entailment is to deal with paraphrasings, we believe that this
approach should give better results than the previous ones. This insight is
proved by the results achieved: an accuracy of 56% and a CWS of 54% (see
Table 6). It can be seen how both the accuracy and the CWS have reached
with this configuration their highest value.

– Bleu+recall+ST+CC+WSD: The last algorithm that we have tried con-
sists in combining Bleu+recall with all the NLP techniques contemplated.
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Table 8. Results for several Bleu-like algorithms according to all the metrics used in
the Pascal RTE Challenge[4]

Algorithm Accuracy CWS Precision Recall f-measure
Bleu+recall 0.5425 0.5194 0.5282 0.7950 0.6347
Bleu+recall+ST 0.5500 0.5333 0.5312 0.8500 0.6538
Bleu+recall+CC 0.5300 0.5152 0.5349 0.4600 0.4946
Bleu+recall+WSD 0.5550 0.5405 0.5381 0.7775 0.6360
Bleu+recall+ST+CC+WSD 0.5267 0.5288 0.5406 0.3825 0.4480

Thus, the process would be as follows: first, the words of the entailment
pairs are stemmed and the polysemous words are disambiguated, then the
stop-words are removed and Bleu+recall is applied to give a score to each
pair so that the “Judgment module” can decide according to the 0.9 thresh-
old whether the entailment holds or not. Table 7 shows the results for this
experiment. Again the configuration that uses T as the candidate gives the
best results. It achieves an accuracy of 53% and a CWS of 53% that do not
improve the only use of WSD (perhaps because of the negative effect of using
the removal of closed-class words is still noticed when combined with other
NLP techniques).

Finally, Table 8 summarizes the results for accuracy, CWS, precision, recall
and f-measure for the five Bleu-like algorithms under test considering the T
part of the entailment as the candidate text and with the 0.9 threshold.

4 Discussion

Automatically recognizing textual entailment is an interesting task that involves
many complex linguistic phenomena. Seventeen different systems were presented
at the Pascal RTE Challenge. They were based on very diverse techniques work-
ing at different linguistic levels. Nonetheless, all the results achieved were in the
small range from 50% to 59% of accuracy. This section discusses how far shallow
approaches can deal with this task and whether it is worthwhile to use deeper
NLP techniques.

First of all, it is unclear whether this task can be completely solved just with
automatic techniques. As indicated, the pairs used in the test set were those on
which all the human annotators agreed. Even so, when several human researchers
were asked to manually recognize entailment they only achieved an agreement
of 91% [1]. Therefore, the complete task, including the discarded examples, can
be considered difficult even for human judges. Perhaps, a possible solution for
this can be to mark the entailment pairs not only as TRUE or FALSE, but also
as DON’T KNOW, as proposed by Bos and Markert [14].

Our approach in the article has been to use Bleu-like algorithms. They only
work at the lexical level and, thus, they cannot deal with examples in which
the syntactic or semantic level are crucial to correctly solve the entailment. For
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example, those cases in which the T and H parts are the same except for just
one word that reverses the whole meaning of the text, as in the pair number 148
in the development set, whose T and H parts are

(2) a. The Philippine Stock Exchange Composite Index rose 0.1 percent to
1573.65

b. The Philippine Stock Exchange Composite Index dropped.

This is a very difficult case for Bleu-like algorithms. It will be misleading since
they would consider that both T and H are saying something very similar, while
in fact, the only words that are different in both texts, “rose” and “dropped”,
are antonyms, making the entailment FALSE.

Another example is the pair number 1612 of the development set, whose T
and H part are

(3) a. With South Carolina being Jesse Jackson’s home state, there was a very
strong incentive in the black community.

b. Jesse Jackson was born in South Carolina.

Any human annotator would know that this pair is true since in the T part
it is said that South Carolina is Jesse Jackson’s home state which is another
way to say that Jesse Jackson was born in South Carolina. However, no Bleu-
like algorithm would be able to identify this relationship without having any
knowledge about this paraphrasing.

Other authors have found similar results such as Jijkoun et al. [15] that
claimed their need for exploring deeper text features, Akhmatova [16] that stated
that a deep semantic and syntactical analysis is vital to solve this problem and
Herrera et al. [17] that declared that matching-based approaches were not enough
(except perhaps for CD tasks) since a higher lexical overlap does not imply a
higher semantic entailment.

On the other hand, it can be observed that despite the simplicity of Bleu
and that it only works at the lexical level, it could be considered as a baseline
for recognizing textual entailment [7]. In fact, this was our motivation to test
similar algorithms such as Bleu+recall and combinations of Bleu+recall with
NLP techniques such as stemming, removal of closed-class words and WSD. The
results confirm our insight. In fact, Bleu+recall+WSD has reached an accuracy
of 56% and a CWS of 54%, that are better than chance at the 0.05 level.

Some examples that are easily solved by these Bleu-like algorithms are:

– The pair of the development test with identifier 583, with the following T
and H snippets:
(4) a. While civilians ran for cover or fled to the countryside, Russian forces

were seen edging their artillery guns closer to Grozny, and Chechen
fighters were offering little resistance.

b. Grozny is the capital of Chechnya.
Since only the word Grozny is present both texts it will correctly mark it as
false.

– The pair number 950 of the development set, with the following T and H
snippets:
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(5) a. Movil Access, a Grupo Salinas company, announced today that Gus-
tavo Guzman will appoint Jose Luis Riera as company CFO of Grupo
Iusacell.

b. Movil Access appoints Jose Luis Riera as CFO.
As the T part is included in the H part, the entailment will be correctly
judge as true.

Furthermore, Bos and Markert [14] have observed that, when a shallow system
is extended with deep NLP methods, the difference between the results they
achieve is small. In fact, the accuracy of the first system is 0.5550, and that of
the second system is just slightly higher, 0.5625.

5 Conclusion and Future Work

The discovery of entailment relationships is important for many NLP tasks [18].
In the framework of the Pascal RTE Challenge, an overview of the state-of-the-
art of the field and, a study of which are the most promising techniques that
should be used to face this task, took place.

Our approach is based on the use of the Bleu algorithm. Some conclusions
that can be drawn from the experiments described in Section 2 are:

– Bleu can be used as a baseline for the task of recognizing entailment pairs,
considering the candidate text as T and the reference text as the H part of
the entailment, since it has achieved an accuracy of around 50%.

– Bleu’s results depend greatly on the task considered. For example, for the
Comparable Documents (CD) task it reaches its maximum value (77%) and
for Information Retrieval (IR) the lowest (41%).

– Bleu has a slight tendency to consider a hypothesis as TRUE. In 319 out
of 567 pairs, Bleu said the entailment was true. Out of these, it was right
in 172 cases, and it was wrong in 147 cases. On the other hand, there were
only 111 false negatives.

It is also interesting to observe that, although the origin of Bleu is to evaluate
MT systems, the results for the MT task are not specially higher. The reason
for that could be that Bleu is not being used here to compare a human-made
translation to a computer-made translation, but two different sentences which
contain an entailment expression, but which are not alternative translations of
the same text in a different language.

Regarding Bleu-like algorithms, it has been seen how the potential of Bleu
for this task can be further exploited reaching up to an accuracy of 56% and
a CWS of 54% when a modification of Bleu takes into account the recall and
incorporates WSD relying on WordNet was used.

The main limit of Bleu is that it does not use any semantic information and,
thus, sentences with many words in common but with a different meaning will
not be correctly judged.

A main conclusion of this paper is that shallow NLP techniques cannot be
disregarded in this task. They have proved how useful they are, not only to serve
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as baselines, but also as the basis for more complex systems and to obtain in
a simple and fast way fairly good results compared to those reached by deeper
techniques. All the same, in order to completely solve this task, we agree with
the general opinion of the field that more resources are necessary. In particular,
our best configuration used WordNet.

It would be interesting, as future work, to complement the use of Bleu+recall
with some kind of syntactic processing and some treatment of synonyms and
antonyms. For example, by combining it with a parser that translates all sen-
tences from passive to active and allowed the comparison by syntactic categories
such as subject, direct object, indirect object, etc.

As the Pascal Challenge organizers stated, it would be interesting to work
towards the building of “semantic engines”. This work would not only benefit
the automatic recognition of entailment but several related NLP fields that suffer
from similar problems such as the need of dealing with paraphrasings in the
automatic assessment of free-text answers.
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Abstract. We describe our submission to the PASCAL Recognizing
Textual Entailment Challenge, which attempts to isolate the set of Text-
Hypothesis pairs whose categorization can be accurately predicted based
solely on syntactic cues. Two human annotators examined each pair,
showing that a surprisingly large proportion of the data - 34% of the
test items - can be handled with syntax alone, while adding information
from a general-purpose thesaurus increases this to 48%.

1 Introduction

The data set made available by the PASCAL Recognizing Textual Entailment
Challenge provides a great opportunity to focus on a very difficult task, deter-
mining whether one sentence (the hypothesis, H) is entailed by another (the
text, T).

Our goal was to isolate the class of T-H pairs whose categorization can be
accurately predicted based solely on syntactic cues. This work is part of a larger
ablation study aimed at measuring the impact of various NLP components on
entailment and paraphrase.

We have chosen to provide a partial submission that addresses the following
question: what proportion of the entailments in the PASCAL test set could be
solved using a robust parser? We are encouraged that other entrants chose to
focus on different baselines, specifically those involving lexical matching and edit
distance. Collectively, these baselines should establish what the minimal system
requirements might be for addressing the textual entailment task.

2 Details of Microsoft Research Submission

Various parsers providing constituent level analysis are now available to the
research community, and state-of-the-art parsers have reported accuracy of be-
tween 89% and 90.1% F-measure (Collins and Duffy, 2002, Henderson 2004; see
Ringger et al., 2004 for results with a non-treebank parser). There are also efforts
to produce parsers that assign argument structure (Gildea and Jurafsky, 2002,
and for example, Hacioglu et al., 2004). With these developments, we feel that
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syntax can be defined broadly to include such phenomena as argument assign-
ment, intra-sentential pronoun anaphora resolution, and a set of alternations to
establish equivalence on structural grounds.

Our goal was to establish a baseline for the entailment task that reflects
what an idealized parser could accomplish, abstracting away from the analysis
errors that any specific parsing system would inevitably introduce. We decided
therefore to rely on human annotators to decide whether syntactic information
alone is sufficient to make a judgment. Two human annotators evaluated each
T-H pair, indicating whether the entailment was:

– True by Syntax,
– False by Syntax,
– Not Syntax,
– Can’t Decide

Additionally, we allowed the annotators to indicate whether recourse to in-
formation in a general purpose thesaurus entry would allow a pair to be judged
True or False. Both annotators were skilled linguists, and could be expected
to determine what an idealized syntactic parser could accomplish. We should
note at this point that it could prove impossible to automate the judgment pro-
cess described in this paper; the rules-of-thumb used by the annotators to make
True or False judgments could turn out to be incompatible with an operational
system.

We found that 34% of the test items can be handled by syntax, broadly
defined; 48% of the test items can be handled by syntax plus a general purpose
thesaurus. The results of this experiment are summarized in Table 1:

Table 1. Summary of Microsoft Research partial submission; Run1 is without the-
saurus, Run2 is with thesaurus

Without thesaurus Using thesaurus
True 69 (9%) 147 (18%)
False 197 (25%) 243 (30%)
Not syntax 534 (67%) 410 (51%)

Overall, inter-annotator agreement was 72%. Where there were disagreements,
the annotators jointly decided which judgment was most appropriate in order to
annotate all test items. Of the disagreements, 60% were between False and Not-
Syntax, and 25% between True and Not-Syntax; the remainder of the differences
involved either annotation errors or cases where one or both annotators chose
Can’t Decide. This confirms our anecdotal experience that it is easier to decide
when syntax can be expected to return True, and that the annotators were
uncertain when to assign False. In some cases, there are good syntactic clues
for assigning False, which is why we designed the evaluation to force a choice
between True, False, and Not-Syntax. But in many cases, it is simply the absence
of syntactic equivalence or parallelism that results in a judgment of False, and
most of the disagreements centered on these cases.
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3 Results of Partial Submission

Our test results are not comparable to those of other systems, since obviously,
our runs were produced by human annotators. In this section, we only want to
briefly call attention to those test items which showed a discrepancy between our
adjudicated human annotation and those provided as gold standard. It is worth
mentioning that we believe the task is well-defined, at least for the test items
we evaluated. For the 295 test items returned in Run1 of our submission, 284
matched the judgment provided as gold standard, so that our inter-annotator
agreement on this subset of the test set was 96%.

In Run1 (using an idealized parser, but no thesaurus), there were 11 discrep-
ancies. Of the 3 cases where we judged the test item to be True but the gold
standard for the item is False, one is clearly an annotation error (despite having
two annotators!) and two are examples of strict inclusion, which we allowed as
entailments but the data set does not (test items 1839 and 2077); see (1).

1. (pair id=”2077”, value=”FALSE”, task=”QA”)
<T> They are made from the dust of four of Jupiters tiniest moons.
<H> Jupiter has four moons.

More difficult to characterize as a group are the 8 cases where we judged the
test item to be False but the gold standard for the item is True (although 5/8
are from the QA section) The test items in question are: 1335, 1472, 1487, 1553,
1584, 1586, 1634, and 1682. It does appear to us that more knowledge is needed
to judge these items than simply what is provided in the Text and Hypothesis.
We therefore believe that these items should be removed from the data set, since
pairs for which there was disagreement among the judges were discarded. Item
1634 is a representative example.

2. (pair id=”1634”, value=”TRUE”, task=”IE”)
<T> William Leonard Jennings sobbed loudly as was charged with killing

his 3-year-old son, Stephen, who was last seen alive on Dec. 12, 1962.
<H> William Leonard Jennings killed his 3-year-old son, Stephen.

4 Requirements for a Syntax-Based System

We analyzed our human judgments to establish which syntactic phenomena a
robust parser would need to handle in order to complete the entailment task. We
can distinguish two categories: the level of syntactic analysis, further described
in 4.1, and a set of alternations, described in 4.2. Section 4.3 describes the special
handling of syntactic analysis for the purpose of establishing a T-H pair to be
False. Most of the examples will be from the subset of judgments that are True
and based solely on syntactic cues, because these sentence pairs often isolate
the specific phenomena under discussion. We have included a list of syntactic
phenomena and alternations for each judgment type in the Appendix, from which
the cooccurence of phenomena can also be ascertained.
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Additionally, we enumerate in the Appendix those test items, representing
only a small fraction (3.5%) of the test set, which can be judged using single
word replacement alone. An example of single-word replacement is the following:

3. (pair id=”1996”, value=”TRUE”, task=”PP”)
<T> Iraqi militants abduct 2 Turks in Iraq.
<H> Iraqi militants kidnap 2 Turks in Iraq.

4.1 Syntactic Analysis

The best illustration of the role played by syntactic evidence involves cases where
predicate-argument assignment gives clear evidence for the judgment. (4a) and
(4b) are good examples:

4. <T> Latvia, for instance, is the lowest-ranked team in the field but defeated
World Cup semifinalist Turkey in a playoff to qualify for the final 16 of Euro 2004.

4a. (pair id=”1897”, value=”TRUE”, task=”IE”)
<H> Turkey is defeated by Latvia.

4b. (pair id=”1896”, value=”FALSE”, task=”IE”)
<H> Latvia is defeated by Turkey.

A more straightforward case is for a parser (in most cases, a preprocessing
component to the parser) to account for Named Entity Recognition, identify-
ing various expressions of an entity as equivalent, as in (5), where the strings
Reverend Frank Chikane and Rev Frank Chikane refer to the same person.

5. (pair id=”847”, value=”TRUE”, task=”CD”)
<T> On hand to meet him with Mbeki were (. . . ) and director general in

the presidency, Reverend Frank Chikane.
<H>On hand to meet him with Mbeki were (. . . .) and director general in the

presidency, Rev Frank Chikane.

Other syntactic phenomena frequently observed in the data are T-H pairs
that differ only in nominalization, as in (6), coordination, prepositional phrase
attachment, and negation.

6. (pair id=”1021”, value=”TRUE”, task=”RC”)
<T> Sunday’s election results demonstrated just how far the pendulum of

public opinion has swung away from faith in Koizumi’s promise to bolster the
Japanese economy and make the political system more transparent and respon-
sive to the peoples’ needs.

<H> Koizumi promised to bolster the Japanese economy.

We also assume that a parser, broadly defined, will be capable of identify-
ing the inferences invited by the apposition construction and by the predicate-
complement constructions. In example (7), if the predicate holds for not only
the subject, but also for the apposition to the subject, then this sentence pair
can also be handled straightforwardly:
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7. (pair id=”1616”, value=”TRUE”, task=”IE ”)
<T> In 1833, Benjamin Harrison, the 23rd president of the United States,

was born in North Bend, Ohio.
<H> The 23rd President of the United States was born in Ohio.

The examples presented above attempt to illustrate each syntactic phenomena
in isolation. However, at least half of the T-H pairs require the identification of
multiple phenomena simultaneously. The example in (8) involves Named Entity
Recognition (Honecker = Erich Honeker), including identification of spelling
variants, two instances of pronominal anaphora (he = Honecker/Homeker), and
vp-cataphora (did = build the Berlin Wall). Nevertheless, if a parser is able to
provide this level of syntactic analysis, the system can return a True judgment
with confidence.

8. (pair id=”621”, value=”TRUE”, task=”QA”)
<T> Although Honecker led the Communist East German state between 1971

and 1989, he will be remembered most for what he did long before – building
the Berlin Wall.

<H>Erich Honeker built the Berlin Wall.

Finally, the identification of negation naturally plays a significant role in de-
termining entailment, including the identification of morphological variants ex-
pressing negation. For Hypotheses that match an embedded clause in the Text,
the subordinating conjunction and the semantic type of the main verb is also
of importance; this phenomenon was relatively frequent in all but the subset
of the test set we judged to be true using syntax alone. Consider examples (9)
and (10):

9. (pair id=”2025”, value=”FALSE”, task=”IR”)
<T> There are a lot of farmers in Poland who worry about their future if

Poland joins the European Union.
<H> Poland joins the European Union.

10. (pair id=”2055”, value=”FALSE”, task=”QA”)
<T> The fact that Einstein was invited to be the president of Israel is critical

to an accurate understanding of one of the greatest individuals in modern history.
<H> Einstein is the president of Israel.

4.2 Syntactic Alternations

By far the most frequent alternation between Text and Hypothesis that a sys-
tem needs to identify is an appositive construction promoted to main clause in
the Hypothesis. This alternation alone accounted for approximately 24% of the
subset of the data we judged could be handled with syntactic analysis1.

1 This distribution is likely to be a result of the instructions given for the creation of
the IE subtask in the PASCAL RTE data set, in particular, which focused on several
well-known relationship types from IE, such as “born in” and “organizational role”.
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11. (pair id=”760”, value=”TRUE”, task=”CD”)
<T> The Alameda Central, west of the Zocalo, was created in 1592.
<H> The Alameda Central is west of the Zocalo.

Another frequent alternation involves material in a relative clause being pro-
moted to a main clause in the Hypothesis, as in example (12), which includes
named entity recognition as well:

12. (pair id=”1060”, value=”TRUE”, task=”RC”)
<T> (. . . ) when Silva was sent in by Rio de Janeiro state Gov. Rosinha

Matheus, who also is an Evangelical Christian.
<H> Rosinha Matheus is an Evangelical Christian.

Examples of other frequent alternations that need to be identified are: predi-
cate nominal / premodifier (13), of -prepositional phrase / premodifier (14), and
have / possessive (15).

13. (pair id=”1088”, value=”TRUE”, task=”RC”)
<T> Eight of the 51 Philippine humanitarian troops in Iraq have already

left the country, Philippine Foreign Affairs Secretary Delia Albert said early
Wednesday.

<H> Delia Albert is the Philippine Foreign Affairs Secretary.

14. (pair id=”1096”, value=”TRUE”, task=”RC”)
<T> A longtime associate of al Qaeda leader Osama bin Laden surrendered

to Saudi Arabian officials.
<H> Osama bin Laden is the leader of al Qaeda.

15. (pair id=”1010”, value=”TRUE”, task=”RC”)
<T> (. . . ) photographs of a hazy orange Titan – the largest of Saturn’s 31

moons, about the size of the planet Mercury.
<H> Saturn has 31 moons.

Lastly, there are additional alternations which largely derive from the Infor-
mation Extraction subset of the test data, where the creators of the test set
were requested to select a few targeted types of relations, such as “X was born
in Y” and “X is located in Y”, and construct T-H pairs. Such alternations can
be found in the appendix.

4.3 Establishing False Entailment

We found two main categories of T-H pairs that we judged to be False: False,
where there was a mismatch in the syntactic structure, and False, where there
was no syntactic structure shared by the T-H pair. Although we can annotate
this by hand, we are unsure whether it would be possible to create a system to
automatically detect the absence of syntactic overlap. Though mismatched main
verbs are the primary cue to the absence of overlap, all possible major and minor
argument types were found unaligned, each potentially leading to a judgment of
False entailment; see the Appendix for the details.
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Examples of judging False by mismatch of syntactic structure are those in
which the Subject and Verb align (with or without thesaurus), but the Object
does not, as in (16):

16. (pair id=”103”, value=”FALSE”, task=”IR”)
<T> The White House ignores Zinni’s opposition to the Iraq War.
<H> White House ignores the threat of attack.

The following examples illustrate the absence of shared syntactic structure in
the major argument positions. In (17), the entailment is judged False since baby
girl is not the subject of any verb of buying, nor is ambulance the object of any
verb of buying; additionally, there is no mention of buying in T at all. In (18),
the entailment is judged False because there is no mention of Douglas Hacking
in the Text, nor any mention of physician. While a system using lexical matching
might well rule the second example False, there are enough lexical matches in
the former that a system using syntax is likely required.

17. (pair id=”2179”, value=”FALSE”, task=”RC”)
<T> An ambulance crew responding to an anonymous call found a 3-week-

old baby girl in a rundown house Monday, two days after she was snatched from
her mother at a Melbourne shopping mall.

<H> A baby girl bought an ambulance at a Melbourne shopping mall.

18. (pair id=”2169”, value=”FALSE”, task=”CD”)
<T> Scott and Lance Hacking talked with their younger brother at the

hospital July 24.
<H>Douglas and Scott Hacking are physicians.

5 Interesting “Not Syntax” Examples

The number of examples that can be handled using syntax, broadly defined, is
significant, but more than 50% were judged to be outside the realm of syntax,
even allowing for the use of a thesaurus.

Some test items exhibited phrasal-level synonymy, which the annotators did
not expect would be available in a general purpose thesaurus. Consider, X bring
together Y and Y participate in X in (19):

19. (pair id=”287”, value=”TRUE”, task=”IR”)
<T> The G8 summit, held June 8-10, brought together leaders of the world’s

major industrial democracies, including Canada, France, Germany, Italy, Japan,
Russia, United Kingdom, European Union and United States.

<H>Canada, France, Germany, Italy, Japan, Russia, United Kingdom and
European Union participated in the G8 summit.

There are some examples with apparent alternation, but the alternation can-
not easily be supported by syntax. Consider three-day and last three days in the
following example:
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20. (pair id=”294”, value=”TRUE”, task=”IR”)
<T> The three-day G8 summit will take place in Scotland.
<H> The G8 summit will last three days.

In other cases, the annotators considered that there were too many alterna-
tions and thesaurus replacements necessary to confidently say that syntax could
be used. Consider the following example, where more than half has to align with
many, saying aligns with thinking, and not worth fighting aligns with necessary.

21. (pair id=”306”, value=”TRUE”, task=”IR”)
<T> The poll, for the first time, has more than half of Americans, 52 percent,

saying the war in Iraq was not worth fighting.
<H> Many Americans don’t think the war in Iraq was necessary.

6 Discussion and Conclusion

Our goal was to contribute a baseline consisting of a system which uses an
idealized parser, broadly defined, that can detect alternations, and optionally
has access to a general purpose thesaurus. In order to explore what is possible
in the limit, we used two human annotators and resolved their disagreements to
produce a partial submission. It is interesting to note that the task is well-defined;
of the 295 test items returned in our submission (Run1, without thesaurus), 284
matched the judgment provided as gold standard, so that our inter-annotator
agreement on this subset is 96%.

An idealized syntax-based system can account for 34% of the test items, and,
with the addition of information from a general purpose thesaurus, 48%. This
finding is promising, though we expect the numbers to decrease subject to an
implementation with a real-world parser and set of matching rules. An imple-
mented system will also need to take the interaction of various alternations and
syntactic phenomena as well. It may well be that there is a limit on the number
of interactions an operational system can tolerate before its accuracy declines.

A syntax-based approach appears to be more powerful at deciding when T-H
pairs exhibit False entailment: a syntax-only approach categorizes only 9% of
the test items as True entailments successfully vs. 24% as False entailments.
We have some concern that this imbalance is a consequence of the test creation
process, as described in Dagan et al.. The test set authors were instructed for
some subtasks to take a given sentence as the Text, and to produce a Hypothesis
with either significant word overlap (but False) or no word overlap (but True);
the first creation method would favor syntax-based methods. While the current
RTE 1 test set is a rich collection of many of the possible types of mappings that
can hold between Text and Hypothesis, a test collection that is a representative
sampling of the mappings that occur for any subtask will be a valuable resource
for system applications that include entailment.

Our baseline results need to be compared with those obtained by the systems
using lexical matching and edit distance, as we expect that some of the items
that can be handled by syntax alone could also be accounted for by these simpler
methods.
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We hope that the challenge workshop is well served by offering this study of
the capabilities of an idealized parser. While approximately half of the RTE 1
test items are amenable to an approach using syntax augmented with a general
purpose thesaurus, it is clear that the remainder of the test set represents an
opportunity for work on fundamental entailment and paraphrase problems.
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Appendix

Files of the human judgments described in this paper are available on request
from the authors.

– True by Syntax (with/without thesaurus)
– False by Syntax (with/without thesaurus)

Tables 2-5 contain categorization of human judgments regarding the syntactic
phenomena and alternations required of a robust parser. Each category is fol-
lowed by a list of the test items exhibiting the phenomena from the RTE 1 data
set. For categories with ten or more examples, the distribution over the subtasks
represented in RTE 1 is also given.
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Table 2. Syntactic Phenomena Not Involving Alternation

(Counter-)Factive 174, 308, 472, 914, 962, 1076, 1121, 1284, 1300, 1358,
1359, 1421, 1634, 1876, 1907, 1981, 1982, 1983, 2024,
2025, 2041, 2055, 2062, 2121, 2122, 2135, 2167
CD: 3.7% IE: 14.8% IR: 29.6% MT: 7.4% PP: 22.2%
QA: 7.4% RC: 14.8%

Anaphora 298, 621, 936, 987, 1029, 1121, 1312, 1319, 1334, 1618,
1644, 1645, 1646, 1826, 1840, 1848, 1862, 1893, 1907,
2037, 2041
CD: 4.8% IE: 28.6% IR: 14.3% MT: 14.3% QA: 14.3%
RC: 23.8%

Apposition 741, 864, 901, 1144, 1203, 1263, 1387, 1556, 1584, 1616,
1617, 1618, 1648, 1822, 1907, 2036, 2090, 2190
CD: 22.2% IE: 33.3% MT: 11.1% QA: 16.7% RC:
16.7%

Attachment 724, 893, 897, 1008, 1607, 1667
Coordination 300, 888, 898, 1004, 1042, 1082, 1342, 1370, 1536, 1634,

1640, 1831, 1861, 1895, 1896, 1964, 2014, 2020, 2113,
2129, 2169
CD: 28.6% IE: 23.8% IR: 14.3% MT: 4.8% PP: 4.8%
QA: 4.8% RC: 19.0%

Ellipsis 807, 2112
Existential 310, 840, 875, 1196, 2034
Extraposition 2041
Named Entity Recognition 39, 82, 103, 308, 315, 621, 692, 696, 821, 841, 847, 862,

864, 993, 1060, 1074, 1122, 1123, 1175, 1189, 1196,
1203, 1218, 1300, 1374, 1387, 1507, 1531, 1546, 1549,
1552, 1584, 1590, 1616, 2017, 2032, 2048, 2135, 2144,
2163
CD: 27.5% IE: 2.5% IR: 15.0% MT: 15.0% PP: 2.5%
QA: 25.0% RC: 12.5%

Negation 979, 1004, 1144, 1196, 1301, 1370, 1663, 1826, 1861,
1893, 1981, 1982, 1984
CD: 15.4% IE: 15.4% MT: 15.4% PP: 23.1% RC:
30.8%

Nominalization 315, 962, 1021, 1092, 1358, 1422, 1625, 2073, 2135,
2176
CD: 10.0% IE: 10.0% IR: 40.0% PP: 10.0% QA: 10.0%
RC: 20.0%

Passive-Active 727, 1053, 1071, 1137, 1263, 1824, 1825, 1862, 1896,
1897, 1901, 1913, 1968, 1984, 1988, 2070
CD: 12.5% IE: 25.0% MT: 6.3% PP: 18.8% QA: 6.3%
RC: 31.3%

Predeterminer 1203, 1445, 2077, 2176
Predicate Complement 692, 938, 1092, 1325, 1468, 2006
Relative/Infinitive Clause 186, 472, 605, 727, 856, 887, 979, 1053, 1060, 1092,

1137, 1196, 1335, 1462, 1480, 1504, 1617, 1618, 1629,
1816, 1900, 1901, 1969
CD: 13.0% IE: 21.7% IR: 4.3% MT: 8.7% PP: 8.7%
QA: 17.4% RC: 26.1%

Spelling variation/error 743, 883, 888, 1556
VP-Cataphora 621



What Syntax Can Contribute in the Entailment Task 215

Table 3. Syntactic Phenomena Involving Alternation

“be born” – Appositive
“from”

1584, 1621

“be from” – “be born in” 1672, 1687
“be located” – in-PP 1654
“be located” – Appositive 1074, 1123, 1549, 1655, 1944
Adjective/Noun morphol-
ogy

878, 1203, 1203, 2176

Auxiliary – no-aux 1308
Be – Equi 48, 878, 1144
Be – Appositive 35, 139, 760, 843, 929, 996, 1009, 1011, 1073, 1091,

1093, 1142, 1555, 1613, 1836, 1903, 1905, 1998, 2039
CD: 10.5% IE: 21.1% PP: 5.3% QA: 10.5% RC: 52.6%

Be – Appositive (flipped) 336, 901, 1032, 1062, 1065, 1134, 1826, 1940, 2037,
2092
CD: 10.0% IE: 20.0% QA: 10.0% RC: 60.0%

Genitive – Location 35, 828, 1872
Have – Possessive 1010, 2077
Location Alternation 1361, 1820, 1871, 1872, 2082
Non finite – Finite verb con-
struction

1263

Of Prepositional Phrase –
Premodifier

864, 1096, 1203, 1325, 1358, 1451, 2037, 2096

Postmodifier – hyphenated 1122
Postmodifier – Premodifier 878, 1627, 2048
PreDeterminer – Restrictive
Relative Clause

1662

Predicate Nominative –
Postmodifier

1662

Predicate Nominative – Pre-
modifier

166, 739, 739, 1031, 1088, 1096, 1451, 1620

Premodifier – Noun Apposi-
tive

39, 1028, 2039

Relative Clause – Main
Clause

142, 825, 825, 962, 1007, 1041, 1122, 1609, 1687

Table 4. Single Word Replacement

Single Word 711, 834, 836, 846, 885, 1070, 1282, 1359, 1432, 1445,
1447, 1540, 1611, 1623, 1882, 1952, 1954, 1961, 1962,
1963, 1967, 1979, 1980, 1987, 1994, 1996, 2019, 2049,
2088
CD: 17.2% IE: 13.8% IR: 3.4% MT: 3.4% PP: 51.7%
QA: 6.9% RC: 3.4%
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Table 5. Lack of Syntactic Parallelism

Factoid 828, 1820, 1824
Location 1334, 1530, 1531, 1547, 1620, 1624, 1628, 1667, 1672,

1821, 1874, 1999, 2027, 2134
IE: 50.0% IR: 7.1% MT: 7.1% QA: 21.4% RC: 14.3%

Main verb 727, 887, 938, 965, 967, 993, 997, 1042, 1103, 1133,
1307, 1317, 1335, 1342, 1376, 1380, 1389, 1410, 1424,
1425, 1427, 1441, 1442, 1459, 1472, 1479, 1488, 1504,
1506, 1507, 1516, 1524, 1539, 1546, 1608, 1618, 1622,
1629, 1644, 1647, 1648, 1680, 1682, 1683, 1686, 1688,
1693, 1840, 1846, 1848, 1849, 1853, 1854, 1860, 1865,
1866, 1869, 1913, 1954, 1979, 1990, 1992, 1998, 2006,
2008, 2014, 2018, 2020, 2021, 2022, 2026, 2029, 2035,
2036, 2038, 2047, 2048, 2053, 2063, 2070, 2090, 2113,
2117, 2125, 2136, 2144, 2152, 2157, 2162, 2163, 2167,
2168, 2176, 2179, 2187, 2190
CD: 22.9% IE: 21.9% IR: 12.5% MT: 4.2% PP: 9.4%
QA: 18.8% RC: 10.4%

Object 103, 1012, 1013, 1071, 1308, 1319, 1321, 1389, 1642,
1816, 1825, 1896, 1901, 2102, 2123, 2124, 2127, 2129,
2145, 2146
CD: 15.0% IE: 15.0% IR: 25.0% MT: 20.0% RC:
25.0%

Of-Prepositional Phrase 2028, 2092, 2133
Postmodifier 1530
Predicate Adjective 48
Predicate Complement 308, 1174, 1203, 1462, 1552, 1822, 1845
Predicate Nominative 35, 840, 1011, 1032, 1123, 1487, 1498, 1549, 1551,

1553, 1589, 1666, 1675, 2033, 2037, 2039, 2045, 2054,
2056, 2169
CD: 10.0% IE: 10.0% PP: 5.0% QA: 60.0% RC: 15.0%

Subject 909, 910, 936, 981, 1008, 1016, 1028, 1040, 1055, 1056,
1218, 1301, 1317, 1319, 1325, 1334, 1363, 1367, 1374,
1501, 1536, 1554, 1586, 1590, 1607, 1645, 1646, 1831,
1837, 1848, 1849, 1862, 1863, 1896, 2042, 2043, 2090,
2123, 2127, 2134, 2190
CD: 12.2% IE: 12.2% IR: 12.2% MT: 14.6% QA:
17.1% RC: 31.7%

Subordinate Clause 1051
Time 1829, 1890
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Abstract. This paper addresses Textual Entailment (i.e. recognizing
that the meaning of a text entails the meaning of another text) using
a Tree Edit Distance algorithm between the syntactic trees of the two
texts. A key aspect of the approach is the estimation of the cost for the
editing operations (i.e. Insertion, Deletion, Substitution) among words.

The aim of the paper is to compare the contribution of two different
lexical resources for recognizing textual entailment: WordNet and a word-
similarity database. In both cases we derive entailment rules that are
used by the Tree Edit Distance Algorithm. We carried out a number
of experiments over the PASCAL-RTE dataset in order to estimate the
contribution of different combinations of the available resources.

1 Introduction

The problem of language variability (i.e. the fact that the same information can
be expressed with different words and syntactic constructs) has attracted a lot
of interest during the years and it has posed significant problems for systems
that require some form of natural language understanding. The example below
shows that recognizing the equivalence of the statements came into power, was
prime-minister and stepped in as prime-minister is a challenging problem.

– Ivan Kostov came into power in 1997.
– Ivan Kostov was prime-minister of Bulgaria from 1997 to 2001.
– Ivan Kostov stepped in as prime-minister 6 months after the December 1996

riots in Bulgaria.

While the language variability problem is well known in Computational Lin-
guistics, a general unifying framework has been proposed only recently in [3].
In this approach, language variability is addressed by defining entailment as
a relation that holds between two language expressions (i.e. a text T and an
hypothesis H) if the meaning of H as interpreted in the context of T, can be
inferred from T. The entailment relation is directional as one expression can
entail the other, while the opposite may not.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 217–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The Recognizing Textual Entailment (RTE) task takes as input a T/H pair
and consists in automatically determining whether an entailment relation holds
between T and H or not. The task covers almost all the phenomena in language
variability: entailment can be due to lexical variations, as it is shown in example
(1), to syntactic variation (example 2), to semantic inferences (example 3) or
to complex combinations of all such levels. As a consequence of the complexity
of the task, one of the crucial aspects for any RTE system is the amount of
linguistic and world knowledge required for filling the gap between T and H. The
following examples, taken from the RTE-PASCAL dataset, show the complexity
of the problem:

1. T - Euro-Scandinavian media cheer Denmark v Sweden draw.
H - Denmark and Sweden tie.

2. T - Jennifer Hawkins is the 21-year-old beauty queen from Australia.
H - Jennifer Hawkins is Australia’s 21-year-old beauty queen.

3. T - The nomadic Raiders moved to LA in 1982 and won their third Super
Bowl a year later.
H - The nomadic Raiders won the Super Bowl in 1983.

In example 1 the entailment relation is based on the synonymy between draw
and tie; in example 2 we need to understand that the syntactic structures of
the text and the hypothesis are equivalent; finally, in 3 we need to reason about
temporal entities.

A crucial role in textual entailment is played by entailment rules which are
defined [3] as language expressions with syntactic analysis and optional variables
replacing sub-parts of the structure. They consist of entailing template (i.e. the
left hand side of the rule) and an entailed template (i.e. the right hand side of
the rule), which share the same variable scope. Prior or contextual (posterior)
probability is assigned to the rule. As an example, a lexical and syntactic rules
is show on Table 1.

Table 1. Lexical and Syntactic Rules

Rule Score
draw ⇒ tie 0.2

Australia’s X ⇒ X from Australia 0.8

This rules will allow to detect an entailment relation at the lexical level for
the example 1 and on syntactic level for example 2 above.

However, for concrete applications, a huge amount of such entailment rules are
necessary. We investigate the possibility to automatically derive entailment rules
from already existing linguistic resources. The aim of the paper is to provide a
clear and homogeneous framework for the evaluation of lexical resources for the
RTE task. The framework is based on the intuition that the probability of an
entailment relation between T and H is related to the ability to show that the
whole content of H can be mapped into the content of T. The more straight-
forward the mapping can be established, the more probable is the entailment
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relation. Since a mapping can be described as the sequence of editing operations
needed to transform T into H, where each edit operation has a cost associated
with it, we assign an entailment relation if the overall cost of the transformation
is below a certain threshold, empirically estimated on the training data.

Within the Tree Edit Distance (TED) framework, the evaluation of a linguistic
resource for the RTE task is equivalent to the capability of the resource to
provide entailment rules that are profitably used to allow edit operations with
their corresponding costs. We have experimented the TED approach with three
linguistic resources: (i) a non-annotated document collection, from which we have
estimated the relevance of words; (ii) a database of similarity relations among
words estimated over a corpus of dependency trees; (iii) WordNet, from which
we have extracted entailment rules based on lexical relations.

Experiments, carried out on the PASCAL-RTE dataset, provide significant
insight for future research on RTE.

The paper is organized as follows. In Section 2 we review some of the relevant
approaches proposed by groups participating in the PASCAL-RTE challenge.
Section 3 presents the Tree Edit Distance algorithm we have adopted and its ap-
plication to dependency trees. Section 4 describes the architecture of the system.
Section 5 describes the resources we have used for deriving entailment rules and
how we have estimated cost functions over them. Section 6 presents the results
we have obtained while Section 7 contains a general discussion and describes
some directions for future work.

2 Relevant Approaches

The most basic inference technique used by participants at PASCAL-RTE is the
degree of overlap between T and H. Such overlap is computed using a number
of different approaches, ranging from statistic measures like idf, deep syntactic
processing and semantic reasoning. The difficulty of the task explains the poor
performance of all the systems, which achieved accuracy between 50-60%. In the
rest of the Section we briefly mention some of the systems which are relevant to
the approach we describe in this paper.

A similar approach to recognizing textual entailment is implemented in a
system participating in PASCAL-RTE [7]. The authors use dependency parsing
and extract lexical rules from WordNet.

In [1] the authors describe two systems for recognizing textual entailment.
The first system is based on deep syntactic processing. Both T and H are parsed
and converted into a logical form. An event-oriented statistical inference engine
is used to separate the TRUE from FALSE pairs. The second system is based
on statistical machine translation models.

A method for recognizing textual entailment based on graph matching is
described in [17]. To handle language variability problems the system uses a
maximum entropy coreference classifier and calculates term similarities using
WordNet [5] by means of a similarity module based on techniques described
in [15].
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A system based on frequency-based term weighting in combination with dif-
ferent similarity measures is presented in [8]. The weight of the words in the
hypothesis is calculated with normalized inverse frequency:

ICF (w) =
#occurrences of w

#occurrences of all words
(1)

weight(w) = 1− ICF (W ) − ICFmin

ICFmax − ICFmin
(2)

where ICFmin and ICFmax are the minimum and maximum inverse frequencies.
The second measure is the dependency based word similarity described in [10].

3 Tree Edit Distance on Dependency Trees

We adopted a tree edit distance algorithm applied to the syntactic representa-
tions (i.e. dependency trees) of both T and H. A similar use of tree edit distance
has been presented by [16] for a Question Answering system, showing that the
technique outperforms a simple bag-of-word approach. While the cost function
presented in [16] is quite simple, for the RTE challenge we tried to elaborate
more complex and task specific measures.

According to our approach, T entails H if there exists a sequence of trans-
formations applied to T such that we can obtain H with an overall cost below
a certain threshold. The underlying assumption is that pairs that exhibits an
entailment relation have a low cost of transformation. The kind of transforma-
tions we can apply (i.e. deletion, insertion and substitution) are determined by
a set of predefined entailment rules, which also determine a cost for each editing
operation.

We have implemented the tree edit distance algorithm described in the paper
from [20] and apply it to the dependency trees derived from T and H. Edit
operations are defined at the level of single nodes of the dependency tree (i.e.
transformations on subtrees are not allowed in the current implementation).
Since the [20] algorithm does not consider labels on edges, while dependency trees
provide them, each dependency relation R from a node A to a node B has been re-
written as a complex label B-R concatenating the name of the destination node
and the name of the relation. All nodes except the root of the tree are relabeled in
this way. The algorithm is directional: we aim to find the better (i.e. less costly)
sequence of edit operation that transform T (the source) into H (the target).
According to the constraints described above, the following transformations are
allowed:

– Insertion: Insert a node from the dependency tree of H into the dependency
tree of T. When a node is inserted it is attached with the dependency relation
of the source label.

– Deletion: Delete a node N from the dependency tree of T. When N is
deleted all its children are attached to the parent of N. It is not required to
explicitly delete the children of N as they are going to be either deleted or
substituted on a following step.
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– Substitution: Change the label of a node N1 in the source tree (the depen-
dency tree of T) into a label of a node N2 of the target tree (the dependency
tree of H). Substitution is allowed only if the two nodes share the same
part-of-speech. In case of substitution the relation attached to the substi-
tuted node is changed with the relation of the new node.

4 System Architecture

The system is composed of the following modules, showed in Figure 1: (i) a text
processing module, for the preprocessing of the input T/H pair; (ii) a matching
module, which performs the mapping between T and H; (iii) a cost module,
which computes the cost of the edit operations.

Fig. 1. System Architecture

4.1 Text Processing Module

The text processing module creates a syntactic representation of a T/H pair and
relies on a sentence splitter and a syntactic parser. For sentence splitting we
used MXTerm [18], a Maximum entropy sentence splitter. For parsing we used
Minipar, a principle-based English parser [9] which has high processing speed
and good precision.

A relevant problem we encountered, affecting about 30% of the pairs in the
dataset we used, is that the parser represents in a different way occurrences of
similar expressions, making it harder to apply edit transformations. For instance,
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“Wal-Mart” and “Wal-Mart Stores inc.” have different trees, where “Mart” the
governing node in the first case and the governed node in the second. The prob-
lem could be addressed by changing the order of the nodes in T which is however
complex because it introduces changes in the tree edit-distance algorithm. An-
other solution, which we intend to explore in the future, is the integration of
specialized tools and resources for handling named entities and acronyms. In ad-
dition, for about 20% of the pairs, the parser did not produce the right analysis
either for T or for H.

4.2 Matching Module

The matching module finds the best sequence (sequence with lower cost) of edit
operations between the dependency trees obtained from T and H. It implements
the edit distance algorithm described in Section 3.

The entailment score score(T,H) of a given pair is calculated in the following
way:

score(T, H) =
ed(T, H)
ed(, H)

(3)

where ed(T, H) is the function that calculates the edit distance cost and ed(, H)
is the cost of inserting the entire tree H. A similar approach is presented in [14],
where the entailment score of two document d and d

′
is calculated by comparing

the sum of the weights of the terms that appear in both documents to the sum
of the weights of all terms in d

′
.

We used a threshold t such that if score(T, H) < t then T entails H, otherwise
no entailment relation holds for the pair. To set the threshold we have used both
the positive and negative examples of the training set provided by the PASCAL-
RTE dataset (see Section 6.1 for details).

4.3 Cost Module

The matching module makes requests to the cost module in order to receive the
cost of single edit operations needed to transform T into H. We have different
cost strategies for the three edit operations.

Insertion. The intuition underlying insertion is that its cost is proportional to
the relevance of the word w to be inserted (i.e. inserting an informative word
has an higher cost than inserting a less informative word). More precisely:

Cost[Ins(w)] = Rel(w) (4)

where Rel(w), in the current version of the system, is computed on a document
collection as the inverse document frequency (idf) of w, a measure commonly
used in Information Retrieval. If N is the number of documents in a text collec-
tion and Nw is the number of documents of the collection that contain w then
the idf of w is given by the formula:

idf(w) = log
N

Nw
(5)
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Fig. 2. An example of a T H pair mapping

The most frequent words (e.g. stop words) have a zero cost of insertion. In
[14] the authors present similar approach to term weighting.

Substitution. The cost of substituting a word w1 with a word w2 can be estimated
considering the semantic entailment between the words. The more the two words
are entailed, the less the cost of substituting one word with the other.

We have used the following formula:

Cost[Subs(w1, w2)] = (6)
Ins(w2) ∗ (1− Ent(w1, w2))

where Ins(w2) is calculated using (3) and Ent(w1, w2) can be approximated
with a variety of relatedness functions between w1 and w2.

There are two crucial issues for the definition of an effective function for lexical
entailment: first, it is necessary to have a database of entailment relations with
enough coverage; second, we have to estimate a quantitative measure for such
relations. The availability of such resources is discussed in Section 5.

Deletion. In the PASCAL-RTE dataset H is typically shorter than T. As a
consequence, we expect that much more deletions are necessary to transform T
into H than insertions or substitutions. Given this bias toward deletion, in the
current version of the system we set the cost of deletion to 0. This expectation
has been empirically confirmed (see results of system 2 in Section 6.3).

An example of mapping between the dependency tree of T and H is depicted
in Figure 2. The tree on the left is the dependency tree of the text: Iran is



224 M. Kouylekov and B. Magnini

said to give up al Qaeda members. The tree on the right is the dependency
tree corresponding to the hypothesis: Iran hands over al Qaeda members. The
algorithm finds as the best mapping the subtree with root give. The verb hands
is substituted by the verb give because it exists an entailment rule between them
extracted from one of the resources. Lines connect the nodes that are exactly
matched and nodes that are substitutions (give-hands) for which the similarity
database represent is used. They represent the minimal cost match. Nodes in
the text that do not participate in a mapping are removed. The lexical modifier
over of the verb hands is inserted.

5 Resources for Lexical Entailment

This section presents the resources we experimented with in our approach to
textual entailment to identifying semantic similarity during the substitution op-
eration. Each resource is seen as a database of entailment rules, where each rule
has associated a probability value determining the confidence of the relation. We
have derived entailment rules from two available lexical resources, i.e. WordNet
and a word-similarity database.

5.1 WordNet Similarity Rules

WordNet [5] is a lexical database which includes lexical and semantic relations
among word senses. Originally developed for English, versions of WordNet are
currently available also for other languages (e.g. Spanish, German and Italian).

We have defined a set of entailment rules (see Section 3) over the WordNet re-
lations among synsets, with their respective probabilities. If A and B are synsets
in WordNet (we used version 2.0), then we derived an entailment rule in the
following cases:

– if A is hypernym of B then P(B A)
– if A is synonym of B then P(B A)
– if A entails B then P(B A)
– if A pertains to B then P(B A)

For all the relations between the synsets of two words, the probability of
entailment is estimated with the following formula:

Entwordnet(w1, w2) =
1

Sw1

∗ 1
Sw2

(7)

where Swi is the number of senses of wi; 1
Sw1

is the probability that wi is in
the sense which participates in the relation; Entwordnet(w1, w2) is the joined
probability. The proposed formula is simplistic and does not take in to account
the frequency of senses and the length of the relation chain between the synsets.
We plan to improve it in our future work.
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5.2 Word Similarity Database

As an alternative to the use of WordNet for determining the cost of substitutions,
we experimented with the use of a dependency based thesaurus available at
http://www.cs.ualberta.ca/l̃indek/downloads.htm. For each word, the thesaurus
lists up to 200 most similar words and their similarities. The similarities are
calculated on a parsed corpus using frequency counts of the dependency triples.
A complete review of the method including comparing with different approaches
is presented in [10]. Dependency triples consists of a head, a dependency type
and a modifier. They can be viewed as features for the head and the modifiers
in the triples when calculating similarity.

The cost of a substitution is calculated by the following formula:

Entsim(w1, w2) = simth(w1, w2) (8)

where w1 is the word from T that is being replaced by the word w2 from H and
simth(w1, w2) is the similarity between w1 and w2 in the thesaurus multiplied
by the similarity between the corresponding relations.

6 Experiments and Results

We carried out a number of experiments in order to estimate the contribution
of different combinations of the available resources. In this section we report on
the dataset, the experiments and the results we have obtained.

6.1 Dataset

For the experiments we have used the PASCAL-RTE dataset [4]. The dataset 1

was collected by human annotators and is composed of 1367 text (T ) - hypothesis
(H ) pairs split into positive and negative examples (a 50%-50% split).

Typically, T consists of one sentence while H was often made of a shorter
sentence. The dataset has been split in a training (576 pairs) and a test (800
pairs) part.

6.2 Experiments

The following configurations of the system have been experimented with:

System 1: Tree Edit Distance Baseline. In this configuration, considered as a
baseline for the Tree Edit Distance approach, the cost of the three edit operations
are set as follows:
Deletion: always 0
Insertion: the idf of the word to be inserted
Substitution: 0 if w1 = w2, infinite in all the other cases.

1 Available at http://www.pascal-network.org/Challenges/RTE/Datasets
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In this configuration the system just needs a non-annotated corpus for es-
timating the idf of the word to be inserted. The corpus is composed of 4.5
million news documents from the CLEF-QA (Cross Language evaluation Fo-
rum) and TREC (Text Retrieval Conference) collections. Deletion is 0 because
we expect much more deletions that insertions, due to the fact that T is longer
than H.

System 2: Deletion as idf. In this configuration we wanted to check the impact
of assigning a cost to the deletion operation.
Deletion: the idf of the word to be deleted
Insertion: the idf of the word to be inserted
Substitution: same as System 1.

System 3: Fixed Insert cost In this configuration we wanted to fix the insert cost
in order to check the impact of estimating the insert cost using local corpus. We
chose a value of the insertion that was used in [16].
Deletion: 0
Insertion: 200
Substitution: same as System 1.

System 4: Similarity Database. This is the same than System 1, but we estimate
the cost of substitutions using the similarity database described in Section 5.2.
We expect a broad coverage with respect to the previous system.
Deletion: always 0
Insertion: the idf of the word to be inserted
Substitution: same as System 1, plus similarity rules.

System 5: WordNet. This is the same than System 1., but we estimate the cost
of substitutions using the WordNet relations as described in Section 5.1. We
expect a broader coverage with respect to System 1 and we want to compare it
with System 4.
Deletion: always 0
Insertion: the idf of the word to be inserted
Substitution: same as system 1, plus WordNet rules.

System 6: WordNet(constrained). This is the same than System 5., but we have
put constrain to the WordNet similarity score. Only entailment rules with score
higher than 0.2 are used.
Deletion: always 0
Insertion: the idf of the word to be inserted
Substitution: same as system 1, plus WordNet rules(score > 0.2).

System 7: Combination. This is a combination of system 4 and system 6 aimed
at checking the degree of overlap between rules of the two different resources.
Deletion: always 0
Insertion: the idf of the word to be inserted
Substitution: same as system 1, plus WordNet and similarity rules.
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6.3 Results

For each system we have tested we report a table with the following data:

– #Attempted: the number of deletions, insertions and substitutions that the
algorithm successfully attempted (i.e. which are included in the best sequence
of editing transformations).

– %Success: the proportion of deletions, insertions and substitutions that the
algorithm successfully attempted over the total of attempted edit transfor-
mations.

– Accuracy: the proportion of T-H pairs correctly classified by the system over
the total number of pairs.

– CWS: Confidence Weighted Score (also known as Average Precision), is given
by the formula:

cws =
1
n

n∑
i=1

#correct − upto− i

i
(9)

where n is the number of the pairs in the test set, and i ranges over the
sorted pairs. The Confidence-Weighted Score ranges between 0 (no correct
judgments at all) and 1 (perfect classification), and rewards the systems’
ability to assign a higher confidence score to correct judgments than to in-
correct ones.

Table 2. Results

System 1 System 2 System 3 System 4 System 5 System 6 System 7
#deletions 20325 19984 20220 20101 19971 20220 20101
#insertions 7927 7586 7822 7823 7573 7611 7823
#substitutions 2686 3027 2791 2910 3040 2790 2910
%deletions 0.88 0.87 0.88 0.83 0.86 0.88 0.83
%insertions 0.75 0.71 0.74 0.73 0.71 0.74 0.73
%substitutions 0.25 0.29 0.26 0.27 0.29 0.26 0.27
accuracy 0.560 0.481 0.550 0.566 0.548 0.572 0.566
cws 0.615 0.453 0.603 0.624 0.550 0.581 0.624

Table 2 shows the results obtained by the six systems we experimented with.
The hypothesis about the 0 cost of the deletion operation was confirmed by

the results of System 2. Setting precise costs of the delete operation improve the
performance of the system. For example, if we consider pair 908:

T - Time Warner is the world’s largest media and Internet company.

H - Time Warner is the world’s largest company.

the edit distance algorithm performs only three deletions of the nodes ’Internet’,
’and’ and ’media’. Still this operation modifies the semantics of T.
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System 3, the system using fixed insertion cost, has lower performance than
the baseline system. This shows that using a flexible insertion cost function
increases the performance of the algorithm.

The similarity database used in system 4 increased the number of the suc-
cessful substitutions made by the algorithm from 25% to 27%. It also increased
the performance of the system for both accuracy and cws. The impact of the
similarity database on the result is small because of the low similarity between
the dependency trees of H and T.

The system based on Wordnet entailment rule, i.e. System 5, also increases
the performance against the baseline system. The number of the substitutions
is up to 26%. The accuracy is the highest achived using tree edit distance and
it is 0.012 more than the baseline. In comparison with System 4 it makes less
substitutions, because of the higher substitution cost (the word similarity score in
the thesaurus is almost always higher than the WordNet similarity). This shows
that increasing the number of substations does not mean an automatic increase
of the performance. This is also fact for System 5. The best performing system
makes less substitutions than systems 4 and 5. In fact, when the substitution
cost is low the tree edit distance algorithm gives low distance score to trees
that have similar structure. Reducing the cost of the substitution increases the
importance of such trees against trees with more common nodes.

The combined run was completely dominated by the similarity database be-
cause of the lower cost of the substitution given by the word similarity thesaurus
(higher similarity score).

7 Discussion and Future Work

We have presented an approach for recognizing textual entailment based on
tree edit distance applied to the dependency trees of T and H. We have also
demonstrated that using lexical similarity resources can increase the performance
of a system based on such algorithm.

The approach we have presented can be considered as a framework for testing
the contribution of different kinds of linguistic resources for the textual entail-
ment task. The intuition is that the performance of the system is correlated with
the contribution, in terms of entailment rules, of the used resources. As an ex-
ample, a wrong substitution with a low cost can significantly affect the optimal
cost of the tree mapping (comparison between System 4, 5 and 6). A lesson we
learned is that, in order to obtain good results, we should consider for substi-
tution only pairs with high entailment score (in our experiment dependency or
WordNet similarity). The experiments we have carried out show that a word
similarity databases coupled with the edit distance algorithm can be used for
successfully recognizing textual entailment. However, in order to test the specific
contribution of a certain resource, a set of pairs from the RTE dataset which
require specific lexical entailment rules must be selected.

The tree edit distance algorithm is designed to work with substitution on the
level of tree nodes while our analysis of the PASCAL-RTE dataset show that
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sub-tree substitutions are more suitable for the task. In the future we plan to
extend the usage of WordNet as an entailment resource. A method for calculat-
ing similarity between words in WordNet is presented in [2]. The potential of
Extended WordNet [6] as an entailment resource is also discussed in [13] and [12]
Other resources of entailment rules (e.g.paraphrases in [11], entailment patterns
as acquired in [19]) could significantly widen the application of entailment rules
and, consequently, improve performances. We estimated that for about 40% of
the true positive pairs the system could have used entailment rules found in
entailment and paraphrasing resources. As an example, the pair 565:

T - Soprano’s Square: Milan, Italy, home of the famed La Scala opera
house, honored soprano Maria Callas on Wednesday when it renamed a
new square after the diva.

H - La Scala opera house is located in Milan, Italy.

could be successfully solved using a paraphrase pattern such as Y home of X
<=> X is located in Y, which can be found in [11]. However, in order to use
this kind of entailment rules, it would be necessary to extend the “single node”
implementation of tree edit distance to address editing operations among sub-
trees. A system with an algorithm capable of calculating the cost of substitution
on the level of subtrees can be used as a framework for testing paraphrase and
entailment acquisition systems.

A drawback of the tree edit distance approach is that it is not able to observe
the whole tree, but only the subtree of the processed node. For example, the cost
of the insertion of a subtree in H could be smaller if the same subtree is deleted
from T at a prior or later stage. A context sensitive extension of the insertion
and deletion module will increase the performance of the system.
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Abstract. The Recognizing Textual Entailment System shown here is based on
the use of a broad-coverage parser to extract dependency relationships; in addi-
tion, WordNet relations are used to recognize entailment at the lexical level. The
work investigates whether the mapping of dependency trees from text and hy-
pothesis give better evidence of entailment than the matching of plain text alone.
While the use of WordNet seems to improve system’s performance, the notion
of mapping between trees here explored (inclusion) shows no improvement, sug-
gesting that other notions of tree mappings should be explored such as tree edit
distances or tree alignment distances.

1 Introduction

Textual Entailment Recognition (RTE) aims at deciding whether the truth of a text en-
tails the truth of another text called hypothesis. This concept has been the basis for the
PASCAL1 RTE Challenge [3].

The system presented here is aimed at validating the hypothesis that (i) a certain
amount of semantic information could be extracted from texts by means of the syntactic
structure given by a dependency analysis, and that (ii) lexico-semantic information such
as WordNet relations can improve RTE.

In short, the techniques involved in this system are the following:

– Dependency analysis of texts and hypothesises.
– Lexical entailment between dependency tree nodes using WordNet.
– Mapping between dependency trees based on the notion of inclusion.

For the experiments, the PASCAL RTE Challenge 2005 corpora have been used. Two
corpora are available, one for training and a second used to test systems’ performance
after training. Each corpus is compound by a set of hypothesis and text pairs where the
objective is to determine whether the text entails the hypothesis or not for each pair.

In section 2 the architecture of the proposed system is described. Section 3 shows
how lexical entailment is accomplished. Section 4 presents the methodology followed
to evaluate matching between dependency trees. Section 5 describes the experiments
accomplished with the system. In section 6 the results obtained are shown. Finally,
some conclusions are given.

1 Pattern Analysis, Statistical Modeling and Computational Learning Network of Excellence.
http://www.pascal-network.org/

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 231–239, 2006.
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2 System’s Architecture

The proposed system is based on surface techniques of lexical and syntactic analysis.
It works in a non-specific way, not giving any kind of special treatment for the differ-
ent tasks considered in the Challenge (Comparable Documents, Question Answering,
etcetera) [3].

System’s components, whose graphic representation is shown in figure 1, are the
following:

1. A dependency parser, based on Lin’s Minipar [9], which normalizes data from
the corpus of text and hypothesis pairs and accomplishes the dependency analysis,
generating a dependency tree for every text and hypothesis.

2. A lexical entailment module, which takes the information given by the parser and
returns the hypothesis’ nodes that are entailed by the text. A node is a vertex of the
dependency tree, associated with a lexical unit and containing all the information
computed by the dependency parser (lexical unit, lemma, part-of-speech, etcetera).
This module uses WordNet in order to find multiwords and synonymy, similarity,
hyponymy, WordNet’s entailment and negation relations between pairs of lexical
units, as shown in section 3.

3. A matching evaluation module, which searches for paths into hypothesis’ depen-
dency tree, conformed by lexically entailed nodes. It works as described in
section 4.

The system accepts pairs of text snippets (text and hypothesis) at the input and
gives a boolean value at the output: TRUE if the text entails the hypothesis and FALSE
otherwise.

3 Lexical Entailment

A module of lexical entailment is applied over the nodes of both text and hypothesis, as
shown in figure 1. This module gets its input from the output of the dependency parser
(see figure 1); as described in section 2, the dependency parser provides a dependency
tree for every text and hypothesis. The output of the module of lexical entailment is a

Fig. 1. System’s architecture
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list of pairs (T,H) where T is a node in the text tree whose lexical unit entails the lexical
unit of the node H in the hypothesis tree. This entailment at the word level considers
WordNet relations, detection of WordNet multiwords and negation, as follows:

3.1 Synonymy and Similarity

The lexical unit T entails the lexical unit H if they can be synonyms according to Word-
Net or if there is a relation of similarity between them. Some examples were found
in the PASCAL Challenge training corpus such as, for example: discover and reveal,
obtain and receive, lift and rise, allow and grant, etcetera.

The rule implemented in the lexical entailment module was the following:

– entails(T, H) IF synonymy(T, H) OR WN similarity(T, H)

As an example, for the lexical units allow and grant, since synonymy(allow, grant)
is TRUE then the module determines that entails(allow, grant), i.e., allow and grant are
lexically entailed by a synonymy relation. Another example is given for the lexical units
discover and reveal: since WN similarity(discover, reveal) is TRUE, then the module
determines that entails(discover, reveal) is TRUE.

3.2 Hyponymy and WordNet Entailment

Hyponymy and entailment are relations between WordNet synsets having a transitive
property. Some examples after processing the training corpus of PASCAL Challenge
are: glucose entails sugar, crude entails oil, kill entails death.

The rules implemented were:

– entails(T, H) IF exists a synset ST including T and a synset SH including H such
as hyponymy(ST ,SH )

– entails(T, H) IF exists a synset ST including T and a synset SH including H such
as WN en-tailment(ST ,SH )

– entails(T, H) IF exists a path from a synset ST including T to a synset SH including
H conformed by hyponymy and/or WordNet entailment relations

Thus, T entails H if a synset ST including T is a hyponym of a synset SH includ-
ing H, considering transitivity. For example, glucose and sugar are lexically entailed
because a path of an only hyponymy relation exists between a synset of glucose and
a synset of sugar. Another example is given for the lexical units kill and death, where
synsets containing them are related through a WordNet entailment relation.

3.3 Multiwords

There are many multiwords in WordNet showing useful semantic relations with other
words and multiwords. The recognition of multiwords needs an extra processing in
order to normalize their components. For example, the recognition of the multiword
came down requires the previous extraction of the lemma come, because the multiword
present in WordNet is come down.
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Fig. 2. Dependency trees for pair 74 from training corpus. Entailment is TRUE.

Fig. 3. Dependency trees for pair 78 from training corpus. Entailment is FALSE.
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The variation of multiwords does not happen only because of lemmatization. Some-
times there are some characters that change as, for example, a dot in an acronym or a
proper noun with different wordings. For this reason, a fuzzy matching between can-
didate and WordNet multiwords was implemented using the edit distance of Leven-
shtein [8]. If the two strings differ in less than 10%, then the matching is permitted.
For example, the multiword Japanise capital in hypothesis 345 of the training cor-
pus was translated into the WordNet multiword Japanese capital, allowing the entail-
ment between Tokyo and it. These are some other examples of entailment after mul-
tiword recognition; because of synonymy blood glucose and blood sugar, Hamas and
Islamic Resistance Movement or Armed Islamic Group and GIA can be found; because
of hyponymy, some examples in the corpus are: war crime entails crime and melanoma
entails skin cancer.

3.4 Negation and Antonymy

Negation is detected after finding leaves with a negation relationship with its father in
the dependency tree. This negation relationship is then propagated to its ancestors until
the head. For example, figures 2 and 3 show an excerpt of the dependency trees for the
training examples 74 and 78 respectively. Negation at node 11 of text 74 is propagated
to node 10 (neg(will)) and node 12 (neg(change)). Negation at node 6 of text 78 is
propagated to node 5 (neg(be)). Therefore, entailment is not possible between a lexical
unit and its negation. For example, before considering negation, node 5 in text 78 (be)
entails node 4 in hypothesis 78 (be). Now, this entailment is not possible.

The entailment between nodes affected by negation is implemented considering the
antonymy relation of WordNet, and applying the previous processing to them (sec-
tions 3.1, 3.2, 3.3). For example, since node 12 in text 74 is negated (neg(change)),
the antonyms of change are considered in the entailment relations between text and
hypothesis. Thus, neg(change) in text entails continue in the hypothesis because the
antonym of change, stay, is a synonym of continue.

4 Mapping Between Dependency Trees

Dependency trees give a structured representation for every text and hypothesis. The no-
tion of mapping [13] between dependency trees can give an idea about how semantically
similar are two text snippets; this is because a certain semantic information is implic-
itly contained into dependency trees. The technique used here to evaluate a matching
between dependency trees is inspired in Lin’s proposal [10] and is based on the notion
of tree inclusion [6].

An abstract hypothesis’ dependency tree and its respective abstract text’s dependency
tree are shown in figure 4, as an example. Thick lines are used to represent both the
hypothesis’ matching branches and the text’s branches containing nodes that show a
lexical entailment with a node from the hypothesis. Note that not every node from a
branch of the text’s dependency tree must show a lexical entailment with another node
from the hypothesis, while a branch from the hypothesis is considered a “matching
branch” only if all its nodes are involved in a lexical entailment with a node from the
respective branch from the text’s dependency tree.
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The subtree conformed by all the matching branches from a hypothesis’ dependency
tree is included in the respective text’s dependency tree. The work hypothesis assumes
that the larger is the included subtree of the hypothesis’ dependency tree, the more
semantically similar are the text and the hypothesis. Thus, the existence or absence of
an entailment relation from a text to its respective hypothesis is determined by means
of the portion of the hypothesis’ tree that is included in the text’s tree.

Fig. 4. Example for hypothesis’ matching branches

Informally, this tree overlap measures how large is the hypothesis’ dependency sub-
tree included in the text’s dependency tree with respect to the whole hypothesis’ de-
pendency tree. A higher degree of matching between dependency trees has been taken
as indicative of a semantic relation. The threshold to determine whether there exists an
entailment relation between a text and a hypothesis is obtained after training the system
with the development corpus.

5 Experiments

Some experiments were accomplished in order to obtain feedback about successive
improvements made to our system. For this purpose, several settings were trained over
the development corpus and evaluated against the test corpus.

– System 1
• Lexical level: No special processing for lexical entailment, but the coincidence

between a word from the text and the hypothesis.
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• Entailment decision: build a decision tree using C4.5 [11] over the training
corpus and use this tree to classify the test samples. The set of attributes for
building the decision tree were:
∗ Number of nodes in the hypothesis’ dependency tree.
∗ Number of nodes in the hypothesis’ dependency tree not entailed by any

node in the text’s dependency tree.
∗ Percentage of entailed nodes from the hypothesis’ dependency tree.

– System 2

• Lexical level: lexical entailment as described in section 3.
• Entailment decision: same as system 1.

– System 3

• Lexical level: same as system 2.
• Entailment decision: same as systems 1 and 2, but adding boolean attributes to

the decision tree specifying whether nodes showing a subject or object relations
with their fathers have failed or not (i.e., if they have not been entailed by any
node from the text).

– System 4

• Lexical level: same as systems 2 and 3.
• Entailment decision: applying the algorithm from section 4 based on the notion

of tree inclusion [6].

6 Results

Overall results are shown in table 1. The behavior of all the systems is quite similar
except for system 4 that obtains the lower accuracy. The use of the lexical entailment
module based on WordNet slightly increases accuracy (system 2 with respect to system
1); however, the inclusion of attributes in the decision tree related to the syntactic role
(subject and object) does not improve the performance in our setting (system 3). Fi-
nally, the overlapping algorithm based on the notion of tree inclusion did not obtain the
expected performance (system 4).

Some questions arise about the mapping between dependency trees approach.
Though the notion of inclusion is not enough for RTE, some other notions such as
tree alignment distance [2] [4] or tree edit distance [2] [4]] seem more promising as
shown in [7]. Nevertheless, the results obtained by systems 2 and 3 are close to those
obtained with the best approaches in PASCAL RTE Challenge [3].

Table 1. Accuracy values of the systems

Accuracy
System 1 55.87%
System 2 56.37%
System 3 56.25%
System 4 54.75%
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7 Conclusions and Future Work

The use of lexical resources such as WordNet aimed at recognizing entailment and
equivalence relations at the lexical level for improving system’s performance. In this
direction, the next step is to recognize and evaluate entailment between numeric ex-
pressions, Named Entities and temporal expressions.

A mapping of dependency trees based on the notion of inclusion (as shown here) is
not enough to tackle appropriately the problem, with the possible exception of Com-
parable Document [3] tasks. A higher lexical overlap does not mean a semantic entail-
ment and a lower lexical overlap does not mean different semantics. Other mapping
approaches based on the notions of tree edit distance or tree alignment distance seem
more promising [7].

Both lexical and syntactic issues to be improved have been detected. At the lexical
level, some kind of paraphrasing detection would be useful; for example, in pair 96 of
the training corpus (see table 2) is necessary to detect the equivalence between same-sex
and gay or lesbian; or, in pair 128 (see table 2), come into conflict with and attacks must
be detected as equivalent. Previous work has been developed; for example, Szpektor et
al. (2004) [12] propose a web-based method to acquire entailment relations; Barzilay
and Lee (2003) [1] use multiple-sentence alignment to learn paraphrases in an unsu-
pervised way; or Hermjakob et al. (2002) [5] show how WordNet can be extended as a
reformulation resource.

Table 2. Pairs 96 and 128 from the training corpus

Text 96: The Massachusetts Supreme Judicial Court has cleared the way for lesbian and gay
couples in the state to marry, ruling that government attorneys “failed to identify any
constitutionally adequate reason” to deny them the right.
Hypothesis 96: U.S. Supreme Court in favor of same-sex marriage

Text 128: Hippos do come into conflict with people quite often.
Hypothesis 128: Hippopotamus attacks human.

Sometimes, two related words are not considered because their lemmas (provided
by the dependency parser) are different or a semantic relation between them can not be
found; for example, in pair 128 of the training corpus the relations between Hippos and
Hippopotamus and the relation between people and human are not detected.

Other problem is that, in certain cases, a high matching between hypothesis’ nodes
and text’s nodes is given but, simultaneously, hypothesis’ branches match with disperse
text’s branches; then, syntactic relations between substructures of the text and the hy-
pothesis must be analyzed in order to determine the existence of an entailment.

Some other future lines of work include:

– A detailed analysis of the corpora, with the aim of determining what kinds of in-
ference are necessary in order to tackle successfully the entailment detection. For
example: temporal relations, spatial relations, numeric relations, relations between
named entities, paraphrase detection, etcetera; and the development of the corre-
sponding subsystems.



Textual Entailment Recognition Based on Dependency Analysis and WordNet 239

– The development of improved mapping algorithms between trees, such as the tree
edit distance or an alignment distance [2] [4].

Hence, it is observed that for RTE is necessary to tackle a wide set of linguistic
phenomena in a specific way, both at the lexical level and at the syntactic level.
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6. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases.

Technical Report A-1992-6, Department of Computer Science, University of Helsinki,
Helsinki, Finland, November 1992.

7. M. Kouylekov and B. Magnini. Recognizing Textual Entailment with Tree Edit Distance
Algorithms. In Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment, Southampton, UK, pages 17–20, April 2005.

8. V. I. Levensthein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
In Soviet Physics - Doklady, volume 10, pages 707–710, 1966.

9. D. Lin. Dependency-based Evaluation of MINIPAR. In Workshop on the Evaluation of
Parsing Systems, Granada, Spain, May 1998.

10. D. Lin and P. Pantel. DIRT - Discovery of Inference Rules from Text. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 323–328, 2001.

11. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.
12. I. Szpektor, H. Tanev, I. Dagan, and B. Coppola. Scaling Web-Based Acquisition of En-

tailment Relations. In Proceedings of Empirical Methods in Natural Language Processing
(EMNLP-04), 2004.

13. G. Valiente. An Efficient Bottom-Up Distance Between Trees. In Proceedings of the Interna-
tional Symposium on String Processing and Information REtrieval, SPIRE, pages 212–219,
2001.



Learning Textual Entailment on a Distance
Feature Space

Maria Teresa Pazienza1, Marco Pennacchiotti1, and Fabio Massimo Zanzotto2

1 University of Roma Tor Vergata, Via del Politecnico 1, Roma, Italy
{pazienza, pennacchiotti}@info.uniroma2.it

2 DISCo, University of Milano Bicocca, Via B. Arcimboldi 8, Milano, Italy
zanzotto@disco.unimib.it

Abstract. Textual Entailment recognition is a very difficult task as it
is one of the fundamental problems in any semantic theory of natural
language. As in many other NLP tasks, Machine Learning may offer im-
portant tools to better understand the problem. In this paper, we will
investigate the usefulness of Machine Learning algorithms to address an
apparently simple and well defined classification problem: the recogni-
tion of Textual Entailment. Due to its specificity, we propose an original
feature space, the distance feature space, where we model the distance
between the elements of the candidate entailment pairs. The method has
been tested on the data of the Recognizing Textual Entailment (RTE)
Challenge.

1 Introduction

The task of recognizing if a textual expression, the text T , entails another ex-
pression, the hypothesis H , is a very difficult challenge. Indeed, as described in
[1], Textual Entailment (TE) recognition (as referred in [2]) can be seen as the
basic ability that any semantic theory for natural languages must have. Only
those semantic theories able to detect textual entailment can be considered cor-
rect. Techniques for detecting textual entailment can be then seen as a first step
in the building process of a semantic theory for natural language. We are thus
facing a very complex problem.

Textual Entailment recognition can be tackled using two main strategies: shal-
low and robust techniques mostly based on shallow and probabilistic textual
analysis, or more complex syntactic-based models involving a deeper syntactic
analysis and the use of ad-hoc rules.

Shallow and robust models are based on the assumption of independence
among words. They can be used to tackle Textual Entailment recognition, as
it has already been done in several difficult open domain NLP tasks (e.g. Text
Categorization and Information Retrieval). Even if these simple and effective
models are still far from being perfect, they usually outperform more sophisti-
cated techniques based on deep syntactic and semantic properties. For instance,
in Text Categorization bag-of-word models seem to be more successful than any
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other approach based on more complex ”linguistic” features [3], even if in specific
domain (e.g. the medical domain) performances are not so high [4].

As in Text Categorization, shallow models seem to be the most promising also
for Textual Entailment recognition. Indeed, some top-performing approaches to
TE strongly rely on the assumption that every word is independent from the
other, as in the probabilistic textual entailment model presented in [5] and in
the lexical model presented in [6]. The first approach [5] has been shown to have
one of the highest performances in the 2005 Pascal Challenge on Recognising
Textual Entailment (RTE) [7]. It assumes that the entailment T → H holds if
the posterior probability P (H |T ) of H being true given T is higher than the
prior probability P (H). The actual probabilistic textual entailment indicator
P (H |T ) is then evaluated at word level P (wH |wT ) and recombined using the
word independence assumption. P (wH |wT ) is estimated over a large textual
collection (i.e. the web) assuming that the joint event (wH , wT ) is verified when
the two words, wH and wT are found in the same document, while P (H) is set to
a fix value for all pairs. The second approach [6] uses a very similar model (even
if not probabilistic) where the distance between the two words, wH and wT , is
estimated over a semantic hierarchy (i.e. WordNet, [8]) with different semantic
similarity measures (e.g. [9, 10]).

These approaches, even if top-performing, are still far from offering a satis-
factory solution to the Textual Entailment task. In fact, on the RTE dataset [7]
they reached an accuracy of less than 60%. The manual study in [11] suggests
that there is room for improvement if more complex text representations are
used than those based on independence assumption. According to this investi-
gation, 49% cases of the RTE dataset can be correctly predicted using syntactic
clues that consider the dependence between words in the sentence. Thus, the
use of a perfect parser and syntactic constraint checking techniques would cor-
rectly predict (100% accuracy) all the 49% pairs identified in the study. Using
a random guesser (50% accuracy) on the remaining 51% pairs, the overall accu-
racy would increase to 74%. Models based on structural syntactic information
(”syntax-based models”) should then guarantee a high margin of improvement.

Syntax-based models, generally rely on the notion of distance or similarity
between the syntactic representations of the two text fragments T and H, as
it usually happens for some lexical model. Moreover, sometimes these models
include also semantic information (e.g. WordNet [8]). The approaches presented
in [12] and in [13] define a distance between dependency syntactic graphs: these
approaches, while being pretty similar, use different syntactic representations
and parsers. Moreover, in [14] a variant of the edit distance, the tree edit distance,
is applied to estimate differences between structures: this distance is defined on
the dependency trees produced by the syntactic parser described in [15].

Syntax-based models are still far from the performance manually estimated in
[11] (the ”perfect” syntactic parser is still not available). Moreover, even using
a ”perfect” parser, it may happen that rules for detecting entailment, written in
these syntactic models, are inadequate as not totally correct or not covering all
entailment cases.
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A solution to the inadequacy of manually built rules adopted in several NLP
applications (e.g. Information Extraction [16]) is the application of supervised
or semi-supervised machine learning algorithms able to extract weighted rules
using set of training examples. Syntax-based models, that use Machine Learning
to derive rules, appear promising, as they have the potential to improve and
outperform shallow approaches in Textual Entailment recognition.

Following this approach, in this paper we investigate the possibility of using
machine learning models to tackle the problem of Textual Entailment recog-
nition. The aim is to understand whether or not machine learning represents a
practical and promising way to improve the performance of a generic recognition
model. It is evident that the application of classical machine learning algorithms
to the Textual Entailment task is not straightforward, mainly because of the
small number of training examples. As we believe that this number can never be
large enough to learn significant regularities in a simple direct feature space (see
Sec. 2), we propose an alternative feature space based on the distance between
the elements of textual entailment pairs. We will discuss this distance feature
space in Sec. 4. Finally, in Sec. 5, we will evaluate our model using SVM-light
[17] on the RTE data [7].

2 Classifiers, Machine Learning, and Textual Entailment

Machine Learning algorithms learn how to classify instances into categories.
Instances are seen in a feature space and the role of the algorithm is to learn
regularities that help in the classification. The learnt final function T maps
elements in the feature space F1 × . . . × Fn to one element in the final set of
categories C, that is:

T : F1 × . . .× Fn → C

where F1, ..., Fn are the features for observing instances.
One of the main issues in applying a learner to a particular classification task

is to identify the most suitable feature space. However, as we will see later in
this section, this is not the only problem when trying to exploit classifiers for the
Textual Entailment task. For example, it is not clear which is the most suitable
set of categories C and, as a consequence, which equivalences should be learnt
by the algorithms. In this section we analyse these problems, in order to explain
the rationale behind our distance feature space.

At a first glance, the Textual Entailment task seems to be a clearly defined
classification problem. Instances are represented as triples (T, H, value) where
T is the text, H is the hypothesis, and where value is true if T → H holds and
false otherwise. For example:

(1)
T: The carmine cat devoured the mouse in the garden
H: The cat killed the mouse
value: true

This definition can lead to very simple feature spaces based on the bag-of-word
abstraction. A good example is given by a bipartite bag-of-word feature space
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FST × FSH , where FST is related to the text T while FSH is related to the
hypothesis H . FST and FSH are two complete bag-of-word feature spaces, where
dimensions are words and values are 1 or 0 (i.e., a specific word is present or not
in the text fragment T or H). Finally, the classification is on the {true, false}
categories, that is, the pair is a positive or a negative instance of the entailment
relation.

This bipartite feature space FST ×FSH is, in principle, inadequate for a small
number of training examples and for the classification problem as it has been
defined. Indeed, in this space, a learner is unlikely to infer useful properties. For
instance (relating to previous example), the learner can infer that, if there is
cat and mouse both in FST and in FSH , T and H can be positive instances
of an entailment pair. This information is quite sparse and the solution cannot
be obtained from adding the syntactic interpretation or some lexical semantic
abstraction in the feature space.

In particular, tree kernels [18, 19] can be used to integrate syntactic informa-
tion in the feature space; unfortunately, this is not a feasible solution, because of
the sparseness of the space. For example, the possible syntactic interpretations
of the sentences in the example (1) are:

(2) T: S

NP

DT

The

JJ

carmine

NN

cat

VP

VP

V

devoured

NP

DT

the

NN

mouse

PP

in the garden

H: S

NP

DT

The

NN

cat

VP

VP

V

killed

NP

DT

the

NN

mouse

The regularities that can be learnt from this pair by a tree kernel are either too
specific, e.g. both T and H should have the subtree (3), or too general, e.g. the
subtree (4).

(3) S

NP

DT

The

NN

cat

VP

VP

V

NP

DT

the

NN

mouse
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(4) S

NP VP

VP NP

When working with a small number of examples, the equivalence between
the elements in the two classes (entailed and not entailed pairs), may only be
found at the level of general syntactic properties as the one in (4). This latter
property may be read as: both T and H should have a sentence that has a main
verb and two direct arguments. As such, this property is not a very significant
clue to detect whether or not T entails H , as it is too general. In the same way,
too specific properties are not useful, as they lack generalization power and can
thus be applied only to a small set of cases. For example the property in (3)
states: both T and H should have a sentence that has a main verb and two direct
arguments, whose values must be ”the cat” and ”the mouse”.

In order to extract more useful properties for the TE classification task (nei-
ther too generic nor too specific) , the number of training examples should be
bigger and bigger, and the classification problem should be differently formu-
lated. In fact, the equivalence classes to be discovered should be more com-
plex than the simple true and false entailment prediction. They should be
centred on the hypothesis H : that is, in principle, each H should correspond
to an equivalence class. By consequence, the whole process of verifying if entail-
ment holds for a (T;H) pair is divided in two steps. Firstly, the most suitable
equivalence class is chosen for a fragment T , using ML classification. Then,
entailment is said to hold if the predicted class corresponds to the H of the
pair (T;H).

The step of categorising in equivalence classes representing possible H is a
neat shift with respect to the true/false classification approach. As such, the
classification subtask needs different types of features. Indeed, the feature set
can not model the properties of the fragments T and H independently as for
the bipartite feature space: in fact, the aim here is to find the equivalence class
H that is most similar to a given instance T . A sort of distance should then be
evaluated between the instance T (to be classified), and the elements of each
possible class H . The feature space can then be the classical one as the text T
and the hypothesis H should be modelled as different points.

Even if it seems an infeasible solution, due to the infinite number of possible
H , this technique is adopted in learning a large number of equivalence classes
often called inference rules [20]. We will use the distributional hypothesis [21] to
cluster instances around an equivalence class that is the inference rule [20, 22].
Unluckily, these methods can not solve the problem in our case, as they need a
large set of examples, that can be met only in very large corpora.

As a consequence, it emerges that the direct representation of H and T in a
simple or a bipartite feature space is not an interesting solution. What is relevant
should then be found elsewhere.

Let us consider again example (1). The interesting property of H and T is that
they share two words, cat and mouse, not the specific words shared. The same
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consideration applies to the syntactic feature space (2). The relevant property
is that H and T share the structure:

(5) S

NP

DT

The

NN

[1]

VP

VP

V

[2]

NP

DT

the

NN

[3]

and that in position [1] and [3] they have the same words. The relevant property
is then that H and T share a similar structure and that they share similar values
in strategic positions of the structure itself. The actual values of [1] and [3] are
not important, while it is important that they have similar meaning. A sort of
syntactic-semantic ”distance” between T and H could be then a more suitable
approach to really grasp the notion of TE, as it is done in [12, 13, 14].

We propose to study the learnability on a feature space representing the dis-
tance between the two elements in the candidate entailment pair, instead of
on the previously described bipartite feature space . This should make the en-
tailment problem learnable with a small number of training examples as the
problem is not studied on the actual values of the examples but on their dis-
tance. In the following section we describe both the formalisms and techniques to
model the notion of distance between T and H , while in Sec. 4 we will introduce
our distance feature space.

3 Modelling Textual Entailment as Syntactic Graph
Similarity

Here we introduce the model to investigate the similarity between syntactic
graphs originally used to directly detect entailment. Furthermore, the model can
also be used to build the distance feature space we are interested in, transforming
textual entailment into a learnable classification problem. The distance feature
space will be described in Sec. 4.

As textual entailment is mainly concerned with syntactic aspects (as outlined
in [2] and observed in [11]), a model for its recognition should basically rely on
lexical and syntactic techniques, enriched only with shallow semantic analysis.

We model the entailment pair T − H as two syntactic graphs augmented
with lexical and shallow semantic information. Each graph node represents a
phrase of the sentence, together with its syntactic, morphological and semantic
information. Each graph edge expresses a syntactic relation among phrases. We
can thus consider the recognition process as the comparison between two graphs:
the more similar the graphs are, the higher is the probability of entailment. A
similarity measure among graphs can be meant as a measure of entailment, and
graph matching theory can be used as a tool to verify if entailment relation
holds.
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In the following section we introduce the basic notions on graph theory needed
to describe how we implemented the graph similarity measure. Then, in Sec.3.2
we introduce the Extended Dependency Graph (XDG), the syntactic graph for-
malism we rely on. Peculiar properties of textual entailment that require specific
adaptations of graph matching theory are then outlined in Sec.3.3. Finally, the
model for textual entailment recognition is described in Sec.3.4, together with
the strategy we adopted to deal with syntactic transformations (Sec.3.5).

3.1 Graph Matching Theory

Graph matching theory aims to evaluate the similarity between two graphs. The
power of graph matching theory resides in the generality of graphs, as they
can be used to represent roughly any kind of objects. Graph matching is then
used in many different settings, as vision applications (such as video indexing
[23] and 3D object recognition [24]), case-based reasoning [25] and planning
[26]. Graph nodes usually represent object parts, while edges represent relations
among parts. Matching algorithms recognize how similar two objects are, looking
at the structural similarity of their graph representation. It is thus possible, for
instance, to turn a recognition problem of an unknown visual object, into a graph
matching task over a given repository of known instances.

In the rest of this section we firstly outline basic definitions of graph matching
theory, as presented in [27], and then briefly discuss how graph similarity is
evaluated in practice.

Definition 1. A graph is defined as 4-tuple G = (N, E, μ, ν), where N is the
finite set of labelled nodes, E the finite set of labelled edges connecting the nodes
in N , μ : N → LN the function that assigns labels to nodes, and ν : E → LE

the function that assigns labels to edges.

Definition 2. A graph isomorphism is a bijective function f : N → N ′, from a
graph G = (N, E, μ, ν) to a graph G′ = (N ′, E′, μ′, ν′), such that:

– μ(n) = μ′(f(n)) for all n ∈ N
– for any edge e ∈ E connecting two nodes n1, n2, it exists an edge e′ connect-

ing f(n1), f(n2), and vice versa.

Definition 3. A subgraph isomorphism is an injective function f : N → N ′,
from G = (N, E, μ, ν) to G′ = (N ′, E′, μ′, ν′), if it exists a subgraph S ⊆ G′ such
that f is a graph isomorphism from G to S.

Definition 4. A graph G is called common subgraph between two graphs G1
and G2 if it exist a subgraph isomorphism from G1 to G and from G2 to G.

Definition 5. The common subgraph G of G1 and G2 with the highest number
of nodes is called the maximal common subgraph (mcs(G1, G2)).

The concept of maximal common subgraph (mcs) is often central in the defini-
tion of a similarity measure. In fact, in real applications, errors and distortions
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in the input graphs are frequent. Consequently, as perfect matching between
two objects becomes often impossible, graph matching algorithms must be error
tolerant, returning as result a degree of similarity between graphs, rather than
a deterministic matching value. As an example, in [28] a similarity measure be-
tween two graphs G1 and G2 is proposed as a distance between the number of
nodes of the mcs and the number of nodes of the biggest graph:

d(G1, G2) = 1− |mcs(G1,G2)|
max(|G1|,|G2|)

3.2 The XDG Formalism

In the context of textual entailment, graph matching theory can be applied
to two graphs representing the syntactic structure of T and H , together with
relevant lexical information. As useful syntactic representation we decided to use
the extended dependency graph (XDG) [29]. An XDG is a dependency graph
whose nodes C are constituents and whose edges D are the grammatical relations
among the constituents, i.e. XDG = (C, D).

The XDG formalism has two interesting properties: it hides unnecessary am-
biguity in possibly underspecified constituents and it may represent alternative
interpretations in a single graph.

Constituents (i.e. c ∈ C) are classical syntactic trees with explicit syntac-
tic heads, h(c), and potential semantic governors, gov(c). Constituents can be
represented as feature structures, having as relevant features:

– the head and the gov, having as domain C (the set of trees and subtrees
derived from C), and representing respectively syntactic heads and potential
semantic governors ;

– the type representing the syntactic label of the constituent and having as
domain Λ.

Moreover, a constituent can be either complex or simple. A complex con-
stituent is a tree containing other constituents as sons (which are expressed by
the feature subConstituents). A simple constituent represents a leaf node, i.e.,
a token span in the input sentence, that carries information about lexical items
through the following features:

– surface, representing the actual form found in the token span,
– lemma, taking values in the lexicon L and representing the canonical form

of the target surface,
– morphology, representing the morphological features of the inflected form.

On the other hand, dependencies in (h, m, T ) ∈ D represent typed (where T
is the type) and ambiguous relations among a constituent, the head h, and one
of its modifiers m. The ambiguity is represented using plausibility, a real value
ranging between 0 and 1, where 1 stands for unambiguous. Then, D is defined as
a subset of C×C×Γ × (0, 1], where the sets represent respectively the domains
of the features head, modifier, type, and plausibility.

The syntactic analysis of entailment couples has been carried out by Chaos
[29], a robust modular parser based on the XDG formalism.
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3.3 Adapting XDG and Graph Matching to Textual Entailment

In Sec.3.1 and Sec.3.2 a general methodology (graph matching) and a formalism
(XDG) for recognizing textual entailment have been proposed. Entailment recog-
nition can thus be described as a matching process between two XDG graphs
representing the hypothesis and the text, where nodes are the set of constituents
C and edges are the set of dependencies D. In order to obtain a model of the
process, it is necessary to verify if either the chosen formalism and methodol-
ogy satisfy all the characteristics needed for entailment recognition or they need
some adaptation.

Concerning the XDG formalism, it is necessary to define the specific kind of in-
formation that a graph for entailment recognition must hold. Then, it must be ver-
ified if XDG graphs are able to capture all this information. In order to be detected,
entailment requires both syntactic and shallow lexical-semantic information:
– syntactic information: in general, graphs that have similar syntactic and

lexical structure are likely to express the same fact. Moreover, syntactic
addition to the T graph with respect to H can reveal a strict entailment
relation, as capturing syntactic subsumption entailment. Finally, syntactic
variations such as nominalization and active/passive transformations must
be treated as invariant operations on graphs, since the meaning of the fact
expressed is preserved. A graph is thus required to represent both syntactic
dependencies and syntactic variations.

– shallow lexical-semantic information: syntactic similarity can be supported
by lexical-semantic information needed to grasp semantic subsumption entail-
ment, such as verb and noun generalization, antinomy and synonymy. More-
over, direct implication requires the recognition of verb entailments. As all
these information must be modelled in the graph similarity measure, graphs
must express all the morphological and lexical properties needed to carry out
semantic operations, such as word stems and derivational properties.

The XDG formalism captures all needed information, as syntactic dependen-
cies are explicitly represented, and lexical information about nodes is carefully
treated.

Regarding the graph matching methodology, it seems suitable for the tex-
tual entailment task. In fact, a classical graph matching problem and textual
entailment reveal some similarities:

– there are complex objects to be matched, composed by independent parts
(represented as graph nodes) and relations among them (represented as
edges).

– in order to tackle errors and distortion, it is better to adopt a similarity
measure able to express the degree of similarity between two objects (e.g.
using mcs), rather than a deterministic value.

– meta-operation can be performed over collection of objects, such as graph
clustering and graph querying. For example, textual entailment clustering
of H and T sentences can be viewed as a sort of semantic generalization of
surface forms into semantic relation ([30]).
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However, some peculiar properties of textual entailment require major adap-
tations of the standard graph matching methodology:

– Node complexity. In the graph theory, nodes are matched by simply looking
at their label level. In textual entailment node similarity can not be reduced
to a surface analysis, as both morphological and semantic variations must be
taken into account (for example ate, has eaten and devour should have some
degree of similarity). Moreover, textual entailment nodes are not atomic,
since they represent complex constituents that can be further divided in
sub-constituents for deeper lexical-semantic analysis. For these two reasons,
matching between two nodes is a complex process, that can not produce a
simple true value (as it usually happens at the label level). It is necessary to
evaluate a graded level of linguistically motivated node semantic similarity
sm(ch, ct).

– Edge complexity. Edges are complex structures too: the matching over them
must consider also the type of dependency they express. A graded syntactic
similarity ss(ch, ct) has then to be defined to capture this aspects.

– Transformation invariance. Textual entailment must account for graph in-
variant transformations: specific type of syntactic phenomena (nominaliza-
tion, active/passive transformation, etc.) should be properly treated. Two
graphs representing syntactic variations of the same fact, while structurally
dissimilar, should be considered as equivalent.

– Asymmetry. Textual entailment, unlike the classical graph problems, is not
symmetric, since it represents a direct relation of subsumption from T to H .
By consequence, the graph isomorphism definition must be further refined
in a more specific notion of XDG subsumption isomorphism.

Considering these remarks, definition in Sec. 3.1 have been extended as
follows.

Definition 6. An XDG subsumption isomorphism is an oriented relation from
a text XDGT = (CT , DT ) to an hypothesis XDGH = (CH , DH) (XDGH �
XDGT ), expressed by two bijective functions:

– fC : CT → CH

– fD : DT → DH

where fC and fD describe the oriented relation of subsumption between con-
stituents (nodes) and dependencies (edges) of H and T .

fC and fD play the role of function f in the definition of graph isomorphism in
Sec. 3.1. Unluckily, due to the node and edge complexity factors, a definition of
fC and fD can not be easily stated as for f . Sec. 3.4 will thus give an extensive
description on how these two functions are modelled.

Definition 7. A subgraph subsumption isomorphism between XDGH and
XDGT , written as XDGH � XDGT , holds if it exists XDG′T ⊆ XDGT so that
XDGH � XDG′T .
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As in the graph matching theory, an mcs must be defined in order to cope with
distortions and errors in the input graphs. Specifically, in entailment recognition,
errors are mainly introduced by syntactic parser erroneous interpretations, both
at the morphological and syntactic level.

Definition 8. The maximal common subsumer subgraph (mcss) between
XDGH and XDGT is the graph with the highest number of nodes, among all the
subgraph of XDGH which are in isomorphic subgraph subsumption with XDGT .

3.4 Graph Syntactic Similarity Measure for Textual Entailment

The similarity measure E(XDGT ,XDGH), used to estimate the degree of confi-
dence with which XDGH and XDGT are in entailment relation, must be modelled
on the subsumption between nodes and edges in T and H , grasping the notion
of mcss. Four main steps are required:

1. Model the bijective function fC : C′
T → C′

H , that maps constituents in C′
H ⊆

CH to subsuming constituents in C′
T ⊆ CT . A semantic similarity sm(ch, ct)

must be associated to each mapping. For example in the pair H :[the cat eats
the mouse], T :[the cat devours the mouse], eats could be mapped in devours.

2. Model the bijective function fD : D′
T → D′

H , that maps dependencies in
D′

H ⊆ DH to dependencies in D′
T ⊆ DT . A syntactic similarity ss(ch, ct) is

then derived to better capture the implications of such mappings.
3. Find the mcss, that is, the common subgraph identified by fC and fD. The

mcss must be associate to an overall similarity, deriving from the sm and ss
of its nodes and edges.

4. Model E(XDGT , XDGH) using mcss and the two input graphs XDGH and
XDGT . Textual entailment between a pair T − H will be thus predicted
verifying E(XDGT , XDGH) against a manually tuned threshold.

In the following paragraphs the different steps are described in detail. For an
extensive example refer to Figure 1.

Node Subsumption. The node subsumption function fC must identify con-
stituents in CH that can be mapped to constituents CT . We will define the
function with a set A containing the anchors (the correspondences between the
constituents of CH and CT ). The set A will thus represent the nodes of the mcss.

Fig. 1. A complete example of entailment pair, represented in the XDG formalism.
Solid lines indicate grammatical relations D (with type and plausibility); dotted lines
indicate anchors ai between H and T constituents.
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In A, each constituent ch ∈ CH is associated, where possible, to its most
similar constituent ct ∈ CT (that is, the ct that most likely subsumes ch). The
definition follows:

Definition 9. Given the anchors a = (ch, ct) as linking structures, connecting
constituents ch ∈ CH to constituents ct ∈ CT and a function of semantic sim-
ilarity sm(ch, ct) ∈ (0, 1] expressing how much similar ch and ct are looking at
their lexical and semantic properties, the set of anchors A is:

A = {(ch, ct)|ch ∈ CH , ct ∈ CT , sm(ch, ct) = max
c∈CT

sm(ch, c) �= 0}

If a subsuming ct can not be found for a ch (i.e. max
c∈CT

sm(ch, c) = 0), then ch

has no anchors. For example in the entailment pair of Fig. 1, fC produces the
mapping pairs [The red cat - The carmine cat], [killed - devours], [the mouse -
the mouse].

The semantic similarity sm(ch, ct) is derived on the basis of the syntactic type
of ch, that is, if it is a noun-prepositional phrase sm(ch, ct) = smnp(ch, ct) or
a verb phrase sm(ch, ct) = smvp(ch, ct). If ch is a noun-prepositional phrase,
similarity smnp(ch, ct) is evaluated as:

smnp(ch, ct) = α ∗ s(gov(ch), gov(ct)) + (1− α) ∗

∑
sh∈S(ch)

max
st∈S(ct)

s(sh, st)

|S(ch)|

where gov(c) is the governor of the constituent c, S(ch) and S(ct) are the set
simple constituents excluding the governors respectively of ch and ct, and α ∈
[0, 1] is an empirically evaluated parameter used to weigh the importance of
the governor. Meanwhile, s(sh, st) ∈ [0, 1] expresses the similarity among two
simple constituents: it is maximal if they have same surface or stem (e.g. cat
and cats), otherwise a semantic similarity weight β ∈ (0, 1) is assigned looking
at possible WordNet relations (synonymy, entailment and generalization). For
example, setting β = 0.8 for synonymy and alpha = 0.5, the constituents ch: [the
red cat] and ct: [the carmine cat], have sm = 0.95, as the governors (govch = cat
and govct = cat) and the first simple constituents (sh1 = the and st1 = the)
have s = 1, and the second simple constituents are synonyms (sh2 = red and
st1 = carmine).

If ch is a verb phrase, different levels of similarity are taken into considera-
tion, according to the semantic value of its modal. For example must go-could go
should get a lower similarity than must go-should go. A verb phrase is thus com-
posed by its governor gov and its modal constituents mod. The overall similarity
is thus:

smvp(ch, ct) = γ ∗ s(gov(ch), gov(ct)) + (1− γ) ∗ d(mod(ch), mod(ct))

where d(mod(ch), mod(ct))∈[0, 1] is empirically derived as the semantic distance
between two modals (e.g., must is nearer to should than to could) (classified as
generic auxiliaries, auxiliaries of possibility and auxiliaries of obligation).
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Edge Subsumption. Once fC is defined, the existence of the bijective fuction
fD can be easily verified by construction. The edge subsumption function fD

maps (ch, c′h, Th) ∈ DH to fD(ch, c′h, Th) = (ct, c
′
t, Tt) ∈ DT if Th = Tt and

(ch, ct), (c′h, c′t) ∈ A. The set of mapped DH will thus represent the edges linking
the nodes of the mcss.

The definition of fD allows to investigate the external syntactic similarity
ss(ch, ct) of a certain anchor (ch, ct) ∈ A. This should capture the similarity
of the relations established by elements in the anchor. Our syntactic similarity
ss(ch, ct) depends on the semantic similarity of the constituents connected with
the same dependency to ch and ct in their respective XDGs, that is, the set
A(ch, ct) defined as:

A(ch, ct) = {(c′h, c′t) ∈ A|fD(ch, c′h, T ) = (ct, c
′
t, T )}

For example in Fig. 1, A(killed, devours)= {([the red cat], [the carmine cat]),
([the mouse], [the mouse])}. The syntactic similarity ss(ch, ct) is then defined as:

ss(ch, ct) =

∑
(c′

h,c′
t)∈A(ch,ct)

sm(c′h, c′t)

|DH(ch)|
where DH(ch) are the dependencies in DH originating in ch.

Similarity measure. Once nodes and edges of the mcss have been identified
through fC and fD, an overall similarity S(mcss) is evaluated for mcss. S(mcss)
must express how much similar the two subgraphs XDG′T and XDG′H in iso-
morphic subsumption are, both from a syntactic and a semantic point of view.

For each pair (ch, ct) ∈ A a global similarity S is thus derived as:

S(ch, ct) = δ ∗ sm(ch, ct) + (1− δ) ∗ ss(ch, ct)

where δ is a manually tuned parameter. The similarity measure E(XDGT ,
XDGH) can be evaluated in analogy to the measure described in Sec. 3.1. In
this specific case, numerator and denominator will not be expressed as the num-
ber of nodes, but as probabilities, since, as stated before, textual entailment
must account for node and edges complexity. The numerator will thus be the
overall mcss similarity . The denominator will express the best case, in which
mcss corresponds to XDGH, and all nodes and edges match with probability 1
to elements of a hypothetic T .

E(XDGT ,XDGH) = S(mcss)
|CH | =

∑
(ch,ct)∈A

S(ch, ct)

|CH |

3.5 Graph Invariant Transformations

Entailment pairs are often expressed through syntactic variations. For example
in the pair:

H :[The cat killed the mouse], T :[The killing of the mouse by the cat]
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entailment is syntactically express by a nominalization. We had thus to model
some of the basic and most important variation phenomena in our system, in
order to cope with pairs with different syntactic structures used and expressing
the same fact. That is, a graph matching must be guaranteed for H and T when
they have two different syntactic graphs which are one the syntactic variation
of the other. Before the graph matching procedure can be activated, a set of
graph transformation rules have been applied to XDGH and XDGT , in order
to normalize form sentences that have a syntactic variation. For example in the
abovementioned example, the text is brought back to the normal form T :[the cat
killed the mouse]. We modelled the following type of invariant transformation:

– nominalization in T . Different cases such as T :[The killing of the mouse
by the cat] and T :[The cat is the killer of the mouse] are treated. Only
nominalization of T is taken into consideration, as usually in entailment
relations nominalization happens only in T ;

– passivization in H or T . Passive sentences are brought to active forms, e.g.
H :[the cat eats the mouse], T :[the mouse is eaten by the cat];

– negation in H or T. If one sentence is the negative form of the other, the
two sentences are recognized to be not in entailment (negative subsumption).
Negation can be expressed in different ways. For example H :[the cat eats the
mouse], could have two simple negative counterparts T:[the cat doesn’t eat
the mouse] or T:[the cat does not eat the mouse].

Due to the RTE deadlines, at the time of the experiments presented in this
paper only the above mentioned syntactic normalization were integrated in the
system. In order to improve performance and coverage of the entailment phe-
nomenon, much more normalization rules should be taken into account. Argu-
ment movements, verb subcategorization frames and other syntactic inversion
could in fact play a crucial role in the recognition process. In this line, two
major issues should be addressed.

On the one hand, it could be useful to study extensively the relevance and
the impact of syntactic normalizations on the Textual Entailment task, in order
to understand if the integration of fine-grained normalizations is feasible and
worthwhile. In [11] a first analysis of syntactic alternations in the RTE corpus was
carried out. It resulted that the most frequent alternation (24% of all entailment
pairs) was simple apposition, e.g. H :[the cat, killer of the mouse], T :[the cat is
the killer of the mouse]. Our system properly treated such cases as a generic
alternation.

On the other hand, it could be useful to investigate into the use of specific
grammars, such as the Inversion Transuction Grammars [31], to better formalize
and handle such normalization phenomena in a real operational framework.

4 A Distance Feature Space for Textual Entailment

The syntactic similarity measure we proposed in the previous section is a possible
detector of entailment between T and H (once the acceptability threshold has
been set) while it is also a good base to build the distance feature space.
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A simple distance feature space may be defined with one only feature: the
similarity between H and T with the value E(XDGT ,XDGH). In this case, the
target of the learning problem would be setting the threshold. However, as it
emerges from the previous sections, this trivial distance feature space suffers
the limits of the measure E(XDGT ,XDGH). The measure depends on many
parameters (α, β, γ, and δ) that should just be empirically evaluated. To better
use the machine learning algorithms, some more complex distance feature spaces
not depending on these parameters could be useful.

The limitation of the E(XDGT ,XDGH) measure relates to several aspects.
One major problem is that similarity rules used in the measure may be incom-
plete to detect the entailment between T and H . We will tackle this problem
by using the notion of distance feature space. The point is to study sentences
in H not as a whole but as a collection of pieces (i.e., constituents, such as [the
cat], [devours], and [the mouse]) and the distance feature space should repre-
sent how these pieces are covered by fragments of the text T . We will not use a
bag-of-word space as it would suffer the previously discussed limits (Sec. 2).

To set up a distance feature space we have to solve a major problem. As we
cannot rely on the bag-of-word model, each feature should represent the distance
of a specific portion of the sentence H with respect to the most similar portion
in T . Such kind of distance feature space can be defined only if the structure
of the sentence H is stable and known in advance. We then focus our attention
to the sentence structure Subject-Verb-Object. This structure can represent a
fact that is the typical target of the textual entailment recognition task (see [7])
even if the verb has some more arguments to better define the fact. If the target
structure of H is defined, the distance feature space can be easily settled: every
feature can represent the distance of each relevant element of H (i.e. the Subject,
the Verb, and the Object) to the most similar element in T . We will refer to S
as the Subject, to V as the main Verb, and to O as the Object. We will call G
the basic distance feature space. The mnemonic feature names and the way to
compute their values are then described in Fig. 2 where the functions ss(ch, ct),
s(ch, ct), and sm(ch, ct) are those defined in Sec. 3. Moreover, cS

h , cV
h , and cO

h are
respectively the subject, the verb, and the object constituents of the hypothesis
H . cS

t , cV
t , and cO

t are the constituents of the text T most similar to respectively
cS
h , cV

h , and cO
h . This similarity is evaluated using ss(ch, ct).

We also enriched the distance feature space with further information:

– a set of featuresA related to the percent of commonly anchored dependencies
both in H and in T , i.e.:

A = { | ∪ch∈CH DH(ch)|
|DH |

,
| ∪ct∈CT DT (ct)|

|DT |
}

– a set of features T related to the textual entailment subtasks (CD, MT, etc.).

Lastly, as simple feature spaces can work better than complex ones, we also
used a less complex feature set L. This should represent the distance at the lexical
level in a bag-of-word fashion without any syntactic or semantic information. We
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feature name value
Ssm smnp(cS

h , cS
t )

Ssimsub

∑
sh∈S(cS

h
)

max
st∈S(cS

t )
s(sh, st)

|S(cS
h)|

Sss ss(cS
h , cS

t )
Vsm smvp(cV

h , cV
t )

Vss ss(cV
h , cV

t )
Osm smnp(cO

h , cO
t )

Osimsub

∑
sh∈S(cO

h
)

max
st∈S(cO

t )
s(sh, st)

|S(cO
h )|

Oss ss(cO
h , cO

t )

Fig. 2. The G distance feature space

then used two features: the percent of H tokens and of H lemmas that are in
common with T . As we will see this is the baseline model.

The application of the machine learning algorithm to the distance feature
space can be also seen as a method of empirically estimating the parameters α,
γ, and δ of the overall E(XDGT ,XDGH) measure. However, what the algorithm
should do is something more than using this distance feature space α, γ, and δ
are related to the specific bit of text, that is Subject, Verb, and Object.

5 Experimental Evaluation

The RTE challenge has been the first test to evaluate our approach and to verify
its performances. The data set used for the competition was formed by three
sets of entailment pairs: a First development set, composed by 287 annotated
pairs, a Second development set, composed by 280 annotated pairs, and a Test
set, composed by 800 non annotated pairs. Participating systems were evaluated
over the test set: a prediction value (True and False) and an associated degree
of confidence on the prediction c ∈ [0, 1] have been provided for each pair. Two
measures were used for evaluation: accuracy (fraction of correct responses) and
the confidence-weighted score (cws) as defined in [7].

We performed the experiments on our distance feature space using SVM-light
[17]. The experiments have been organised as follows: firstly, we investigated the
performances of the different feature spaces using examples in the two develop-
ment sets and we choose the more promising feature space; secondly, we trained
the classifier on the chosen feature space using all the examples in the two de-
velopment sets and we evaluated it on the Test set. Due to the maximal number
of examples available for training, 567, the use of a distance feature space is
perfectly justifiable. This number is enormously far from the examples methods
like the ones based on the Distributional Hypothesis can have (see Sec. 2).
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Table 1. Preliminary accuracy analysis on the two development sets with SVM

D1 D3 D4 D5 D6
L 51.16(±3.98) - - - -
L,T ,G β = 0.5 - 55.28(±2.44) 56.14(±2.51) 56.40(±2.71) 56.72(±2.92)
L,T ,G β = 1 - 56.37(±2.45) 57.14(±2.94) 57.37(±3.45) 57.12(±3.56)
L,T ,G,A β = 1 - - 57.20(±3.01) 57.42(±3.36) 57.12(±3.38)

In order to better understand the effectiveness and the value of the SVM
approach, we compare its performance with those obtained by a second Rule-
Based system we presented at the RTE challenge. The Rule-Based approach
simply applies the similarity measure E(XDGT ,XDGH) on the entailment pairs.
Parameters (α, β, γ, and δ) were manually tuned on the training set.

The preliminary experiments have been carried out using the two develop-
ment sets as source for an n-fold cross validation. We performed a 3-fold cross-
validation repeated 10 times. Each number we report for these experiments is
then given by 30 different runs. In Tab. 1, we report the mean accuracy and
its standard deviation of SVM in the different feature spaces. Each row shows
a different pair feature space and a value for the parameter β when necessary:
the baseline lexical distance feature space L, the distance feature space L,T ,G
with β = 0.5 and β = 1, and, finally, the distance feature space with some more
structural features L,T ,G,A. The columns represent the degrees of the polyno-
mial kernels used in SVM.

The results of the preliminary investigations suggest that every distance feature
space is statistically significantly better than the lexical distance feature space L.
However a clear understanding ofwhich feature space is better among all the others
is not completely clear as they do not statistically differ.Thehighermean is reached
by the spaceL,T ,G,Awith degree of the polynomial kernel equal to 5. Even if this is
not statistically different from the othermeans that are around57%of accuracy (all
these performances can have represent the same statistical population), we choose
this feature space to run the experiment on the competition.

The results over the competition Test Set are presented in Tab. 2. Results are
divided in two tables: an overall analysis of the results and an analysis according
to the different tasks. For comparison purposes, in Tab. 3 results of the Rule-
Based system are also reported.

Not surprisingly, the overall results are only slightly above the chance thresh-
old, in line with those obtained by other systems presented at RTE challenge. As
stated in the introduction, Textual Entailment recognition is a fairly new task
that encompasses many different NLP areas and issues (lexical semantics, syn-
tactic and semantic analysis, etc.). Therefore, as every new demanding challenge
in NLP, Textual Entailment needs to be investigated and handled carefully: the
RTE challenge 2005 has been a first step in the study and the understanding
of the linguistic phenomenon in its whole and most general definition. Indeed,
the early experimental evidences obtained by the systems presented at the chal-
lenge are all still far from being satisfactory. Many interesting and very different
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Table 2. Competition results with SVM approach

Measure Result
cws 0.5591

accuracy 0.5182
precision 0.5532

recall 0.1950
f 0.2884

TASK cws accuracy

CD 0.7174 0.6443
IE 0.4632 0.4917
MT 0.4961 0.4790
QA 0.4571 0.4574
RC 0.5898 0.5214
PP 0.5768 0.5000
IR 0.4882 0.4889

Table 3. Competition results with Rule-Based approach

Measure Result
cws 0.5574

accuracy 0.5245
precision 0.5265

recall 0.4975
f 0.5116

TASK cws accuracy

CD 0.8381 0.7651
IE 0.4559 0.4667
MT 0.5914 0.5210
QA 0.4408 0.3953
RC 0.5167 0.4857
PP 0.5583 0.5400
IR 0.4405 0.4444

approaches were presented, ranging from statistical methods to Rule-Based sys-
tems, operating at different level of analysis (lexical, syntactic, semantic, prag-
matic). The variety of the approaches reveals both the intrinsically complex
nature of the task and the early stage of analysis reached so far.

With regard to the results of our SVM system, two aspects are interesting to
notice. Firstly, overall results are roughly in line with those obtained by the Rule-
Based System in Tab. 3: the only surprising difference is in the level of recall, that is
much higher for the Rule-Based. The very low level of recall achieved by SVM has
to be further carefully analysed, in order to find a better trade-off between recall
and precision. Moreover, the higher recall achieved by the Rule-Based is probably
due also to the manual tuning process, that allowed a better set-up of the system.

Secondly, examining the results on the specific tasks, both the SVM and the
Rule-Based approaches showed roughly the same performance on all tasks, apart
from CD. Indeed, on the Comparable Document (CD) task SVM achieved cws
0.7174, while Rule-Based 0.8381. These results are similar to those obtained by
the other RTE systems. The CD task is thus in general easier than the others.
In fact, most of the CD pairs in the corpus reveal the same linguistic behaviours:
entailment is mainly characterized by simple lexical and syntactic variations that
can be easily captured by syntactic rules and lexical-semantic analysis. Therefore,
the use of simple word distance metrics between T and H together with a shallow
syntactic and semantic analysis appears to be well suited for the CD task. Our
system metrics were able to capture this kind of phenomenon adequately. In the
easiest case CD pairs could be successfully recognized by simple lexical-semantic
hints, as in:
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T : [A Union Pacific freight train hit five people.]

H: [A Union Pacific freight train struck five people.]

or by syntactic normalization:
T : [Ghazi Yawar, a Sunni Muslim who lived for years in Saudi Arabia, has been picked as president

of Iraq...]

H: [Yawer is a Sunni Muslim.]

Complex entailments, mixing syntactic and semantic variation were still cap-
tured by our system:

T : [Last July, a 12-year-old boy in Nagasaki - a city just north of Sasebo - was accused of
kidnapping, molesting and killing a 4-year-old by shoving him off the roof of a car garage.]

H: [Last year a 12-year-old boy in Nagasaki was accused of murdering a four-year-old boy by

pushing him off a roof.]

Notwithstanding, the CD dataset contains also cases of complex entailments
that need at least logical reasoning to be correctly handled, as in:
T : [Each hour spent in a car was associated with a 6 percent increase in the likelihood of obesity
and each half-mile walked per day reduced those odds by nearly 5 percent, the researchers found.]

H: [The more driving you do means you are going to weigh more – the more walking means you

are going to weigh less.]

Such cases could not be grasped by our systems.
Besides CD, the partly disappointing performances on all other tasks are

due to the more complex nature of the entailment, that often requires world
knowledge and some kind of reasoning, such in:

T : [On Feb . 1 , 1945 , the Polish government made Warsaw its capital , and an office for urban
reconstruction was set up ]

H: [Warsaw remained Poland’s capital after the war .]

As a consequence of the little knowledge we still have of the linguistic phe-
nomena underlying Textual Entailment, not only syntactic normalizations must
be better studied, but also other NLP area should be investigated for hints and
suggestions for solutions. Indeed, as underlined in the introduction, only 49%
of entailment pairs can be captured by syntax. Other resources and reasoning
tools should then be needed to cope with the problem: generic and verb lexical
resources, world and domain knowledge, logical reasoning and many other issues
should be better investigated.

6 Conclusions

Textual Entailment recognition is far from being a resolved problem and, as
any other complex NLP problem, it may be possible to significantly improve
results by applying machine learning techniques. In this paper we introduced
the distance feature space that, in our opinion, could overcome the problem of
a limited number of examples given for training. Results are far from being
satisfactory but we believe that this is a promising way to use robust machine
learning models in this very difficult problem.
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Abstract. Semantic entailment is the problem of determining if the
meaning of a given sentence entails that of another. We present a princi-
pled approach to semantic entailment that builds on inducing re-repre-
sentations of text snippets into a hierarchical knowledge representation
along with an optimization-based inferential mechanism that makes use
of it to prove semantic entailment. This paper provides details and anal-
ysis of the knowledge representation and knowledge resources issues en-
countered. We analyze our system’s behavior on the PASCAL text col-
lection1 and the PARC collection of question-answer pairs2. This is used
to motivate and explain some of the design decisions in our hierarchical
knowledge representation, that is centered around a predicate-argument
type abstract representation of text.

1 Introduction

Semantic entailment is the task of determining, for example, that the sentence:
“WalMart defended itself in court today against claims that its female employ-
ees were kept out of jobs in management because they are women” entails that
“WalMart was sued for sexual discrimination”.

Determining whether the meaning of a given text snippet entails that of an-
other or whether they have the same meaning is a fundamental problem in natu-
ral language understanding that requires the ability to abstract over the inherent
syntactic and semantic variability in natural language [1]. This challenge is at
the heart of many high level natural language processing tasks including Ques-
tion Answering, Information Retrieval and Extraction, Machine Translation,
and others that attempt to reason about and capture the meaning of linguistic
expressions.

Research in natural language processing in the last few years has concentrated
on developing resources that provide multiple levels of syntactic and semantic
analysis, resolve context sensitive ambiguities, and identify relational structures
and abstractions (from syntactic categories like pos tags to semantic categories
such as named entities).
1 http://www.pascal-network.org/Challenges/RTE/
2 The data is available at http://l2r.cs.uiuc.edu/∼cogcomp/data.php

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 261–286, 2006.
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However, we believe that in order to move beyond this level and support fun-
damental tasks such as inferring semantic entailment between two text snippets,
there needs to be a unified knowledge representation of the text that (1) provides
a hierarchical encoding of the structural, relational and semantic properties of
the given text, (2) is integrated with learning mechanisms that can be used to
induce such information from raw text, and (3) is equipped with an inferential
mechanism that can be used to support inferences over such representations.

Relying on general purpose knowledge representations — FOL, probabilistic
or hybrids — along with their corresponding general purpose inference algo-
rithms does not resolve the key issues of what to represent and how to derive
a sufficiently abstract representation and, in addition, may lead to brittleness
and complexity problems. On the other hand, relying only on somewhat imme-
diate correspondences between question and candidate answers, such as shared
words or shared named entities, has strong limitations. We avoid some of these
problems by inducing an abstract representation of the text which does not at-
tempt to represent the full meaning of text, but provides what could be seen as
a shallow semantic representation; yet, it is significantly more expressive than
extraction of straightforward phrase-level characteristics. We induce this into a
description-logic based language that is more restricted than FOL yet is expres-
sive enough to allow both easy incorporation of language and domain knowledge
resources and strong inference mechanisms.

Unlike traditional approaches to inference in natural language [2, 3, 4] our
approach (1) makes use of machine learning based resources in order to induce
an abstract representation of the input data, as well as to support multiple
inference stages and (2) models inference as an optimization process that provides
robustness against inherent variability in natural language, inevitable noise in
inducing the abstract representation, and missing information.

We present a principled computational approach to semantic entailment in
natural language that addresses some of the key problems encountered in tradi-
tional approaches – knowledge acquisition and brittleness. The solution includes
a hierarchical knowledge representation language into which we induce appropri-
ate representations of the given text and required background knowledge. The
other main element is a sound inferential mechanism that makes use of the in-
duced representation to determine an extended notion of subsumption, using an
optimization approach that supports abstracting over language variability and
representation inaccuracies. Along with describing the key elements of our ap-
proach, we present a system that implements it, and an evaluation of this system
on two corpora, PASCAL and PARC text collections.

1.1 General Description of Our Approach

Specifically, given two text snippets S (source) and T (target) where typically,
but not necessarily, S consists of a short paragraph and T a sentence, textual
semantic entailment is the problem of determining if S|=T , which we read as
“S entails T ”. This informally means that most people would agree that the
meaning of S implies that of T . More formally, we say that S entails T when
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some representation of T can be “matched” (modulo some meaning-preserving
transformations to be defined below) with some (or part of a) representation of
S, at some level of granularity and abstraction. The approach consists of the
following components:

A Description Logic based hierarchical knowledge representation, EFDL (Ex-
tended Feature Description Logic), [5], into which we re-represent the surface

LEMMA: Jazz
POS: NN

WORD: Jazz WORD: died
LEMMA: die
PHHEAD: VP

WORD: of
POS: IN

WORD: lung
LEMMA: lung
POS: NN

WORD: cancer
LEMMA: cancer
POS: NN
PHEAD: NP

WORD: on
POS: IN

WORD: Monday
LEMMA: Monday
POS: NNP
PHHEAD: NP

PHTYPE: NP
NETYPE: DISEASE

WORD: Montgomery
POS: NNP
PHHEAD: NP

PHTYPE: NP
NETYPE: PERSON

PHTYPE: PP

PHTYPE: PP

PHTYPE: NP
NETYPE: PROF.

PHTYPE: NP
NETYPE: TIME

PHTYPE: PP

WORD: Marion
POS: NNP

PHTYPE: NP
NETYPE: PROF. PHTYPE: NP

NETYPE: DISEASE

PHTYPE: PP

PHTYPE: PP

PHTYPE: NP
NETYPE: PROF.

N1 N2 N4 N5 N6 N7 N8 N9 N10

N13 N14

N15 N16 N17

N19 N20
N21

N24

N3

N12N11

PHTYPE: NP

PHTYPE: VP

PHTYPE: VP

PHTYPE: NP

PHTYPE: VP

N18

N22 N23

H0

H1

H2

ID ID

ID

ID

ID

ID

ID

ID

ID

S: Lung cancer put an end to the life of Jazz singer Marion Montgomery on Monday.
S2’: Jazz singer Marion Montgomery died of lung cancer on Monday.

S1’: Lung cancer killed Jazz singer Marion Montgomery on Monday.
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Fig. 1. Example of Re-represented Source & Target pairs as concept graphs. The orig-
inal source sentence S generated several alternatives including S′

1 and the sentence in
the figure (S′

2). Our algorithm was not able to determine entailment of the first alterna-
tive (as it fails to match in the extended subsumption phase), but it succeeded for S′

2.
The dotted nodes represent phrase level abstractions. S′

2 is generated in the first phase
by applying the following chain of inference rules: #1 (genitives): “Z’s W → W of Z”;
#2: “X put end to Y’s life → Y die of X”. In the extended subsumption, the system
makes use of WordNet hypernymy relation (“lung cancer” is-a “carcinoma”) and NP-
subsumption rule (“Jazz singer Marion Montgomery’” is-a “singer”). The rectangles
encode the hierarchical levels (H0, H1, H2) at which we applied the extended subsump-
tion. Also note that entailment follows even though the structure corresponding to “on
Monday” is not present in the target sentence, since “event happened on Monday”
entails “event happened”.
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level text, augmented with induced syntactic and semantic parses and word and
phrase level abstractions.

A knowledge base consisting of syntactic and semantic rewrite rules, written
in EFDL.
An extended subsumption algorithm which determines subsumption be-
tween EFDL expressions (representing text snippets or rewrite rules). “Ex-
tended” here means that the basic unification operator is extended to support
several word level and phrase level abstractions.

First, a set of machine learning based resources are used to induce the repre-
sentation for S and T . The entailment algorithm then proceeds in two phases:
(1) it incrementally generates re-representations of the original representation of
the source text S by augmenting it with heads of subsumed re-write rules, and
(2) it makes use of an optimization based (extended) subsumption algorithm to
check whether any of the alternative representations of the source entails the
representation of the target T . The extended subsumption algorithm is used
both in checking final entailment and in determining when and how to gener-
ate a re-representation in slightly different ways. Figure 1 provides a graphical
example of the representation of two text snippets, along with a sketch of the
extended subsumption approach to decide the entailment.

Along with the formal definition and justification developed here for our com-
putational approach to semantic entailment, our knowledge representation and
algorithmic method provide a novel solution that addresses some of the key is-
sues the natural language research community needs to resolve in order to move
forward towards higher level tasks of this sort. Namely, we provide ways to rep-
resent knowledge, either external or induced, at multiple levels of abstractions
and granularity, and reason with it at the appropriate level. The evaluation of
our approach is very encouraging and illustrates the significance of some of its
key contributions, while also exhibiting the key areas where significant progress
is needed – that of the rewrite rule knowledge base.

2 Algorithmic Semantic Entailment

Let R be a knowledge representation language with a well defined syntax and
semantics over any domain D. Specifically, we think of elements in R as expres-
sions in the language or, equivalently, as the set of interpretations that satisfy it
[6]. Let r be a mapping from a set of text snippets T to a set of expressions in
R. Denote the representations of two text snippets S, T , under this mapping by
rS , rT , respectively. Note that we will use the word expression and representation
interchangeably. Given the set of interpretations over D, let M be a mapping
from an expression in R to the corresponding set of interpretations it satis-
fies. For expressions rS , rT , the images of S, T under R, their model theoretic
representations thus defined are denoted M(rs), M(rt).

Conceptually, as in the traditional view of semantic entailment, this leads to
a well defined notion of entailment, formally defined via the model theoretic
view; traditionally, the algorithmic details are left to a theorem prover that uses
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the syntax of the representation language, and may also incorporate additional
knowledge in its inference. We follow this view, and use a notion of subsumption
between elements in R, denoted u � v, for u, v ∈ R, that is formally defined
via the model theoretic view — when M(u) ⊆M(v). Subsumption between rep-
resentations provides an implicit way to represent entailment, where additional
knowledge is conjoined with the source to “prove” the target.

However, the proof theoretic approach corresponding to this traditional view
is unrealistic for natural language. Subsumption is based on unification and
requires, in order to prove entailment, that the representation of T is entirely
embedded in the representation of S. Natural languages allow for words to be
replaced by synonyms, for modifier phrases to be dropped, etc., without affecting
meaning. An extended notion of subsumption is therefore needed which captures
sentence, phrase, and word-level abstractions.

Our algorithmic approach is thus designed to alleviate these difficulties in a
proof theory that is too weak for natural language. Conceptually, a weak proof
theory is overcome by entertaining multiple representations that are equivalent in
meaning. We provide theoretical justification below, followed by the algorithmic
implications.

We say that a representation r ∈ R is faithful to S if r and rS have the same
model theoretic representation, i.e., M(r) = M(rs). Informally, this means that
r is the image under R of a text snippet with the same meaning as S.

Definition 1. Let S, T be two text snippets with representations rS , rT in R.
We say that S|=T (read: S semantically entails T ) if there is a representation
r ∈ R that is faithful to S and that is subsumed by rT .

Clearly, there is no practical way to exhaust the set of all those representa-
tions that are faithful to S. Instead, our approach searches a space of faithful
representations, generated via a set of rewrite rules in our KB.

A rewrite rule is a pair (lhs, rhs) of expressions in R, such that lhs � rhs.
Given a representation rS of S and a rule (lhs, rhs) such that rS � lhs, the
augmentation of rS via (lhs, rhs) is the representation r′S = rS ∧ rhs.

Claim: The representation r′S generated above is faithful to S.

To see this, note that as expressions in R, r′S = rS ∧ rhs, therefore M(r′S) =
M(rS) ∩M(rhs). However, since rS � lhs, and lhs � rhs, then rS � rhs which
implies that M(rS) ⊆ M(rhs). Consequently, M(r′S) = M(rS) and the new
representation is faithful to S.

The claim gives rise to an algorithm, which suggests incrementally augment-
ing the original representation of S via the rewrite rules, and computing sub-
sumption using the “weak” proof theory between the augmented representation
and rT . Informally, this claim means that while, in general, augmenting the
representation of S with an expression rhs may restrict the number of inter-
pretations the resulting expression has, in this case, since we only augment the
representation when the left hand side lhs subsumes rS , we end up with a new
representation that is in fact equivalent to rS . Therefore, given a collection of
rules {(lhs � rhs)} we can chain their applications, and incrementally generate
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faithful representations of S. Consequently, this algorithm is a sound algorithm3

for semantic entailment according to Def. 1, but it is not complete. Its success
depends on the size and quality of the rule set4 applied in the search.

Two important notes are in order. First, since rewrite rules typically “modify”
a small part of a sentence representation (see Fig. 1), the augmented represen-
tation provides also a compact way to encode a large number of possible repre-
sentations. Second, note that while the rule augmentation mechanism provides
a justification for an algorithmic process, in practice, applying rewrite rules is
somewhat more complicated. The key reason is that many rules have a large fan-
out; that is, a large number of heads are possible for a given rule body. Examples
include synonym rules, equivalent ways to represent names of people (e.g., John
F. Kennedy and JFK), etc. We therefore implement the mechanism in two ways;
one process which supports chaining well, in which we explicitly augment the
representation with low fan-out rules (e.g., Passive-Active rules); and a second,
appropriate to the large fan-out rules. In the latter, we abstain from augmenting
the representation with the many possible heads but take those rules into ac-
count when comparing the augmented source with the target. For example, if a
representation includes the expression “JFK/PER”, we do not augment it with
all the many expressions equivalent to “JFK” but, when comparing it to a can-
didate in the target, such as “President Kennedy”, these equivalencies are taken
into account. Semantically, this is equivalent to augmenting the representation.
Instead of an explicit list of rules, the large fan-out rules are represented as a
functional black box that can, in principle, contain any procedure for deciding
comparisons. For this reason, this mechanism is called functional subsumption.
The resulting algorithmic approach is therefore:

(1) After inducing a representation for S and T , the algorithm incrementally
searches the rewrite rules in KB to find a rule with a body that subsumes the
representation of S. In this case, the head of the rule is used to augment the
representation of S and generate a new (equivalent) representation S′

i of S. KB
consists of syntactic and semantic rewrite rules expressed at the word, syntactic
and semantic categories, and phrase levels; the resulting new representations
capture alternative ways of expressing the surface level text.

(2) Representation S′
is are processed via the extended subsumption algorithm

against the representation of T . The notion of extended subsumption captures,
just like the rewrite rules, several sentence, phrase, and word-level abstractions.
The extended subsumption process is also used when determining whether a
rewrite rule applies.

Rewrite rules and extended subsumption decisions take into account relational
and structural information encoded in the hierarchical representation, which is

3 Soundness depends on a “correct” induction of the representation of the text; we do
not address this theoretically here.

4 The power of this search procedure is in the rules. lhs and rhs might be very different
at the surface level, yet, by satisfying model theoretic subsumption they provide
expressivity to the re-representation in a way that facilitates the overall subsumption.
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discussed below. In both cases, decisions are quantified as input to an optimiza-
tion algorithm that attempts to generate a “proof” that S entails T , and is
discussed later in the paper.

3 High-Level System Description

The full entailment system implements the algorithm described in Sec. 2. This
section provides a description of this system as well as some implementation-
driven deviations from the abstract algorithm.

First, sentence pairs are annotated with various machine learning tools and
parsed into the hierarchical representation described in Sec. 4 (denoted by
PARSE on the diagram in Fig. 2).

Functional Subsumption Rules

SUBSUME

EXPAND

Verb Phrase
Discourse Analysis
Modifier

KB:

Sentence Pair

KB:  Rewrite Rules

Result

PREPROCESS

PARSE

Fig. 2. System block diagram

The expansion described in Sec. 2 is subdivided into two stages: the first stage,
labeled PREPROCESS on the accompanying diagram, applies a set of semantic
analysis modules comprising rewrite rules that need only be applied once. Once
these have been applied, the second sub-stage expands the source sentence only
with rules from the Rewrite Rule knowledge base module. (The distinction be-
tween the rules in the semantic analysis modules and the rules in the Rewrite
Rule knowledge base module is explained in Sec. 3.1.) The preprocessing module
also uses heuristics to simplify complex predicate arguments.

The second expansion stage (EXPAND in the diagram) applies rewrite rules
to the source sentence, and may chain these rules over successive iterations. (Ex-
pansion terminates either when no new rules can be applied without duplicating
a previous application or after a fixed number of iterations).

After expansion, the system checks for subsumption (SUBSUME in the di-
agram) by comparing elements of the source and target sentences, generating
a cost solution for the comparison as described in Sec. 5, and comparing the
minimum cost to a threshold. In both the expansion and subsumption stages,
the extended subsumption knowledge base is used as necessary.
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Changes to the system can be realized by adding or removing semantic analy-
sis modules, by changing the subsumption algorithm, or by changing the weights
on those variables in the optimization formulation corresponding to the relevant
attribute/edge types in the representation and on the variables describing ap-
plications of different categories of rewrite rules.

3.1 Semantic Analysis Modules

The semantic analysis modules are essentially groupings of rewrite rules, sep-
arated from the more general rewrite rules because they deal with structural
principles such as tense and auxiliary verb constructions rather than more spe-
cific paraphrasing. They behave in most respects like the general rewrite rules
described in Sec. 5, except for the following distinctions:

1. They are applied to both S and T.
2. The Verb Processing module allows its rules to modify T by rewriting the

verb construction in T instead of simply expanding the original T, as de-
scribed in the Verb Processing Module section below.

3. These rules may not be chained indefinitely; either they add an attribute to
a node which is then preserved through all subsequent rule applications, or
they permanently simplify a multi-node structure to a simpler structure.

The system presently supports three semantic analysis modules: verb phrase
compression, discourse analysis, and modifier analysis. Note that we use Dis-
course Analysis to denote semantic analysis of interaction between predicates (a
refinement of the traditional denotation of relationships between sentences, as
such interactions could occur between predicates in different, as well as within,
sentences). The different semantic analysis modules depend on different levels
of structure and the corresponding rules are therefore phrased at different lev-
els of representation: verb phrase compression requires word order and part of
speech; discourse analysis requires full parse information and part of speech, and
modifier analysis requires full and shallow parse information and part of speech.

3.1.1 The Verb Phrase Module
The Verb Processing (VP) module rewrites certain verb phrases as a single verb
with additional attributes. It uses word order and part of speech information to
identify candidate patterns and, when the verbs in the construction in the sen-
tence match a pattern in the VP module, the verb phrase is replaced by a single
predicate node with additional attributes representing modality (MODALITY)
and tense (TENSE). Simple past and future tenses are detected and represented,
as are some conditional tenses.

The rules in the VP module are applied differently from those in other mod-
ules, allowing the sentence representation to be changed by substituting the
verb construction specified by the rule head for that specified by the rule body
(rather than simply expanding the sentence representation by adding the head
structure). This is permissible because the rules in this module have extremely
high precision, so few or no errors are introduced by these alterations.
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The VP module presently recognizes modal constructions, tense constructions,
and simple verb compounds of the form “VERB to VERB” (such as “manage to
enter”). In each case, in the functional subsumption step of rule application, the
first verb is compared to a list that maps verb lemmas to tenses and modifiers; for
example, in the verb phrase “has entered”, “has” is recognized as a tense auxiliary
and results in the attribute “TENSE: past” being added to the second verb’s
node. The “has” node is then eliminated and the graph structure corrected.

3.1.2 Discourse Analysis Module
The Discourse Analysis (DA) module detects the effects of an embedding pred-
icate on the embedded predicate. It uses the full parse tree to identify likely
candidate structures, then compares the embedding verb to a list mapping verbs
to MODALITY. Presently the main distinction is between “FACTUAL” and a
set of values that distinguish various types of uncertainty. This allows different
assumptions to be supported; for example, if we assume that when something is
said, it is taken as truth, we can treat the MODALITY value, “REPORTED”, as
entailing “FACTUAL”. The module attaches the appropriate MODALITY value
to the embedded verb node; if this attribute is not matched during subsumption,
subsumption fails.

3.1.3 Modifier Module
The Modifier module allows comparison of noun modifiers such as “all”, “some”,
“any”, “no”, etc. This module is important when two similar sentences differ in
the generality of one or more arguments of otherwise identical predicates. For
full effectiveness, this requires that the system determine whether the predicate
in question is upward or downward monotonic, i.e. whether the source target
entails more general or more specific cases. This problem is non-trivial and has
not yet been resolved for this system.

Instead, we assume that predicates are upward monotonic. For example, a
source sentence predicate with an argument modified by an adjective subsumes
an identical target predicate with the same argument without the modifying
adjective. This is non-reflexive, i.e. a target predicate with an argument having
an adjectival modifier will not be subsumed by an identical source predicate with
no adjectival modifier (or a modifier different in meaning).

3.2 Rewrite Rule Module

The Rewrite Rule module contains rules encoding paraphrase and logical rewrite
information. Paraphrase rules encode valid substitutions for one verb (-phrase)
with another (e.g. “hawked” may be replaced with “sold” given similar argument
structure); logical rules encode predicates that may be inferred from existing
predicates (e.g. if A sold B to C, then C bought B from A).

The Rewrite Rule module is implemented independently of the semantic anal-
ysis modules, and behaves as described in Sec. 2. Most rewrite rules require Se-
mantic Role Labeling (SRL) information (Sec. 4), though some use only word or-
der and the words. The Rewrite Rule knowledge base can be used independently
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of the other modules, but may benefit from them—e.g. VP module may compress
a tense construction, allowing a rewrite rule to fire. To avoid the obvious prob-
lem of potentially generating grammatically incorrect sentences, the following
restriction is imposed on rewrite rules that modify the node/edge structure of
the sentence representation: A rewrite rule encoding predicate-level information
must add a new node for the substituted predicate, connected to the relevant
arguments of the existing predicate matching the rule body.

A sentence is not read as a sequence of words; rather, it is read as a collection of
predicates. As such, it can be thought of as a set of trees whose roots (predicates)
do not overlap, but whose leaves (arguments) may be shared by more than one
predicate.

3.3 Variations of the Entailment System

By changing the weighting scheme of the cost function in the module that checks
for subsumption, it is possible to restrict the kinds of information available to
the system. For example, if only variables corresponding to words and SRL in-
formation are given non-zero weights, only rewrite rules using a subset of this
information and the information itself will be represented in the final cost equa-
tion. Any distinct information source may be given its own weight, thus allowing
different information sources to be given preference. At present, these weights
are found by brute force search; our current efforts are directed at learning these
weights more efficiently.

For the experimental evaluation of the system, we also tried a hybrid system
that used high-level semantic information and general rewrite rules, but which
used a relatively basic word level approach (LLM; see Sec. 7) to compare the
arguments of predicates.

4 Hierarchical Knowledge Representation

Our semantic entailment approach relies heavily on a hierarchical representation
of natural language sentences, defined formally over a domain D = 〈V ,A, E〉
which consists of a set V of typed elements, a set A of attributes of elements,
and a set E of relations among elements. We use a Description-Logic inspired
language, Extended Feature Description Logic (EFDL), an extension of FDL
[5] . As described there, expressions in the language have an equivalent repre-
sentation as concept graphs, and we refer to the latter representation here for
comprehensibility.

Nodes in the concept graph represent elements — words, (multiple levels of)
phrases (including arguments to predicates), and predicates. Attributes of nodes
represent properties of elements. Examples of attributes (they are explained in
more detail later) include {lemma, word, pos, predicate value, phtype,
phhead, netype, argtype, negation, modality, tense}. The first three
are word level, the next three are phrase level, netype is the named entity of a
phrase, argtype is the set of semantic arguments as defined in PropBank [7],
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negation is a negation attribute, modality encodes a proposition’s modality
(by tagging its main verb), and tense applies only to verbs. Only attributes
with non-null values need to be specified.

Relations (roles) between two elements are represented by labeled edges be-
tween the corresponding nodes. Examples of roles (again, explained in more
detail later) include: {before, arg0, . . . arg5}; before indicates the order
between two individuals, and arg0, . . . arg5 represent the relations between a
predicate (verb) and its argument.

Figure 1 shows a visual representation of a pair of sentences re-represented as
concept graphs. Concept graphs are used both to describe instances (sentence
representations) and rewrite rules. The expressivity of these differ — the body
and head of rules are simple chain graphs, for inference complexity reasons.
(Restricted expressivity is an important concept in Description Logics [8], from
which we borrow several ideas and nomenclature.)

Concept graph representations are induced via state of the art machine learn-
ing based resources such as a part-of-speech tagger [9], a syntactic parser [10],
a semantic parser [11, 12], a named entity recognizer 5, and a name coreference
system [13] with the additional tokenizer and lemmatizer derived from Word-
Net [14]. Rewrite rules were filtered from a large collection of paraphrase rules
developed in [15]. These are inference rules that capture lexico-syntactic para-
phrases, such as ”X wrote Y” synonymous with ”X is the author of Y”.

The rules are compiled into our language. Moreover, a number of non-lexical
rewrite rules were generated manually. Currently, our knowledge base consists
of approximately 300 inference rules.

4.1 Rule Representation

A rule is a pair (lhs, rhs) of concept graphs (lhs is the rule’s body, while rhs is
its head). These concept graphs are restricted in that they must be paths. This
restricts the complexity of the inference algorithm while keeping them useful
enough for our purposes.

lhs describes a structure to match in the sentence concept graph, while rhs
describes a new predicate (and related attributes and edges) to be added to the
sentence concept graph in case there is a match. rhs can also describe attributes
to add to one or more existing nodes without adding a new predicate, provided
no new edges are introduced. These restrictions ensure that the data represen-
tation always remains, from the subsumption algorithm’s perspective, a set of
overlapping trees.

Variables can be used in lhs so that we can specify which entities have
edges/attributes added by rhs. Rules thus allow modification of the original
sentence; e.g. we encode DIRT [15] rules as predicate-argument structures and
use them to allow (parts of) the original sentence to be re-represented via para-
phrase, by linking existing arguments with new predicates.

5 Named entity recognizer from Cognitive Computation Group, available at http://
l2r.cs.uiuc.edu/∼cogcomp
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5 Inference Model and Algorithm

This section describes how the extended subsumption process exploits the hier-
archical knowledge representation and how inference is modeled as optimization.

5.1 Modeling Hierarchy and Unification Functions

An exact subsumption approach that requires the representation of T be entirely
embedded in the representation of S′

i is unrealistic. Natural languages allow
words to be replaced by synonyms, modifier phrases to be dropped, etc., without
affecting meaning.

We define below our notion of extended subsumption, computed given two
representations, which is designed to exploit the hierarchical representation and
capture multiple levels of abstractions and granularity of properties represented
at the sentence, phrase, and word-level.

Nodes in a concept graph are grouped into different hierarchical sets denoted
by H = {H0, . . . , Hj} where a lower value of j indicates higher hierarchical level
(more important nodes). This hierarchical representation is derived from the
underlying concept graph and plays an important role in the definitions below.

We say that S′
i entails T if T can be unified into S′

i. The significance of
definitions below is that we define unification so that it takes into account both
the hierarchical representation and multiple abstractions.

Let V (T ), E(T ), V (S′
i), and E(S′

i) be the sets of nodes and edges in T and
S′

i, respectively. Given a hierarchical set H , a unification is a 1-to-1 mapping
U = (UV , UE) where UV : V (T ) �→ V (S′

i), and UE : E(T ) �→ E(S′
i) satisfying:

1. ∀(x, y) ∈ U : x and y are in the same hierarchical level.
2. ∀(e, f) ∈ UE : their sinks and sources must be unified accordingly. That

is, for n1, n2, m1, and m2 which are the sinks and the sources of e and f
respectively, (n1, m1) ∈ UV and (n2, m2) ∈ UV .

Let U(T, S′
i) denote the space of all unifications from T to S′

i. In our inference,
we assume the existence of a unification function G that determines the cost
of unifying pairs of nodes or edges. G may depend on language and domain
knowledge, e.g. synonyms, name matching, and semantic relations. When two
nodes or edges cannot be unified, G returns infinity. This leads to the definition
of unifiability.

Definition 2. Given a hierarchical set H, a unification function G, and two
concept graphs S′

i and T , we say that T is unifiable to S′
i if there exists a unifi-

cation U from T to S′
i such that the cost of unification defined by

D(T, S′
i) = min

U∈U(T,S′
i)

∑
Hj

∑
(x,y)∈U|x,y∈Hj

λjG(x, y)

is finite, where λj are some constants s.t. the cost of unifying nodes at higher
levels dominates those of the lower levels.
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Because top levels of the hierarchy dominate lower ones, nodes in both graphs are
checked for subsumption in a top down manner. The levels and corresponding
processes are:

Hierarchy set H0 corresponds to sentence-level nodes, represented by the
verbs in the text. The inherent set of attributes is {phtype, predicate value,
lemma}. In order to capture the argument structure at sentence-level, each verb
in S′

i and T has a set of edge attributes {argi, phtypei}, where argi and
phtypei are the semantic role label and phrase type of each argument i of the
verb considered [7].

For each verb in S′
i and T , check if they have the same attribute set and

argument structure at two abstraction levels:

1. The semantic role level (SRL attributes). eg: arg0 verb arg1 : [Contrac-
tors]/arg0 build [houses]/arg1 for $100,000.

2. The syntactic parse level (parse tree labels). Some arguments of the verb
might not be captured by the semantic role labeler (SRL); we check their
match at the syntactic parse level. eg: np verb np pp : [Contractors]/np build
[houses]/np [for $100,000]/ pp.

At this level, if all nodes are matched (modulo functional subsumption), the cost
is 0, otherwise it is infinity.

Hierarchy set H1 corresponds to phrase-level nodes and represents the seman-
tic and syntactic arguments of the H0 nodes (verbs). If the phase-level nodes are
recursive structures, all their constituent phrases are H1 nodes. For example, a
complex noun phrase consists of various base-NPs. Base-NPs have edges to the
words they contain.

The inference procedure recursively matches the corresponding H1 nodes in
T and S′

i until it finds a pair whose constituents do not match. In this situation,
a Phrase-level Subsumption algorithm is applied. The algorithm is based on
subsumption rules that are applied in a strict order (as a decision list) and
each rule is assigned a confidence factor. The algorithm makes sure two H1
nodes have the same phtype, but allows other attributes such as netype to be
optional. Each unmatched attribute results in a uniform cost.

Hierarchy set H2 corresponds to word-level nodes. The attributes used here
are: {word, lemma, pos}. Unmatched attributes result in a uniform cost.

Figure 1 exemplifies the matching order between S′
i and T based on constraints

imposed by the hierarchy.

5.2 Inference as Optimization

We solve the subsumption problem by formulating an equivalent Integer Linear
Programming (ILP) problem6. An ILP problem involves a set of integer variables
6 Despite the fact that this optimization problem is NP hard, commercial pack-

ages such as Xpress-MP (by Dash Optimization, http://www.dashoptimization.com)
have very good performance on sparse problems. See [16, 17] for details on modeling
problems as ILP problems.
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{vi} and a set of linear equality or inequality constraints among them. Each
variable vi is associated with a cost ci, and the problem is to find an assignment
to the variables that satisfies the constraints and minimizes

∑
i civi.

To prove S � T , we first start with the graph S (the initial graph). Then we
extend S by adding the right hand sides of applicable rules. This is repeated up to
a fixed number of rounds and results in an expanded graph S′

d. The formulation
allows us to solve for the optimal unification from T to S′

d that minimizes the
overall cost.

To formulate the problem this way, we need a set of variables that can repre-
sent different unifications from T to S′

d, and constraints to ensure the validity of
the solution, i.e. that the unification does not violate any nonnegotiable prop-
erty. We explain this below. For readability, we sometimes express constraints
in a logic form that can be easily transformed to linear constraints.

5.2.1 Representing Unification
We introduce Boolean variables u(n, m) for each pair of nodes n ∈ V (T ) and
m ∈ V (S′

d) in the same hierarchical level, and u(e, f) for each pair of edges
e ∈ E(T ) and f ∈ E(S′

d) in the same level.
To ensure that the assignment to the matching variables represents a valid

unification from T and S′
d, we need two types of constraints. First, we ensure

the unification preserves the node and edge structure. For each pair of edges e ∈
E(T ) and f ∈ E(S′

d), let ni, nj , mk, and ml be the sources and the sinks of e and
f respectively. Then u(e, f) ⇒ u(ni, mk)

∧
u(nj , ml). Finally, to ensure that the

unification is a 1-to-1 mapping from T to S′
d, ∀ni ∈ V (T )

∑
mj∈S′

d
u(ni, mj) = 1,

and ∀mj ∈ V (S′
d)
∑

ni∈T u(ni, mj) ≤ 1.

5.2.2 Finding a Minimal Cost Solution
We seek the unification with a minimum (and, of course, finite) cost:

∑
Hj∑

u(x,y)|x,y∈Hj
λjG(x, y)u(x, y), where λj is the constant and G the cost of unifi-

cation as we explained in the previous sections. The minimal subgraph S′
i of S′

d

that T is unified to is also the minimal representation of S that incurs minimal
unification cost.

6 Previous Work

Knowledge representation and reasoning techniques have been studied in NLP
for a long time [2, 3, 4]. Most approaches relied on mapping to a canonical First
Order Logic representations with a general prover and without using acquired
rich knowledge sources.

Significant development in NLP, specifically the ability to acquire knowledge
and induce some level of abstract representation could, in principle, support more
sophisticated and robust approaches. Nevertheless, most modern approaches de-
veloped so far are based on shallow representations of the text that capture
lexico-syntactic relations based on dependency structures and are mostly built
from grammatical functions in an extension to keyword-base matching [18]. Some
systems make use of some semantic information, such as WordNet lexical chains
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[19], to slightly enrich the representation. Other have tried to learn various logici-
cal representations [20]. However, none of these approaches makes global use of a
large number of resources as we do, or attempts to develop a flexible, hierarchical
representation and an inference algorithm for it, as we present here.

Recently, as part of the PASCAL effort, more thought has been given to rep-
resentation and inference with them. While most of the approaches presented
there are still relatively shallow, some are more involved, including Glickman
et. al [21] and Raina et. al [22]. The former provides an attempt to formalize
the semantic entailment problem probabilistically, but the corresponding imple-
mentation focuses mostly on lexical level processing techniques. The latter is
more similar to ours. Specifically, it is more related to one of our earlier attempt
to model sentence equivalence via tree mapping [23]. Similar to our approach
they use a large number of resources (such as a dependency parser, WordNet
semantic information, and a PropBank semantic parser) to enrich a graph-based
representation of source and target sentences. This information is then used to
perform a number of lexico-syntactic and semantic transformations that would
potentially lead to the source-target match. However, in contrast to our system,
they do not attempt to formalize their approach.

7 Experimental Evaluation

We tested our approach on two corpora: a set of question-answer pairs provided
by the PARC AQUAINT team7, and the PASCAL challenge data set8.

We first describe the performance of the system on the PARC data set, orga-
nizing the rewrite rules into separate components and examining the contribu-
tion of each. We then examine the system’s performance on the PASCAL data
set, and the need for different weights in the optimization function for this cor-
pus. In the tables in this section, all numerical results represent the accuracy
of the system when predictions are made for all examples in the corpus under
consideration, i.e. for a recall of 100%.

7.1 Experiments Using the PARC Data Set

In this set of experiments, we tested our approach on a collection of question-
answer pairs developed by Xerox PARC for a pilot evaluation of Knowledge-
Oriented Approaches to Question Answering under the ARDA-AQUAINT pro-
gram. The PARC corpus consists of 76 Question-Answer pairs annotated as
“true”, “false” or “unknown” (and an indication of the type of reasoning re-
quired to deduce the label). The question/answer pairs provided by PARC are
designed to test different cases of linguistic entailment, concentrating on exam-
ples of strict and plausible linguistic (lexical and constructional) inferences, and
indicating whether each involves some degree of background world knowledge.
The focus is on inferences that can be made purely on the basis of the meaning
7 The data is available at http://l2r.cs.uiuc.edu/∼cogcomp/data.php
8 http://www.pascal-network.org/Challenges/RTE/
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of words and phrases. The questions are straightforward and therefore easily
rewritten (by hand) into statement form.

For evaluation reasons, we used only two labels in our experiments , “true”
and “false”, corresponding to “S entails T” and “S does not entail T”. The
“unknown” instances were classified as “false”. Of these 76 sentence pairs, 64
were perfectly tagged by our Semantic Role Labeler (SRL), and were used as a
second noise-free test set to evaluate our system under “ideal” conditions.

This section illustrates the contributions of high-level (semantic) analysis
modules to system performance and compares the full entailment system with
the baseline LLM — lexical-level matching based on a bag-of-words represen-
tation with lemmatization and normalization. For each semantic analysis com-
ponent we give one or more examples of sentence pairs affected by the new
version/component. Finally, we present a summary of the performance of each
system on the noise-free (perfect) and noisy (full) data sets.

The full system uses Semantic Role Labeling, full parse and shallow parse
structure, which allows use of all semantic analysis modules. This version of
the system, labeled “SRL+deep”, also uses Named Entity annotation from our
Named Entity Recognizer (NER).

7.1.1 LLM
The LLM system ignores a large set of stopwords— including some common verbs,
such as “go” — which for certain positive sentence pairs allows entailment
when the more sophisticated system requires a rewrite rule to map from the pred-
icate in S to the predicate in T. For example: since the list of stopwords includes
forms of “be”, the following sentence pair will be classified “true” by LLM, while
the more sophisticated system requires a KB rule to link “visit” to “be (in)”:
S: [The diplomat]/arg1 visited [Iraq]/arg1 [in September]/am tmp
T: [The diplomat]/arg1 was in [Iraq]/arg2

Of course, LLM is insensitive to small changes in wording. For the following
sentence pair, LLM returns “true”, which is clearly incorrect:
S: Legally, John could drive.
T: John drove.

7.1.2 SRL + Deep Structure
The entailment system without the high-level semantic modules correctly labels
the following example, which is incorrectly labeled by the LLM system:
S: No US congressman visited Iraq until the war.
T: Some US congressmen visited Iraq before the war.

The entailment system includes the determiners “no” and “some” as modifiers
of their respective entities; subsumption fails at the argument level because these
modifiers don’t match. (Note: this does not require the MODIFIER module, as
in this instance, the lexical tokens themselves are different.)

However, the new system also makes new mistakes:
S: The room was full of women.
T: The room was full of intelligent women.
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The LLM system finds no match for “intelligent” in S, and so returns the correct
answer, “false”. However, the SRL+deep structure system allows unbalanced T
adjective modifiers, assuming that S must be more general than T, and allows
subsumption.

7.1.2.1 Verb Phrase (VP) Module. The Verb Phrase module is beneficial when
two similar sentences are distinguished by a modal construction.

In the example below, the VP recognizes the modal construction and adds the
modifying attribute “MODALITY: potential” to the main verb node, “drive”:
S: Legally, John could drive.
T: John drove.

Subsumption in the entailment system then fails at the verb level, making
entailment less likely.

This module also acts as an enabler for other resources (such as the Knowledge
Base). This may result in a decrease in performance when those modules are not
present, as it corrects T sentences that may have failed subsumption in the more
restricted system because the auxiliary verb was not present in the corresponding
S sentence:
S: Bush said that Khan sold centrifuges to North Korea.
T: Centrifuges were sold to North Korea.

The system without the VP module returns the correct answer, “false”, for
this example, but for the wrong reason: SRL generates a separate predicate
frame for “were” and for “sold” in T, and there is no matching verb for “were”
in S.

When the VP module is added, the auxiliary construction in T is rewritten
as a single verb with tense and modality attributes attached; the absence of the
auxiliary verb means that SRL generates only a single predicate frame for “sold”.
This matches its counterpart in S, and subsumption succeeds, as the qualifying
effect of the verb “said” in S cannot be recognized without the deeper parse
structure and the Discourse Analysis module.

On the PARC corpus, the net result of applying the VP module when the
KB is not enabled is either no improvement or a decrease in performance, due
to the specific mix of sentences. However, the importance of such a module to
correctly identify positive examples becomes evident when the knowledge base
is enabled, as the performance jumps significantly over that of the same system
without VP enabled.

7.1.2.2 Discourse Analysis (DA) Module. The following example highlights
the importance of the way an embedded predicate is affected by the embedding
predicate. In this example, the predicate “Hanssen sold secrets to the Russians”
is embedded in the predicate “The New York Times reported...”.
S: The New York Times reported that Hanssen sold FBI secrets to the Russians and
could face the death penalty.
T: Hanssen sold FBI secrets to the Russians.

Our system identifies the following verb frames in S and T:
S-A: [The New York Times]/arg0 reported [that Hanssen sold FBI secrets to the Rus-
sians... ]/arg1
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S-B: [Hanssen]/arg0 sold [FBI secrets]/arg1 to [the Russians]/arg3
T-A: [Hanssen]/arg0 sold [FBI secrets]/arg1 to [the Russians]/arg3

During preprocessing, our system detects the pattern “[VERB] that [VERB]”,
and classifies the first verb as affecting the confidence of its embedded verb.
The system marks the verb (predicate) “sold” in S with attribute and value
“MODALITY: REPORTED”. Thus the subsumption check determines that en-
tailment fails at the verb level, because by default, verbs are given the attribute
and value “MODALITY: FACTUAL”, and the MODALITY values of the “sold”
nodes in S and T do not match. This is in contrast to the baseline LLM system,
which returns the answer “true”.

The next example demonstrates that the implementation of this embedding
detection is robust enough to handle a subtly different sentence pair: in this case,
the sentence structure “Hanssen, who sold...” indicates that the reader should
understand that it is already proven (elsewhere) that Hanssen has sold secrets:
S: The New York Times reported that Hanssen, who sold FBI secrets to the Russians,
could face the death penalty.
T: Hanssen sold FBI secrets to the Russians.

Our system identifies the following verb frames in S and T (using the full
parse data to connect “who” to “Hanssen”):
S-A: [The New York Times]/arg0 reported [that Hanssen, who sold FBI secrets to the
Russians... ]/arg1
S-B: [Hanssen]/arg0 sold [FBI secrets]/arg1 to [the Russians]/arg3
T-A: [Hanssen]/arg0 sold [FBI secrets]/arg1 to [the Russians]/arg3

During preprocessing, the system does not detect an embedding of “sold”
in “reported”, and so does not attach the attribute and value “MODALITY:
REPORTED” to the verb “sold” in S. During the subsumption check, the “sold”
verbs now match, as both are considered factual.

7.1.2.3 Modifier (Mod) Module. In the experimental results summarized below,
adding the Modifier module does not improve performance, because in all the
PARC examples involving modifiers, a different modifier in S and T corresponds
to a negative label.

However, the modifier module will correctly analyze the following sentence
pair, which is a reordered pair from the PARC corpus:
S: All soldiers were killed in the ambush.
T: Many soldiers were killed in the ambush.

The default rule — non-identical argument modifiers cause subsumption to
fail — is incorrect here, as S entails T. The Modifier module correctly identifies
the entailment of “many” by “all”, and subsumption will succeed.

Table 1. System’s performance on the PARC corpus with different optimization
weighting schemes

Corpus Version Baseline (LLM) Weighting Scheme
PARC scheme PASCAL scheme

Perfect 59.38 88.21 57.81
Full 61.84 77.63 56.58
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Table 2. System’s performance obtained for the PARC question-answer pairs with
perfect SRL. This corresponds to 64 question-answering pairs. N/A indicates that the
module could not be used with the corresponding system configuration.

Module without KB with KB
LLM SRL + Deep LLM SRL + Deep

Base 59.38 62.50 62.50 68.75
+ VP N/A 62.50 N/A 75.00
+ DA N/A 71.88 N/A 82.81
+ Mod N/A 71.88 N/A 82.81

Table 3. System’s performance obtained for the PARC question-answer pairs on the
full data set. N/A indicates that no knowledge information could be used.

Module without KB with KB
LLM SRL+Deep LLM SRL+Deep

Base 61.84 61.84 64.47 67.11
+ VP N/A 60.52 N/A 69.74
+ DA N/A 68.42 N/A 77.63
+ Mod N/A 68.42 N/A 77.63

7.1.3 Experimental Results: PARC
We present the results of the experiments on the PARC data set with two differ-
ently weighted inference formulations, which show that for the PARC data set,
a formulation where weights on higher levels in the hierarchy described in Sec. 5
dominate performed better than a formulation favoring lower-level hierarchy
elements.

Table 1 shows the overall performance of the system on the PARC data set for
two sets of weights on the final inference formulation, one suited to the PARC
data set and one suited to the PASCAL data set. In both cases the weights were
determined empirically and the KB of rewrite rules was enabled.

The breakdown of the contributions of different modules are presented in
Table 2 and 3. We compare the baseline and the full entailment system (SRL+
Deep). Table 2 presents the evaluation of the system with and without the KB in-
ference rules, comparing the baseline and the full entailment system (SRL+Deep)
when SRL is perfect, i.e. considering only examples on which our SRL tool gives
correct annotation. Table 3 presents the evaluation when the entire dataset is
used, including those examples on which the SRL tool makes mistakes.

The results obtained with perfect semantic argument structure (perfect SRL)
are provided here to illustrate the advantages of the hierarchical approach, as
noise introduced by SRL errors can obscure the effects of the different levels of
the hierarchical representation/subsumption. The system behaves consistently,
showing improvement as additional hierarchical structure and additional seman-
tic analysis resources are added. These results validate the benefit of the hierar-
chical approach.

7.2 Experiments Using the PASCAL Data Set

In this experiment we tested our approach on a set of sentence pairs developed
for the PASCAL challenge. As the system was designed to test for semantic
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entailment, the PASCAL test data set is well suited, being composed of 800
source — target sentence pairs, with a truth value indicating whether the source
logically entails the target. The set is split into various tasks: cd (Comparable
Documents), ie (Information Extraction), ir (Information Retrieval), mt (Ma-
chine Translation), pp (Prepositional Paraphrases), qa (Question Answering),
and rc (Reading Comprehension). The typical sentence size varies from 11 (ir
task) to 25 (mt task) words.

7.2.1 Experimental Results: PASCAL
Table 4 shows the system’s performance. We first used the optimization func-
tion weighting scheme that was most successful for the PARC dataset (labeled
“PARC scheme”); the resulting performance was poor. Error analysis revealed
many mistakes at the predicate-argument level, probably due to the greater com-
plexity of the PASCAL corpus. This led us to try other weighting schemes that
emphasized lower-level information such as lexical tokens and word order; the
most successful of these yielded the results labeled “PASCAL scheme”.

Table 4. System’s performance obtained for each experiment on the PASCAL corpus
and its subtasks

System Overall Task
CD IE IR MT PP QA RC

PARC Scheme 51.38 54.67 50.00 51.11 50.83 54.00 50.00 50.00
PASCAL Scheme 58.63 82.67 54.17 53.33 51.67 50.00 53.85 53.57

LLM 55.00 84.00 45.83 44.44 50.00 42.00 53.85 48.57

The system using the PASCAL weighting scheme does significantly better
than the baseline LLM system, which shows evidence in some categories of neg-
ative correlation between matched keywords in the source and target sentences
and entailment of T by S. Both do significantly better than the system using the
PARC weighting scheme. Clearly, for the PASCAL corpus, higher level informa-
tion (such as predicate-argument structure) is unhelpful to the system (reasons
for this are suggested in the Error Analysis and Discussion sections below). How-
ever, the optimization formulation is robust enough to allow reasonably good
performance even on this corpus.

7.2.2 Error Analysis
Error analysis of the system’s output for the PASCAL test corpus revealed that
the high-level semantic resources had a high error rate. These errors lead to
missing or misleading information that is then included in the final subsumption
step. This section gives some examples of these errors.

7.2.2.1 Rewrite Rules. One major problem is the very incomplete coverage
of our Knowledge Base of rewrite rules relating verb phrases. There are many
entailment pairs in which very different verbs or verb phrases must be identified
as having the same meaning to correctly determine subsumption, such as:
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S: Vanunu converted to Christianity while in prison, and has been [living]/mainverb
in an anglican cathedral in Jerusalem since his release on April 21.
T: A convert to Christianity, Vanunu has [sequestered himself ]/mainverb at a
Jerusalem church since he was freed on April 21.

Our system relies on our Knowledge Base of rewrite rules to allow modification
of the source sentence and therefore allow it to match the corresponding part of
the target sentence, and this incompleteness is a significant problem.

We are confident that the new VerbNet resources soon to be available will
provide a good resource for more complete rewrite rules.

7.2.2.2 Semantic Role Labeling. The high-level resources depend heavily on the
Semantic Role Labeler correctly identifying predicates (verbs) and arguments.
While the SRL’s performance on each element of a given verb frame is good
— e.g. approaching 90% f-value for identifying ARG0 and ARG1 (similar to
Subjects and Direct Objects) — it often makes mistakes on one or more ele-
ments in a given sentence. Moreover, when arguments are complex noun phrases
(containing more than one base Noun Phrase), the system’s higher-level analysis
modules use heuristics to find the main entity of the argument; these heuristics
introduce additional errors.

Study of a 10% sample of the test corpus suggests that SRL or the supporting
argument analysis module makes a “significant” error (i.e., one that will interfere
with subsumption) on about 58% of all cases. The following examples indicate
the types of errors SRL and its supporting module makes.

Incorrect Verb:
In the next example, the SRL tags ’articulate’ in T as a verb, and generates

a redundant verb frame.
S: Clinton [is]/mainverb a very charismatic person.
T: Clinton [is]/mainverb [articulate]/mainverb.

This adds incorrect predicate-argument information to the Target graph and
interferes with subsumption.

Missing Argument:
In the following example, SRL correctly identifies all constituents of the verb

frames for ’said’ and ’wearing’ in both S and T . However, SRL finds the subject
of “carry” in T but not in S:
S: Witnesses said the gunman was wearing gray pants and a tan jacket and was [car-
rying]/mainverb [a gray bag]/arg1.
T: Witnesses said [the gunman]/arg0 was wearing gray pants and a tan jacket
COMMA and [carrying]/mainverb [a gray bag]/arg1.

This leads to high-level information being absent from S that is present in T,
and interferes with subsumption.

Incorrect Argument Type:
In the next example, SRL mislabels a key argument of the main verb in T:

S: [Satomi Mitarai]/arg1 [died]/mainverb of blood loss.
T: [Satomi Mitarai]/am ext [bled]/mainverb to death.
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This leads to mismatched high-level information in S and T, interfering with
subsumption.

Incorrect Argument Simplification:
In the next example, the preprocessing module that simplifies complex argu-

ments oversimplifies a key argument for the verb frame ’[threatens to] dismiss’:
S: [Israeli Prime Minister Ariel Sharon]/arg0 threatened to [dismiss]/mainverb [cab-
inet ministers]/arg1 who don ’t support his plan to withdraw from the Gaza Strip.
T: [Israeli Prime Minister Ariel Sharon]/arg0 threatened to [fire]/mainverb [cabinet
opponents]/arg1 of his Gaza withdrawal plan .

This oversimplification results in mismatched arguments in S and T, and
impedes subsumption.

7.2.2.3 Verb Phrase Compression. The verb phrase compression module re-
quires a good mapping from compressible verb phrase structures — such as
auxiliary and modal verb structures, and structures where one verb modifies
another (like “manages to enter”) — to their compressed counterparts.

As with the PARC corpus, this module does not have a marked effect in
isolation; rather, it potentially enables better subsumption between verb phrases
that differ mainly in structure. In the last example, for instance, the VP module
replaces the structure “threaten to dismiss” with the verb “dismiss” plus an
associated MODALITY attribute “POTENTIAL”.

7.2.2.4 Discourse Analysis. The Discourse Analysis module detects embedding
structures, and is useful when the embedding structure affects the truth value of
the embedded predicate. However, there are few such cases in the PASCAL cor-
pus: for example, all “reported” structures are considered true (whereas PARC
considers them “unknown”, which our system treats as “false”). For example:
S: A spokeswoman said there were no more details available.
T: No further details were available.

In the PARC corpus, this sentence pair would get the label “UNKNOWN”; in
PASCAL, it is considered “TRUE”. As such, there is no advantage in activating
the DA module over simply assuming “TRUE”, as the “reported” embedding is
the predominant case, with few other embedding constructions.

7.2.2.5 Modifier Analysis. The Modifier Analysis module works at the argu-
ment level, and is mainly of use when the two sentences being compared are
similar. There are very few cases in the PASCAL corpus where such distinctions
are important (i.e., when an argument subtype differs in otherwise identical
predicate-argument pattern in S and T). Hence, this module has little effect.

The following examples show how the PASCAL weighted optimization model
compares to the baseline LLM system.

Example 1:
S: “A militant group in Iraq is holding seven foreign truck drivers.”
T: “The militant group said it had released the Iraqi driver.”

In this example, LLM matches the majority of (non-stop-) words in T with
words in S, and gives it the incorrect label “TRUE”. However, the weighted
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optimization function takes into account other low level information such as
word order, and correctly identifies this example as a case where S does not
entail T.

The weighting scheme for the PASCAL data set does not give special weight
to elements such as numbers; this can result in false positives:

Example 2:
S: “Jennifer Hawkins is the 21-year-old beauty queen from Australia.”
T: “Jennifer Hawkins is Australia’s 20-year-old beauty queen.”

Our system matches almost all the key words in T with those in S; as num-
bers do not carry more weight than other word elements, our system allows
subsumption, resulting in a false positive. LLM makes the same error.

7.3 Discussion

The results obtained for the different corpora, and the need for different weight-
ing schemes for the optimization function used to resolve subsumption, indicate
that the system can adapt to different corpora if the correct weights are learned.
At present, these weights are not learned, but set by trial and error; devising
appropriate learning mechanisms must be the next focus of research.

This section describes the way the optimization function is set up and how
the weighting schemes differ for the two corpora.

7.3.1 The Optimization Function
The hierarchical optimization function described in Sec. 5 is realized as three
levels in these experiments:

1. Full predicate-argument information;
2. An intermediate level of information, using phrase level nodes in the concept

graph representation;
3. A basic level of information using word-level information.

The function optimized in the inference step of the algorithm represents with
weighted variables both the attributes and edges that encode this hierarchical
information and the rules applied by the various knowledge modules.

The optimization problems formulated by the system for the two data sets are
of the same form as they represent all three levels in each. However, we found
empirically that different weights for some of the variables gave the best perfor-
mance for the two data sets (meaning the weights on the variables associated
with rule application and levels of representation).

While these weights can be learned, we got the best results from setting them
by hand. For the PARC data set, weights were balanced between all three levels,
while for the PASCAL data set, the weights for the third level dominated.

7.3.2 The Need for Different Weighting Schemes
The need for the different weighting schemes is due to the greater complex-
ity of the sentences in the PASCAL corpus, which have a number of relevant
characteristics:
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1. Many sentences are more complex in structure, with arguments of predicates
widely separated from their predicates; this reduces SRL performance.

2. Many sentences have multiple predicates; particularly when T has multiple
predicates, this increases the chance that an SRL error is made and therefore
impedes entailment.

3. Many sentence pairs require verb phrase recognition and paraphrasing. Rules
for making the appropriate substitution are hard to generate and apply, and
SRL performance on recognizing verb phrase predicates is poorer than on
single- verb predicates.

4. Many sentence pairs require complex “world knowledge”, i.e. reasoning re-
sources that extend beyond paraphrasing and even simple predicate-level
inference (A left B ⇒ A was in/at B).

The error analysis detailed above indicates that the elements of our system that
yield high-level information about predicates and arguments are not yet mature
enough to handle many of the complexities of the PASCAL data set. It makes
sense, then, that in the optimization formulation for the PASCAL data set,
variables relating to the rules/resources from level 1 are not very significant,
and those representing more general (low-level) features are more useful; in the
formulation for the PARC data set, however, the variables relating to stricter,
higher-level features/rule applications are more relevant (given that the sentences
are typically very similar, and the amount of information to be gained from
lower-level features is small).

7.4 Summary

The entailment system is flexible enough to handle two very different corpora
by using different weighting schemes for the optimization function that resolves
subsumption. In effect, the system emphasizes lower-level information (such as
lexical tokens and word order) for the harder PASCAL corpus, as the accu-
racy and coverage of higher-level information (such as the predicate-argument
structure) is poor. For the simpler PARC corpus, higher level resources perform
well and provide useful information; the weighting scheme for the optimization
function for this corpus reflects this increased relevance.

Future work will involve improving the knowledge base using resources such
as VerbNet, learning weights for the optimization functions via machine learning
techniques, and improving the accuracy of key system resources. These should
improve the value of the higher-level information and allow efficient optimization
of the coefficients in the hierarchical optimization function, improving perfor-
mance on harder corpora such as PASCAL.

8 Conclusions and Future Work

This paper presents a principled, integrated approach to semantic entailment.
We developed an expressive knowledge representation that provides a hierar-
chical encoding of structural, relational and semantic properties of the text and
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populated it using a variety of machine learning based tools. An inferential mech-
anism over a knowledge representation that supports both abstractions and sev-
eral levels of representations allows us to begin to address important issues in
abstracting over the variability in natural language. Our preliminary evaluation
is very encouraging, yet leaves a lot to hope for. Improving our resources and
developing ways to augment the KB are some of the important steps we need
to take. Beyond that, we intend to tune the inference algorithm by incorporat-
ing a better mechanism for choosing the appropriate level at which to require
subsumption. Given the fact that we optimize a linear function, it is straight
forward to learn the cost function. Moreover, this can be done in such a way
that the decision list structure is maintained.
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Abstract. This paper describes the Bar-Ilan system participating in
the Recognising Textual Entailment Challenge. The paper proposes first
a general probabilistic setting that formalizes the notion of textual en-
tailment. We then describe a concrete alignment-based model for lexical
entailment, which utilizes web co-occurrence statistics in a bag of words
representation. Finally, we report the results of the model on the Recog-
nising Textual Entailment challenge dataset along with some analysis.

1 Introduction

Many Natural Language Processing (NLP) applications need to recognize when
the meaning of one text can be expressed by, or inferred from, another text.
Information Retrieval (IR), Question Answering (QA), Information Extraction
(IE), text summarization and Machine Translation (MT) evaluation are exam-
ples of applications that need to assess this semantic relationship between text
segments. The Recognising Textual Entailment (RTE) task ([8]) has recently
been proposed as an application independent framework for modeling such in-
ferences. Within the applied textual entailment framework, a text t is said to
entail a textual hypothesis h if the truth of h can be most likely inferred from t.

Textual entailment indeed captures generically a broad range of inferences
that are relevant for multiple applications. For example, a QA system has to
identify texts that entail a hypothesized answer. Given the question “Does John
Speak French?”, a text that includes the sentence “John is a fluent French
speaker” entails the suggested answer “John speaks French.” In many cases,
though, entailment inference is uncertain and has a probabilistic nature. For
example, a text that includes the sentence “John was born in France.” does not
strictly entail the above answer. Yet, it is clear that it does increase substantially
the likelihood that the hypothesized answer is true.

The uncertain nature of textual entailment calls for its explicit modeling in
probabilistic terms. We therefore propose a general generative probabilistic set-
ting for textual entailment, which allows a clear formulation of probability spaces
and concrete probabilistic models for this task. We suggest that the proposed
setting may provide a unifying framework for modeling uncertain semantic in-
ferences from texts.
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An important sub task of textual entailment, which we term lexical entailment,
is recognizing if the lexical concepts in a hypothesis h are entailed from a given
text t, even if the relations which hold between these concepts in h may not be
entailed from t. This is typically a necessary, but not sufficient, condition for
textual entailment. For example, in order to infer from a text the hypothesis
“Chrysler stock rose,” it is a necessary that the concepts of Chrysler, stock and
rise must be inferred from the text. However, for proper entailment it is further
needed that the right relations would hold between these concepts. In this paper
we demonstrate the relevance of the general probabilistic setting for modeling
lexical entailment, by devising a preliminary alignment-based model that utilizes
document co-occurrence probabilities in a bag of words representation.

Although our proposed lexical system is relatively simple, as it doesn’t rely on
syntactic or other deeper analysis, it nevertheless achieved an overall accuracy
of 59% and an average precision of 0.57. The system did particularly well on the
Comparable Documents (CD) task achieving an accuracy of 83%. These results
may suggest that the proposed probabilistic framework is a promising basis for
improved implementations that incorporate richer information.

2 A Probabilistic Setting for Textual Entailment

2.1 Motivation

A common definition of entailment in formal semantics ([5]) specifies that a text t
entails another text h (hypothesis, in our terminology) if h is true in every circum-
stance (possible world) in which t is true. For example, in examples 1 and 3 from
Table 1 we’d assume humans to agree that the hypothesis is necessarily true in any
circumstance for which the text is true. In such intuitive cases, textual entailment
may be perceived as being certain, or, taking a probabilistic perspective, as hav-
ing a probability of 1. In quite many other cases, though, entailment inference is
uncertain and has a probabilistic nature. In example 2, the text doesn’t contain
enough information to infer the hypothesis’ truth. And in example 4, the meaning
of the word hometown is ambiguous and therefore one cannot infer for certain that
the hypothesis is true. In both of these cases there are conceivable circumstances
for which the text is true and the hypothesis is false. Yet, it is clear that in both
examples, the text does increase substantially the likelihood of the correctness of
the hypothesis, which naturally extends the classical notion of certain entailment.
Given the text, we expect the probability that the hypothesis is indeed true to be

Table 1. Example sentence pairs

example text hypothesis
1 John is a French Speaker John speaks French
2 John was born in France John speaks French
3 Harry’s birthplace is Iowa Harry was born in Iowa
4 Harry is returning to his Iowa hometown Harry was born in Iowa
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relatively high, and significantly higher than its probability of being true without
reading the text. Aiming to model application needs, we suggest that the proba-
bility of the hypothesis being true given the text reflects an appropriate confidence
score for the correctness of a particular textual inference. In the next subsections
we propose a concrete generative probabilistic setting that formalizes the notion
of truth probabilities in such cases.

2.2 A Probabilistic Setting and Generative Model

Let T denote a space of possible texts, and t ∈ T a specific text. Let H denote the
set of all possible hypotheses. A hypothesis h ∈ H is a propositional statement
which can be assigned a truth value. It is assumed here that h is represented as a
textual statement, but in principle it could also be expressed as a text annotated
with additional linguistic information or even as a formula in some propositional
language.

A semantic state of affairs is captured by a mapping from H to {0=false,
1=true}, denoted by w : H → {0, 1}, called here possible world (following com-
mon terminology). A possible world w represents a concrete set of truth value
assignments for all possible propositions. Accordingly, W denotes the set of all
possible worlds.

We assume a probabilistic generative model for texts and possible worlds. In
particular, we assume that texts are generated along with a concrete state of
affairs, represented by a possible world. Thus, whenever the source generates a
text t, it generates also corresponding hidden truth assignments that constitute
a possible world w. The probability distribution of the source, over all possible
texts and truth assignments T ×W , is assumed to reflect inferences that are
based on the generated texts. That is, we assume that the distribution of truth
assignments is not bound to reflect the state of affairs in a particular “real” world,
but only the inferences about propositions’ truth which are related to the text.
The probability for generating a true hypothesis h that is not related at all to the
corresponding text is determined by some prior probability P (h). For example,
h=“Paris is the capital of France” might have a prior smaller than 1 and might
well be false when the generated text is not related at all to Paris or France.
In fact, we may as well assume that the notion of textual entailment is relevant
only for hypotheses for which P (h) < 1, as otherwise (i.e. for tautologies) there
is no need to consider texts that would support h’s truth. On the other hand,
we assume that the probability of h being true (generated within w) would be
higher than the prior when the corresponding t does contribute information that
supports h’s truth.

2.3 Probabilistic Textual Entailment Definition

We define two types of events over the probability space for T ×W :

I) For a hypothesis h, we denote as Trh the random variable whose value is
the truth value assigned to h in a given world. Correspondingly, Trh = 1
is the event of h being assigned a truth value of 1 (true).
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II) For a text t, we use t itself to denote also the event that the generated text
is t (as usual, it is clear from the context whether t denotes the text or the
corresponding event).

We say that a text t probabilistically entails a hypothesis h (denoted as t⇒ h) if
t increases the likelihood of h being true, that is, if P (Trh = 1|t) > P (Trh = 1),
or equivalently if the pointwise mutual information, I(Trh = 1, t), is greater then
0. Once knowing that t ⇒ h, P (Trh = 1|t) serves as a probabilistic confidence
value for h being true given t.

Application settings would typically require that P (Trh = 1|t) obtains a
high value; otherwise, the text would not be considered sufficiently relevant to
support h’s truth (e.g. a supporting text in QA or IE should entail the extracted
information with high confidence). Finally, we ignore here the case in which t
contributes negative information about h, leaving this relevant case for further
investigation.

2.4 Model Properties

It is interesting to notice the following properties and implications of our prob-
abilistic setting:

A) Textual entailment is defined as a relationship between texts and propo-
sitions whose representation is typically based on text as well, unlike logical
entailment which is a relationship between propositions only. Accordingly, tex-
tual entailment confidence is conditioned on the actual generation of a text,
rather than its truth. For illustration, we would expect that the text “His father
was born in Italy” would logically entail the hypothesis “He was born in Italy”
with high probability - since most people who’s father was born in Italy were
also born there. However we expect that the text would actually not probabilisti-
cally textually entail the hypothesis since most people for whom it is specifically
reported that their father was born in Italy were not born in Italy 1.

B) We assign probabilities to propositions (hypotheses) in a similar manner
to certain probabilistic reasoning approaches (e.g. [1], [13]). However, we also
assume a generative model of text, similar to probabilistic language models and
statistical machine translation, which supplies the needed conditional proba-
bility distribution. Furthermore, since our conditioning is on texts rather than
propositions we do not assume any specific logic representation language for text
meaning, and only assume that textual hypotheses can be assigned truth values.

C) Our framework does not distinguish between textual entailment inferences
that are based on knowledge of language semantics (such as murdering ⇒ killing)
and inferences based on domain or world knowledge (such as live in Paris ⇒
live in France). Both are needed in applications and it is not clear where and
how to put such a borderline.
1 This seems to be the case when analyzing the results of entering the above text in a

web search engine.
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D) An important feature of the proposed framework is that for a given text many
hypotheses are likely to be true. Consequently, for a given text t,

∑
h P (Trh =

1|t) does not sum to 1. This differs from typical generative settings for IR and
MT (e.g. [4], [19]), where all conditioned events are disjoint by construction. In
the proposed model, it is rather the case that P (Trh = 1|t)+ P (Trh = 0|t) = 1,
as we are interested in the probability that a single particular hypothesis is true
(or false).

E) An implemented model that corresponds to our probabilistic setting is ex-
pected to produce an estimate for P (Trh = 1|t). This estimate is expected to
reflect all probabilistic aspects involved in the modeling, including inherent un-
certainty of the entailment inference itself (as in example 2 of Table 1), possible
uncertainty regarding the correct disambiguation of the text (example 4), as
well as uncertain probabilistic estimates that stem from the particular model
structure and implementation.

3 A Lexical Entailment Model

We suggest that the proposed setting above provides the necessary grounding
for probabilistic modeling of textual entailment. Since modeling the full extent
of the textual entailment problem is clearly a long term research goal, in this
paper we rather focus on the above mentioned subtask of lexical entailment -
identifying when the lexical elements of a textual hypothesis are inferred from a
given text.

To model lexical entailment we first assume that the meaning of each individ-
ual content word u in a hypothesis can be assigned a truth value. One possible
interpretation for such truth values is that lexical concepts are assigned existen-
tial meanings. For example, for a given text t, Trbook = 1 if it can be inferred in
t’s state of affairs that a book exists. Our model does not depend on any such
particular interpretation, though, as we only assume that truth values can be
assigned for lexical items but do not explicitly annotate or evaluate this subtask.

Given this lexically-projected setting, a hypothesis is assumed to be true if
and only if all its lexical components are true as well. This captures our tar-
get perspective of lexical entailment, while not modeling here other entailment
aspects. When estimating the entailment probability we assume that the truth
probability of a term u in a hypothesis h is independent of the truth of the other
terms in h, obtaining:

P (Trh = 1|t) =
∏

u∈h P (Tru = 1|t)
P (Trh = 1) =

∏
u∈h P (Tru = 1) (1)

In order to estimate P (Tru = 1|t) for a given word u and text t = {v1, . . . , vn},
we further assume that the majority of the probability mass comes from a specific
entailing word in t, allowing the following approximation:

P (Tru = 1|t) = max
v∈t

P (Tru = 1|Tv) (2)
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where Tv denotes the event that a generated text contains the word v. This cor-
responds to expecting that each word in h will be entailed from a specific word
in t (rather than from the accumulative context of t as a whole). One can view
Equation 2 as inducing an alignment between terms in the hypothesis and terms
in the text, somewhat similar to alignment models in statistical MT (e.g. [4]).

Thus we obtain an estimate for the entailment probability based on lexical
entailment probabilities from (1) and (2) as follows:

P (Trh = 1|t) =
∏
u∈h

max
v∈t

P (Tru = 1|Tv) (3)

3.1 Web-Based Estimation of Lexical Entailment Probabilities

We perform unsupervised empirical estimation of the lexical entailment proba-
bilities, P (Tru = 1|Tv), based on word co-occurrence frequencies from the web.
Following our proposed probabilistic model (cf. Section 2.2), we assume that the
web is a sample generated by a language source. Each document represents a
generated text and a (hidden) possible world. Given that the possible world of
the text is not observed we do not know the truth assignments of hypotheses for
the observed texts. We therefore further make the simplest assumption that all
hypotheses stated verbatim in a document are true and all others are false and
hence P (Tru = 1|Tv) ≈ P (Tu|Tv), the probability that u occurs in a text given
that v occurs in that text. The lexical entailment probability estimate is thus
derived from (3) as follows:

P (Trh = 1|t) ≈
∏
u∈h

max
v∈t

P (Tu|Tv) (4)

The co-occurrence probabilities are easily estimated based on maximum like-
lihood counts:

P (Tu|Tv) =
nu,v

nv
(5)

where nv is the number of documents containing word v and nu,v is the number
of documents containing both u and v. In the experiments we obtained the
corresponding counts by performing queries to a web search engine, since the
majority of RTE examples were based on web snippets.

4 Experimental Setting

The text and hypothesis of all pairs in the RTE development and test sets were
tokenized by the following simple heuristic - split at white space and remove
any preceding or trailing of the following punctuation characters: ([{)]}”’‘.,;:-!?.
A standard stop word list was applied to remove frequent tokens. Counts were
obtained using the AltaVista search engine2, which supplies an estimate for the
number of results (web-pages) for a given one or two token query.
2 http://www.av.com/
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We empirically tuned a threshold, λ, on the the estimated entailment proba-
bility to decide if entailment holds on not. For a t−h pair, we tagged an example
as true (i.e. entailment holds) if p = P (Trh = 1|t) > λ, and as false otherwise.
We assigned a confidence of p to the positive examples (p > λ) and a confidence
of 1− p to the negative ones.

The threshold was tuned on the 567 annotated text-hypothesis example pairs
in the development set for optimal confidence weighted score (cws). The optimal
threshold of λ = 0.005 resulted in a cws of 0.57 and accuracy of 56% on the
development set. This threshold was used to tag and assign confidence scores to
the 800 pairs of the test set.

5 Analysis and Results

The resulting accuracy on the test set was of 59% and the resulting confidence
weighted score was of 0.57. Both are statistically significantly better then chance
at the 0.01 level.

Table 2 lists the accuracy and cws when computed separately for each task.
As can be seen by the table the system does well on the CD and MT tasks,
and quite poorly (not significantly better than chance) on the RC, PP, IR and
QA tasks. It seems as if the success of the system is attributed almost solely to

Table 2. Accuracy and cws by task

task accuracy cws
Comparable Documents (CD) 0.8333 0.8727
Machine Translation (MT) 0.5667 0.6052
Information Extraction (IE) 0.5583 0.5143
Reading Comprehension (RC) 0.5286 0.5142
Paraphrase (PP) 0.5200 0.4885
Information Retrieval (IR) 0.5000 0.4492
Question Answering (QA) 0.4923 0.3736

its success on the CD and MT tasks. Indeed it seems as if there is something
common to these two tasks, which differentiates them from the others - in both
tasks high overlap of content words (or their meanings) tends to correlate with
entailment.

5.1 Success and Failure Cases

The system misclassified 331 out of the 800 test examples. The vast majority of
these mistakes (75%) were false positives - pairs the system classified as true but
were annotated as false. It is also interesting to note that the false negative
errors were more common among the MT and QA tasks while the false
positive errors were more typical to the other tasks. An additional observation
from the recall-precision curve (Figure 3) is that high system confidence actually
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Fig. 1. System’s underlying alignment for example 1026 (RC). gold standard - false,
system - false.

Fig. 2. System’s underlying alignment for example 1095 (RC). gold standard - true,
system - true.

corresponds to false entailment. This is attributed to an artifact of this dataset by
which examples with high word overlap between the text and hypothesis tend to
be biased to negative examples (see [8]).

In an attempt to ‘look under the hood’ we examined the underlying alignment
obtained by our system on a sample of examples. Figure 1 illustrates a typical
alignment. Though some of the entailing words correspond to what we believe
to be the correct alignment (e.g. voter→ vote, Japan’s→ Japanese), the system
also finds many dubious lexical pairs (e.g. turnout → half, percent → less).

Furthermore, the induced alignments do not always correspond to the “ex-
pected” alignment. For example, in Figure 2 - based on the web co-occurrence
statistics, detonated is a better trigger word for both killed and bombing even
though one would expect to align them with the words killing and bomber re-
spectively. Obviously, co-occurrence within documents is only one factor in es-
timating the entailment between words. This information should be combined
with other statistical criteria that capture complementary notions of entailment,
such as lexical distributional evidence as addressed in ([9], [10], [11]), or with
lexical resources such as WordNet ([17]).

5.2 Comparison to Baseline

As a baseline model for comparison we use a heuristic score proposed within
the context of text summarization and Question Answering ([18], [20]). In this
score semantic overlap between two texts is modeled via a word overlap measure,
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Fig. 3. Comparison to baselines (system refers to our probabilistic model)

considering only words that appear in both texts weighted by inverse document
frequency (idf). More concretely, this directional entailment score between two
texts, denoted here by entscore(t, h), is defined as follows:

entscore(t, h) =
∑

w∈t∧h idf(w)∑
w∈h idf(w)

(6)

where idf(w) = log(N/nw), N is the total number of documents in the corpus
and nw the number of documents containing word w. We have tested the per-
formance of this measure in predicting entailment on the RTE dataset. Tuning
the classification threshold on the development set (as done for our system),
entscore obtained a somewhat lower accuracy of 56%.

To further investigate the contribution of the co-occurrence probabilities we
extended the entscore measure by incorporating lexical co-occurrence proba-
bilities in a somewhat analogous way to their utilization in our model. In this
extended measure, termed entscore2, we compute a weighted average of the lex-
ical probabilities, rather than their product in our model (Equation 3), where
the weights are the idf values, following the rational of the entscore measure.
More concretely, entscore2 is defined as follows:

entscore2(t, h) =
∑

u∈h idf(u) ∗maxv∈tP (Tru = 1|v)∑
u∈h idf(u)

(7)

P (Tru = 1|v) is approximated by P (Tu|Tv) and estimated via co-occurrence
counts, as in our model (equations 4 and 5). Note that when using this approxi-
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mation, P (Tru = 1|v) = 1 when u = v and thus the max value in (7) is obtained
as 1 for hypothesis words that appear also in the text, naturally extending the
rational of entscore.

Figure 3 compares the recall-precision curves for our system and the two
baseline entailment scores. The different recall points are obtained by varying
a threshold over the entailment score (or probability), considering all examples
with a score higher than the threshold as positive classifications. The figures show
that on this dataset our system has higher precision over most recall ranges. 3

In addition, entscore2, which incorporates lexical co-occurrence probabilities,
performs somewhat better than the baseline entscore which considers only lit-
eral lexical overlap. These results demonstrate the marginal contribution of (i)
utilizing lexical co-occurrence probabilities and (ii) embedding them within a
principled probabilistic model.

5.3 Working at the Lexical Level

The proposed lexical model is quite simple and makes many obviously wrong
assumptions. Some of these issues were addressed in another work by the authors
([12]), which was tested in a different setting. That model views lexical entail-
ment as a text classification task. Entailment is derived from the entire context
in the sentence (rather than word-to-word alignment) and Näıve Bayes classifi-
cation is applied in an unsupervised setting to estimate the hidden lexical truth
assignments. It would be interesting for future work to thoroughly compare and
possibly combine the two models and thus capture entailment from a specific text
term as well as the impact of the entire context within the given text.

Clearly, there is an upper bound of performance one would expect from a
system working at the lexical level (see the analysis in [2]). Incorporating addi-
tional linguistic levels into the probabilistic entailment model, such as syntactic
matching, co-reference resolution and word sense disambiguation, becomes a
challenging target for future research.

6 Related Work

Modeling semantic overlap between texts is a common problem in NLP applica-
tions. Many techniques and heuristics were applied within various applications
to model such relations between text segments. Within the context of Multi
Document Summarization, [18] propose modeling the directional entailment be-
tween two texts t, h via the entailment score of Equation 6 to identify redundant
information appearing in different texts. A practically equivalent measure was
independently proposed in the context of QA in [20]. This baseline measure cap-
tures word overlap, considering only words that appear in both texts and weighs
them based on their inverse document frequency.
3 Note the anomaly that high lexical overlap, which yields high system confidence,

actually correlates with false entailment (as noted in [8]). This anomaly explains the
poor precision of all systems at the lower recall ranges, while the generally more
accurate models are effected more strongly by this anomaly.



A Lexical Alignment Model for Probabilistic Textual Entailment 297

Different techniques and heuristics were applied on the RTE-1 dataset to
specifically model textual entailment. Interestingly, a number of works (e.g. [3],
[6], [14]) applied or utilized a lexical based word overlap measure similar to Equa-
tion 7. The measures vary in the word-to-word similarity used and the weighting
scheme. Distributional similarity (such as [16]) and WordNet based similarity
measures (such as [15]) were applied. In addition, the different works vary in the
preprocessing done (tokenization, lemmatization, etc.) and in the corpora used
to collect statistics. For this reason it is difficult to compare the performance
of the different measure variants of different systems. Nevertheless the reported
results were all comparable, which may suggest that these lexical techniques are
somewhat close to exhausting the potential of lexical based systems.

7 Conclusions

This paper described the Bar-Ilan system participating in the First Recognis-
ing Textual Entailment Challenge. We proposed a general probabilistic setting
that formalizes the notion of textual entailment. In addition we described an
alignment-based model in a bag of words representation for lexical entailment,
which was applied using web co-occurrence statistics. Although our proposed lex-
ical system is relatively simple, as it does not rely on syntactic or other deeper
analysis, it nevertheless achieved competitive results. These results may suggest
that the proposed probabilistic framework is a promising basis for improved
implementations that would incorporate deeper types of information.
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Abstract. The PASCAL Challenge’s textual entailment recognition
task, or RTE, presents intriguing opportunities to test various implica-
tions of the strong language universal constraint posited by Wu’s (1995,
1997) Inversion Transduction Grammar (ITG) hypothesis. The ITG Hy-
pothesis provides a strong inductive bias, and has been repeatedly shown
empirically to yield both efficiency and accuracy gains for numerous lan-
guage acquisition tasks. Since the RTE challenge abstracts over many
tasks, it invites meaningful analysis of the ITG Hypothesis across tasks
including information retrieval, comparable documents, reading compre-
hension, question answering, information extraction, machine transla-
tion, and paraphrase acquisition. We investigate two new models for the
RTE problem that employ simple generic Bracketing ITGs. Experimental
results show that, even in the absence of any thesaurus to accommodate
lexical variation between the Text and the Hypothesis strings, surpris-
ingly strong results for a number of the task subsets are obtainable from
the Bracketing ITG’s structure matching bias alone.

1 Introduction

The Inversion Transduction Grammar or ITG formalism, which historically was
developed in the context of translation and alignment, hypothesizes strong ex-
pressiveness restrictions that constrain paraphrases to vary word order only in
certain allowable nested permutations of arguments—even across different lan-
guages (Wu 1997). The textual entailment recognition (RTE) challenge (Dagan
et al.2005) provides opportunities for meaningful analysis of the ITG Hypoth-
esis across a broad range of application domains, since alignment techniques in
general (Wu 2000) appear to be highly applicable to the RTE task.

The strong inductive bias imposed by the ITG Hypothesis has been repeat-
edly shown empirically to yield both efficiency and accuracy gains for numerous
language acquisition tasks, across a variety of language pairs and tasks. Zens
and Ney (2003) show that ITG constraints yield significantly better alignment
coverage than the constraints used in IBM statistical machine translation mod-
els on both German-English (Verbmobil corpus) and French-English (Canadian
Hansards corpus). Zhang and Gildea (2004) find that unsupervised alignment
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using Bracketing ITGs produces significantly lower Chinese-English alignment
error rates than a syntactically supervised tree-to-string model (Yamada and
Knight 2001). With regard to translation rather than alignment accuracy, Zens
et al. (2004) show that decoding under ITG constraints yields significantly lower
word error rates and BLEU scores than the IBM constraints. Zhang and Gildea
(2005) obtain improved alignment by lexicalizing the ITG. Chiang (2005) and
Vilar and Vidal (2005) also obtain improved alignment and translation perfor-
mance by imposing ITG constraints on their models.

The present studies on the RTE challenge are motivated by the following
observation: the empirically demonstrated suitability of ITG paraphrasing con-
straints across languages should hold, if anything, even more strongly in the
monolingual case.

The simplest class of ITGs, Bracketing ITGs, are particularly interesting
in applications like the RTE challenge, because they impose ITG constraints
in language-independent fashion, and in the simplest case do not require any
language-specific linguistic grammar or training. In Bracketing ITGs, the gram-
mar uses only a single, undifferentiated non-terminal (Wu 1995a). The key
modeling property of Bracketing ITGs that is most relevant to the RTE chal-
lenge is that they assign strong preference to candidate Text-Hypothesis pairs in
which nested constituent subtrees can be recursively aligned with a minimum of
constituent boundary violations. Unlike language-specific linguistic approaches,
however, the shape of the trees are driven in unsupervised fashion by the data.
One way to view this is that the trees are hidden explanatory variables. This
not only provides significantly higher robustness than more highly constrained
manually constructed grammars, but also makes the model widely applicable
across languages in economical fashion without a large investment in manually
constructed resources.

Formally, ITGs can be defined as the restricted subset of syntax-directed trans-
duction grammars or SDTGs (Lewis and Stearns 1968) where all of the rules are
either of straight or inverted orientation. Ordinary SDTGs allow any permutation
of the symbols on the right-hand side to be specified when translating from the
input language to the output language. In contrast, ITGs only allow two out of
the possible permutations. If a rule is straight, the order of its right-hand symbols
must be the same for both language. On the other hand, if a rule is inverted, then
the order is left-to-right for the input language and right-to-left for the output
language. Since inversion is permitted at any level of rule expansion, a derivation
may intermix productions of either orientation within the parse tree. The ability
to compose multiple levels of straight and inverted constituents gives ITGs much
greater expressiveness than might seem at first blush.

Moreover, for reasons discussed by Wu (1997), ITGs possess an interesting
intrinsic combinatorial property of permitting roughly up to four arguments of
any frame to be transposed freely, but not more. This matches suprisingly closely
the preponderance of linguistic verb frame theories from diverse linguistic tradi-
tions that all allow up to four arguments per frame. Again, this property emerges
naturally from ITGs in language-independent fashion, without any hardcoded
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language-specific knowledge. This further suggests that ITGs should do well
at picking out Text-Hypothesis pairs where the order of up to four arguments
per frame may vary freely between the two strings. Conversely, ITGs should
do well at rejecting pairs where (1) too many words in one sentence find no
correspondence in the other, (2) frames do not nest in similar ways in the can-
didate sentence pair, or (3) too many arguments must be transposed to achieve
an alignment—all of which would suggest that the sentences probably express
different ideas.

As an illustrative example, in common similarity models, the following pair of
sentences (found in actual data arising in our experiments below) would receive
an inappropriately high score, because of the high lexical similarity between the
two sentences:

Chinese president Jiang Zemin arrived in Japan today for a landmark state visit .

.

(Jiang Zemin will be the first Chinese national president to pay a state vist to

Japan.)

However, the ITG based model is sensitive enough to the differences in the
constituent structure (reflecting underlying differences in the predicate argument
structure) so that it assigns a low score, according to our experiments. On the
other hand, the experiments also show that it successfully assigns a high score
to other candidate bi-sentences representing a true Chinese translation of the
same English sentence, as well as a true English translation of the same Chinese
sentence.

We investigate two new models for the RTE problem that employ simple
generic Bracketing ITGs, both with and without a stoplist. The experimental
results show that, even in the absence of any thesaurus to accommodate lexical
variation between the Text and the Hypothesis strings, surprisingly strong re-
sults for a number of the task subsets are obtainable from the Bracketing ITG’s
structure matching bias alone.

2 Scoring Method

Each Text-Hypothesis pair of the test set was scored via the ITG biparsing
algorithm described in Wu and Fung (2005) which is essentially similar to the
dynamic programming approach of Wu (1997), as follows.

Note that all words of the vocabulary are included among the lexical trans-
ductions, allowing exact word matches between the two strings of any candidate
paraphrase pair. No other lexical similarity model was used in these experi-
ments, which allows us to study the effects of the ITG bias independently of
lexical similarity models.

Let the input English sentence be e1, . . . , eT and the corresponding input
Chinese sentence be c1, . . . , cV . As an abbreviation we write es..t for the sequence
of words es+1, es+2, . . . , et, and similarly for cu..v; also, es..s = ε is the empty
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string. It is convenient to use a 4-tuple of the form q = (s, t, u, v) to identify
each node of the parse tree, where the substrings es..t and cu..v both derive
from the node q. Denote the nonterminal label on q by �(q). Then for any node
q = (s, t, u, v), define

δq(i) = δstuv(i) = max
subtrees ofq

P [subtree of q, �(q) = i, i
∗⇒ es..t/cu..v]

as the maximum probability of any derivation from i that successfully parses
both es..t and cu..v. Then the best parse of the sentence pair has probability
δ0,T,0,V (S).

The algorithm computes δ0,T,0,V (S) using the following recurrences. Note that
we generalize argmax to the case where maximization ranges over multiple in-
dices, by making it vector-valued. Also note that [ ] and 〈〉 are simply constants,
written mnemonically; they represent straight and inverted , the two permuta-
tions allowed by ITGs. The condition (S − s)(t − S) + (U − u)(v − U) �= 0 is
a way to specify that the substring in one but not both languages may be split
into an empty string ε and the substring itself; this ensures that the recursion
terminates, but permits words that have no match in the other language to map
to an ε instead.

1. Initialization

δt−1,t,v−1,v(i) = bi(et/cv),
1 ≤ t ≤ T
1 ≤ v ≤ V

δt−1,t,v,v(i) = bi(et/ε), 1 ≤ t ≤ T
0 ≤ v ≤ V

δt,t,v−1,v(i) = bi(ε/cv),
0 ≤ t ≤ T
1 ≤ v ≤ V

2. Recursion. For all i, s, t, u, v such that

{
1≤i≤N

0≤s<t≤T
0≤u<v≤V

t−s+v−u>2

δstuv(i) = max[δ[ ]
stuv(i), δ〈〉stuv(i)]

θstuv(i) =
{

[ ] if δ
[ ]
stuv(i) ≥ δ

〈〉
stuv(i)

〈〉 otherwise

where

δ
[ ]
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) �=0

ai→[jk] δsSuU (j) δStUv(k)
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ι
[ ]
stuv(i)

κ
[ ]
stuv(i)

σ
[ ]
stuv(i)

υ
[ ]
stuv(i)

⎤⎥⎥⎥⎦ =argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) �=0

ai→[jk] δsSuU (j) δStUv(k)

δ
〈〉
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) �=0

ai→〈jk〉 δsSUv(j) δStuU (k)

⎡⎢⎢⎢⎣
ι
〈〉
stuv(i)

κ
〈〉
stuv(i)

σ
〈〉
stuv(i)

υ
〈〉
stuv(i)

⎤⎥⎥⎥⎦ =argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) �=0

ai→〈jk〉 δsSUv(j) δStuU (k)

3. Reconstruction. Initialize by setting the root of the parse tree to q1=(0, T, 0, V )
and its nonterminal label to �(q1) = S. The remaining descendants in the optimal
parse tree are then given recursively for any q = (s, t, u, v) by:

Left(q) =⎧⎪⎨⎪⎩
nil if t−s+v−u≤2

(s, σ[ ]
q (�(q)), u, υ

[ ]
q (�(q))) if θq(�(q)) = [ ]

(s, σ〈〉
q (�(q)), υ〈〉

q (�(q))) if θq(�(q)) = 〈〉
Right(q) =⎧⎪⎨⎪⎩

nil if t−s+v−u≤2

(σ[ ]
q (�(q)), t, υ[ ]

q (�(q)), v) if θq(�(q)) = [ ]
(σ〈〉

q (�(q)), t, u, υ
〈〉
q (�(q))) if θq(�(q)) = 〈〉

�(Left(q)) = ιθq(�(q))
q (�(q))

�(Right(q)) = κθq(�(q))
q (�(q))

As mentioned earlier, biparsing for ITGs can be accomplished efficiently in
polynomial time, rather than the exponential time required for classical SDTGs.
The result in Wu (1997) implies that for the special case of Bracketing ITGs, the
time complexity of the algorithm is Θ

(
T 3V 3

)
where T and V are the lengths of

the two sentences. This is a factor of V 3 more than monolingual chart parsing,
but has turned out to remain quite practical for corpus analysis, where parsing
need not be real-time.

The ITG scoring model can also be seen as a variant of the approach described
by Leusch et al. (2003), which allows us to forego training to estimate true
probabilities; instead, rules are simply given unit weights (with caveats discussed
in the Results section). The ITG scores can be interpreted as a generalization of
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classical Levenshtein string edit distance, where inverted block transpositions are
also allowed. Even without probability estimation, Leusch et al. found excellent
correlation with human judgment of similarity between translated paraphrases.

3 Experimental Method

We evaluated two different versions of the Bracketing ITG based RTE models.
In the basic version, all words of the vocabulary are included among the lexical

transductions, allowing exact word matches between the Text and the Hypothesis.
The second version excludes a list of 172 words from a stoplist from the lexical

transductions. The motivation for this model was to discount the effect of words
such as “the” or “of” since, more often than not, they could be irrelevant to the
RTE task. Negation words such as “not” were excluded from the stoplist, since
they often critically determine whether entailment is true or false.

No significant training was performed with the available development sets.
Rather, the aim was to establish foundational baseline results, to see in this first
round of RTE experiments what results could be obtained with the simplest
versions of the ITG models.

The RTE test set consists of 800 Text-Hypothesis string pairs, selected from
various sources by human collectors. Each string pair is labeled according to the
task category that the data was drawn from. These labels divide the data into
seven task subsets, which we analyze individually below. While the collectors
were attempting to build a representative dataset, it is difficult to make claims
about distributional neutrality, due to the arbitrary nature of the example se-
lection process.

4 Results

Across all subsets overall, the basic model produced a confidence-weighted score
of 54.97% (better than chance at the 0.05 level). All examples were labeled, so
precision, recall, and f-score are equivalent; the accuracy was 51.25%.

Surprisingly, the stoplisted model produced worse results. The overall
confidence-weighted score was 53.61%, and the accuracy was 50.50%. We discuss
the reasons below in the context of specific subsets.

As one might expect, the Bracketing ITG models performed better on the
subsets more closely approximating the tasks for which Bracketing ITGs were
designed: comparable documents (CD), paraphrasing (PP), and information
extraction (IE). We will discuss some important caveats on the machine tran-
slation (MT) and reading comprehension (RC) subsets. The subsets least close to
the Bracketing ITG models are information retrieval (IR) and question
answering (QA).

4.1 Comparable Documents (CD)

The CD task definition can essentially be characterized as recognition of noisy
word-aligned sentence pairs. Among all subsets, CD is perhaps closest to the
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noisy word alignment task for which Bracketing ITGs were originally devel-
oped, and indeed produced the best results for both of the Bracketing ITG
models. The basic model produced a confidence-weighted score of 79.88% (ac-
curacy 71.33%), while the stoplisted model produced an essentially unchanged
confidence-weighted score of 79.83% (accuracy 70.00%).

The results on the RTE Challenge datasets closely reflect the larger-scale
findings of Wu and Fung (2005), who demonstrate that an ITG based model
yields far more accurate extraction of parallel sentences from quasi-comparable
non-parallel corpora than previous state-of-the-art methods. Wu and Fung’s re-
sults also use the evaluation metric of uninterpolated average precision (i.e.,
confidence-weighted score).

Note also that we believe the results here are artificially lowered by the absence
of any thesaurus, and that significantly further improvements would be seen with
the addition of a suitable thesaurus, for reasons discussed below under the MT
subsection.

4.2 Paraphrase Acquisition (PP)

The PP task is also close to the task for which Bracketing ITGs were originally
developed. For the PP task, the basic model produced a confidence-weighted
score of 57.26% (accuracy 56.00%), while the stoplisted model produced a lower
confidence-weighted score of 51.65% (accuracy 52.00%). Unlike the CD task, the
greater importance of function words in determining equivalent meaning between
paraphrases appears to cause the degradation in the stoplisted model.

The effect of the absence of a thesaurus is much stronger for the PP task as
opposed to the CD task. Inspection of the datasets reveals much more lexical
variation between paraphrases, and shows that cases where lexis does not vary
are generally handled accurately by the Bracketing ITG models. The MT subsec-
tion below discusses why a thesaurus should produce significant improvement.

4.3 Information Extraction (IE)

The IE task presents a slight issue of misfit for the Bracketing ITG models,
but yielded good results anyhow. The basic Bracketing ITG model attempts to
align all words/collocations between the two strings. However, for the IE task in
general, only a substring of the Text should be aligned to the Hypothesis, and the
rest should be disregarded as “noise”. We approximated this by allowing words
to be discarded from the Text at little cost, by using parameters that impose
only a small penalty on null-aligned words from the Text. (As a reasonable first
approximation, this characterization of the IE task ignores the possibility of
modals, negation, quotation, and the like in the Text.)

Despite the slight modeling misfit, the Bracketing ITG models produced
good results for the IE subset. The basic model produced a confidence-weighted
score of 59.92% (accuracy 55.00%), while the stoplisted model produced a lower
confidence-weighted score of 53.63% (accuracy 51.67%). Again, the lower score
of the stoplisted model appears to arise from the greater importance of function
words in ensuring correct information extraction, as compared with the CD task.



306 D. Wu

4.4 Machine Translation (MT)

One exception to expectations is the machine translation subset, a task for
which Bracketing ITGs were developed. The basic model produced a confidence-
weighted score of 34.30% (accuracy 40.00%), while the stoplisted model produced
a comparable confidence-weighted score of 35.96% (accuracy 39.17%).

However, the performance here on the machine translation subset cannot be
directly interpreted, for two reasons.

First, the task as defined in the RTE Challenge datasets is not actually crosslin-
gual machine translation, but rather evaluation of monolingual comparability
betweenanautomatic translationandagold standardhumantranslation.This is in
fact closer to the problem of defining a good MT evaluationmetric, rather than MT
itself. Leusch et al. (2003 andpersonal communication) found thatBracketing ITGs
as an MT evaluation metric show excellent correlation with human judgments.

Second, no translation lexicon or equivalent was used in our model. Normally in
translation models, including ITG models, the translation lexicon accommodates
lexical ambiguity, by providing multiple possible lexical choices for each word or
collocation being translated. Here, there is no second language, so some substitute
mechanism to accommodate lexical ambiguity would be needed.

The most obvious substitute for a translation lexicon would be a monolingual
thesaurus. This would allow matching synonomous words or collocations between
the Text and the Hypothesis. Our original thought was to incorporate such a
thesaurus in collaboration with teams focusing on creating suitable thesauri, but
time limitations prevented completion of these experiments. Based on our own
prior experiments and also on Leusch et al.’s experiences, we believe this would
bring performance on the MT subset to excellent levels as well.

4.5 Reading Comprehension (RC)

The reading comprehension task is similar to the information extraction task.
As such, the Bracketing ITG model could be expected to perform well for the
RC subset. However, the basic model produced a confidence-weighted score of
just 49.37% (accuracy 47.14%), and the stoplisted model produced a comparable
confidence-weighted score of 47.11% (accuracy 45.00%).

The primary reason for the performance gap between the RC and IE domains
appears to be that RC is less news-oriented, so there is less emphasis on exact
lexical choices such as named entities. This puts more weight on the importance
of a good thesaurus to recognize lexical variation. For this reason, we believe the
addition of a thesaurus would bring performance improvements similar to the
case of MT.

4.6 Information Retrieval (IR)

The IR task diverges significantly from the tasks for which Bracketing ITGs were
developed. The basic model produced a confidence-weighted score of 43.14% (ac-
curacy 46.67%), while the stoplisted model produced a comparable confidence-
weighted score of 44.81% (accuracy 47.78%).
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Bracketing ITGs seek structurally parallelizable substrings, where there is
reason to expect some degree of generalization between the frames (heads and
arguments) of the two substrings from a lexical semantics standpoint. In contrast,
the IR task relies on unordered keywords, so the effect of argument-head binding
cannot be expected to be strong.

4.7 Question Answering (QA)

The QA task is extremely free in the sense that questions can differ significantly
from the answers in both syntactic structure and lexis, and can also require a
significant degree of indirect complex inference using real-world knowledge. The
basic model produced a confidence-weighted score of 33.20% (accuracy 40.77%),
while the stoplisted model produced a significantly better confidence-weighted
score of 38.26% (accuracy 44.62%).

Aside from adding a thesaurus, to properly model the QA task, at the very
least the Bracketing ITG models would need to be augmented with somewhat
more linguistic rules that include a proper model for wh- words in the Hypothesis,
which otherwise cannot be aligned to the Text. In the Bracketing ITG models,
the stoplist appears to help by normalizing out the effect of the wh- words.

5 Conclusion

We have reported results and analysis on our preliminary round of experiments
using two simple Bracketing ITG models on the RTE datasets.

What we find highly interesting is the perhaps surprisingly large effect ob-
tainable from this structure matching bias alone, which already produces good
results on a number of the subsets—especially on the IE subtask, which ap-
peared from the results to be the hardest of the seven subtasks—even without
yet incorporating any lexical similarity or thesaurus model into the ITG.

Clearly the most serious omission in our experiments with Bracketing ITG
models was the absence of any lexical similarity model, allowing zero lexical
variation between the Text and Hypothesis. This forced the models to rely en-
tirely on the Bracketing ITG’s inherent tendency to optimize structural match
between hypothesized nested argument-head substructures. We plan to remedy
the absence of a thesaurus as the obvious next step. This could be expected to
raise performance significantly on all subsets.

Wu and Fung (2005) also discuss how to obtain any desired tradeoff between
precision and recall. This would be another interesting direction to pursue in the
context of recognizing textual entailment.

Finally, using the development sets to train the parameters of the Bracket-
ing ITG model via expectation-maximization would improve performance Wu
(1995b). It would only be feasible to tune a few basic parameters, however, given
the small size of the development sets.
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Abstract. In this paper, we discuss paradigms for evaluating open-
domain semantic interpretation as they apply to the PASCAL Recog-
nizing Textual Entailment (RTE) evaluation (Dagan et al. 2005). We fo-
cus on three aspects critical to a successful evaluation: creation of large
quantities of reasonably good training data, analysis of inter-annotator
agreement, and joint analysis of test item difficulty and test-taker pro-
ficiency (Rasch analysis). We found that although RTE does not cor-
respond to a “real” or naturally occurring language processing task, it
nonetheless provides clear and simple metrics, a tolerable cost of corpus
development, good annotator reliability (with the potential to exploit the
remaining variability), and the possibility of finding noisy but plentiful
training material.

1 Introduction

Our research group at MITRE has a long-term interest in development and im-
plementation of evaluation paradigms for language processing applications, e.g.,
in the areas of text understanding (Hirschman 1998a; Hirschman et al. 2005),
text translation (Papineni et al. 2002), speech-to-speech translation
(Aberdeen et al. 2005), and spoken dialogue (Aberdeen et al. 2000; Walker et al.
2001). For the last several years, we have been exploring ways of evaluating
open-domain semantic interpretation, focusing primarily on the paradigm of
reading comprehension (Hirschman et al. 1999; Wellner et al. 2005). This ex-
ploration has led us to the Recognizing Textual Entailment (RTE) evaluation
(Dagan et al. 2005) sponsored by the European Union PASCAL Network (Pat-
tern Analysis, Statistical modeling and ComputAtional Learning). In this paper,
we discuss a number of dimensions of our involvement with RTE, concentrat-
ing on its suitability and potential as an evaluation of open-domain semantic
interpretation.

2 The Path to RTE

2.1 What Is RTE?

In the RTE evaluation, a system is presented with two short passages (usu-
ally, one sentence each): a premise, called the text, and a possible conclusion,
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called the hypothesis. The system makes a binary judgment: does the text
entail the hypothesis? By “entailment”, RTE does not mean a strict logical
proof; a certain degree of world knowledge, either factual or situational, is
permitted. Nevertheless, following RTE, we use “entailment” to refer to this
relation.

RTE has already generated an enormous amount of interest. Seventeen
groups from three continents participated in the initial RTE 2004 evaluation,
and the paradigm has already yielded a workshop at NAACL 2005 and a follow-
on RTE evaluation for 2006. We believe this level of interest is well-justified, and
that it demands a closer inspection of the strengths and weaknesses of the RTE
evaluation.

2.2 What Makes a Good Evaluation?

One of the great advances in computational language processing has been the
creation of carefully developed, metrics-based evaluations of language processing
capabilities. RTE clearly qualifies as such an evaluation. But evaluations vary
broadly in applicability, reliability, usefulness, and cost. Where does RTE stand
on these criteria, and how does it compare with other open-domain evaluations
which have been proposed?

Over the years, we have participated in, and helped design, many language
processing evaluations. In the course of this work, we have developed a range of
criteria for good evaluations. We discuss these criteria here in detail, as back-
ground for our exploration of RTE.

Criterion 1: Realism or Applicability. A successful language evaluation
ought to have at least plausible applicability to some task of general interest to
some significant set of users. A plausibly applicable task enhances the under-
standability of, and justification for, the evaluation for interested nontechnical
observers; it raises the likelihood that the evaluation will drive applicable re-
search; and it helps to guide the development of corpora for the evaluation. The
evaluation can be applicable or “real” in a number of ways.

An end-to-end evaluation, for instance, evaluates system behavior which
mimics or resembles a real application. One such evaluation is the TREC ques-
tion answering (QA) evaluation, which corresponds fairly directly to a service
that nontechnical users are interested in. Evaluations of system components,
on the other hand, rely for their motivation on the plausible exploitation of
such a component in a real application. An example of this latter type of
evaluation is the evaluation of named entity identification (Sundheim 1995;
Grishman and Sundheim 1995), which has been an important component of in-
formation extraction tasks.

If the application scenario is clear, the form of the corpus will be clear as well.
For instance, the distribution of document types ought to mirror the distribution
of document types in the actual task corpus; similarly for the density of relevant
material, the difficulty of the test items, and a range of other features. On the
other hand, if the application scenario is a mystery, the appropriate form of
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the corpus will be obscure. And while a clear application scenario certainly
carries the risk of driving overly specific research, an evaluation which isn’t
clearly applicable carries the risk that the work it drives will not be relevant or
applicable.

Criterion 2: Clear Metrics. The evaluation should employ easy-to-interpret
(and easy-to-reproduce) evaluation metrics. The evaluation also ought to provide
stable results; that is, it should be possible to compare results over time.

Criterion 3: Cost. A primary aspect of evaluations is their cost. These costs
arise both in preparing the evaluation and in running it, and there are tradeoffs
between these two costs.

In preparing the evaluation, one of the largest expenses is the cost of creating
resources. For instance, the test set must be large enough to distinguish reliably
among the different participating systems. It’s less clear that size is important for
the training and development sets; however, the ability to build corpora easily
is definitely an asset for an evaluation, both for those approaches which use
statistical training techniques and for those who want to apply the evaluation to
a different domain. It’s not always necessary for these training sets to be hand-
annotated; in some cases, it might be useful to develop noisy but useful training
corpora through various efficient means (see, for example, Morgan et al. (2004)).
No matter what, the more expensive it is to prepare the required training and
test corpora, the less data there will be. These costs may appear in several forms,
e.g.: the cost of creating material de novo; the cost of acquiring “found” material;
the cost of cleaning “found” material; and the cost of annotating material.

In running the evaluation, costs can arise in assessing the system answers.
The TREC QA evaluation faces this issue (see below for a more extensive dis-
cussion). But a cost-effective evaluation might require a cost-intensive corpus,
and it’s important to find the appropriate balance. It’s also possible that a
cost-effective evaluation might not yield as much information about the systems
as a more cost-intensive one. This issue of the “information gained per dollar
spent” in evaluations is broad and complex, and deserves considerable further
study.

Criterion 4: Annotation Reliability. People must be able to perform the
annotation task reliably, because if people cannot agree, then there is no hope of
providing consistent training data or a high-quality gold standard for evaluation.
Controlled measures of inter-annotator agreement provide a good measure of task
tractability and accuracy of gold-standard corpora for testing. The annotation
task should also be efficient, because inefficient data preparation raises the cost
(and, thus, lowers the quantity) of the data. These dimensions of reliability
and efficiency are clearly related, but still distinct; a task which people can do
consistently but slowly is problematic, as is a task which people can do quickly
but can’t agree on.

Other criteria are that the evaluation should be appropriately difficult (not
too easy, not too hard) and appealing to the community (so researchers will
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participate and contribute shared resources); while important, these are not the
focus of our paper.

Before we move our attention to RTE, it will be informative to see how
these criteria are assessed for a paradigmatic example of a successful evaluation
strategy: evaluating speech recognition (SR) by comparing system transcriptions
to a gold standard using the metric of word error rate (WER).

– Realism/applicability: The SR transcription evaluation clearly applies to
end-to-end tasks like dictation. It is also informative (although less so) as a
component evaluation of complex systems which include SR.

– Clear metrics: The WER metric is easy for non-experts to understand
and correlates well with comprehensibility of a transcript of spoken input,
something potential end users care about.

– Cost: The cost of creating transcriptions is not negligible, but it can be
done quite efficiently compared to other sorts of corpus creation. The real
cost turns out to hinge on whether the speech corpora themselves already
exist (e.g., collections of news broadcasts) or whether they must be spe-
cially collected (e.g., spontaneous human-machine interaction dialogues). In
some cases, existing speech corpora have transcriptions (“found” data), but
these transcriptions require significant cleaning to be useful: they may not
be word-for-word, they may not spell out numbers or abbreviations, and
they may have “cleaned up” disfluencies like false starts and corrections.
The evaluation cost is minimal, since the WER metric can be automatically
computed.

– Annotation reliability: Although detailed transcription requires an agree-
ment on how to handle various disfluencies (pauses, repetitions, corrections,
non-linguistic noise such as throat-clearing, etc.), it is relatively straightfor-
ward for annotators to learn, and the task is familiar to any native speaker.
See Deshmukh et al. (1996) for a thorough discussion.

– Appropriate difficulty: Transcription evaluations have been very success-
ful in pushing technology development forward. As WER decreased, the
speech research community chose new tasks of greater difficulty in one or
more dimensions: increased vocabulary, spontaneous speech vs. read speech
or environments with increasing noise.

– Community appeal: Transcription evaluations using WER are the stan-
dard in the SR community, and have been for a number of years. An enor-
mous number of community-created corpora are available, for a variety of
scenarios (news broadcasts, spoken dialogues), and a range of languages.

With this example in mind, we turn to how we can use these criteria to assess
the range of currently available open-domain semantic evaluations.

2.3 A Brief History of Open-Domain Semantic Evaluations

In this section, we assess three strategies for open-domain semantic evaluation:
semantic interpretation matching, question answering (QA), and reading com-
prehension (RC). Afterward, we identify the significant questions for RTE raised
by this discussion.
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Semantic Interpretation Matching. Semantic interpretation matching
refers to an evaluation strategy in which the evaluation target is some abstract
representation of the meaning of the input text. This strategy has been rea-
sonably successful in fixed domain evaluations such as event template extrac-
tion (Sundheim 1995; Grishman and Sundheim 1995) or spoken language under-
standing (Hirschman et al. 1993). But attempts to apply this strategy to open-
domain evaluations have foundered; Grishman and Sundheim (1995) document
the problems with the SemEval semantic evaluation effort, and we encountered
similar difficulties in the LogicForms evaluation in Senseval-3 (Bayer et al. 2004).

The problem is the form of the evaluation target. For instance, for SR tran-
scription evaluations, the target is the transcribed text; this target is concrete,
relatively intuitive, and enjoys broad agreement among the speakers of most
written languages. Open-domain semantic representations share none of these
properties. First, the evaluation target is conceptually far removed from the eval-
uation input (i.e., speech or text). Second, while fixed domains constrain and
focus the form and content of the evaluation target, an open domain does not.
As a result, the range of potential variation in representation is huge, and en-
genders enormous (sometimes religious) debate. For the same reasons, practical
questions become intractable. What are the semantic atoms? How much context
do we represent? What is the syntax of the representation? Even if we were to
resolve all these questions, the human annotation process for any such target
would be exceptionally complex, and this complexity affects both annotation
reliability and the likelihood of developing a large corpus for testing.

It appears, then, that whatever evaluation strategy we choose, it can’t require
this sort of abstract representation.

Question Answering. The question answering (QA) task addresses the repre-
sentation issue. Its input is a question and a corpus of documents, and its target
is in the form of language (i.e., the answer to the question). One such evalua-
tion is the TREC QA evaluation. The answers in TREC QA are text sequences
drawn from the documents in the TREC information retrieval corpus. The QA
task is clearly realistic, since users search for answers in document collections
all the time. The metric it uses is relatively easy to understand and reproduce.
The answer assessment process for TREC QA can be expensive, because each
novel system answer has to be assessed by hand; however, the assessors can reuse
these assessments when another system presents the same answer, and the doc-
ument collection is closed. And while there’s a corresponding potential expense
to providing answers to questions for a training corpus, one can easily imagine
“found” sources for the questions themselves, e.g., the logs of a Web site such
as AskJeeves, or of calls to a library reference desk.

In summary, while the cost of corpus creation and answer assessment is im-
portant to keep in mind, QA has a number of appealing properties as an evalu-
ation of open-domain understanding.

Reading Comprehension. Our work in reading comprehension (RC), begun
in 1998, was motivated by a desire to create an open-domain language under-
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standing evaluation which addressed the issue of data cost. We hypothesized
that an approach using “found” data might alleviate this problem, and so we
worked to exploit existing human reading comprehension tests (Hirschman et al.
1999; Wellner et al. 2005). This sort of evaluation is now generating consider-
able interest in the NLP community (Brachman 2005). These tests differ from
the question answering scenario in that the test taker is given the document in
which to look for the answers, and the answers are guaranteed to be found in
that document.

Although one motivation for using “found” RC test was to reduce corpus de-
velopment costs, this benefit was complicated by two factors. First, real reading
comprehension tests have significant educational and commercial value. They are
closely held, sometimes so that they may be reused for subsequent generations
of students, and sometimes so that the tests may be sold as practice materials to
future students. Second, while we did develop and make available several read-
ing comprehension corpora (Light et al. 2001), these required significant expense
and expertise to prepare and were consequently small in scale.

The cost of running the evaluation was also a factor, since our version of the
RC task required the system to produce an answer, and thus incurred some of
the expense of hand assessment of the results. However, it’s also possible to use
multiple-choice RC tests for an evaluation like this. A multiple-choice RC test
adds a significant but one-time cost of creating distractor answers, but reduces
the assessment cost to zero. These tests can include “none of the above” as an
option, which increases the difficulty of the test by requiring the test taker to
decide not simply which answer is best, but also whether any answer is good
enough.

Finally, RC doesn’t really correspond to a compelling task. It’s hard to imag-
ine a circumstance when it would be relevant to quiz a computer on how well it
comprehended a document or set of documents (as opposed to a task like QA,
where the computer is required to “apply” its ability to comprehend). We feel
this shortcoming is significant.

2.4 Asking Questions About RTE

Our final two criteria are not at issue here. First, the community appeal of RTE
is already apparent. Second, the evaluation is difficult, but not impossible. The
RTE training and test corpora were split 50/50 between true and false entailment
pairs; while the highest accuracy score in the official evaluation was 59%, at least
two participants reported accuracy scores above 60% in work done between the
submission deadline and the workshop itself. We will not discuss these criteria
further.

The remaining criteria, on the other hand, require some significant attention.

– Realism/applicability: Does the RTE evaluation model a “real” task or
applicable component?

– Clear metrics: While assessing RTE results requires no human interven-
tion, how consistently can the scores be applied?
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– Cost: Does the binary nature of the RTE judgment lead to efficient corpus
creation? Is there “found” data we can use? What is the cost of entailment
pair creation?

– Annotation reliability: Is inter-judge agreement sufficiently high?

In the sections which follow, we address these questions. We begin with a
description of our own RTE system. We chose a simple, large-corpus technique,
not because we believed it would be successful, but because it provided a good
basis for us to explore a range of issues related to RTE itself, specifically the
cost and difficulty of creating a gold-standard corpus; the complexity of the
judgment guidelines; and the potential for building noisy training corpora auto-
matically.

We then describe development of additional training materials, based on pairs
of headlines and lead paragraphs extracted from news stories. We next report
our experiments on inter-annotator agreement, for both our headline corpus and
the RTE corpus as a whole. We then review our analysis of task difficulty, using
a Rasch analysis based on the joint assessment of test item difficulty and system
performance. We conclude by returning to these four criteria as they apply to
the RTE evaluation, and discuss how it compares to the other evaluations we’ve
described.

3 Text Alignment and Similarity as Entailment

MITRE’s primary submission to the RTE evaluation took its inspiration from
statistical machine translation (SMT). We thought that it might be informative
to view the RTE entailment pairs as an aligned corpus of “translations”, in which
entailment serves as the noisy channel instead of a mapping between languages.
To be sure, we do not believe that this approach can identify legitimate entail-
ment pairs with anything approaching reliability; in fact, as we discuss below, we
were compelled to expand our range of text comparison metrics beyond align-
ment in order to achieve any significant results. Rather, this strategy provides a
framework in which to consider the implications of large-corpus approaches to
the RTE task.

SMT explicitly models the probability that a sentence in a source language
will translate to a sentence in the target language. Following Brown et al. (1993),
most SMT models decompose this probability into probabilities relating individ-
ual word pairs in the two sentences. There are also mechanisms in the models for
explaining spurious words in the source and target, by aligning them with the
null string. SMT is a large-corpus approach to machine translation, and the 567
training pairs provided by the RTE evaluation are inadequate by orders of mag-
nitude. We addressed this issue by automatically deriving a large, noisy training
corpus of 100,000 entailment pairs from newswire articles, using initial article
paragraphs as RTE texts and headlines as RTE hypotheses (see the following
section for a detailed discussion). For testing purposes, we hand-annotated a
separate set of 1000 pairs drawn from the same corpus.
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We used the GIZA++ toolkit (Och and Ney 2003) to induce alignment mod-
els from these 100,000 training pairs. Figure 1 shows one such induced alignment.
Most of the source words either align with their identical counterparts or fail
to align, although there are some alignments which reflect synonymy or other
dimensions of relatedness: surrounded with engulf, Bushehr with Iran. Some no-
table word correspondences found by the model are shown in Figure 2; as the
differing/equal pair shows, both similarity of context and similarity of meaning
drive the alignment.

Floods . . . surrounded two villages in the southern part of Bushehr province today . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓
Floods Engulf Two Villages In Southern Iran

Fig. 1. GIZA++ alignment for an entailment training pair

differing equal
heroism gallantry
spaceflight spacecraft
railmen railworkers
procrastination timing
hirsute hair
engulf surround
outplay defeats
mountaineer climber

Fig. 2. A subset of the top word alignments acquired by GIZA++

We explored three methods of applying this alignment model to the RTE
task.

In the first method, we exploited the fact that the proportion of true vs. false
entailment pairs in the RTE test corpus was known (namely, 50/50). We first
determined the proportion of true and false pairs in our hand-annotated test set
of 1000 pairs, which was 60%; this was also the base rate for the experiment, since
this proportion of pairs meant that 60% accuracy should be achievable by chance.
Next, we applied the alignment model to each of these 1000 pairs, ranked them
by their alignment score, and used the 60% threshold as the boundary between
true and false pairs in the ranking. This process assigned the correct truth value
to these pairs with 80% accuracy.

Unfortunately, when we applied this model to the RTE development set,
we were able to predict entailment correctly only slightly above chance. One
possible reason for this discrepancy is that the non-entailing examples in our
training corpus had very little word overlap, while a number of the examples in
the RTE corpus were specifically designed to probe for phenomena like negation.



Evaluating Semantic Evaluations: How RTE Measures Up 317

Text: Clinton’s new book is not a big seller here.
Hypothesis: Clinton’s book is a big seller.

Text: After trial, Family Court found defendant guilty of willfully violating the
order of protection and sentenced him to six months incarceration.
Hypothesis: Family Court cannot punish the guilty

Fig. 3. Non-entailing RTE examples with high word overlap

These RTE pairs, illustrated in Figure 3, exhibit high rates of words in common,
but are false.

For our subsequent approaches, we turned to libparis
(Henderson and Morgan 2005), a library of string similarity metrics as-
sembled by MITRE, to add more dimensions of sensitivity to the determination
of entailment. Some of these metrics are inspired by MT evaluation, and some
are based on standard string-matching algorithms (Gusfield 1997). We tried
two ways of combining features extracted from the GIZA++ alignment models
with these libparis metrics. We first used the SVM-light support vector
machine package (Joachims 2002) to build a classifier on the RTE development
data using these features, but cross-validation experiments showed this to be
unpromising. For our final approach, we combined all the features using a simple
k-nearest-neighbor classifier that chose, for each test pair, the dominant truth
value among the five nearest neighbors in the development set (Bayer et al.
2005). Results are shown in Figure 4; as an indication of the poor performance
of current systems on “real” comprehension tasks like RTE, our system was one
of the highest-scoring submissions to the evaluation.

Pairs 800
Correctly T 231/400

labeled F 238/400
Accuracy 0.59
Precision 0.59
Recall 0.58
F-measure 0.58

Fig. 4. Alignment system results

4 Developing a Large Corpus of RTE Pairs

For development, the RTE organizers provided 567 exemplar sentence pairs.
This quantity of exemplars is clearly inadequate for a large-corpus technique
like SMT; successful SMT models are trained from a corpus which is typically
larger by orders of magnitude than the RTE development set. In this section,
we describe our attempt to develop a large corpus of entailment pairs.
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Text: John murdered Bill yesterday.
Hypothesis (entailment): Bill is dead.
Hypothesis (paraphrase): Bill was killed by John.

Fig. 5. Contrast between entailment and paraphrase

Although RTE stands for “Recognizing Textual Entailment”, the RTE de-
velopment corpus exemplified a relationship between pairs which is both weaker
and stronger than entailment. On the one hand, a large subset of RTE pairs
exhibit plausible inference, rather than strict logical entailment; on the other
hand, the overwhelming majority of the pairs illustrate a bidirectional plausi-
ble inference relation (i.e., paraphrase) between the hypothesis and a portion of
the text, as illustrated in Figure 5. We found that 94% (131/140) of the true
pairs in the second half of the RTE development corpus were these sorts of
paraphrases.

Our challenge, then, was to find a naturally-occurring corpus which exhibits
these properties, and furthermore might lend itself to automatic truth/falsity
judgment at a high enough level of accuracy and purity to be useful in training
a SMT model. This investigation led us fairly quickly to the relationship between
news articles and their headlines. In particular, we observed that the headline of
a news article is often a partial paraphrase of the lead paragraph, or is sometimes
a genuine entailment, in approximately the same way the RTE data is. We thus
posited that headlines and their corresponding lead paragraphs might provide
a readily available source of training data. In the remainder of this section, we
describe our exploration of this hypothesis.

4.1 Entailment Pairs in News Corpora

Because our goal was to automatically generate an extremely large corpus of
exemplars, we focused on large data sources. Our first candidate was the news
corpus collected by the MiTAP system (Damianos et al. 2003), which collects
over one million articles per month from approximately 75 different sources.
While our hand judgment of a sample of the MiTAP corpus did not yield good
overall results (cf. Burger and Ferro (2005)), it was apparent that some news
sources tended to be more fruitful than others. We were thus motivated to con-
tinue looking for high-quality sources.

The judgment task we defined differed slightly from the RTE task. For each
article, we had a human judge determine whether the lead paragraph entailed the
headline, but instead of a two-way judgment, the judge rendered a judgment of
yes, no, or maybe, where maybe meant that the headline was very close to being
an entailment or paraphrase. For the purposes of the RTE task, maybe and no
are equivalent; however, we expected that these “near miss” pairs would be use-
ful for our statistical training algorithms, since they represent some of the most
difficult decisions. We developed a simple Web-based tool which provided trans-
parent support for this judgment task (see Burger and Ferro (2005) for details).
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After MiTAP, we turned to the Gigaword newswire corpus (Graff 2003).
Gigaword contains over 4 million documents from four different news sources:

– Associated Press Worldstream English Service (APW)
– Agence France Press English Service (AFE)
– The New York Times Newswire Service (NYT)
– The Xinhua News Agency English Service (XIE)

For each source, Gigaword articles are classified into one of three types: news
articles, digests of news briefs, and “other” (sports scores, stock prices, etc.).
We restricted our investigations to news articles. We hand-judged 103 articles
drawn from this corpus. We found that the overall distribution of judgments was
very similar to those for the MiTAP corpus, but also that the Xinhua documents
yielded 85% positive pairs (see Figure 6). Consequently, we chose to focus on
this portion of the corpus.

Source Yes No Maybe Total
APW 8 (31%) 12 (46%) 6 (23%) 26
AFE 14 (56%) 4 (16%) 7 (28%) 25
NYT 8 (31%) 17 (65%) 1 (4%) 26
XIE 22 (85%) 4 (15%) 0 (0%) 26
Total 52 (50%) 37 (36%) 14 (14%) 103

Fig. 6. Gigaword corpus results

A team of three judges tagged approximately 900 randomly selected Giga-
word documents, including 520 from Xinhua. This larger tagging effort showed
that an estimated 70% of the XIE headlines in Gigaword are entailed by the cor-
responding lead paragraph. (This is noticeably lower than our original estimate
of 85%, which was based on a much smaller sample.) We hoped for a higher rate
of purity, so we looked for more discriminators.

As in the MiTAP corpus, we found different rates of purity in different cat-
egories of articles. For example, articles about sports or entertainment often
had whimsical (non-entailed) headlines, while articles about politics or busi-
ness more frequently had the lead-entails-headline property we sought. These
differences led us to use text classification techniques to try to find the mix
of genres or topics that would most likely possess the lead-entails-headline
property.

Once again, we employed an SVM strategy, but in this case, we used it as a
document classifier rather than a pair classifier, with a goal of building a corpus
of entailment pairs, rather than performing the RTE discrimination task. So in
this case, we made use of the entire article and its metadata, not just the headline
and lead paragraph. We experimented with a variety of feature representations
and SVM parameters, but found the best performance with a Boolean bag-of-
words representation, and a simple linear kernel. Leave-one-out cross-validation
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estimates indicate that SVM-light could identify whether documents exhibit
the lead-entails-headline property with 77% accuracy. We attempted further
refinements using active learning (Tong and Koller 2000), but we were not able
to improve on this initial result.

To try to refine the corpus further, we ran the trained SVM on all 679,000
of the unjudged XIE documents, and selected the 100,000 instances which most
strongly evinced the lead-entails-headline property, according to the SVM. This
100,000 document subset is the one we used to train our MT-alignment-based
system for the RTE evaluation. We attempted to show that this subset was more
“pure” than the entire XIE document set, but the sample we hand-annotated for
this purpose was too small to demonstrate statistical significance. Nevertheless,
it did show a suggestive improvement over the base rate. See Burger and Ferro
(2005) for details.

Ultimately, we achieved our goal of developing a large, albeit noisy, training
corpus for the RTE task. Our initial exploration of the MiTAP corpus suggested
that it might be possible to find a source of sufficient purity, and we found such a
source in the Xinhua subset of the Gigaword corpus. Although the hand-judged
base rate for Xinhua was lower than our initial inspection (70% vs. 85%), and
subsequent attempts to improve the purity of the corpus did not clearly succeed,
the result was a corpus which exhibited the lead-entails-headline property to a
significant extent.

4.2 Inter-judge Reliability

To determine the upper bound on system accuracy, and to evaluate the com-
plexity and feasibility of the judgment task, we measured inter-judge reliability
on both our own Gigaword corpus and the RTE development corpus.

Dagan et al. (2005) report that in preparing the RTE corpus (development
and test), their two annotators achieved approximately 80% agreement. The 20%
on which the annotators disagreed were discarded from the corpus, along with an
additional 13% which a further review suggested might be controversial. These
results align quite closely with the results from our annotation effort, although
some problems remain.

For Gigaword, we added a second judge for 300 of the hand-judged XIE
articles. We performed this double-judgment in two rounds, in order to assess
the intuitive understandability of the task and the amount of judge training
required. For the first round, an experienced judge gave a brief verbal overview
of the task to a second, novice judge, and the two judges both hand-judged 100
documents. At that point, the more experienced judge reviewed the differences in
judging and drafted a set of guidelines which provided a synopsis of the official
RTE guidelines, plus a few rules unique to headlines (e.g., what to do when
partial entailment only held if the lead were combined with location or date
information from the dateline). The two judges then judged a second set of 200
articles.

As described previously, our judges rendered a judgment of yes, no, or maybe,
where maybe meant that the pair did not exhibit the entailment relation, but was
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Condition
Round 1

(100 docs)
Round 2

(200 docs)
yes/yes 54 (54%) 112 (56%)
no/no 20 (20%) 31 (15.5%)

maybe/maybe 1 (1%) 14 (7%)
no/maybe 9 (9%) 5 (2.5%)

RTE agreement
(maybe=no) 84 (84%) 162 (81%)

no/yes 12 (12%) 12 (6%)
yes/maybe 4 (4%) 26 (13%)

Fig. 7. Inter-judge agreement for two XIE data sets

very close. Our maybe judgment, then, appears to align with the final RTE filter
for controversial items. Figure 7 shows the various rates of inter-judge agreement
and disagreement.

We see from this table that our inter-judge agreement rate is quite sim-
ilar to the RTE organizers, especially after closer coordination on guidelines
(81% on round 2 vs. 80% RTE). It is also close to the 83% agreement rate
reported by Dolan et al. (2005) for their judgments on a similar task involv-
ing “more or less semantically equivalent” pairs. Our rate of controversial ex-
amples also appears to be comparable to the RTE organizers. On our round
2, for instance, the two uncontroversial conditions (yes/yes and no/no) com-
prised 71.5% of the examples (143 pairs), compared to 67% (80% - 13%) for
the RTE organizers. It’s interesting that our inter-judge agreement rate declined
slightly from round 1 to round 2; Figure 7 shows that the reason is that the
number of no/maybe conflicts (which don’t affect the agreement rate) declined,
while the number of yes/maybe conflicts (which do affect the agreement rate)
increased.

For the RTE development corpus, we compared our judgments to the final
judgments of the RTE development team. An experienced annotator judged 70
pairs drawn from the second half of the RTE training set (10 pairs from each
of the seven application scenarios). Our judge achieved an agreement rate of
91% (64/70) with the truth/falsity judgments provided in this (already filtered)
training set. Similar studies by RTE participants achieved higher agreement
rates; e.g., Bos and Markert (2005) report an agreement rate of 95% with the
entire 800-item test set.

We reviewed the sources of disagreement, and found three problem areas.
The first reason is specific to the Gigaword corpus. Because this corpus was

automatically collected and zoned, the headlines in particular contained a num-
ber of irregularities that made it difficult to judge their appropriateness. Such
irregularities included truncations (Chinese President Vows to Open New Chap-
ters With), absence of propositions (subject headings like Mandela’s Speech),
prepended alerts like URGENT:, and bylines and date lines miszoned into the
headline.
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Second, our judges found they had irreconcilable differences about synonymy,
both in the RTE training set and the Gigaword corpus. For example, in the
lead/headline pair shown in Figure 8, the judges disagreed about whether safe
operation in the lead paragraph and operates smoothly in the headline induced
the appropriate entailment relation. Similarly, for pair 823 in the RTE training
set, our two judges disagreed on whether in bloody clothes and covered in blood
were related in the required way.

Lead: As of Saturday, Shanghai’s Hongqiao Airport has performed safe operation
for some 2,600 consecutive days, setting a record in the country
Headline: Shanghai’s Hongqiao Airport Operates Smoothly

Text: The body of Satomi Mitarai was found by a teacher after her attacker
returned to class in bloody clothes.
Hypothesis: Mitarai’s body was found by a teacher after her killer returned to
their classroom covered in blood.

Fig. 8. Synonym disagreements

Third, even though our extended guidelines provided some explicit direction
on world knowledge, our judges disagreed on the amount of knowledge that
was permissible. For instance, in the RTE training pair in Figure 9, a positive
judgment is more convincing if one understands the implications of the references
to al Qaeda and September 11, 2001 in the text. Similarly, the lead/headline
pair only leads to a positive judgment if the reader knows that Sudan and the
Khartoum government are codescriptive.

Lead: Eritrea has accused the Khartoum government of taking more hostile moves
against its nationals living in Sudan
Headline: Eritrea Accuses Sudan Of Taking Hostile Move

Text: The White House failed to act on the domestic threat from al Qaeda prior
to September 11, 2001.
Hypothesis: White House ignored the threat of attack

Fig. 9. World knowledge disagreements

After each round of annotation, the judges attempted to reconcile their dis-
agreements. We found that the judges could not reconcile a number of the judg-
ments on which they disagreed. For the first round, 15 out of 100 pairs (15%)
were left unreconciled, and for the second round, 42 out of 200 (21%) were left
unreconciled. Eleven of the irreconcilable pairs in the second round were due to
confusion stemming from the telegraphic nature of many well-formed headlines
(e.g., Crackdown on Auto-Mafia in Bulgaria), which led to misunderstandings
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about how to judge truncated headlines and headlines lacking propositions. De-
spite the high number of irreconcilable pairs, the judges’ detailed comments
revealed that on pairs where they disagreed on how to label the pair, they often
agreed on what the problem was.

Our study of inter-judge agreement suggests that this sort of annotation
task consistently yields agreement rates in the 80% range, across a variety of
groups and task definitions. While a good deal of the disagreement appears to
be simply irreconcilable, simply eliminating these disagreements appears to be a
good (albeit more expensive) strategy, as shown by the higher agreement rates
between the judgments in the purified RTE corpus and independent judgments
by RTE participants.

5 Evaluation Suitability: Rasch Analysis

There are many ways to think about the suitability of an evaluation: the cost
and efficiency of setting it up and running it, its correlation with actual user
tasks, etc. In this section, we consider another dimension of suitability: the com-
parability of system scores and the calibration of test elements.

5.1 An Overview of Rasch Analysis

What does it mean when one system outscores another by three items? It’s very
difficult to tell, because it depends on how consistently the individual test el-
ements predict the performance of each system, and the difficulty of the test
items that each system got right (and, consequently, the difficulty of the ones
they got wrong, as well). An approach known as Rasch analysis (Bond and Fox
2001) can provide mathematically well-motivated insight into this issue. In pre-
vious joint work, MITRE participated in a Rasch analysis on the results of the
TREC QA 2002 evaluation (Lange et al. 2004). We found these results provided
useful insights, and so in this section, we apply this technique to the results of
the RTE evaluation.

Rasch analysis uses the performance of test-takers on individual test items to
generate a model of interconnected estimates of test-taking ability (in our case,
system performance) and item difficulty. Under the Rasch model, the probability
that a particular test-taker got a particular test item correct is a function of the
difference between the test-taker’s ability score and the item’s difficulty score.
Rasch analysis is used by a number of communities; in the educational testing
world, it is used to assign test-independent levels of ability to test-takers, to
calibrate tests, and to assign population-independent difficulty scores to test
items. Rasch analysis also has the advantage that partial test results can be
evaluated.

Rasch analysis is founded on the idea that most of the test-takers should agree
on which items are easy and which are hard. So Rasch analysis is unusual in that
one of its goals is to improve the goodness of fit of its models by changing the
tests which generate the models; that is, the idea of Rasch analysis is not simply
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to assess the reliability of a given test, but to provide guidance for improving
the reliability by replacing poorer test items with better ones.

For each subject S and test item Q, Rasch predicts the probability of S
getting Q correct. Outfit is a measure of how far the actual results deviate from
these predictions. Subject outfit is determined by examining how that subject
did on all the test items; test item outfit is determined by examining how all the
subjects did on that item. Outfit is often expressed as a “mean square” measure
whose expected value is 1.0 (the minimum is 0, the maximum is unlimited).

Although outfit works in both directions, Rasch practitioners seem most in-
terested in excessively large outfit: the degree to which a subject, for instance,
“did better” overall on the “harder” test items than the Rasch model predicts.
The better (more predictive) the test, the fewer the number of items which ex-
ceed the chosen outfit threshold. However, the appropriate threshold for outfit
is, surprisingly, a matter of great contention in the Rasch community. To choose
this threshold, Rasch practitioners use rules of thumb. One such rule of thumb
is to flag something as exhibiting excessive outfit when it exceeds a threshold of
1.3 for a sample less than 500, 1.2 for sample sizes between 500 and 1000, and 1.1
for sample sizes larger than 1000 (Bond and Fox 2001, p. 208). For the novice,
the motivation for choosing one rule of thumb over another is extremely obscure,
and the difference among thresholds will not affect the discussion to follow.

5.2 Rasch Analysis of RTE

Figure 10 shows the Rasch analysis plots for systems and items from the RTE
2004 evaluation. We considered full submissions only (of which there were 23),
against 779 test items (i.e., entailment pairs). One pair that every system got
wrong and 20 pairs that every system got right were removed from the 800 pairs
in the evaluation because they weren’t discriminative; 19 of these 20 correct pairs
came from the CD (comparable documents) application setting, which was the
easiest of the seven application settings in the corpus.

The fine dotted lines show the large outfit threshold according to the rule
of thumb given above (1.3 for a sample size of 23 systems to measure test item
outfit; 1.2 for a sample size of 779 items to measure system outfit). The staggered
dotted lines show an alternative large outfit threshold, applied by Lange et al.
(2004) to the 2002 TREC QA evaluation. This evaluation featured 67 systems
and 490 questions, which is comparable to the RTE evaluation.

The scales of these two graphs differ considerably. The Y axis of the item
difficulty graph ranges from -4 to 4, while the Y axis of the system ability graph
ranges from -1 to 1. In other words, the spread of system ability is very small.
We didn’t need Rasch analysis to observe this, but it’s relevant to the discussion
of outfit. According to either outfit bound, the test items are well-behaved; but
this shouldn’t surprise us, because the spread of system abilities is so narrow.
That is, the item outfit is within bounds, because the differences among systems
isn’t enough to make it excessive.

The system outfit graph shows a few outliers (5 at the 1.2 threshold, 2 at the
1.6 threshold). If we want to reduce the number of outfitting items, and thus
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improve the test, how might we go about this? Rasch models are unidimensional
models; that is, they are intended for tests that measure one thing in the target
population of test takers. For instance, a test might be intended to measure
mathematical ability among third graders. Outfitting items suggest that the test
is measuring more than one thing; so our math test might also be unintentionally
testing reading ability (say, by presenting mathematical word problems), possibly
resulting in outfit among good math students who are poor readers.

For RTE, there are a number of possible dimensions at play besides reason-
ing ability. For instance, the RTE corpus was constructed from a number of
data sources, representing tasks like information retrieval, information extrac-
tion, QA, etc. It may be that these sources are introducing an additional dimen-
sion. Alternatively, it might be differences in strictness of entailment, amount of
world knowledge, or the presence of negation. We can start to look for these extra
dimensions by isolating the outlying systems and studying the pairs the Rasch
model predicted they shouldn’t have responded to correctly. Once we identify
these dimensions, we can refine the test accordingly, either by eliminating all but
the dimension of interest, or by dividing the test into parallel sub-evaluations,
each of which is unidimensional.

While the data from this population of test takers (i.e., RTE systems) does
not suggest this evaluation is multidimensional, it shouldn’t surprise us if it
did. These systems vary widely in their approaches to the RTE task, and the
novelty of the task hasn’t allowed for the convergence of approaches found in
more established evaluations. As time goes by, it may be that these various
approaches will converge, and in this sense the RTE evaluation might affect the
evolution of system capabilities in a way that human tests cannot, simply by
asserting that the particular mix of phenomena found in the RTE corpus ought
to be a unitary system capability. (This convergence is not necessarily a good
thing, since it also may have the effect of reducing the diversity of research.)
Alternatively, the outfit analysis might motivate the RTE evaluation to narrow
the types of test items to focus the evaluation. Either way, Rasch analysis gives
us a valuable tool to track and analyze both the test and the population of test
takers.

6 Assessing RTE

With these results in hand, we finally focus on our criteria for evaluations as
they bear on RTE.

6.1 Criterion 1: Realism or Applicability

The appeal of RTE seems to lie in the perception that it exemplifies a technology
which is broadly required, and that any system which can perform the RTE task
well would almost certainly have to have enough “smarts” to lead to considerably
enhanced approaches to MT, information extraction, question answering, and the
like. But the RTE task does not correspond to a “real” application; nor does it
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clearly correspond to a component of such an application. In other words, the
criterion of realism presents a vexing issue.

While the simplicity of RTE is one of its strengths, it’s also the reason for
this problem. RTE is a decision task, rather than a generation task, and the vast
majority of language processing tasks are generation tasks. The RTE corpus
is “inspired” by a range of language processing scenarios, most of which can’t
exploit the RTE capability directly. For example:

– Information retrieval: The metric of comparison between query and doc-
ument in IR is relevance, not entailment, and queries are keywords, not
structured information or propositions.

– Reading comprehension: While one might be able to interpret an RC
question as a premise which entails the answer, and it might be feasible to
compare the question to each sentence in the text, three problems remain: the
truth/falsity judgment in the RTE task selects only appropriate entailments,
and can’t choose between them; the answer might be distributed among
multiple regions of the text (due to, e.g., pronominal reference); and finding
the appropriate sentence which contains the answer isn’t the same as finding
the answer.

– Question answering: The problems for QA are similar to those for RC, and
QA additionally presents the overhead of selecting the appropriate document
from a large corpus.

– Information extraction: IE doesn’t really have a candidate text to match
against the “hypotheses” in the document; the goal, rather, is to find infor-
mation of a particular category, likely spread throughout the document.

– Machine translation: Every good translation is entailed by its source, but
this fact does not help much in generating that translation.

– Paraphrase acquisition: It might be possible to use an MT alignment
approach to bootstrap paraphrase acquisition (as Figure 2 might suggest),
but it’s much more likely that a well-understood corpus of paraphrases would
support an RTE task, rather than the other way around.

To be sure, there are applications for which an RTE module might be useful.
For instance, identifying comparable documents is also one of the motivating
RTE scenarios, and one could imagine a sentence-level pairwise entailment judg-
ment as a component of a system which performs this task. Similarly, certain
approaches to summarization or identifying novel documents might also be able
to exploit such a capability.

The “realness” of an evaluation is a crucial dimension of its motivation, and
a crucial guide for corpus creation. If the RTE evaluation were to focus on one
or more of these plausible scenarios, it might fulfill this criterion; however, its
scope is clearly intended to be broader, and as a result, we are denied this crucial
guidance for creating a representative RTE corpus.

In a fixed application, the evaluation corpus can be crafted to reflect the
target application in the ratio of relevant to irrelevant documents, the linguistic
register and style, etc. On the one hand, such a corpus allows developers to tune
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the application, by ignoring or paying little attention to linguistic phenomena
which appear infrequently; on the other hand, if the corpus is representative of
the task, and the goal is to build a system which performs well on the task, this
strategy is wise and appropriate. But we don’t know what we’re going to do with
an RTE system, and so we’re left with a host of questions. What proportion of en-
tailment pairs should require world knowledge? What proportion should be easy
or hard? What should the balance be between positive and negative examples?
Without the answers to these questions, we run the very real risk of optimizing
for a task which is unrepresentative of any of the applications it will be applied to.

Against this criterion, RTE clearly suffers in comparison with QA, which has
clear utility, and is no better than RC, which also lacks a compelling task.

6.2 Criterion 2: Clear Metrics

Like QA and RC, the evaluation metric for RTE is intuitive. Rasch analysis sug-
gests that the RTE evaluation probably fits a well-accepted statistical model of
well-behaved tests, and appears to be comparable to the 2002 TREC QA eval-
uation in that regard (cf. Lange et al. (2004)). As a result, it’s possible for RTE
developers to use a subset of the evaluation items to calibrate results across years.

6.3 Criterion 3: Cost

As we show, RTE differs from QA and RC in presenting the possibility of us-
ing noisy corpora as training material. For some systems, this feature may be a
considerable advantage. However, the preparation of gold-standard test (or train-
ing) data is surprisingly costly, due to the various manipulations which even our
lead/headline pairs must undergo: tenses ought to be modified, pronouns must
be replaced by proper names, etc. The cost of developing gold-standard RC ma-
terial is also considerable, as we learned in the course of our RC research. On the
other hand, the cost of answer assessment in RTE is zero, which compares favor-
ably to QA and free-answer RC. At this point, it’s too early to say whether any
of these evaluations provide any advantages over the others along this dimension.

One notable shortcoming of RTE is that, unlike QA and free-answer RC, each
RTE item provides one bit of information. In other words, the simplicity of the
evaluation also compromises the informativeness of each item. This issue must
be factored into the cost of developing an RTE corpus. One possible avenue
of exploration is to develop a version of RTE which asks for a truth/falsity
judgment for multiple candidate hypotheses for each premise, rather than only
one, in the hope that the marginal cost of developing additional candidates is
lower than that of developing another entailment pair. However, in this scenario,
the resulting pairs will not be independent of each other, which has implications
for statistical models like Rasch.

6.4 Criterion 4: Annotation Reliability

We found that the entailment judgment task is tolerably efficient; an informal re-
view of our hand-judgment of the Gigaword corpus suggested a judgment speed
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as high as 100 pairs per hour for a trained judge. And our work on inter-judge
agreement showed that the RTE judgment task is reasonably robust. Further-
more, we suspect that, unlike other annotation tasks, we can actually exploit
the variability we found here.

Variability of interpretation is the natural state of affairs in human language.
It should not surprise us at all that human judges differ about synonymy and
acceptable levels of required world knowledge. Furthermore, this variability is
informative. The developers of the initial RTE training corpus discarded pairs
about which the judges disagreed. We suggest that this is the wrong thing to
do, and that the RTE task ought to capture the variability of interpretation,
especially since no set of judgment guidelines will ever be extensive enough
to resolve the potential issues. Two possible strategies for capturing variability
suggest themselves.

The first strategy is to make the truth/falsity judgment a scale rather than
a binary choice. This might be as simple as adding “don’t know” as an option,
or may involve something like a five-point scale, ranging from clearly true to
clearly false. Adding a third value might be the optimal choice, if judges end up
spending a disproportionate amount of time on the difficult-to-decide cases. The
second strategy is to preserve the binary choice, but have three judges judge all
pairs, yielding a four-way classification ranging from 3T (true for all judges) to
0T (false for all judges).

We feel that there are at least two advantages to capturing this variability.
First, system developers will have a wider range of judgments to choose from
when training their systems; they’ll know which judgments are strong and which
are weak. Second, we now have the possibility of assessing the correlation between
system confidence and human confidence, which will yield a more realistic task.

7 Summary

The PASCAL RTE evaluation has generated an enormous amount of interest.
In this paper, we have tried to evaluate the evaluation. We used a general set of
criteria for assessing the goodness of language evaluations to scrutinize RTE’s
cost, relevance, and suitability, and compared it to existing evaluations of open-
domain understanding according to these criteria. We found that although RTE
does not correspond to a “real” or naturally occurring language processing task,
it nonetheless provides clear and simple metrics, a tolerable cost of corpus devel-
opment, good annotator reliability (with the potential to exploit the remaining
variability), and the possibility of finding noisy but plentiful training material.
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Abstract. The Computational Linguistics at Concordia laboratory sys-
tem for textual entailment determination is based on shallow, partial
predicate-argument structure matching combined with a WordNet-based
lexical similarity measure. In this paper we describe experiments with
different system settings conducted to assess the potential and limi-
tations of partial predicate-argument structures in textual entailment
determination.

1 Introduction

Establishing entailment relationships between two statements is important for
many NLP tasks [1] and the problem is gaining interest in the research com-
munity. Most current work relies on the analysis of corpora - single or paral-
lel - using machine learning and statistical methods (see [2, 3, 4, 5, 6]) to induce
entailment-specific knowledge. Approaches to the determination of textual entail-
ment between pairs of text snippets include techniques ranging from the BLEU
algorithm [7] to complex methods making use of logic formalisms [8, 9, 10], the-
orem proving [11, 12], and a variety of statistical approaches [9, 13, 14, 15, 16]. In
contrast, we approach the textual entailment problem using general mechanisms
and strategies based uniquely on partial predicate argument structure (PPAS)
and WordNet-based [17] lexical similarity measures.

A system that can determine entailment relations has many possible applica-
tions, including a test whether a sentence condensed for purposes of summariza-
tion is still a correct statement, given the original sentence was true. Entailment
is a semantic notion originally defined over propositions, but extended here to
sentences, as shown in Example 1.

(1) Pair #1597 RTE: True
T: Nelson Mandela’s Long Walk to Freedom began as scraps of paper,
buried under the floor of his prison cell.
H: Nelson Mandela’s autobiography is called “The Long Walk to Free-
dom”.

As this example illustrates, entailment is not a clear cut notion: while in the
context of the article from which the first sentence is taken (and indeed from
world knowledge) the entailment may be clearly true, in isolation we feel it is
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not necessarily so and thus, a system that is limited to just the two sentences
cannot be expected to make this inference (after all, The Long Walk to Freedom
might be a novel or a campaign slogan).

Evaluating entailment relations, as this example shows, is open to inter-
annotator disagreements, as is the case with evaluating summaries [18]. But
entailments between sentences are more constrained (context has to be ignored),
and, therefore, less open to interpretation and presumably easier to evaluate. Yet
they have a more stringent definition (subsumption of truth) and should thus
be harder to approximate with means that do not include semantics.

The Recognising Textual Entailment (RTE) Challenge [19] provides a data
set to test our ideas for a shallow semantics. Based on our summarization systems
ERSS 2004 and Multi-ERSS [20, 21], we wanted to see how far a small extension
of our tools would go towards capturing shallow semantics. Under the premise
that the most basic aspect of semantics is the predicate argument structure of
the sentence combined with a lexical resource, such as WordNet [17], our system
produces a partial predicate argument structure from the sentence, which con-
tains only the stipulated subject, the predicate, and the stipulated object.1 The
system matches PPASs in the pair, using WordNet and a conservative strategy
(if in doubt, say no.) Our goal was to see how far very shallow predicate argu-
ment structures can be useful to determine entailment. This paper attempts to
outline some of the insights gained in the process.

2 System Overview

The Computational Linguistic at Concordia (CLaC) Lab’s system for the RTE
Challenge is based on systems our laboratory developed for text summariza-
tion. The environment is implemented in the GATE architecture [24] and pro-
vides tagging, NP chunking, and knowledge-poor fuzzy NP coreference resolution
[20, 21, 25]. The flexible GATE architecture allows for the creation of modular
components that can be used in different combinations depending on the task.
For the purposes of the textual entailment resolution we used two full parsers
[22, 23] to construct the partial predicate structures (PPAS), then matched the
structures in the data pairs using noun phrase coreference [25] within the same
PPAS constituent (i.e. matching subjects with subjects, objects with objects,
predicates with predicates), extended with a few specialized heuristics for par-
ticular problems that were encountered in the PASCAL RTE challenge develop-
ment set, as discussed below.

2.1 Main Strategy

The system uses partial predicate-argument structures (PPASs) and a WordNet-
based measure of lexical similarity to determine the entailment between the two
components of a pair.
1 We use two full fledged parsers, LINK [22] and RASP [23], to arrive at this truncated

notion of PPAS; in hindsight we should have used the complete set of grammatical
relations provided by the parsers directly.
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Partial predicate-argument structures cover only the verb, its subject and
object (if there is one) as in Example 2. PPASs are produced based on the
dependency tree output of two parsers, the Link parser [22] and the RASP
parser [26]. One of these two parsers can be set as default, the second to be
used only when the default parser doesn’t produce a parse. When both parsers
are given equal priority, the system chooses for each sentence the parser that
generates more PPASs. This last strategy produced marginally better results in
the test runs and it is the default setting for the system.

(2) Two-thirds of the Scottish police force will be deployed at the happening.
s:[Two-thirds of the Scottish police force] v:[will be deployed] a:[p:[at]
a:[the happening]]

Lexical similarity between structurally related items in the pairs is measured
as the length of the path obtained while traversing the WordNet [17] tree-like
hierarchy from one word to another via “is a” relation. A shorter distance indi-
cates a closer relationship, 0 corresponds to members of the same synset. The
distance has to be within a pre-established threshold. We tested different thresh-
olds varying from 0 to 4 and found that a more permissive approach resulted in
slightly better recall at the expense of a comparable decrease in precision, while
accuracy and CWS remained practically the same. The threshold of 0 was kept
as the default setting for the system.

A matching heuristic establishes whether H (hypothesis) is entailed by T
(text) based on PPASs and WordNet distance. Subjects are compared to sub-
jects, verbs to verbs and objects to objects. Passive constructions are transformed
into active ones before the comparison. The comparison stops when a match is
found, thus ignoring any possible matches between other PPASs in the pair. This
matching algorithm limits the number of potential cases that are considered for
entailment to those that have very similar syntactic structures.

Algorithm Entailment Detection
(∗ true: entailment detected, false otherwise )
1. Use the coreference resolution system to produce coreference chains both

for T and H separately and for the pair as a unit
2. for each pair
3. for each sentence
4. Extract Noun Phrases and Verb Groups
5. Select a parse among parses from two parsers with weighted scheme
6. Determine PPAS
7. Apply cardinality filter
8. for each numeric value from h
9. if there is no corresponding cardinality value in t
10. then return false
11. Apply Predicate Argument Structure comparison
12. Transform passive constructions into active ones
13. for each PPAS pair
14. Compute WN distance for verbs in T and H
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15. if WN distance <= threshold
16. if both PPASs have comparable structures2

17. if there is coreference between corresponding parts3

18. then return true
19. Apply Be-Heuristic
20. if H contains the pattern “X is Y” and X∈H and X’∈T and {X, X ′}

belong to the same inter-sentence coreference chain and Y∈H and Y’∈T
and {Y, Y ′} belong to the same inter-sentence coreference chain and X’
corefers with Y’

21. then return true
22. return false

The algorithm favors precision over recall, therefore all entailment values are
set to False unless the system finds compelling evidence to the contrary.

This approach is very shallow: it does not use the full dependency informa-
tion in the parses, ignoring, for instance, adjuncts. In a few cases this didn’t
matter, as in Example 3. More often, however, the crucial information for en-
tailment determination is thus ignored, resulting in incorrect assessments, as in
Example 4, where the identical PPAS is constructed for both T and H.

(3) Pair #825, RTE: True, our system: True
T: A car bomb that exploded outside a U.S. military base near Beiji, killed
11 Iraqis.
H: A car bomb exploded outside a U.S. base in the northern town of Beiji,
killing 11 Iraqis.

(4) Pair #2040. RTE: False, our system: True
T: Stjepan Mesic was the first Croatian president to deliver a public ad-
dress at Harvard.
H: Stjepan Mesic was the first Croatian president.
PPAS: s:[Stjepan Mesic] v:[was] a:[Croatian president]

This phenomenon was stronger in the test set than the development set and
thus wasn’t corrected for the Challenge. The development set suggested, however,
some other, additional strategies; for instance a be-heuristic for Hypotheses of
the form “X is Y”, that uses coreference chains within T and between T and H
to decide whether the Hypothesis is True given the data in T . The development
data contains many examples of this type in the QA task, but the phenomenon
was less frequent in the test data.

(5) Pair #336. RTE: True
T:The centre-right European People’s Party (EPP), the largest group in
the European Parliament, has warned that it will reject the Taoiseach,
Berni Ahern, if he is nominated as the next president of the European
Commission.
H: Berni Ahern is the Taoiseach.

2 Comparable structure means they both have subject(s) and/or argument(s).
3 e.g. subjects and/or arguments of the two PPASs being compared.
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Another heuristic was introduced to reduce some negative impact of the
shallow character of our partial predicate-argument structures. In Example 6,
the non-entailment relation is determined by constituents which are ignored in
our PPAS matching approach. A special “cardinality” heuristic ensures that
such cases do not produce false positives when the ignored information concerns
numbers.

(6) Pair #768. RTE: False
T: A small bronze bust of Spencer Tracy sold for £174,000.
H: A small bronze bust of Spencer Tracy made £180,447.

3 Data

The RTE dataset envisions different tasks that require entailment determina-
tion and is thus divided into different types of pairs. These have been collected
using different methods [19]: in the CD (comparable documents) task sub-set,
pairs were manually selected from sets of lexically overlapping pairs of sentences
(Example 7). This part of the PASCAL RTE challenge data showed the highest
degree of both syntactical and lexical similarity between T and H . In the Infor-
mation Retrieval (IR), Reading Comprehension (RC), and Information Extrac-
tion (IR) tasks, annotators manually created the hypotheses that corresponded
to the T part of the pair. Such pairs had much greater variability in structure
and word choice (Example 8). A similar approach was taken for the Paraphrase
Acquisition (PP) task where the hypotheses were generated by annotators using
automatically acquired pairs of lexical-syntactic expressions (Example 9). The
Machine Translation (MT) task pairs were made of gold standard human trans-
lations and machine translations of the same sentence. This part of the data is
characterized by occasional lack of proper grammatical structure and presents
many non-standard expressions as in Example 10. Finally, for the Question An-
swering (QA) task, hypotheses were manually chosen from the output of an au-
tomatic QA system and were in most cases very different in syntactic structure
from the T part (Example 11).

(7) Pair #898. RTE: True
T: After the war the city was briefly occupied by the Allies and then was
returned to the Dutch.
H: After the war, the city was returned to the Dutch.

(8) Pair #1030. RTE: True
T: De la Cruz’s family said he had gone to Saudi Arabia a year ago to
work as a driver after a long period of unemployment.
H: De la Cruz was unemployed.

(9) Pair #39. RTE: True
T: Mr. Clinton received a hefty advance for the book, reportedly $10m,
but he joked that by the time he finished the 937-page tome “I was just
about down to minimum wage”.
H: Bill Clinton received a reported $10 million advance.
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(10) Pair #1252. RTE: True
T: Well-known businessman, Representative Badi Flaha, whose term is
expiring, thought that reforms are essential to develop the economy “but
in Syria we prefer” to implement them slowly but assuredly.
H: Flaha explained that slow but sure progress was the “Syrian way. ”

(11) Pair #605. RTE: True
T: According to the Encyclopedia Britannica, Indonesia is the largest
archipelagic nation in the world, consisting of 13,670 islands.
H: 13,670 islands make up Indonesia.

Thus, the data provided by the challenge organizers is diverse, covering a
wide range of problems that constitute the task of textual entailment determi-
nation. While such diversity means that the data poses significant challenges
and may not lend itself well to processing by a single method, it also provides
excellent material for testing different strategies for a variety of NLP tasks. The
complexity of the pairs ranges from relatively simple cases that can be handled
by knowledge-poor methods (Example 12) to complex entailments that require
world knowledge and are hard to analyze even for humans (Example 13).

(12) Pair #836. RTE: True
T: A Union Pacific freight train hit five people.
H: A Union Pacific freight train struck five people.

(13) Pair #836. RTE: True
T: Google files for its long awaited IPO.
H: Google goes public.

Pair #1266. RTE: True
T: Mohammad Galal Abd Al-Kawi, author of the 15-episode series “The
Priest and the Sheikh”, says in a conversation with Agence France Presse
today, Sunday, that he wrote these episodes “to respond to the biased
campaigns in some Western media outlets, which are being directed by
Jews, for the purpose of inciting subversion between Moslems and Copts.”
H: Mohammad Galal Abd Al-Kawi wrote the series, “The Priest and
the Sheikh” in retaliation to what he sees as Jewish propaganda of some
Western media.

The analysis of the PASCAL RTE challenge data set showed that it has
a relatively high inter-annotator agreement. Vanderwende et al. [27] report an
agreement of 96% on approximately one-third of the test data, Bos et al. [12]
report 95% for the complete test set, while our own agreement rate is 97%. For
instance, in Example 1 nothing in T implies that “Long Walk to Freedom” is
an autobiography, in Example 14 nothing in T suggests that the name of the
ex-cop is Rios (also from a legal point of view, we cannot equal being accused
of a murder with being a murderer).

(14) Pair #966. RTE: True, our assessment: False
T: A former police officer was charged with murder Thursday in the slaying
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of a college student who allegedly had threatened to expose their sexual
relationship, authorities said.
H: Ex-cop Rios killed student.

4 Results

Table 1 presents the results of our best run submitted to the PASCAL RTE
challenge. These results do not significantly exceed the chance level. There is a
considerable difference among the results for different tasks. Our system (as most
other systems in the competition) performed best on CD data that has the high-
est percentage of syntactically similar pairs. MT and QA tasks turned out to be
the most difficult for our approach, mostly due to the difference in the predicate-
argument structures and complexity of lexical paraphrases employed there.

Table 1. System results over different categories

Task Precision Recall Accuracy CWS
All 0.57 0.15 0.52 0.51
CD 0.89 0.32 0.64 0.64
IE 0.56 0.08 0.51 0.55
MT 0.40 0.10 0.47 0.43
QA 0.23 0.04 0.45 0.47
RC 0.52 0.17 0.51 0.48
PP 0.50 0.28 0.50 0.54
IR 0.62 0.11 0.52 0.49

The poor results with the original settings, where partial predicate-argument
structures and the WordNet-based semantic similarity measure were combined,
led us to explore the potential of using these two components separately to
investigate the role each of them played in the system’s decisions. Table 2 shows
the results of these post-competition runs as compared to the results of the
original run (row 2). In the first of these experiments (presented in Table 2
in row 1 as “PPAS, no WordNet”), system’s decisions were made based only
on PPAS similarity and string overlap between corresponding constituents. The
results are slightly worse but overall very similar to those produced by the run
where PPAS matching was coupled with WordNet-based similarity measure. In
order to assess why adding WordNet does not increase the system performance,
we produced the runs where PPAS matching was turned off.

In the experiments where PPASs were not employed by the system, we used
the percentage of lexically similar tokens found in T and H to determine en-
tailment: if the number of tokens in H that had a matching a counterpart in T
was greater than a pre-set threshold value (established as percentage of matched
tokens out of total tokens in the shorter sentence), T was deemed to entail H.
Three thresholds were tested: an overlap of at least 75%, of 50% and the lenient
threshold of 30%. The 50% threshold produced the best results. When all parse
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Table 2. Influence of syntactic and semantic components

Setting Precision Recall Accuracy CWS
PPAS, no WordNet 0.57 0.14 0.51 0.50
PPAS + WN 0.57 0.15 0.52 0.51
No PPAS; threshold = 50% 0.53 0.83 0.54 0.55

information was ignored, the precision went down but recall considerably in-
creased, while both accuracy and CWS were better than chance at the 0.05 level.

The comparison of the three runs suggests that simplified PPAS matching
results in a considerable drop in recall. This is due to the limitation that our
matching procedure imposes on sentence components that are allowed to be
tested for similarity. Our syntactic matching accepts as comparable only PPASs
that have the same type and the same number of constituents, thereby ruling out
a large number of pairs where syntactic structures of T and H are not exactly
the same (as in the Example 11). Moreover, the experiments with WordNet-
based similarity measure used without PPAS matching demonstrated that such
over-restrictive matching prevents other system components from realizing their
full potential.

The next section will consider the main types of our system’s errors and how
they are related to the shallow character of our PPAS matching.

5 Discussion

The PASCAL RTE challenge gave us an opportunity to explore the potential
and the limitations of the shallow PPAS matching approach. The analysis of the
system’s errors that was conducted following the competition allowed the identi-
fication of major types of errors made by the system and revealed opportunities
for further development of the system that will lead to more sophisticated meth-
ods for entailment determination.

The qualitative analysis of the observed errors permits to conclude that there
are three major factors that contribute to system errors: the limitations of par-
tial predicate-argument structures matching, the system’s inability to deal with
semantic similarity of units larger than words, and the lack of world knowledge.
These factors often work in combination, but can also be a single source of the
system’s errors. In order to assess the role of shallow PPAS structures construc-
tion and matching in the system’s performance we computed the percentage of
errors attributable to (1) PPAS construction and matching alone; (2) the lim-
itations of our PPAS construction and matching combined with other factors;
(3) all errors related to PPAS, and (4) errors not related to PPAS, that were
attributable to other factors (Table 3). The data in the table shows that errors
and constraints related to PPAS construction and matching contribute to the
majority of errors (82%), either alone (43%) or in combination with other factors
(39%).
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Table 3. Role of PPAS in system’s errors (% of total number of errors per task)

Task Source of Errors
Errors related PPAS in comb. Total errors Errors not
to PPAS only with other factors related to PPAS related to PPAS

All 43% 39% 82% 18%
CD 52% 22% 74% 26%
IE 42% 51% 93% 7%
MT 39% 35% 74% 26%
QA 21% 70% 91% 9%
RC 67% 20% 87% 13%
PP 59% 5% 64% 36%
IR 30% 42% 72% 28%

The information left out by our partial predicate-argument structures did
not have significant impact on the system’s performance: it accounted for only
2.5% of errors. The errors in the process of PPAS construction (bad parses lead
to 14% of errors) and a very restrictive character of PPAS matching algorithm
used are the main factors that contributed to the low performance of our system.
For instance, if our syntactic component could handle nominalizations, such as
the finite verb transformations in Example 15, precision would improve by about
2%. Nominalizations can be handled using a specialized heuristic and resources
such as CatVar [28] 4 that contains part-of-speech variants of English lexemes.
Overall, lack of provisions for common syntactic alternations contributed to more
than 25% of system’s errors.

(15) Pair #1421. RTE: True, our system: False
T: The Gaza unrest prompted Ahmed Qurei, prime minister, to threaten
to quit.
H: The Gaza unrest triggered Ahmed Qurei’s threat to quit.

The limitations of real-world parsers and our PPAS matching algorithm are
also responsible for the difference between our results and manual assessments.
A comparison of results for the system run that used only shallow PPAS match-
ing in combination with string overlap, and the manual assessment reported
by Vanderwende et al. [27] shows an interesting difference. Vanderwende et al.
[27] states that annotators considered that 78 pairs can be correctly labeled as
True based on syntax alone (it corresponds to recall of 19.5%) while our system
correctly labeled 56 true entailments (14%).

The limitations of shallow PPAS matching described above compound with
the limitations of WordNet-based similarity measures, lead to a number of errors
(5% of all system errors), as in Example 16 where an inverted syntactic structure
is accompanied by a lexical paraphrase with conversives. WordNet does not con-
tain any information about most conversives, however, some inference patterns
in [29] reflect this relationship.
4 http://clipdemos.umiacs.umd.edu/catvar/
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(16) Pair #1512. RTE: True, our system: False
T: Lisa Marie was aware of the pressures of being Elvis Presley’s daughter,
so she didn’t exactly pursue songwriting that seriously.
H: Lisa Marie Presley’s father was Elvis Presley.

Phrasal-level paraphrases (Example 17), where a single lexeme can be re-
placed by a phrase (e.g., battlefield — site of fighting) or one collocation by
another (scored its worst performance — didn’t do well), cannot be handled by
our system which considers only semantic similarity at the word level.

(17) Pair #337. RTE: True, our system: False
T: It asserted that “within this framework, we draw your attention (Peo-
ple’s Congress members) to Legislation 24 dealing with foreign currency
circulation, which is no longer applicable and it has become one of the
most significant obstacles to economic and investment activities.
H: Article 24 is obsolete, and is hindering the economy.

The inability of our system to handle phrasal level paraphrases as illustrated
in Example 17, was the main reason of 3% of all errors and one of the factors
in 8% of wrong guesses. The problem of automatic acquisition of paraphrases
has attracted considerable interest in question-answering ([29]), information ex-
traction ([30, 5]) and paraphrasing ([31, 6, 32]). Different methods of extraction
of single and multi-word patterns from corpora have been proposed (see, for
example, [6, 33, 2, 5, 1]), and recent work by Weeds et al. [34] extends the dis-
tributional similarity measures to sub-parses. The incorporation of phrasal level
paraphrases into our system has been identified as one of the directions for future
research.

6 Conclusions

The PASCAL RTE Challenge provided a good opportunity for exploration of
the potential and limitations of the shallow PPAS matching approach employed
in our system. The comparison of the results of system runs, as well as the
analysis of system’s errors demonstrated that PPASs are a good starting point
for entailment determination. Our analysis showed that in order to take a full
advantage of the information they contain, PPASs should be used as an input
into a more sophisticated matching algorithm that can handle differences in
syntactic structures of the sentences and phrasal-level paraphrases.
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Abstract. The system for semantic evaluation VENSES (Venice Se-
mantic Evaluation System) is organized as a pipeline of two subsystems:
the first is a reduced version of GETARUN, our system for Text Un-
derstanding. The output of the system is a flat list of augmented head-
dependent structures with Grammatical Relations and Semantic Roles
labels. The evaluation system is made up of two main modules: the first
is a sequence of linguistic rules; the second is a quantitatively based
measurement of input structures and predicates. VENSES measures se-
mantic similarity which may range from identical linguistic items, to
synonymous, lexically similar, or just morphologically derivable. Both
modules go through General Consistency checks which are targeted to
high level semantic attributes like presence of modality, negation, and
opacity operators, temporal and spatial location checks. Results in cws,
recall and precision are homogeneous for both training and test corpus
and fare higher than 60%.

1 Introduction

The RTE Challenge has taken a special stance with respect to semantic inference
evaluation which we quote from [2:1]:

Textual entailment recognition is the task of deciding, given two text
fragments, whether the meaning of one text is entailed (can be inferred)
from another text. This task captures generically a broad range of infer-
ences that are relevant for multiple applications.

As the authors comment in their introductory paper to the Workshop, seman-
tic inference evaluation is viewed from an applied empirical perspective, with
an effort at “recognizing meaning-entailing variability at the lexical and syn-
tactic level” [2:2], rather than addressing logical representational issues. As a
matter of fact, we believe that any applied semantic task would have to cope
also with semantic and logical issues and not just in an empirical way, seen that
the algorithm that each participant had to implement, was intended to work
on a very large range of linguistic phenomena. In fact, in order to capture the
“many-to-many mapping between language expression and meanings” – as the
same authors comment [2:1] – the system for RTE evaluation has to address
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lexical, syntactic, semantic, logical, and sometimes pragmatic aspects (whenever
the intended meaning is not linguistically expressed).

As also mentioned in [13], when analysed in more detail, the problem of
semantic inference evaluation is more complex: for instance, the “intersectivity”
issue, as we call it, or what the authors define as the more specific/less specific
semantic relation needs to be encoded appropriately if monotonicity has to be
detected from syntactic analysis. In addition, in many if not in most cases, the
relevant data are not clear-cut relatable to one or the other aspect of linguistic
analysis. Lexical issues are mixed up with semantic, syntactic and logical issues
in such a way that the implementation of semantic evaluation needs to address
them all at the same time.

Even though we might be building some Logical Form to use for semantic
inference and eventually logical proof, as [1,9,12] also do, we abandoned this
idea. This decision has been supported by empirical data and also on theoretical
grounds. In fact, our system can produce a Discourse Model [3] in Situation Se-
mantics terms, which could be used to do reasoning and inferencing: we worked
on such a hypothesis for the first three months of the RTE Challenge, on the
development set, just to discover that the amount of information made available
in the model was insufficient and in many cases it suffered too much from parser
brittleness, to guarantee an inferential engine or a theorem prover to work prop-
erly. So we turned to a less theoretically demanding system setup and decided
to use linear semantically Augmented Head Dependent representations which
allowed us to work at a propositional level without sacrificing, however, any of
the inferential and logical operations we intended to produce on the T/H pairs.
There are also elements of uncertainly in FOL representation usually hard to
deal with, which on the contrary play an important role in semantic inference:
they may be summarized by the following points, which will be discussed be-
low: Modality, Future Tense, Progressive Mood; Lexicalized Negation; Opaque
Second Order Operators (Conditionality); Governing Verbs of Doubt, Verbs of
Process, Non-Factives; Temporal Inference; Formulaic Expressions; Non-/Anti-
intersective Modifiers.

2 System Description

The system for semantic evaluation VENSES (Venice Semantic Evaluation Sys-
tem) is organized as a pipeline of two subsystems: the first is a reduced version of
GETARUNS, our system for Text Understanding [6]; the second is the semantic
evaluator which was previously created for Summary and Question evaluation[4]
and has now been thoroughly revised for the new more comprehensive RTE
task.

The reduced GETARUNS is composed of the usual sequence of sub-modules
common in Information Extraction systems, i.e. a tokenizer, a multiword and
NE recognition module, a PoS tagger based on finite state automata; then
a multilayered cascaded RTN-based parser which is equipped with an inter-
pretation module that uses subcategorization information and semantic roles
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Fig. 1. Main Modules of VENSES

processing. The system has a pronominal binding module[7] that works at text/
hypothesis level separately for lexical personal, possessive and reflexive pro-
nouns, which are substituted by the heads of their antecedents - if available.
The output of the system is a flat list of head-dependent structures (HDS) with
Grammatical Relations (GRs) and Semantic Roles (SRs) labels (for similar ap-
proaches see [9,10,11]). Notable additions to the usual formalism is the pres-
ence of a distinguished Negation relation; we also mark modals and progressive
mood.

The evaluation system uses a cost model with rewards/penalties for T/H
pairs where text entailment is interpreted in terms of semantic similarity: the
closer the T/H pairs are in semantic terms the more probable is their entailment.
Rewards in terms of scores are assigned for each “similar” semantic element;
penalties on the contrary can be expressed in terms of scores or they can deter-
mine a local failure and a consequent FALSE decision – more on scoring below.
In Fig.1 below is a presentation of the system:

The evaluation system accesses the output of GETARUN, i.e. the linguistic
representation of the input texts, written on files. It is made up of four main
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Modules: the first three are a sequence of linguistic rule-based sub-modules; the
fourth is a quantitatively based measurement of input structures. The latter
is basically a count of heads, dependents, GRs and SRs, scoring only similar
elements in the T/H pair. Similarity may range from identical linguistic items,
to synonymous or just morphologically derivable. As to GRs and SRs, they are
scored higher according to whether they belong to the subset of core relations
and roles, i.e. obligatory arguments, or not, that is adjuncts. All modules go
through General Consistency checks which are targeted at high level semantic
attributes like presence of modality, negation, and opacity operators, the latter
ones as expressed either by the presence of discourse markers of conditionality
or by a secondary level relation intervening between the main predicate and a
governing higher predicate belonging to the class of non factual verbs. Two other
general consistency checks regard temporal and spatial location modifiers which
must be identical or entailed in one another, if present.

Linguistic rule-based sub-modules are organized into a sequence of rules going
from those containing axiomatic-like paraphrase HDSs which are ranked higher,
to rules stating conditions for similarity according to the scale of argumental-
ity which are ranked lower. All rules address HDSs, GRs and Srs together with
predicates in the form of lemmata or multiwords. All modules strive for True
assessments: however, the Quantitative sub-module can output True or False
according to general consistency and scoring. Modifying the scoring function
may thus vary the final result dramatically: it may contribute more True deci-
sions if relaxed, so it needs fine tuning. More experimentation has been carried
out on a much bigger data set – the training data of the MSR made avail-
able by Microsoft on their website http://research.microsoft.com/research/nlp/
msr paraphrase.htm, (see also [8]) - to achieve a more general definition of this
function, and will be discussed below.

The remainder of this paper is organized as follows: in section 2 we present our
parser and its performance results. In section 3 we discuss the task of Semantic
Inference evaluation, we give a linguistically-based definition of the task and
present a set of semantic items heuristically related to T/H pairs taken from the
RTE dataset. Also, in the same section we briefly comment on previous work.
In section 4 we present the implementation of the Semantic Evaluator(SE). In
section 5 we present results and a discussion of most common mistakes made by
the SE.

2.1 An A-As Hybrid Parser

Our parser has been presented in detail lately in a number of papers [3,5] and
has achieved 90% recall on the Greval Corpus and 89% recall on the XEROX-
700 corpus, this latter test limited only to SUBJ/OBJ GRs. As in most robust
parsers, we use a sequence or cascade of transducers: however, in our approach,
since we intend to recover sentence level structure, the process goes from par-
tial parses to full sentence parses. Sentence and then clause level parsing are
crucial to the right assignment of Arguments and Adjuncts (hence A-As) to
a governing predicate head. This is paramount in our scheme which aims at
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recovering predicate-argument structures, besides performing a compositional
semantic translation of each semantically headed constituent.

The parser is organized into eleven layers as described below:

– Tokenizer produces input sentence which is a list of tokens obtained from
the input text by sentence splitting;

– Tagger associates lexical categories to words from dictionary lookup or from
morphological analysis;

– Tag disambiguation with finite-state automata and the aid of lexical infor-
mation;

– Head-based Chunk building phase;
– Recursive argument/adjunct (A/A) constituent building procedure as a list

of syntactic-semantic structures with tentative GFs labels, interspersed with
punctuation marks;

– Clause builder that takes as input the A/A vector and tries to split it into
separate clauses;

– Recursive clause-level interpretation procedure, that filters displaced or dis-
continuous constituents;

– Complex sentence organizer which outputs DAG structures;
– Logical Form with syntactic indices and Semantic Roles;
– Transducer from DAGs to AHDSs by recursive calls;
– Pronominal Binding at clause level.

We would like to define our parser “mildly bottom-up” because the structure
building process cycles on a subroutine that collects constituents until it decides
that what it has parsed might be analysed as Argument or Adjunct. This pro-
ceeds until a finite verb is reached and the parse is continued with the additional
help of Verb Guidance by subcategorization information. Punctuation marks are
also collected during the process and are used to organize the list of arguments
and adjuncts into tentative clauses.

The clause builder looks for two elements in the input list: the presence of
the verb-complex and punctuation marks, starting from the idea that clauses
must contain a finite verb complex: dangling constituents will be adjoined to
their left adjacent clause, by the clause interpreter after failure while trying
to interpret each clause separately. The clause-level interpretation procedure
interprets clauses on the basis of lexical properties of the governing verb: verbless
clauses or fragments are dealt with by adding a default BE dummy predicate.

The final processor takes as input fully interpreted clauses which may be
coordinate, subordinate, or main clauses. These are adjoined together accord-
ing to their respective position. Care is taken to account for Reported Speech
complex sentences which require the Parenthetical Clause to become Main gov-
erning clause. Specialized procedures are used to deal with non-declarative non-
canonical structures like Questions, Imperatives, sentences with Reported Direct
speech, Clausal Subject sentences and extraposed That-clause fronted sentences
[see 4,7]. Fragments are computed at the end as a default strategy.
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2.2 Parsing and Robust Techniques

As far as parsing is concerned, we purport the view that the implementation of
a sound parsing algorithm must go hand in hand with sound grammar construc-
tion. Extra grammaticalities can be better coped with within a solid linguistic
framework rather than without it. Our parser is a rule-based deterministic parser
in the sense that it uses lookahead to reduce backtracking. It also implements
Finite State Automata in the task of tag disambiguation, and produces multi-
words whenever lexical information allows it. In our parser we use a number of
parsing strategies and graceful recovery procedures which follow a strictly para-
meterized approach to their definition and implementation. Recovery procedures
are also used to cope with elliptical structures and uncommon orthographic and
punctuation patterns.

The grammar is equipped with a lexicon containing a list of fully speci-
fied inflected word forms where each entry is followed by its lemma and a list
of morphological features, organized in the form of attribute-value pairs. How-
ever, morphological analysis for English has also been implemented and used for
OutOfVocabulary words. The system uses a core fully specified lexicon, which
contains approximately 10,000 most frequent entries of English, where every
predicate – be it verb, noun, or adjective – is annotated for Syntactic Cate-
gory, Aspectual Category, Semantic Category [6]; then the list of subcategorized
arguments follows (if any exist), each argument being specified by Syntactic Con-
stituency, Grammatical Function, Semantic Role and a list of Semantic Features
from a set of 75, the same that we used to relabel WordNet . In addition to that,
there are all lexical forms provided by a fully revised version of COMLEX. In or-
der to take into account phrasal and adverbial verbal compound forms, we also
use lexical entries made available by UPenn and TAG encoding. Their gram-
matical verbal syntactic codes have then been adapted to our formalism and
is used to generate an approximate subcategorization scheme with an approxi-
mate aspectual and semantic class associated to it. Semantic inherent features
for OOV words, be they nouns, verbs, adjectives or adverbs, are provided by a
fully revised version of WordNet – 270,000 lexical entries - in which we used 75
semantic classes similar to those provided by CoreLex. These are all consulted
at runtime. We use these features to induce semantic similarity for two entities
whenever at least 2 identical features are matched in their feature list.

Another important element of analysis is constituted by Semantic Roles: we
have reformatted all publicly available inventories, such as FrameNet, VerbNet
and PropBank, and use them in that order, seen that FrameNet has more spe-
cific labels than the other two lexica. However, we also produced our own fully
specified lexicon which is accessed before VerbNet.

Our training corpus for the complete system is made up 200,000 words and
is organized by a number of texts taken from different genres, portions of the
UPenn WSJ corpus, test-suits for grammatical relations, narrative texts, and
sentences taken from COMLEX manual.

We don’t have space here to describe the Pronominal Binding module which
accesses Referential Heads at clause level and establishes possible antecedent-
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pronoun candidate lists which are then weighted and the best one chosen (but
see [7]). As fpr the 1367 T/H pairs of the RTE Challenge, the parser has spotted
85 pronominal expressions which have received an antecedent: we checked the
bindings and the result is 82% accuracy.

As an example of an ADHS consider Snippets 781 reported here below:

T. Clinton’s new book is not big seller here.
H. Clinton’s book is a big seller.

Whose structure is computed respectively as follows:

T.
be(adj-locative, here).
seller(ncmod, big).
book(ncmod-specif, ’Clinton-s ’).
be(xcomp-prop, seller).
be(subj-theme bound, book).
be(neg, not).

H.
seller(ncmod, big).
book(ncmod-specif, ’Clinton-s ’).
be(xcomp-prop, seller).
be(subj-theme bound, book).

The presence of the negation operator in the T portion of the snippet will prevent
the evaluator from assessing to TRUE even though the relevant HD structures
are identical.

3 The Task of Semantic Inference Evaluation

Even though at the bottom of any computation, semantic evaluation - in any
case of non equality of the linguistic descriptions involved - needs lexical chains
of some kind to be produced or attempted, we consider it less relevant than an
appropriate setup for semantic inference. Here below we assess the contribution
of a number of different linguistic scenarios – which will be further commented
below – that we tried to set apart as can be derived from our SE. In Table 1. we
can see their productivity in terms of number of T/H pairs inferred as TRUE,
disregarding for the moment the fact that some of these might be false positives.

All rule types will be commented in detail below. What we wanted to high-
light at this point, is the minimal impact of the Rule set used for Paraphrase eval-
uation, where we actually use the lemmas to be matched together in axiomatic-
like structures: in other words, it is only in these cases that the actual linguistic
1 All examples are from the corpus released for the RTE Challenge available at:

http://www.pascal-network.org/Challenges/RTE, and have the same identifier.
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Table 1. Ratio of TRUE classified snippets by Rule type accessed by the SE

Rule Type/Datasets Test set Training Set Test + Train
Quantitative evaluation 66 20.5% 52 21.7% 118 21%
Paraphrase evaluation 31 9.62% 23 9.58% 54 9.61%
Syntactic + Semantic eval. 128 39.7% 99 41.2% 227 40.39%
Lexical chains evaluation 75 23.3% 51 21.2% 126 22.42%
Hybrid for short snippets 22 6.8% 15 6.2% 37 6.58%
Total no. snippets 322 100% 240 100% 562 100%

expressions play a determining role in the task to derive a semantic inference.
The number of axioms we built on the basis of Development and Test sets is 47:
considering the number of T/H pairs evaluated to True, the mapping is almost
one rule to each pair. On the contrary, the great majority of rules applied by
the SE come from the combination of Syntactic and Semantic Inference, where
Lexical Inference also plays a role.

We also want to point out that our system produced antecedents for pronom-
inal expressions at snippet level, however we haven’t been able to find many ex-
amples in which such information would have been useful to the RTE task – they
are all discussed below. We are not here referring to all those cases defined as
Control in LFG theory, where basically the unexpressed subject of an untensed
proposition (infinitival, participial, gerundive) either lexically, syntactically or
structurally controlled is bound to some argument of the governing predicate.

We have also been working on the MSR training dataset, made available
by Microsoft, which has 4076 T/H pairs. We noticed however that it has a
major flaw: the annotators judged True pairs in which anaphoric binding applied
between T and H. Under the entailment perspective, we think this impossible
and a bad mistake, considering the fact that snippets are just small portions of
text taken randomly and not in the appropriate context – same text, sequentially
with the antecedent preceding the pronoun – to allow such an inference. However,
under the “Paraphrase” perspective, i.e. under the additional constraints that
the two snippets are taken from a cluster with the same content, it is certainly
correct: there are some 250 such cases. Results obtained by our system – which
we will not report in this paper - are close to the ones obtained under RTE
(accuracy is 59.46%), with the proviso however that the proportion of FALSE
to TRUE pairs was 1/3, and accuracy for TRUE is 63%.

3.1 Defining the Task of the Semantic Evaluator (SE)

As the examples discussed here below will make clear, the task of the SE is in
no way definable on a purely theoretical semantic basis (but see [13]). One such
particularly revealing case is the one constituted by the socalled (Non/Anti)-
Intersective modifiers dealt with in current semantic and linguistic literature. It
is a fact that presence of an intersective attribute in the Text and its omission
in the Hypothesis hampers the entailment in theoretical terms, but not always
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in the application-oriented scenario of RTE. A typical case is shown in the fol-
lowing examples,

i. John bought a red car.
ii. John bought a car.

where example i. is more informative than example ii. due to the presence of the
adjective “red”. In addition, “car” and “red” can be interpreted compositionally
so that ii. is entailed by i. Consider the next pairs:

iii. John was presented to an alleged great Italian scientist.
iv. John was presented to a great Italian scientist.
v. John was presented to a great scientist.
vi. John was presented to a scientist.

In iii. we inserted a “non-intersective” adjective “alleged”, which causes the ref-
erential expression headed by “scientist” to become non extensional - the same
applies to “anti-intersective” modifiers like “fake”. In this case the two sentences
cannot be interpreted compositionally and are not entailed; also sentence v. is
not entailed in iv. in our context, by virtue of the presence of a geographi-
cal/intersective modifier in iv.; on the contrary vi. is entailed in v. “great” being
a subjective modifier, but theoretically it belongs to “relative intersective” class
which is not compositional.

To cope with similar problems, all modifiers that imply non-entailment have
been listed separately and constitute a checklist against which modifier heads
are checked when attempting to assess the entailment of two snippets.

RTE LINGUISTIC RULE – Definition 1. A linguistically based approxi-
mation to a sound definition of the task at hand may be represented by the Rule
below:

Two text fragments approximate the same meaning
- are semantically equivalent - whenever they are

– a. linguistically coherent
– b. semantically consistent
– c. propositionally compatible

In order to make the definition above more concrete, we created a set of
Syntactic-Semantic Classes, both theoretically and empirically derived from the
RTE examples dataset. They are divided up into two subsets because the ac-
tions carried out by our Semantic Evaluator address conditions necessary for
True T/H pairs separately from those for False T/H pairs. We would like to
comment extensively each semantic item with an example from RTE dataset:
however this would make the paper too lengthy. So we decided to limit our analy-
sis to an abbreviated comment of relevant linguistic elements (see also [13]). All
snippets are individuated by their original number and the texts are included in
an Appendix at the end of the paper. All these cases are positively dealt with
by our SE.
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Syntactic-Semantic Classes for Linguistic Coherence

i. Conditions for TRUE
Same Main Heads; Same Main Dependents; Identity of GRs; Identity of SRs;
Morphologically derived Heads
i. Examples
Snippets 238 TRUE (Same SUBJect, Assassination/Assassinate, Same Tempo-
ral Adjunct)
Snippets 693 TRUE (Invasion/Invade, Swedish/Swedes, Entailed Temporal Ad-
junct)
Snippets 947 TRUE (murder/kill,police commander/police officer)

ii. Conditions for FALSE
Opposite GRs/SRs; Non-identical GRs/SRs; Argument/Adjunct Swap; Missing
Argument; Missing Main Predicate; Modifier/Attribute Swap
ii. Examples
Snippets 152 FALSE (Same SUBJect swapped, same verb predicate)
Snippets 602 FALSE (Same verb predicate, same Patient SUBJect/OBJect,
missing omitted Agent/SUBJect)

Syntactic-Semantic Classes for Semantic Consistency

i. Conditions for TRUE
Synonyms with adequate GRs / SRs; Entailment of Main Predicates with ad-
equate GRs/SRs; Definitional Paraphrase; Formulaic Expressions; Pronominal
Binding
i. Examples
Snippets 466 TRUE (Same SUBJect, presence of formulaic expression “would
like to acknowledge and thank”/recognize, same OBJect)
Snippets 496 TRUE (Same SUBJect, Same main predicate BE, paraphrase in-
directly derivable from definitions in WordNet)
Snippets 648 TRUE (Same SUBJect, appositive nominal head “widow” in text
entails “wife” in hypothesis)
Snippets 783 TRUE (Same SUBJect, “fire” predicate/”send letter dismissal”
complex predicate, same OBJect/ToOBJect)
Snippets 876 TRUE (Same SUBJect, Kill and Die are treated as antonyms but
they also share a part of same meaning – Die is implied in the action of Kill, the
SUBJects have different SRs, same temporal location)
Snippets 912 TRUE (Same/entailed SUBJect, “hurl obscenity”complex predi-
cate/”curse” predicate, same IndirectOBJect)
Snippet 933 TRUE (Same SUBJect, Synonym Main Predicate: same GRs with
same SRs)
Snippets 1121 TRUE (Pronominal SUBJect “it” bound as controller for Relevant
Verb Predicate BUY/ACQUIRE, same OBJect) see also Snippets 74 ; Snippets
201 below.



354 R. Delmonte et al.

Snippets 1639 TRUE (Synonym Main Predicate more/less specific, same
SUBJect-OBJect arguments with different GRs vs same SRs)

ii. Conditions for FALSE
Antonymity; Non-coincidence of Referential Attributes; Propositional/Full Para-
phrase; Opposite Entailment (Non)-Intersective Modifiers; Inexistent Relevant
Semantic Relations
ii. Examples
Snippets 12 FALSE (Same SUBJect, opposite meaning of governed verb
keep from/release, lexical inference for OBJect form/document)
Snippets 46 FALSE (PP adjunct nominal head morphologically derived/main
verb Hypothesis – loss/lose, reverted GRs-SRs)
Snippets 67 FALSE (Same SUBJect, opposite meaning of main verb
come down/rise)
Snippets 148 FALSE (Same SUBJect, opposite meaning of main verb rise/drop)
Snippets 220 FALSE (Same main phrasal verb predicate – begin legal action,
reverted GRs/SRs)
Snippets 2049 FALSE (Same SUBJect, same verb complement, non synonym,
non entailed main verb predicate – order/demand – non identical SRs)
Snippets 2064 FALSE (Same clause, Intersective modifier in Text – Western, ge-
ographical adjective/omitted non entailed modifier due to superlative relation)
Snippets 2084 FALSE (Same clause, Different non entailed nominal predicate –
“Israel” predicate nominal postmodifier)
Snippets 2120 FALSE (SUBJect non entailed – less specific, different cardinality,
spatial location specified for main verb FREE in Text not it Hypothesis)
Snippets 2141 FALSE (SUBJect negated in Text, main verb negated in Text)
Inexistent Relevant Semantic Relations: Snippets 620 FALSE; Snippets 619
FALSE; Snippets 700 FALSE; Snippets 712 FALSE; Snippets 677 FALSE

Syntactic-Semantic Classes for Propositional Compatibility

i. Conditions for TRUE
Modality, Future Tense, Progressive Mood; Negation, Lexicalized Negation;
Light Verbs (Copulative, SpatioTemporal locating, etc.); Governing Verbs of
Doubt; Governing Verbs of Process; Opaque Second Order Operators; Factual-
ity and Counterfactuality; Temporal Inference & Operators
i. Examples
Snippets 74 TRUE (Same SUBJect – by virtue of pronominal binding, his/
foreign ministry; and lexical inference country/South Korea -, continue/Negated
Modal Verb won’t + change governing main verbal head SEND)
Snippets 172 TRUE (Same SUBJect, verbal head Suspect governing light verb
BE/Modal May governing Cause, Same OBJects – More/Less Specific)
Snippets 294 TRUE (Same SUBJect,Take place/Last, three-day/three day)
Snippets 1014 TRUE (Same SUBJect, More/less specific Heads, Lexicalized
Negation Paraphrase Verb+It+Predicate Adjective /Modal Verb + negation)
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Snippets 1164 TRUE (Same SUBJect,Tell/Lexically inferred verbal head An-
nounce, Negated morphologically derived Noun OBJect Cooperation/Negated
main verbal head)
Snippets 1168 TRUE (Same SUBJect, lexically inferrable main predicate tell/
say, Negated Modal verb cannot + Operator unless, Same governing verb LIFT,
Synonymous OBJect noun heads blockade/embargo)
Snippets 1197 TRUE (Similar Adjunct with synonymous main verb Focus/Con-
centrate, main IndirectOBJect noun head matched to Adverbial Modifier + main
verb, Future Tense / Modal Verb)
Snippets 1214 TRUE (Same SUBJect, Same main verb Head, Temporal Infer-
ence and Modal Verbs (will + by the end of year 2001/should + before 2002)
Snippets 1261 TRUE (Operators but-until + negation on main verb/if, Light
verb HOLD/propose, Nominal head AGREEMENT morphologically derived
from verbal head AGREE)
Snippets 1265 TRUE (Same SUBJect, main verbal head Prepare is synonymous
with Make in hypothesis, Progressive Mood / Future Tense)
Snippets 1284 TRUE (Lexical Transformation noun Reduction/verb Reduce in
Hypothesis; verb Reduce negated in Text but governed by Expect)

ii. Conditions for FALSE
Negation; Modality; Conditionality; Opacity; Doubt Verbs
ii. Examples
Snippets 60 FALSE (Operator IF with conditional clause, non entailed main
verb predicate try/continue)
Snippets 73 FALSE (opaque nominal predicate governor – discussion, same in-
ferrable clause – allow/grant, same governed TO OBJect/main OBJect)
Snippets 77 FALSE (opaque governing predicate talk about, same clause –
Dow Jones be down)
Snippets 98 FALSE (SUBJect non inferrable by Knowledge of the world –
Arafat/prime minister, same governed verb predicate, same IndirectOBJect)
Snippets 171 FALSE (Same/entailed SUBJect, verbal head Suspect govern-
ing Same verb/nominal predicate of BE, Same/entailed OBJects – More/Less
Specific)
Snippets 227 FALSE (Same SUBJect, lexically inferrable main verb predicate
say/decide, negated/quantified governed clause SUBJect, deontic/can modality
on governed clause verb predicate, same OBJect)
Snippets 516 FALSE (Modal + governing verb/Same verb predicate, same
OBJect)

4 Implementing the Semantic Evaluator (SE)

As said above, the SE is organized into two main group of modules: a quantita-
tively based module, and a sequence of linguistic rules where quantitive scoring
is also taken into account when needed, to increase confidence in the decision
process. The two modules must then undergo General Consistency Checks which
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ascertain the presence of possible mismatches at semantic level. In particular,
these checks take care of the following semantic items:

– presence of spatiotemporal locations relative to the same governing predi-
cate, or a similar one as has been computed from previous modules;

– presence of opacity operators like discourse markers for conditionality having
scope over the governing predicate under analysis;

– presence of quantifiers and other referentiality related determiners attached
to the same nominal head in the T/H pair under analysis and chosen as
relevant one by previous computation;

– presence of antonyms in the T/H pair at the level of governing predicates;
– presence of predicates belonging to the class of “doubt” expressing verbs,

governing the relevant predicate shared by the T/H pair.

In some cases the General Consistency Checks have to be suspended: in par-
ticular whenever both T/H pairs contain opacity operators and negation, as
for instance in Snippets no. 1014 reported in the Appendix, and other similar
examples.

4.1 The Linguistic Rule-Based Modules

These Modules are organized as a sequence of sub-modules which start from
exceptional cases down to default cases.

Exceptional cases of Semantic Inference are those constituted by Paraphrase
and Reformulation rules where axiomatic structures are addressed; then Lexical
Inference follows in snippets where the linguistic elements checked should be
identical, synonymous, morphologically derivable or sharing a congruent number
of semantic features; Syntactic and Semantic inference rules follow in which
different structures are transformed and checked on the basis of GRs and SRs
first, then lexical chains are attempted; finally Hybrid (partially heuristic) rules
are tried in which both structures and lexical items are matched.

Each rule operates at propositional level within each clause to find matches:
however, head-dependent representations are just an unordered and set of terms
where the hierarchical organization of syntactic structures needs to be recon-
structed. Since predicate-argument structures have to be addressed separately
from predicate-adjuncts ones, before entering the semantic evaluator, we assign
scores to GRs and SRs and then sort AHDSs accordingly. In this way, the core
arguments are always in the front of the list contaning all current structures, as
for instance in Snippet 46 reported here below,

T - The Yankees split Hollywood with something to feel OK about after last
night’s 5-4 loss to the Dodgers.
H - Dodgers lose first game ever at Fenway.

1000-loss(ncmod-specif, ’5/4’).
1000-loss(ncmod-specif, ’night-s ’).
1000-loss(ncmod-specif, to, dodger).
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400-feel(ncmod-temporal, after, loss).
200-feel(obj-theme, ok).
250-split(xcomp-prop, feel).
100-feel(subj-agent, ’Hollywood’).
20-split(iobj-comitative, with, something).
10-split(obj-source, hollywood).
0-split(subj-theme, ’Yankee’).
1500-lose(adj-mod, ever).
1000-lose(ncmod-location, at, ’Fenway’).
50-lose(xcomp-agent, game).
0-lose(subj-theme aff, dodger).

We also address main clause first always by means of scoring, seen that SUBJects
and OBJects of secondary clauses are weighted differently.

The level of main clause is then switched to that of dependent clause when
needed. Dependent clauses may be very important to determine the outcome
of an inference: they may be tensed (head label CCOMP) or untensed (head
label XCOMP). The governing head predicate is responsible for the factitivity
of the dependent. To this aim, important elements checked at propositional level
are opacity, modality, and negation. Opacity is determined by type of govern-
ing predicates, basically those belonging to the class of nonfactive predicates.
Modality is revealed by the presence of modal verbs at this level of computa-
tion. Modality could also be instantiated at sentence level by adverbials, and
be verified by General Consistency Checks. Finally, negation may be expressed
locally as an adjunct of the verb, but also as a negative conjuction and nega-
tive adverbial – see examples above. It may also be present in the determiner of
the nominal head and checked separately when comparing referring expressions
considered in the inference. Negation may also be incorporated lexically in the
verb in the class of the so-called “doubt” verbs.

The Paraphrase Rule Sub-module. This sub-module addresses definition-
like H sentences, or simple paraphrases of the meaning expressed by the main
predicate of the T text. Generally speaking, every time one such rule is fired, the
T/H pair contains a conceptually complex lexical predicate and its paraphrase
in conceptually simple components.

Examples of such cases are constituted by pairs like the following:

a. interview --> conduct an interview
b. pressurise --> apply pressure
c. treat --> receive treatment (provide)
d. fire --> send letter of dismissal

where both a. and b. were actually present in WordNet while c. did not figure
with the same predicates but rather with the one in brackets; d. was totally
absent.

Definitions and paraphrases are looked up at first in the glosses made avail-
able by WordNet. In case of failure a list of some 50 manually made up axiomatic
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rules are accessed – built on the basis of the training dataset. Each such rule
addresses main predicates in the T/H pair, together with the presence of seman-
tically relevant dependent if needed, and whenever the concept expressed by the
lexically complex predicate requires it. Together with the predicates, the rules
select relevant GRs and SRs when needed. In addition, more restrictions are in-
troduced on additional arguments or adjuncts. As is the case with all the rules,
penalties are explored in terms of semantic operators of the main predicate like
negation, modality and opacity inducing verbs which must either be absent or
be identical in the T/H pair. Below we report one of the axiomatic-like rules2,

complex\_induct(Text,apply,\_,pressure,obj-\_),
complex\_induct(Text,pressure,\_,Ent,ncmod-\_),
nonvar(Ent),
(complex\_induct(Hypo,pressurize,Ent,\_,obj-\_);
complex\_induct(Hypo,pressurise,Ent,\_,obj-\_)),

assess\_penalty([apply,pressurise],Hypo,Text,Scores),
Scores=[],
!.

where Text contains all AHDSs for Text snippet, Hypo contains all AHDSs for
Hypothesis snippet; “complex induct” is a recursive call that looks into the list
of AHDSs and tries to instantiate the appropriate structure with the constants
indicated above: i.e., APPLY as head predicate, with PRESSURE as dependant,
with the GR “obj”. In the second call, the head predicate must be PRESSURE
and the GR ncmod. “Ent” should not be empty and will have to be instantiated
in the same linguistic expression in the following calls, applied this time to the
Hypothesis list of AHDSs, where the main head predicate should be PRESSUR-
IZE and its spelling variant PRESSURISE. The two main predicates are checked
for propositional level penalties, if any: Scores should be empty otherwise a fail
will ensue.

The Syntactic-Semantic Rule Sub-module. The syntactic-semantic rule
sub-module is organized into a sequence of subcalls where the T/H pairs are
checked for semantic similarity starting from sameness of main predicates to
semantic approximate match.

The first subcall requires the presence of same HDs as main predicates with
core arguments, i.e. the ones which have been computed as subject, object, in-
direct object, arg mod (passive “by” agent adjunct), xcomp. Nonconflicting SRs
are checked in all subcalls: i.e. subject-agent are allowed to match with arg mod-
agent and subject-theme affected with object-theme affected but not viceversa.
These matches take care of what are usually referred to as lexical alternations for
verb sucategorization frames, and lexical rules in LFG terms which encompass
such syntactic phenomena as passive, intransitivization, ergativization, dative
shift, etc. Here below we report one example of such rules,
2 The SE is written in SWI Prolog and runs under Unix or any other compatible

system.



VENSES – A Linguistically-Based System for Semantic Evaluation 359

same\_pred(Hypo,Text,Pred,Score1),
best\_role1(Hypo,Text,Role),
evaluate\_opaques(Pred, Hypo,Text),
assess\_penalty(Pred, Hypo,Text,Score), Score=[],
check\_veridicity(Pred, Hypo,Text,Head),
same\_mainhead(Hypo,Text,Score2),
same\_role(Role,First,Score3),
same\_head(Rte,First,Score4),

evaluate\_scoring(Score1,Score2,Score3,Score4,Weight),
!.

where “same pred” looks for identical governing head predicate which is then
further checked for best role, again by cycling in the lists of AHDSs for Text and
Hypothesis. From this point onward, the SE checks at propositional level for the
presence of possible penalty issuing main governing predicates with the two calls
“evaluate opaques” and “access penalty”. The following calls on the contrary
check predicate-argument structures for the soundness of Semantic Roles and
Grammatical Relations. Scores are then produced which are summed up and
computed as Weight. This is then finally evaluated at higher level together with
high level General Consistency Checks.

The second subcall requires the presence of semantically similar HDs as a
combination of main head and main dependent and at least another identical HD
structure within the core argument subset. Other subcalls included in this group
check nominalization derivational relations intervening between main predicate
of T and H, which in one case is checked with edit distance measures. A certain
number of additional rules checks for semantic similarity, which can range from
synonymous, down to morphologically derived.

The third subcall takes as input a list of “light-verbs” in semantic terms, i.e.
verbs including “be”, “have”, “appear”, and other similar copulative and loca-
tional verbs – like “live”, “hold”, “take place”, “participate”, etc. - which are
used to either make a definition, assert a property of the subject, individuate
a location of the subject etc. These verbs are matched against main predicates
and core arguments of the T portion, which must be identical to H. Quantitative
measures are added to confirm the choice. Notable exceptions are sentences con-
taining “be born” predication which require specific constructions on the other
member of the T/H pair.

The fourth subcall takes as input at least one identical main predicate HD
non argument structure and one additional core argument or adjunct structure.
Quantitative measures are added to confirm the choice.

The fifth subcall looks for different main predicates with core arguments
which however must be non antonyms, non negative polarity and be synonyms.
In addition, there must be at least another important identical non argument
HD structure shared. Quantitative measures are added to confirm the choice.
One such case is represented by Snippets 1639 reported in the Appendix.
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These cases must be treated appropriately to distinguish them from what
happens in real opposite meaning snippets where the SE considers SRs which
must also be opposite, as in snippets 933; or cases in which the snippet is rescued
due to the presence of same SRs, see Snippets 876, where DIE and KILL have
entailed meaning; but when KILL is used in the passive, the SRs attached to
their SUBJects will be identical.

4.2 The Quantitative Module

In this module all Heads, Dependents, GRs and SRs are collected for each mem-
ber of the T/H pair and then they are passed to a scoring function that takes
care of identical or similar members by assigning a certain score to every hit.
Penalties correspond to high scores, while rewards correspond to low scores. A
threshold is then set at a certain value which should encode the presence of a
comparatively high number of identical/similar linguistic items. As said above,
higher scores are assigned to core GRs and there is a scale also for SRs where
Agent has higher score.

As with previous subcalls, at the end of the computation semantic consistency
and integrity is checked by collecting and comparing semantic operators, as well
as performing a search of possible governing “doubt” verbs.

Generally speaking, we also treat short utterances differently from long ones.
A stricter check is performed whenever an utterance has 3 or less HD structures,
the reason being that in these structures some of the above mentioned subcalls
would fail due to insufficient information available. (This could be related to
Application Domain, in particular QA having always shorter Hypotheses than
others).

5 Results and Discussion

The RTE task is a hard task: this may be partly due to the way in which
it has been formulated – half of the snippets are TRUE, the other half are
FALSE. It is usually the case that 10-15% of mistakes are ascribable to the
parser or any other analysis tool – at least this is what we expect from our
parser, or other off-the-shelf parsers freely available from the web; another 5-
10% mistakes will certainly come from insufficient semantic information – and
this is what we measured on our results. Whenever a system makes 20% errors
this is doubled to 40% due to corpus setup, and the final result will become 60%
overall Recall.

As far as the Test set is concerned, our system correctly classified 285/400
False annotated snippets, and 194/400 True annotated snippets. As a result, the
system misclassified 321 pairs out of 800 examples. The majority of mistakes
– 193, i.e. 60.1% - were false negatives, which are T/H pairs which the system
classified as false but were annotated as true. The number of false positives
is 128, i.e. 39.9%, which the system wrongly classified as true. If we compute
the internal consistency of classification of the algorithm, we come up with the
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following data: 128 false positives over an overall number of 322 pairs classified
as true by the system corresponds to 60.3% overall accuracy for true snippets;
193 false negatives over a total number of 478 pairs classified as false by the
system corresponds to 59.5% overall accuracy for false snippets.

As can be seen from Tab. 2, the system has produced different result in each
Application domain, so we will now look with more details at accuracy data for
each of the seven application fields:

- IR cws:0.7163 accuracy:0.6556
- CD cws:0.7139 accuracy:0.6667
- PP cws:0.8563 accuracy:0.8200

These three fields are by far those obtaining the best scoring by our system.
In particular the Paraphrase Acquisition dataset fares higher simply because
we acquired a good number of paraphrases from a number of sources includ-
ing WordNet Definitions and turned them into appropriate “axiom-like” rules
as described above. As to Comparable Documents and Information Retrieval,
both syntax and semantics play a role in selecting the required synonyms and
antonyms, within the appropriate predicate-argument structure as defined by
GRs and SRs. The second set of data fares somewhat worse:

- IE cws:0.6534 accuracy:0.5833
- QA cws:0.5295 accuracy:0.5692
- RC cws:0.5796 accuracy:0.5357

In all these cases, results are better than chance overall but they are not up to
the expected results partly because of semantic inadequacies in the thesaurus, as
RC may suggest. But also partly because of the lack of suitable syntactic trans-
formation rules for syntactic alternations, in particular all those cases involving

Table 2. Ratio of TRUE classified snippets by Rule type accessed by the SE

Test-set Results Training-set Results
cws: 0.6306 cws: 0.6459
accuracy: 0.5950 accuracy: 0.6032
precision: 0.6180 precision: 0.6250
recall: 0.4975 recall: 0.5124
f: 0.5512 f: 0.5631
QA cws:0.5295 acc:0.5692 QA cws:0.6360 acc:0.5556
PP cws:0.8563 acc:0.8200 PP cws:0.6249 acc:0.6585
IE cws:0.6534 acc:0.5833 IE cws:0.6119 acc:0.6000
CD cws:0.7139 acc:0.6667 CD cws:0.7416 acc:0.6633
IR cws:0.7163 acc:0.6556 IR cws:0.6795 acc:0.6286
RC cws:0.5796 acc:0.5357 RC cws:0.5529 acc:0.5243
MT cws:0.4693 acc:0.4750 MT cws:0.6359 acc:0.6111
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modifiers treated as arguments in one of the T/H pair. Finally the worst result
obtained by the system,

- MT cws:0.4693 accuracy:0.4750

is represented by the MT data subset. The strange thing is that the Devel-
opment set diverges only in this case from the Test set, by reaching a much
higher result

- MT cws:0.6359 accuracy:0.6111

The other divergent case is represented by the PP results which fare lower
than the ones obtained for the Test set,

- PP cws:0.6249 accuracy:0.6585

On a closer look, reasons for these differences are not due to system perfor-
mance but to differences in distribution of the two application settings in Test
and Development datasets, which are almost reversed: in the Test set MT pairs
are almost the double of the PP pairs; the opposite applies to the Development
set. In fact, if looked at from this perspective the results become absolutely
comparable. These are the total figures in the two datasets:

– TEST SET
• MT – 120 T/H pairs = 15%
• PP – 50 T/H pairs = 6.25%

– DEVELOPMENT SET
• MT – 54 T/H pairs = 9.5%
• PP – 82 T/H pairs = 14.5%

In other words, the system performs slightly over chance in the MT applica-
tion field - summing up the accuracy data and dividing by 2 we get 50.4%. In
the PP field the results fare around 74% accuracy, still higher than other fields
but no so much as 82% of the test set.

We looked into our mistakes to evaluate the impact of the parser on final
Recall and we found out that: 10 snippets out of 100 TRUE ones have a wrong
parse which can be regarded the main cause of the mistake. In other words only
10% of wrong results can be ascribed to bad parses. The remaing 10% is due to
insufficient semantic information. In turn, this may be classified as follows:

– 80% is due to lack of paraphrases and definitions;
– 10% is due to wrong SemanticRole assignment;
– 10% is due to lack of synonym/antonym relations.

When we started working on the training corpus, verb predicates synsets
made available by WordNet have been augmented by the information contained
in Grady Ward’s MOBY Thesaurus (http://www.dcs.shef.ac.uk/research/ilash/
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Moby/). Additional information has been derived from a manually reorganized
version of Roget’s Thesaurus, again limited though to verb predicates. In par-
ticular, antonymity is lacking in WordNet where the choice has been that of
listing only contradictory items (male/female). However antonymity has two
more types to be taken into account: scalar antonyms where the two items don’t
need to be one or the other and can be between the two extremes of a particular
scale (hot/cold); then relational opposites which are pairs that don’t represent
extremes of some scale (stop/go).

We also felt we needed information related to negative polarity verb pred-
icates which we derived from Harvard Dictionary derived from Harvard IV-4
e Laswell’s dictionary on the Dynamics of Culture (http://www.wjh.harvard.
edu/). The paraphrase and definition list for verb predicates taken from Word-
Net and transformed into HD structures was also updated in order to cover some
missing cases. For instance, we had to implement a new paraphrase for the verb
FIRE which is paraphrased as “send dismissal letter to” in Snippets 783. The
list of HDSs will be accessed by the Evaluator in the appropriate Module.

6 Related Work

Our approach to textual entailment can be compared to other similar approaches
based on deep parsing, in particular see [1,12], which however, eventually derive
a logical form to undertake semantic processing by means of a theorem prover.
As a matter of fact, we also produce a logical form of each snippet, where syn-
tactic indices generated by the parser are accompanied by semantic role labels,
and levels of dependency or modification are encoded in embedding. However,
since unification could only be applied whenever lexical substitutions or lexical
paraphrases for semantically similar predicates have been accomplished, we as-
sume our system to be a better tool for achieving the same goal. In this sense, we
follow closely what [11,16] also do in their system, apart again from the theorem
prover. Also [10] can be regarded another example of a system using dependency
trees to do semantic similarity measures. We believe our structures to be a much
better approximation of what other systems can produce: in particular in [11,16],
only syntactic constituency is being produced and no further semantic processing
is carried out, apart from semantic role assignment directly at word level. The
same applies more or less to [1,12], seen that these approaches rely on the output
of a constituency only syntactic parser. Only superficially relevant relations will
be encoded by these system: all lexically unexpressed relations will be omitted.
So not only SUBJects of untensed clauses, but also long distance dependency
syntactically controlled arguments will not appear. On the contrary this is fully
expressed in our representation which can thus be regarded syntactic-semantic
in the intended sense. As to the use of a theorem prover, we rather prefer a more
flexible rule-based semantic approach, as discussed above; in addition, Equality
and Subsumption can be expressed very effectively by the paradigm of vari-
able and constraints instantiation in Prolog, once the appropriate information is
available. So in a nutshell, the real problem is getting the appropriate represen-
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tation: we think that dependency structure are to be regarded equivalent to any
other flat or hierarchical logical structure.

Another different case is constituted by [10] which computes syntactic con-
stituency on the basis of a chomskian approach and then a mapping into Gram-
matical Relations is produced by the system. When we look at results reported
by [1], we see that the best accuracy scores are obtained by the Hybrid Task and
the domains with better score are CD and IR; the same applies to [12] where
best scores are obtained by CD, PP, and IR. This is very much in line with our
results and reflects some bias involved in the deep parsing approach.

If we consider probabilistic Bag Of Words (BOWs) approaches - see for in-
stance [11,14,15] – the picture changes dramatically. In this cases, semantic sim-
ilarity is derived from term cooccurence frequency measures, usually taken from
a big corpus or the web itself. The main criticism we can raise to these ap-
proaches is that semantic elements contained in a sentence very often coincide
with stopwords such as negation, auxiliaries, modals, prepositions. All these are
function words which shouldn’t be erased, because they are used to express
relations (grammatical, semantic, discourse), which these systems attempt to
capture by the usual cooccurence paradigm contained in such measures as In-
verse Document Frequency (idf) or the Mutual Information. Even though we
think that such approaches are needed in a real life application setting, they
are nonetheless in themselves insufficient to determine with enough confidence
whether what is being measured is actually semantic similarity at propositional
level – i.e. the two snippets are saying the same thing – or just an instance with
good approximation of parallel texts. If we look at results reported in [14], we
see a remarkably high accuracy in two domains, CD and MT. The same appears
to be the case in [11] where MT, QA and CD receive a very high accuracy score
– over 80%; [15] doesn’t report separate evaluations for each domain, so we are
left with a single overall score. Best systems seem to be [14] and [15]: both fare
around 59% accuracy. In all the three papers, error analysis is omitted: we take
this to be a fundamental step in assessing the validity of their approach and
look forward to see it in future papers. However, this seems to be a weakness of
BOWs approaches.

7 Conclusions

We have presented an approach based on linguistic rules where representations
are intended to convey all possible syntactic and semantic knowledge in a linear
dependency-based compact but consistent format. Limitations of this approach
are basically due to parsing errors and insufficient semantic/world knowledge,
so we don’t expect to go over 62/64% accuracy in future experiments with a
similar dataset as the one provided by RTE. While deep parsing accuracy cannot
reasonably be expected to improve easily beyond the 85% threshold, we hope
to achieve better results with augmented thesauri and other semantic similarity
repositories available on the web. Another possibility would be that of assuming
a probabilistically based BOWs approach on the same issue, in order to recover
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missing information for term cooccurence, especially in such thorny cases as
paraphrase and definition related semantic similarities. Approaches attested in
the literature seem to be quite successful and could thus be integrated with
the linguistically-based stance of our system. We are currently experimenting
with a version of LinkGrammar (LG) ported under SWI Prolog, where we have
implemented our semantically and discourse oriented labelling modules which
provide information as to semantic roles, pronominal binding and other relevant
logical operators and discourse markers. We intend to produce an evaluation
based on the augmented LG output in order to ascertain whether it compares
positively with our system.
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Appendix

Examples of T/H pairs used in the text are all reported here below.

T/H pair 12
Oracle had fought to keep the forms from being released.
Oracle released a confidential document.
T/H pair 46
The Yankees split Hollywood with something to feel OK about after last night’s
5-4 loss to the Dodgers.
Dodgers lose first game ever at Fenway.
T/H pair 60
If a Mexican approaches the border, he’s assumed to be trying to illegally cross.
Mexicans continue to illegally cross border.
T/H pair 67
Total coal stocks with the thermal power stations came down to 9.6 million
tonnes on March 3, 2003 from 11 million tonnes on October 1, 2002.
Coal stocks rise.
T/H pair 73
There are discussions in California and Arizona to allow illegal aliens to have
driver’s licenses.
California driver’s licenses granted to illegal immigrants.
T/H pair 74
South Korea’s deputy foreign minister says his country won’t change its plan to
send three-thousand soldiers to Iraq, despite the kidnapping of a South Korean
man there.
South Korea continues to send troops.
T/H pair 77
The media always talk about the Dow being up or down a certain number of
points.
Dow Jones is down.
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T/H pair 98
Sharon warns Arafat could be targeted for assassination.
prime minister targeted for assassination.
T/H pair 148
The Philippine Stock Exchange Composite Index rose 0.1 percent to 1573.65.
The Philippine Stock Exchange Composite Index dropped.
T/H pair 152
Twenty-five of the dead were members of the law enforcement agencies and the
rest of the 67 were civilians.
25 of the dead were civilians.
T/H pair 170
Bombs exploded in two Turkish cities Thursday only days before Turkey plays
host to a NATO summit.
Turkey plays host to suicide bombers.
T/H pair 171
The terrorist is suspected of being behind several deadly kidnappings and dozens
of suicide attacks in Iraq.
Terrorist kidnaps dozens of Iraqis.
T/H pair 172
The terrorist is suspected of being behind several deadly kidnappings and dozens
of suicide attacks in Iraq.
The terrorist may have caused suicide attacks and kidnappings.
T/H pair 205
In any case, the fact that this week Michael Melvill, a 63-year-old civilian pilot,
guided a tiny rocket-ship more than 100 kilometres above the Earth and then
glided it safely back to Earth, is a cause for celebration.
Michael Melvill guided more than 100 rocket-ships above the Earth.
T/H pair 220
Canadian wireless technology licensing company Wi-LAN has begun legal action
against Cisco, alleging the networking giant’s Linksys and Aironet products are
making use of its intellectual property without permission.
Linksys and Aironet begin legal action against a Canadian company.
T/H pair 227
A closely divided U.S. Supreme Court said on Thursday its 2002 ruling that
juries and not judges must impose a death sentence applies only to future cases,
a decision that may affect more than 100 death row inmates.
The Supreme Court decided that only judges can impose the death sentence.
T/H pair 238
Following the assassination attempt in 1981, Reagan said he felt God had spared
him for a purpose, and he intended to devote the rest of his life in dedication to
his God and to that purpose.
Regan was almost assassinated in 1981.
T/H pair 294
The three-day G8 summit will take place in Scotland. The G8 summit will last
three days.
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T/H pair 466
The Yellowstone Park Foundation recognizes the following organizations for their
generous support in helping to protect the wonders and wildlife of Yellowstone
National Park.
The Yellowstone Park Foundation would like to acknowledge and thank the fol-
lowing organizations for their generous support.
T/H pair 496
Like Jews and Christians, Muslims believe there is only one God.
Muslims are monotheistic.
T/H pair 516
If this challenge interests you, you might enjoy reading “Punished by Rewards”
by Alfie Kohn.
I read “Punished by Rewards” by Alfie Kohn.
T/H pair 526
Successful plaintiffs recovered punitive damages in Texas discrimination cases
53% of the time.
Legal costs to recover punitive damages are a deductible business expense.
T/H pair 602
Historians estimate that 800,000 Chechens were stuffed into rail cars and de-
ported to Kazakhstan and Siberia, and 240,000 of them died en route.
Stalin deported 800,000 Chechens.
T/H pair 619
Fiat’s Gianni Agnelli, owner of Juventus, was quoted by Italian newspapers as
saying that when Baggio came off the field after the Mexico game, “He looked
like a wet rabbit”.
Giovanni Agnelli is the president of Fiat.
T/H pair 620
PERSPECTIVE ON BOSNIA; A BALKANS PEACE THAT CANNOT LAST.
Bosnia is located in the former Yugoslavia.
T/H pair 648
Yoko Ono, widow of murdered Beatles star John Lennon, has plastered the small
German town of Langenhagen with backsides.
Yoko Ono was John Lennon’s wife.
T/H pair 677
The Dutch, who ruled Indonesia until 1949, called the city of Jakarta Batavia.
Formerly (until 1949) Batavia, Jakarta is largest city and capital of Indonesia.
T/H pair 693
This growth proved short-lived, for a Swedish invasion (1655-56) devastated the
flourishing city of Warsaw.
Warsaw was invaded by the Swedes in 1655, and the city was devastated.
T/H pair 700
There are many Baroque churches of the Counter-Reformation period, including
the Jesuit Church next to the cathedral and the Church of the Holy Cross, which
contains Chopin’s heart.
Sigismund made Warsaw the capital of Poland in 1611.
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T/H pair 712
To the south of Castle Hill rises the higher Gellert Hill (771 feet), a steep lime-
stone escarpment overlooking the Danube, which provides a panoramic view of
the whole city.
To the south is Gellert Hill, which features the 19th-century Citadel.
T/H pair 783
Sharon sent dismissal letters to Benny Elon and Avigdor Lieberman, who oppose
his withdrawal plan, on Friday.
On Friday,Sharon fired Benny Elon and Avigdor Lieberman.
T/H pair 811
Monica Meadows, a 22-year-old model from Atlanta, was shot in the shoulder
on a subway car in New York City.
Monica Meadows, 23, was shot in shoulder while riding a subway car in New
York City.
T/H pair 876
Officials said Michael Hamilton was killed when gunmen opened fire and ex-
changed shots with Saudi security forces yesterday
Michael Hamilton died yesterday.
T/H pair 933
Crude Oil Prices Slump.
Oil prices drop.
T/H pair 942
The U.S. handed power on June 30 to Iraq’s interim government chosen by the
United Nations and Paul Bremer, former governor of Iraq.
The United Nations officialy transferred power to Iraq.
T/H pair 947
The extraditables today claimed responsibility for the murder of Antioquia police
commander colonel Waldemar Franklin Quintero, which occurred this morning
in Medellin.
police officer killed.
T/H pair 1014
The thick atmosphere of Titan makes it difficult for even the largest telescopes
on Earth to see anything clearly.
Telescopes on Earth cannot see Titan clearly.
T/H pair 1121
Continuing its buying spree, IBM said Wednesday that it plans to acquire Al-
phablox, a Mountain View, Calif.-based analytics software company.
IBM plans to buy Alphablox.
T/H pair 1149
The American State Department announced that Russia recalled her ambas-
sador to the United States “for consultation” due to the bombing operations on
Iraq.
The American Ministry of Foreign Affairs announced that Russia called the
United States about the bombings on Iraq.
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T/H pair 1164
Ramadan told reporters at the opening ceremony of the Baghdad International
Exposition, ”No cooperation and no inspection or monitoring by the Ameri-
can Zionist espionage commission (the Special Commission for disarming Iraq’s
banned weapons - UNSCOM) before Iraq’s demands are met.”.
Ramadan announced that Iraq will not cooperate with the inspectors.
T/H pair 1168
Ramadan told reporters in Baghdad that ”Iraq cannot deal positively with who-
ever represents the Security Council, unless there was a clear stance on the issue
of lifting the blockade.
Ramadan said that Iraq would cooperate when the UN considers lifting the em-
bargo.
T/H pair 1197
Contact with the press will be restricted to ”perodic meetings”, as promised by
all three parties, in order to ”focus their energies” on the most important issues.
The delegations may only speak periodically to the press, in order to concentrate
on the issues.
T/H pair 1214
It is planned that by the end of the year 2001, France will have minted 7.6
billion Euro coins weighing 30 thousand tons or approximately four times the
equivalent weight of the Eiffel Tower.
According to plans, France should have minted 7.6 billion Euro coins before
2002.
T/H pair 1215
A statement issued by Royal Moroccan Airlines, a copy of which was received by
Agence France Presse today, said that the company decided to start two flights a
week between Casablanca and Gaza as soon as the Palestinian airport is opened
there.
With the opening of the Palestinian airport, Royal Moroccan Airlines will fly
between Casablanca and Gaza.
T/H pair 1261
Zeroual proposed February 25 as elections date, but this date will not become
final until after the agreement between all of the political partners, according to
what was reported by the First Secretary of the Socialist Forces Front, Ahmed
Djeddai.
The election will be held on the 25th of February if all of the political partners
agree.
T/H pair 1265
Egyptian television is preparing to film a series that highlights the unity and
cohesion of Moslems and Copts as the single fabric of the Egyptian society, ex-
emplifying in particular the story of former United Nations Secretary-General
Boutros Ghali.
Egyptian television will make a series about Moslems, Copts and Boutros
Boutros Ghali.
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T/H pair 1284
Economic experts were surprised by this coordinated reduction of interest rates;
they were expecting, before the meetings of officials in the German Central Bank
and French Central Bank today, that the two main central banks in the Euro
countries would not reduce interest rates this week.
Two main banks reduced their interest rates.
T/H pair 1639
Lennon was murdered by Mark David Chapman outside the Dakota on Dec. 8,
1980.
Mark David Chapman killed Lennon.
T/H pair 2049
Five other soldiers have been ordered to face courts-martial.
Five other soldiers have been demanded to face courts-martial.
T/H pair 2064
The Osaka World Trade Center is the tallest building in Western Japan.
The Osaka World Trade Center is the tallest building in Japan.
T/H pair 2084
Microsoft Israel was founded in 1989 and became one of the first Microsoft
branches outside the USA.
Microsoft was established in 1989.
T/H pair 2120
Six hostages in Iraq were freed.
The four Jordanian hostages, kidnapped about a week ago, were freed.
T/H pair 2141
No Weapons of Mass Destruction Found in Iraq Yet.
Weapons of Mass Destruction Found in Iraq.
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Abstract. In this paper we present a classifier for Recognising Textual
Entailment (RTE) and Semantic Equivalence. We evaluate the perfor-
mance of this classifier using an evaluation framework provided by the
PASCAL RTE Challenge Workshop. Sentence–pairs are represented as
a set of features, which are used by our decision tree classifier to deter-
mine if an entailment relationship exisits between each sentence–pair in
the RTE test corpus.

1 Introduction

In this paper, we present work undertaken by the Text Summarisation group
at University College Dublin on the development of a classification system for
recognising Textual Entailment (TE), where a text T entails a hypothesis H if
the meaning of H can be inferred from the meaning of T [1].

Automatic text summarisation has a number of distinct stages. Radev [2]
describes them thus: “content identification”, when the topics of the original
text(s) are identified; “conceptual organization”, when the concepts to be cov-
ered by the summary are selected and ordered; and “realization”, the actual
generation of the summary. Multi–Document Summarisation (MDS) is the gen-
eration of a single summary from multiple documents. An MDS system must
consider issues such as managing conflicting contradictory sources, identifying
redundant sources and information overlap, adapting to user needs, and being
mindful of authors’ intentions, etc. One of the most critical issues in this list
is the identification of redundant information, since the fundamental objective
of the summarisation process is to avoid including repetitive information in the
summary at all costs.

Redundancy removal is generally only a problem which arises in MDS, be-
cause information is being collated across multiple sources related through over-
lapping information (especially in certain domains, such as news stories, where
a topic will often be introduced in every article described in the cluster). Ob-
viously, this is less of a problem in single–document summarisation because an
author is unlikely to continually repeat themselves in a text.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 372–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



TE Recognition Using a Linguistically–Motivated Decision Tree Classifier 373

Most MDS redundancy removal techniques are based on some type of word
overlap comparison. While this is a somewhat effective approach, we believe that
the development of a deeper semantic analysis method would improve summary
quality, since shallow methods are prone to missing certain cases (e.g., negation)
which would be captured by deeper methods. This was the main motivation
behind our participation in the PASCAL RTE Challenge. However, we found
that the evaluation framework of the workshop was insufficient for our purposes,
since only certain types of information redundancy (or semantic equivalence)
were represented in RTE corpora.

The rest of this paper is presented as follows: in Section 2 we review related
work in both summarisation research and textual entailment in general; Section 3
provides an overview of our system, the features it uses, and how they are used to
detect entailment pairs; Section 4 describes in detail results of our experiments
presented at the RTE workshop; and finally, in Section 5, we discuss some future
directions for our research.

2 Related Work

In this section, we will first describe some of the research recently published as
a result of the RTE challenge, followed by an overview of some related research
from the text summarisation community on redundancy removal, i.e. the removal
of repetitive information from machine–generated summaries.

2.1 Recognising Textual Entailment and Semantic Equivalence

There are a variety of approaches that can be used to address the problem
of Recognising Textual Entailment and Semantic Equivalence (RTESE), as is
evident by the breadth of the applications presented at the PASCAL RTE work-
shop [1] and the ACL workshop on Empirical Modeling of Semantic Equivalence
and Entailment [3].

Most of these systems use some sort of lexical matching, be it simple word
overlap or some more complex statistical co-occurrence relation (e.g. Latent Se-
mantic Indexing). While these systems perform better than those without lexical
matching, it was widely agreed that matching at a word-level alone was not suf-
ficient for the PASCAL corpus. Corley [4] presents an overview of similarity
metrics based on WordNet concepts. They showed that a combination of Word-
Net similarity measures [5] with a lexical matching metric (based on the number
of shared words in a sentence–pair) acheived scores on the PASCAL corpus of
up to 58.9%, which is comparable with other high–ranking systems at the work-
shop.

A number of the systems (de Salvo Braz et al. [6]; Akhmatova [7]; Bos and
Markert [8]) used logical inference in which a representation of the text and
hypothesis is constructed, and then a proof of the hypothesis is derived for
the text (some of these systems appealed to world knowledge (hand–coded [9];
geographical [8]), or to formal lexical resources such as WordNet).



374 E. Newman et al.

A number of systems represented the texts as parse trees (e.g. syntactic, de-
pendency, semantic)(Pazienza [10]; Herrera [11]). This action reduces the prob-
lem of textual entailment recognition to one of (sub–)graph matching.

Interestingly, Vanderwende [12] showed that using no more than syntactic
matching, one could match up to 37% of classifications correctly. Appealing to
a thesaurus yields up to 49%. This is supported by empirical evidence from
Herrera et al. [11] and Marsi and Krahmer [13]. Hence, it seems that relatively
simple metrics used in combination perform better than more complex, “deeper”
metrics such as logical inference or the incorporation of world knowledge into
the classification computation. We suggest that this is the case because deep
linguistic and inferential analysis is more prone to errors due to problems arising
from word sense disambiguation.

One of the top systems in the PASCAL evaluation (Raina et al. [14, 15]) used
all of the methods outlined above to some degree or another. Parsed sentences
are represented as logical formulae. A theorem prover is then used to find the
minimum cost of “proving” that the hypothesis is entailed by the text. These
costs are learned from syntactic and semantic features and resources such as
WordNet.

2.2 MDS Redundancy Removal

In this section, we describe some of the similarity detection and redundancy re-
moval techniques which have been used in various multi-document summarisa-
tion systems. Many of the techniques used have evolved from similarity measures
used in areas such as Information Retrieval [16, 17].

Possibly the most well-known and successful approach to similarity detec-
tion in automatic summarisation is the SimFinder [18] system. SimFinder
is a multi–document summariser which uses clustering to reduce redundan-
cies in its summaries. The similarity of texts (paragraphs or sentences) are
judged using 43 separate features, from common words to synonyms and hyper-
nym/hyponym matching. Texts are then clustered using a learning algorithm.
This algorithm selected 11 of the 43 available features for its final set of classi-
fication rules, validating the authors’ claims that “more than word matching is
needed for effective paragraph matching”. The clusters generated by SimFinder
have been used by Barzilay in her system (described below) and by Centri-
fuser, where summaries are generated by selecting one sentence from each
cluster.

Maximal Marginal Relevance [19] is a technique, based around the cosine
similarity metric, that was was originally developed to detect diversity in a list
of retrieved documents relevant to a specific query. It measures the relevance
and the novelty of a document independently, and linearly combines the two
measures to calculate the “marginal relevance”. This technique has also been
applied to multi–document summarisation research by Goldstein [20] in which
MMR was used to select passages from multiple documents. More specifically,
given a selection of relevant documents, MMR can be parameterised to rank
passages according to certain criteria, such as whether the summary should be
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very specific to a particular topic, or whether it should cover a wide range of
related issues.

More recently, Allan et al. [21] describe a method that generates temporal
summaries from online news streams by adding novel information to a summary
as news stories describing a particular event arrive. Although this work focusses
on novelty detection, this task is obviously analogous to redunancy detection
and so is relevant to our current discussion. Allan et al. define two concepts of
novelty and usefulness using probabilistic language models. Novelty applies to a
relevant sentence which is new to the presentation, e.g. the first sentence about
an event is obviously novel. Usefulness refers to all relevant sentences which
have the potential to contribute to the summary. The models are based on all
of the previously–seen documents. These models are then used to determine if
an incoming sentence is either novel or useful. If so, then they are added to the
summary. In other words, the model is trying to capture novelty based on the
“probability that the later sentence could have been generated from the same
language model as the earlier sentence”. A second novelty model was also inves-
tigated which compares the incoming sentence to clusters of related setences in
order to overcome the data sparsity problem associated with generating language
models for single sentences. This model proved to be the better–performing ap-
proach of the two.

In contrast Barzilay [22, 23, 24] adopted a more linguistically–motivated ap-
proach to the measurement of semantic equivalence. Her research focussed on
the generation of abstractive summaries. In particular, her technique analysed
dependency graph [25] representations of sentences to identify common para-
phrase units between two potentially redundant sentences in a summary. Once
these paraphrases (or redundancies) have been detected this information facili-
tates “information fusion”, and the generation of a single sentence representing
the information in both sentences. This text generation technique is used by the
Columbia NewsBlaster MDS system [26].

From this discussion, it can be seen that advances in the area of Recognising
Textual Entailment and Semantic Equivalence would be of great benefit to the
Text Summarisation community.

3 System Description

In this section, we present an overview of our Textual Entailment Recognition
system, which was originally presented at the PASCAL RTE workshop. Our
system uses a decision tree classifier to detect an entailment relationship be-
tween pairs of sentences which are represented using a number of difference
features such as lexical, semantic and grammatical attributes of nouns, verbs
and adjectives. We generated our classifier from the RTE training data using
the C5.0 machine learning algorithm [27]. We chose to use C5.0 as it can be
used to build a decision–tree classifier which can branch on a numeric range,
as opposed to many other such algorithms, which can only work on discrete
values.
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The features used are calculated using the WordNet taxonomy [28], the Verb-
Ocean semantic network [29] (developed at ISI) and a Latent Semantic Indexing
[30, 31] technique. Other features are based on the ROUGE (Recall–Oriented
Understudy for Gisting Evaluation) [32] n-gram overlap metrics and cosine sim-
ilarity between the text and hypothesis.

Our most sophisticated linguistic feature finds the longest common subse-
quence in the sentence–pair, and then detects contradictions in the pair by ex-
amining verb semantics for the presence of synonymy, near-synonymy, negation
or antonymy in the subsequence.

In addition to these measures, there is also a task feature which identifies the
application domain from which the sentence pair was derived. This allows the
system to build separate classifiers for each task in order to capture the different
aspects of entailment specific to each task.

We investigated the usefulness of a number of distinct features during the
development of our decision tree approach to textual entailment. These features
were developed using the training part of the corpus made available for the PAS-
CAL Recognising Textual Entailment Workshop [1]1. Not all of these features
were contributing factors in our final classification systems, but we list all of
them here for the sake of completeness because some features are combinations
of other atomic features. Table 1 gives a list of the features we used, and their
C5.0 data types.

Table 1. Features used by decision–tree classifier. <name>indicates a tuple of related
features.

Feature data type
entails boolean, unknown
<rouge> continuous
<wordnet> continuous
LSI continuous
cosine continuous
<verbOcean> continuous
negation t continuous
negation h continuous
negdiff continuous
<lcs> boolean
lcs+not boolean

3.1 Sentence–Pair Features

The first of our equivalence features are derived using the ROUGE metrics,
which were used as a means of evaluating summary quality against a set of
human–generated summaries in the 2004 Document Understanding Conference
workshop [35]. The metrics provide a measure of word overlap (i.e. unigram,

1 The corpus may be downloaded from:
http://www.pascal-network.org/Challenges/RTE/Datasets
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bigram, trigram and 4-gram), and a weighted and unweighted longest common
subsequence measure.

In the WordNet–based measure, we define the similarity between two
sentences as the sum of the maxmimal similarity scores between component
words in WordNet, using the Hirst–St-Onge measure [28, 5]. To implement this
we used Perl language Wordnet modules [33, 34] and WordNet version 2.0.

WordNet was used to identify entailment between sentence pairs where cor-
responding synonyms are used. Words from the same synset (set of one or more
synonyms, as defined by WordNet) were considered to indicate a greater likeli-
hood of entailment. We believe that the accuracy of this feature could be greatly
improved by disambiguating the sentence pair before calculating synset overlap.
More specifically, in some instances multiple senses of a single term could be
matched with terms in the corresponding entailment pair, resulting in sentences
appearing more semantically similar than they actually are.

A simple method for measuring sentence similarities is to use a vector–based
method such as cosine similarity [16]. We use a vector-space model [17] as
the primary data structure in the Cosine Similarity and Latent Semantic Index-
ing measures. Sentences are stopped and stemmed using the Porter stemming
algorithm [36], and a count of all the words used in the sentences of the cor-
pus is calculated. This count provides us with the information to construct the
termspace, an n-dimensional vector space, where n is the number of unique terms
found in the corpus. With a vector representation of all of the sentences in the
corpus, we can take a simple measure of the similarity of any pair of sentences
by looking at the size of the angle between their vectors: the smaller the angle,
the greater the similarity.

Latent Semantic Indexing [30, 31] takes as input a term–document matrix
constructed in exactly the same way as for Cosine Similarity. Before applying
a similarity measure between the vectors, an information spreading technique
known as Singular Value Decomposition is applied to the matrix.

This technique scrutinises the term–document matrix for significant levels of
word co–occurence and modifies magnitudes along appropriate dimensions (i.e.
scores for particular words) accordingly. Thus, a sentence such as “The Iraqi
leader was deposed” may have its vector representation modified with increased
magnitude along dimensions corresponding to the terms “Saddam Hussein”,
“Baghdad” and “George W. Bush”, for example.

Using a Latent Semantic Indexing matrix constructed from the DUC 2004
corpus, we attempted to identify words in entailment pairs which have high
cooccurrence statistics. We took a term–document matrix of 10028 terms and
converted this to a LSI matrix of 50 dimensions, using the GNU Scientfic Library
for C [37].

VerbOcean is a lexical resource that provides fine–grained semantic rela-
tionships between verbs. These related verb–pairs and their relationship streng-
ths were gleaned from the web using lexico–syntactic patterns that captured 5
distinct verb relationships:
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– similar–to (e.g., escape, flee)
– strength (e.g., kill is stronger than wound)
– antonymy (e.g., win, lose)
– enablement (e.g., fight, win)
– happens–before (marry happens before divorce)

The VerbOcean online demo searches for paths between nodes in a semantic
network generated from the VerbOcean data [38]. Given that the VerbOcean se-
mantic network is not currently available for download but the verb pairs, their
relationship types, and strengths are, we used this data to build our own verb–
verb association matrix. We then extracted additional semantic relationships
between verbs in the VerbOcean data by calculating the similarity between each
verb vector pair using the cosine metric. In our experiments we only examined
VerbOcean antonym and similar–to relationships when analysing verb seman-
tics in the entailment pair; however, all VerbOcean relationships were used to
generate the association matrix.

We also identify adverbial negation in the sentences. Adverbial negation
occurs where the presence of a word (e.g., “nor”, “not”) modifies the meaning
of the verb in the sentence. We generate three features from this information:

– negation t counts the number of occurences of adverbial negation in the
text

– negation h counts the number of occurences of adverbial negation in the
hypothesis.

– negdiff is the difference between negation t and negation h.

Examination of the development set suggested that for a significant propor-
tion of sentence pairs, the longest common subsequence2 is largely similar
to the hypothesis element, i.e. most of the hypothesis is contained in the text el-
ement. For this feature, we only examined verb semantics in the longest common
subsequence of the two sentences rather than in the full sentences. An example
is shown in Figure 1. There are three variations of this feature: lcs, lcs pos and
lcs neg.

– The lcs feature holds one of three values {−1, 0, 1}, which correspond to the
presence of an antonym, no relationship, or a synonym relationship between
the longest common subsequence of the text and the hypothesis sentence,
respectively.

– lcs pos and lcs neg are simpler features which indicate the presence of a
synonym relationship or antonym relationship, respectively.

lcs+not is another feature based on the longest common subsequence. It
combines the above lcs features and also looks for the presence of words like
“not”, which reverse the meaning of the sentence. Thus, for example, if an
antonym and “not” occur in a sentence then this is considered to be a posi-
tive indication of entailment. Even though lcs+not is a combination of our lcs
2 The Longest Common Subsequence of a sentence pair is the longest (not necessarily

contiguous) sequence of words which is common to both text and hypothesis.
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id=1954; task=PP; judgement=FALSE
Text: France on Saturday flew a planeload of United Nations aid into eastern Chad
where French soldiers prepared to deploy from their base in Abeche towards the
border with Sudan’s Darfur region.
Hypothesis:France on Saturday crashed a planeload of United Nations aid into
eastern Chad

Fig. 1. Longest Common Subsequence. Italics denote the longest common subsequence.

features we still retain the simpler features as it has been shown that they im-
prove entailment accuracy.

4 Experiments

We submitted two systems to the PASCAL workshop. The systems are de-
scribed below, evaluated according to the workshop criteria and this evaluation
is analysed in the following section.

4.1 System Performance

Our two submitted systems differ only in the parameters they use: System 1
uses all the syntactic equivalence features, the atomic lcs features and the task
feature; System 2 uses the syntactic equivalence features, the composite lcs+not
feature, and does not use the task feature.

This gave rise to System 1 performing much better for some tasks, but Sys-
tem 2 performed (marginally) better on average. This is shown in Tables 2 and 3.
Our choice of features for each system was based on their performance on the
second development set, having been trained on the first development set.

As already stated, when the task feature is enabled, the C5.0 algorithm uses
it to make specific classifiers for each task. This seems to lead to over–fitting in

Table 2. Accuracy results for the classifiers. Scores marked with ** are statistically
significant to 99% confidence.

Sys 1 Sys 2 Sys 3 Sys 4
Average 0.5625** 0.5650** 0.5675** 0.5663**
CD 0.7467 0.7400 0.7467 0.8467
IE 0.5583 0.4917 0.5167 0.5417
IR 0.4456 0.5444 0.4333 0.5556
PP 0.5200 0.5600 0.5600 0.5000
MT 0.4750 0.5083 0.5667 0.4083
QA 0.5154 0.5385 0.5000 0.4846
RC 0.5714 0.5286 0.5714 0.5286
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Table 3. Confidence–weighted scores (CWS) for the classifiers. Scores marked with **
are statistically significant to 99% confidence.

Sys 1 Sys 2 Sys 3 Sys 4
Average 0.5917** 0.6000** 0.5818** 0.5794**
CD 0.8602 0.7764 0.7873 0.7526
IE 0.5083 0.5260 0.4958 0.5715
IR 0.3789 0.6130 0.4585 0.5201
PP 0.3968 0.5006 0.5320 0.4651
MT 0.5536 0.5130 0.5498 0.4108
QA 0.6003 0.5006 0.4684 0.4846
RC 0.6003 0.5685 0.5961 0.5866

some cases, e.g., especially on the IR and PP tasks, but it can help in certain
cases such as the RC and IE tasks.

To examine the effects of using all the available features, we ran two new
systems: System 3 uses all available features, and System 4 uses all features
except the task feature.

The training sets indicated the extra features did not contribute anything to
the classifiers and since we could only submit two systems to the workshop we
ran our system submissions without these features.

Subsequently, we ran further experiments to fully investigate the effect of the
features on classification accuracy. We found that accuracy scores for particular
tasks (most notably, CD and PP) showed a significant increase. However, the
average accuracy score across all tasks does not vary significantly.

Examination of the classifications made by each system (see Table 4) show
that Systems 1 and 3, the systems using the task feature, tended to be quite
balanced in their classifications, i.e. they had approximately the same number of
positive and negative classifications. On the other hand, Systems 2 and 4 showed
a bias towards marking instances as cases of true entailment (between 75% and
85% of cases were classified as “true”). This shows that the task indicator is
highly informative to the classifiers, allowing them to specialise for particular
tasks and thus improve their performance.

Table 4. Precision, Recall and F1 scores on Positive and Negative Entailments

Sys 1 Sys 2 Sys 3 Sys 4
Positive Entailment

Precision 0.5459 0.5458 0.5692 0.5458
Recall 0.5500 0.8200 0.5555 0.8050
F1 0.5479 0.6563 0.5620 0.6490

Negative Entailment
Precision 0.5466 0.6382 0.5659 0.6268
Recall 0.5425 0.3175 0.5800 0.3275
F1 0.5445 0.4240 0.5729 0.4302
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4.2 Analysis

In this section, we discuss with examples some common system errors made by
our decision tree classifier. It is clear from our system description in Section 3 that
the majority of our features deal with the identification of word–level, atomic
paraphrase units (e.g., child = kid; eat = devour). Consequently, there are a
number of examples where phrasal and compositional paraphrasing has resulted
in misclassifications by our system. Some examples of this are shown in Figure 2.

id=1560; task=QA; judgement=TRUE
Text: The technological triumph known as GPS - the Global Positioning System of
satellite-based navigation - was incubated in the mind of Ivan Getting.
Hypothesis: Ivan Getting invented the GPS.

id=858; task=CD; judgement=TRUE
Text: Each hour spent in a car was associated with a 6 percent increase in the
likelihood of obesity and each half-mile walked per day reduced those odds by nearly
5 percent, the researchers found.
Hypothesis: The more driving you do means you’re going to weigh more – the more
walking means you’re going to weigh less.

Fig. 2. Compositional Paraphrases (misclassified by our system)

Another important type of paraphrase, not addressed explicitly by our sys-
tem, is the syntactic paraphrase (e.g., “I ate the cake” or “the cake was eaten
by me”). However, although we didn’t include a parse tree analysis in our ap-
proach, it appears that the ROUGE metrics (and to some extent the cosine
metric) were an adequate means of detecting syntactic paraphrases. The posi-
tion of the ROUGE features in high-level nodes in the decision tree confirms
that n-gram overlap is an important aspect of textual entailment, but obviously
not the full story. However, we also observed that in some cases syntactic para-
phrases prevented the detection of longest common subsequences, and reduced
the effectiveness of features that relied on this syntactic analysis. Consequently,
parse tree analysis and subsequent normalisation of sentence structure could be
an effective solution to this problem.

Overall, our LCS–based features were critical to the classification decision;
however, we did find instances where sentence pairs were misclassified by over–
simplification of the textual entailment task. For example, pair 2028 in Figure 3
shows how the true meaning of the text sentence can extend beyond the longest
common subsequence. In addition, pair 1964 shows how coverage limitations in
the VerbOcean resource resulted in this example being misclassified as negative,
because an antonym relationship between “agree” and “oppose” was not listed.

Finally, during our manual examination of the results we also noticed another
crucial analysis component missing from our system: numerical string evaluation.
An example is shown in Figure 4. Future development will focus on a normali-
sation method for evaluating numeric values in the entailment pair.
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id=2028; task=QA; judgement=FALSE
Text: Besancon is the capital of France’s watch and clock-making industry and of
high precision engineering.
Hypothesis: Besancon is the capital of France.

id=1964; task=PP; judgement=FALSE
Text: Under the avalanche of Italian outrage London Underground has apologised
and agreed to withdraw the poster.
Hypothesis: London Underground opposed to withdraw the poster.

Fig. 3. Longest Common Subsequence Faults

id=868; task=CD; judgement=FALSE
Text: Several other people, including a woman and two children, suffered injuries in
the incident.
Hypothesis: Several people were slightly wounded, including a woman and three
children.

Fig. 4. Numerical example (misclassified by our system)

5 Future Work

There are a number of planned improvements for our system. In particular, we
will consider new sentence features in the detection process such as a measure of
numerical equivalence between sentence pairs as illustrated in example 4, and a
syntactic analysis component. Currently, our system does not have the capacity
to recognise the different syntactic forms that a sentence may take.

In addition, we also intend to replicate Pantel’s VerbOcean semantic network
to allow us to search along paths in the network and thus increase the system’s
ability to detect semantically related verbs.

An empirical evaluation of other machine learning algorithms is also planned,
to investigate if any other techniques would yield a better classifier than the C5.0
algorithm.

We also intend to further evaluate our RTE system by judging its perfor-
mance as a module in a Multi–Document Summarisation system. We will aim to
show that the identification of semantically–equivalent sentences using our RTE
system improves the overall performance of the multi-document summariser.

References

1. Dagan, I., Glickman, O., Magnini, B.(eds): Proceedings of the PASCAL Recognis-
ing Textual Entailment Challenge Workshop. April 11th-13th 2005, Southampton,
UK.

2. Radev, D.: Summarisation Tutorial. SIGIR 2004. At http://www.summarization.
com/sigirtutorial2004.ppt



TE Recognition Using a Linguistically–Motivated Decision Tree Classifier 383

3. Dolan, B., and Dagan, I. (eds): Proceedings of the ACL Workshop on Empirical
Modeling of Semantic Equivalence and Entailment. June 30th 2005, Ann Arbor,
Michigan, USA.

4. Corley, C., and Mihalcea, R.: Measuring the Semantic Similarity of Texts. In Pro-
ceedings of ACL Workshop on Empirical Modelling of Semantic Equivalence and
Entailment, ACL, June 2005.

5. Budanitsky A. and Hirst G.: Semantic distance in WordNet: An experimental,
application-oriented evaluation of five measures. In Proceedings of Workshop on
WordNet and Other Lexical Resources, Second meeting of the North American
Chapter of the Association for Computational Linguistics. 2001.

6. de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D. and Sammons, M: An
Inference Model for Semantic Entailment in Natural Language. In Proc. PASCAL
Workshop on Recognising Textual Entailment, 2005.

7. Akhmatova, E.: Textual Entailment Resolution via Atomic Propositions. In Proc.
PASCAL Workshop on Recognising Textual Entailment, 2005.

8. Bos, J. and Markert, K.: Combining Shallow and Deep NLP methods for Recog-
nizing Textual Entailment. In Proc. PASCAL Workshop on Recognising Textual
Entailment, 2005.

9. Fowler, A., Hauser, B., Hodges, D., Niles, I., Novischi, A., and Stephan J.: Ap-
plying COGEX to Recognize Textual Entailment. In Proc. PASCAL Workshop on
Recognising Textual Entailment, 2005.

10. Pazienza, M. T., Pennacchiotti, M., Zanzotto, F. M.: Textual Entailment as Syn-
tactic Graph Distance. In Proc. PASCAL Workshop on Recognising Textual En-
tailment, 2005.
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Abstract. This paper describes Macquarie University’s Centre for Lan-
guage Technology contribution to the PASCAL 2005 Recognizing Tex-
tual Entailment challenge. Our main aim was to test the practicability of
a purely logical approach. For this, atomic propositions were extracted
from both the text and the entailment hypothesis and they were ex-
pressed in a custom logical notation. The text entails the hypothesis if
every proposition of the hypothesis is entailed by some proposition in the
text. To extract the propositions and encode them into a logical notation
the system uses the output of Link Parser. To detect the independent
entailment relations the system relies on the use of Otter and WordNet.

1 Introduction

Despite its study for over two millennia, Natural language is still a complex and
somewhat mysterious system which does not stop to surprise us with its variety
of phenomena, and which provides scholars with new and interesting tasks to
solve. The advent of computers and the recent availability of increasingly large
volumes of digitally-stored textual data have provided new opportunities and
challenges for current researchers.

The first PASCAL Recognizing Textual Entailment Challenge (Dagan et
al. 2005) highlights the relevance of recognizing textual entailment (henceforth
RTE) as a core task within the area of Language Technology. The PASCAL
challenge consisted of the recognition of textual entailment between coherent
sentences T (text) and H (hypothesis) where T entails H if the meaning of H,
as interpreted in the context of T, can be inferred from the meaning of T. In
the following examples, the texts of the pairs labelled as A entail their respec-
tive hypotheses, whereas the texts of the pairs labelled as B do not entail their
hypotheses:

1. A text. Iraqi militants said Sunday they would behead Kim Sun-Il, a 33-
year-old translator, within 24 hours unless plans to dispatch thousands
of South Korean troops to Iraq were abandoned.
hypothesis. Translator was kidnapped in Iraq.

B text. Two Turkish engineers and an Afghan translator kidnapped in
December were freed Friday.
hypothesis. Translator was kidnapped in Iraq.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 385–403, 2006.
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2. A text. A The privately owned spacecraft only got about 400 feet into space,
according to radar measurements, but it was enough to confirm that it no
longer takes a well-heeled government project to organize space travel.
hypothesis. Private spaceship launches.

B text. The Federal Aviation Administration’s Associate Administrator
for Commercial Space Transportation (FAA/AST) has given license ap-
proval to Scaled Composites of Mojave, California, permitting the firm to
expand flight testing of SpaceShipOne – a privately-financed rocket plane
to carry passengers to suborbital altitude.
hypothesis. Private spaceship launches.

RTE has been recognized as a principal task in various Language Technology
areas, including Question Answering (QA), Information Retrieval (IR), Infor-
mation Extraction (IE) and (multi-) document summarisation. Even the task of
recognizing paraphrases can be reduced to a RTE task, since if X entails Y and
Y entails X then X and Y paraphrase each other. Within the area of QA, to give
an example of the relevance of textual entailment, given the question Who killed
Kennedy?, the text the assassination of Kennedy by Oswald entails the expected
answer Oswald killed Kennedy, even though it does not match the wording of
the question fully. It would be advisable, therefore, to solve the general problem
of text entailment and to apply the acquired solution to any applications that
might need it.

A difficulty in the recognition of textual entailment is the fact that informa-
tion can be expressed in a great variety of forms. Just to give an example, X
wrote Y and X is an author of Y are paraphrases of each other. But the most
important difficulty of textual entailment is the frequent use of word knowledge
and common sense axioms to draw inferences. For example, X’s new novel Y
appeared in the bookstores expresses the idea that X is an author of Y and con-
sequently X wrote Y. The task of textual entailment can only be truly solved
via a process of fully understanding the text and the hypothesis. Still, we be-
lieve that it is possible to recognize textual entailment to a level of success that
improves the related language technologies listed above.

The structure of this paper is as follows. Section 2 focuses on the various
sources of entailment in natural language. Section 3 proposes a classification of
entailments based on the types of tools required for the entailment task. The
tools and resources that could be used in an automatic algorithm for entailment
recognition are discussed in Section 4. Section 5 describes the architecture of our
system and presents the results of the system performance on the PASCAL RTE
test data. Section 6 contains a brief comparison of the system with respect to
other participants in the RTE challenge. Finally, Section 7 concludes the paper.

2 Sources of Entailment

In this section we introduce a simple entailment classification according to the
possible sources of entailment. There are three main sources of entailment, syn-
tactic information, semantic information, and logical information.
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2.1 Syntax

Some forms of entailment are derived from specific syntactic transformations.
Natural language allows us to convey information compactly, to hide a part of
the information, or alternatively, to give more details about the same fact and
even emphasize some particular parts of the message. For example, let us suppose
that we want to describe the fact that a new house was built. The following
sentences could be used, depending on the main intention of our message:

1. The builders have built the house.
2. The new house has been built by builders.
3. A new house has been built.
4. It is a new house that has been built.
5. It is the builders who have built a new house.
6. The building of a new house has just been finished.
7. The building of a new house by the builders has just been finished.
8. The builders managed to build the new house in time.
9. The builders finished building the new house in time.

10. The builders had to hurry a lot while building a new house.
11. The builders had to hurry. They had to build the house fast.
12. A house that has been recently built by the builders is very beautiful.
13. A house recently built by the builders is very beautiful.
14. The desired construction, namely a new house, has been built.

As illustrated in these examples, the usual way to communicate who made
an action is to use an active form. This is shown, for example, in Sentence 1. If
it is not important or even not known who has done the action, a passive form
such as Sentence 3 can be used. On the contrary, to stress who built the house
(say, if one wonders whether this new house has been built by an owner himself,
or by the builders), then a cleft sentence like Sentence 5 can be used. Sometimes
information is provided in a more compact form, as in Sentence 6. In this case
there are two facts in one sentence. It is supposed here that the reader knew
beforehand about the construction of a new house in the district and wanted to
get some information about an action as a whole.

As one could see, even if two sentences may express the same information
they may give a slightly different connotation. Also, it depends on the kind of
information that is already known by the reader, what is the most important
to him. We may also distinguish between the text genres under consideration.
An article in a newspaper or a book summary will compact information to a
higher degree than in an essay or the book content itself. All of this will result
in differences between the grammatical constructions used.

Some of the above sentences transmit more information, some less, but all
of them entail that a new house was built. A general rule of entailment is that
if a sentence expresses two nuggets of information, A and B, then the sentence
entails both A and B. Thus, sentences containing more information entail the
less informative sentences. As we will see below, we will exploit this central idea
in our approach to the PASCAL RTE challenge.
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For RTE the awareness of such syntactical diversity of the language will help
to recognize that, for example, The building of a new house has just been finished
entails A new house has been built.

2.2 Semantics

Another source of textual entailment is the actual meanings of the words. Not
all kinds of past studies in lexical semantics are useful for our purposes. For
example, take the traditional classification of nouns between proper and common
nouns, or the classification between count and uncount nouns (Quirk et al. 1985,
Page 245). They all help to characterize the meaning of a noun. Similarly the
traditional classification between dynamic verbs and stative verbs (Quirk et al.
1985, Page 201) help us give a semantic description of a verb. But these are
largely syntactically driven categorizations. There are syntactic constructions
in the language that take into account this kind of knowledge. The division
between proper and common nouns gives us the rules for the usage of articles
(in the languages where there are articles), for example. Usually proper nouns are
used without an article, though the usage of an article gives us some additional
information sometimes. Thus, A Dr. Smith = Some Dr. Smith. The Robinsons is
a family of Robinsons. The Netherlands is a country name, containing the plural.
Similarly, dynamic verbs allow the use of progressive forms He is running, but
stative verbs become unacceptable (or generate marked readings) when used in
the progressive He is knowing the truth.

More useful for us are the semantic relations existing between words. This
type of semantic information shows us the place of the word within a hierarchy of
words linked by relations such as hyponymy/hypernymy, synonymy, antonymy,
and plain entailment. For example, one can state that the meanings of two words
are equal to each other if the words belong to the same synonym group, or that
the meaning of one word entails the meaning of all of its hypernyms. For example,
The man saw a poodle entails The man saw a dog, as dog is a hypernym of poodle.

2.3 Logic and Knowledge

We have left the logic source of textual entailment to the end of our list though
this is the most intuitive one. One sentence entails another sentence if the logical
concept of the first implies the logical concept of the second. For example, from
the sentence Russian president Vladimir Putin visited US one can entail that
Vladimir Putin is a president of Russia and Vladimir Putin visited US. As people
have common sense and can use world knowledge we would easily deduce also
that Vladimir Putin exists, he is human, he is a resident of Russia, and provided
that one knows that it is a constitutional rule that only a person over 35 can
become a president in Russia, one can also deduce that Putin is older than 35
years old. Also, if the sentence was found in a news article, we would deduce
that it is most probably told about an official visit of president Putin to US, and
probably many other things. Consequently, linguistic expressions of all these
concepts are entailed from the same sentence.
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The source of these entailments would not come through syntactic or lexical
analysis this time, though these two types of linguistic information might play
an auxiliary role in the process. Instead, the source of these entailments is knowl-
edge representation and reasoning. An example of knowledge representation is a
knowledge base that holds lexical axioms such as:

president(X) :– human(X), resident(X), over age limits(X).

This knowledge base would be complemented with a tool for reasoning that
could work with this type of information.

In the work presented in this paper we use limited world knowledge. In par-
ticular we use only information that can be extracted from a lexical resource,
plus a few general axioms. But a central idea in our work is the general entail-
ment principle that a sentence entails every piece of information that it conveys
or a conjunction of them.

In practice, textual entailment is the combination of syntax, semantics, and
logic. This can be seen with the example Peter tracked down and killed the man.
This sentence is a conjunction of two pieces of information, and therefore it en-
tails Peter killed the man. A simple syntactic transformation allows the sentence
to entail The man was killed. Furthermore, there is a cause-effect relation between
kill and die, and therefore the sentence entails The man was dead. Finally, com-
mon sense tells us that, modulo very exceptional circumstances, someone who is
dead becomes dead forever. Therefore, the sentence entails The man is dead.

3 Classification of Entailment

With respect to the tools to be used to find an entailment relation one can
distinguish between three types of entailment:

– Lexico-syntactic entailments: Entailments that could be detected with
the help of syntactic and lexical knowledge only. In other words, the hypoth-
esis is just a lexico-syntactic variant of the text sentence.

– Descriptive entailments: Entailments of this group are characterized by
the substitution of entire descriptions or definitions with a shorter expression.

– Knowledge-based entailments: Entailments that would need some extra
knowledge, possibly from some entailment database. Lexical resources and
syntax play an auxiliary role only.

3.1 Lexico-Syntactic Entailment

Lexico-syntactic entailment is a type of entailment where the hypothesis is a
lexico-syntactic variant of the text. That means that the only tools required to
prove the entailment relation are those concerned with the extraction of syntactic
structures of the text and hypothesis, plus a lexical database. Examples of this
type of entailment are:

text. A Union Pacific freight train hit five people.
hypothesis. A Union Pacific freight train struck five people.
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text. Satomi Mitarai died of blood loss.
hypothesis. Satomi Mitarai bled to death.

The lexical correspondence might be fairly complicated. In the first example
the correspondence is word to word, but this is not always the case. For example,
a transitive predicate with its object could correspond to an intransitive predi-
cate, to bleed = to lose blood, to dine = to have dinner, etc. A noun phrase could
be expanded or bunched up in a hypothesis. a dead man = a man who was killed,
a writing pen = a pen for writing, a dinner cake = a cake prepared for dinner.
These complex correspondences between words add a lot of complications to the
RTE task.

There might be a verb ellipsis, as in the following example, where only com-
mon sense helps one to assume that a rock group performs during a concert
rather than attend it:

text. Phish disbands after a final concert in Vermont on August 15.
hypothesis. Rock band Phish holds final concert in Vermont.

In contrast to paraphrases we do not have to know this transformation in
advance but we need a tool to estimate how probable the change is: we need to
find an entailment score.

Vanderwende et al. (2005) have shown that up to 49% of all the entailment
pairs in the RTE development set belong to this group of entailments. These
figures were obtained using an ideal parser and an ideal lexical database. In
particular, 37% of the test items of their evaluation can be handled by syntax,
and 49% of the test items can be handled by syntax plus a general purpose
thesaurus.

3.2 Descriptive Entailment

Entailments of this group are characterized by the fact that a definition or de-
scription is substituted with a term which is equivalent in meaning or more
generic. See the description of the notions of opponents and discrimination in
the examples of this section. Besides that, some compression techniques could
be used to make it possible to convey as much information as possible in brief
sentences. This is done not only via syntactic transformations (e.g. nominaliza-
tions) but also via the substitution of words. Consequently, knowledge about the
syntactic structure of the sentence alone would not be sufficient to recognize all
instances of this type of entailment.

For example:

text. Israeli Prime Minister Ariel Sharon threatened to dismiss Cabinet
ministers who don’t support his plan to withdraw from the Gaza Strip.
hypothesis. Israeli Prime Minister Ariel Sharon threatened to fire cab-
inet opponents of his Gaza withdrawal plan.

The following syntactic compression has been made in the above entailment
example:
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– Generalization: Gaza Strip→Gaza
– Nominalization: plan to withdraw→withdrawal plan
– Lexical substitution: to dismiss→to fire
– Definition substitution: ministers who do not support X’s plan→opponents.

The above definition substitution is difficult to detect automatically given that
it would most likely not appear in standard lexical knowledge bases.

Another example:

text. The country’s largest private employer, Wal-Mart Stores Inc., is
being sued by a number of its female employees who claim they were kept
out of jobs in management because they are women.
hypothesis. Wal-Mart is sued for sexual discrimination.

The following transformations have been made:

– Lexical substitution: Wal-Mart Stores Inc.→Wal-Mart.
– Definition substitution: to be sued by a number of its female employees who

claim they were kept out of jobs in management because they are women→to
be sued for sexual discrimination.

Again, the definition substitution would be difficult to detect automatically.

3.3 Knowledge-Based Entailment

Finally, there are entailment pairs where common sense background knowledge
is needed for their detection. We call them knowledge-based entailments.

text. Researchers at the Harvard School of Public Health say that people
who drink coffee may be doing a lot more than keeping themselves awake
— this kind of consumption apparently also can help reduce the risk of
diseases.
hypothesis. Coffee drinking has health benefits.

text. Eating lots of foods that are a good source of fibre may keep your
blood glucose from rising too fast after you eat.
hypothesis. Fibre improves blood sugar control.

text. Mexico City has a very bad pollution problem because the moun-
tains around the city act as walls and block in dust and smog.
hypothesis. Poor air circulation out of the mountain-walled Mexico
City aggravates pollution.

This type of entailment is much harder than the other two for the simple
reason that currently there are no knowledge bases containing all the common-
sense knowledge required, and even if there were any it is not obvious how
to find the required information among a sea of unrelated information — see,
for example, Mahesh et al.’s (1996) study of the applicability of a well-known
attempt to provide a common-sense knowledge base.
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One of the important questions that needs to be addressed is what kind
of entailment will prove to be useful in real applications. From the point of
view of QA the lexico-syntactic and the descriptive entailments most probably
will bring an improvement to the performance of a QA system. They are also
more accessible to computational methods than the third, more complex type
of entailment. Therefore, in our approach we have focused on the first two and
left the third type (knowledge-based entailment) for future work.

4 Tools

This section we introduce the tools used in the current system for textual en-
tailment recognition.

4.1 Parser

Given that syntax plays a role in text entailment, we decided not to experi-
ment with bag-of-words approaches and used syntactic information instead. The
output of the parser provides us with this syntactic information. For our sys-
tem we used the Link Grammar Parser (Sleator and Temperley 1991) because
it is a robust parser that outputs a ranked list of parse variants (not just the
favourite parse). The grammar provided with this parser covers a wide range
of sentence structures, and various independent evaluations (e.g. Sutcliffe et al.
1996, Molla and Hutchinson 2003) show that its accuracy is comparable to that
of other wide-coverage parsers. Also the code is freely available, and has been
implemented in the C programming language with a C API.

The issue about the availability of multiple parse variants is important be-
cause, implicitly or explicitly, parsers try to guess the right parse among a (possi-
bly large) list of possible parses for syntactically ambiguous sentences. Syntactic
disambiguation is one of the most important and difficult tasks for a parser, since
a sentence may contain hundreds of alternative parses, and context external to
the scope of the sentence is often required. Our plan is to allow all the possible
inferences resulting from the combined parses of a sentence. Thus, the sentence
The man saw a girl with a telescope would entail the hypotheses that A girl has
a telescope as well as The man has a telescope, according to the two possible
readings of the sentence.

Although our current implementation only uses the first parse returned by
Link Parser, a parser that returns all possible parses allows further extensions
of our method.

Probably, eventually a formal notion of text coherence (or grammaticality)
should be introduced for textual entailment such that all the coherent interpre-
tations of the text should be used for the task rather than one final parse given
by a specific parser.

An additional and important use of the syntactic structures returned by
a parser is the construction of the logical form of the sentence. The logical
form is required if we want to use logical entailment as a means to find textual
entailment, as we do in our system.
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4.2 Lexical Database

As mentioned in Section 2.2, hierarchical information about words and word
concepts is valuable for the task of entailment recognition. The most popular
lexical resource for English is WordNet (Miller 1995). It contains hierarchical
information about the concepts expressed by nouns, verbs, adjective and adverbs.

For the concept table#n#2 (i.e. the second word sense of the noun table)
with gloss a piece of furniture having a smooth flat top that is usually supported
by one or more vertical legs; “it was a sturdy table”, for example, WordNet
provides the following information:

If X is a table, then X is a piece of furniture, X is furnishings, X is an
artefact, X is a physical object and X is an entity.
If X is a booth, X is a breakfast table or X is a desk, then X is a table.

Also, WordNet provides information about meronymy (has-part) relation-
ships, derivational information, and synonymy information. For verbs, WordNet
presents also relations of causation and entailment. All of this information is
useful for the task of RTE. Hyponymy and synonymy are especially indicated
to detect entailment. To be more precise, proposition P1 entails proposition P2
if P2 is more general than P1. One can say that P2 is more general than P1
if all of the concepts in P2 are either synonyms or they are more general (hy-
pernyms) in P1. To compare concepts one can use therefore the hypernym and
synset information from WordNet.

The meaning comparison at the word level is a well-defined task that has
been approached by many researchers. WordNet relatedness and similarity mea-
sures (see, for example, the review provided by Budanitsky and Hirst 2001)
might be helpful tools to perform such a meaning comparison. The currently
available measures have been developed for applications quite different from the
entailment recognition. Still, some redevelopment or adjustment might be used
successfully for the RTE task. Inspired in these measures, we have defined a
custom-made measure that approximates the degree of entailment between two
arbitrary words.

4.3 Logic Prover

Given that entailment is a logical relationship, it is only natural to try and find
the logical form of the text and the hypothesis and use a logical prover to test
if the text entails the hypothesis. The classical theory of computational seman-
tics suggests first-order Predicate Logic or extensions thereof as a tool for the
representation of the sentence meaning (see, for example, Jurafsky and Martin
2000, Chapter 14). Various formalisms have been devised, some of which include
methods for the construction of the logical forms (what is called the semantic
interpretation or semantic analysis of the sentence). Given that the comparison
of logical forms would eventually be done through automated deduction sys-
tems (logic provers), it is important to use a logical form notation that can be
converted into the format of the chosen automatic prover.
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In addition to the logical forms of the text and hypothesis, the logic prover
needs to have access to world knowledge encoded in form of axioms. To avoid
flooding the prover with a large set of axioms that would not help detect the
entailment, our system uses information extracted from WordNet based on the
actual words of the sentences.

The process of finding the logical forms and appropriate world-knowledge
axioms is potentially difficult, and the computing complexity of the logical proof
could be time-consuming. For these reasons most of the systems participating in
PASCAL tried methods that avoided the use of logical forms. We decided to try
this natural method to assess its feasibility for the RTE task. In particular, our
current system uses the theorem prover Otter (Kalman 2001), which is available
on the WWW. We will show the usage of Otter using a very simple example.

text. A boy bought a desk.
hypothesis. A boy bought a table.

Axiom extracted from WordNet:

X is a desk→X is a table

Input for Otter:

exists x exists y exists e (boy(x) & bought(e, x, y) & desk(y)).
all x (desk(x) → table(x)).
-(exists x, y, e (boy(x) & bought(e, x, y) & table(y))).

Having been given the above input, Otter is capable to prove that the hy-
pothesis is entailed from the text.

5 The Proposed System

The central idea of our approach to RTE is to exploit the basic principle of log-
ical entailment: A and entails A. In our approach, the entailment between the
text and the hypothesis sentences is detected by comparing the atomic propo-
sitions found in both sentences. By an atomic proposition we mean a minimal
declarative statement (or a small idea) that has truth-conditions (is either true
T or false F) and whose truth or falsity does not depend on the truth or falsity
of any other proposition. For example, given the sentence Coffee boosts energy
and provides health benefits, the propositions are Coffee boosts energy and Coffee
provides health benefits. Thus, the meaning of a sentence is represented as the
set of atomic propositions contained in it. One has to compare the propositions
in order to compare the sentences.

To implement the idea we have used Link Parser (Sleator and Temperley
1991) version 4.1a to obtain a syntactic structure of the sentence. The output
of the parser was used to extract the atomic propositions of the sentence. These
in turn were converted into logical formulae that served as an input for a logical
prover, Otter (Kalman 2001) version 3.3 in our case.
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The architecture of the system is presented in Figure 1. The system performs
the same analysis for the text and for the hypothesis. In both cases there is a
process of parsing and a process of proposition extraction. After the propositions

Parsing with
Link Parser

text

Extraction of
propositions

linkage array

Generation of logical interpretation
of propositions

input for Otter: pairs < P1, P2 >,
where P1 is a proposition for text,

P2 for a hypothesis
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OTTER

Knowledge
rules

hypothesis
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Parsing with
Link Parser

Extraction of
propositions

linkage array

�

�

�

�
�

�

��

�

�

�

while pairs exist

entailmententailment
holds does not hold

true false
Do all match?

Fig. 1. Architecture of the system
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have been extracted the system generates a logical form for every proposition.
The logical forms of the propositions are given as an input to the theorem prover
Otter. Data returned by Otter allows the system to make a decision about the
relation of entailment between the text and the hypothesis.

Figure 2 shows an example the process of making a decision about the en-
tailment relation between the text and the hypothesis. Every proposition of the
hypothesis – coffee gives health benefits – is compared to all the propositions of
the text sentence. In the example, since there is one proposition – coffee pro-
vides health benefits – that entails the only proposition of the hypothesis, the
entailment holds.

Coffee boosts energy and
provides health benefits

Coffee gives health
benefits

Coffee boosts energy.

Coffee provides health
benefits.

Coffee gives health
benefits.

(Coffee gives health benefits)
Coffee boosts energy � Coffee gives health benefits
Coffee provides health benefits ⇒ Coffee gives health
benefits.

provides ⇒ gives, coffee = coffee,

health benefits = health benefits

for

match == 1 ⇒entailment holds

as

Fig. 2. Comparison of Propositions

5.1 Link Parser and Proposition Extraction

The current version of the system needs a full parse of the text and hypothesis
sentences. Both sentences are parsed with the Link Parser. The output of the
parser is an array of links (or linkages) between words.

In the example,

coffee.n boosts.v energy.n

Ss Os

the subject of the sentence coffee is connected to the predicate boosts by means
of the Ss link, that is defined as a relation between a subject in a singular number
and its predicate. Capital S means subject, small s means singular. In a similar
way boosts and energy are connected through the object-predicate linkage Os.
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The full output of the Link Parser for the text sentence from our example
may be represented graphically in the following two linkages:1

L-WALL coffee.n boosts.v energy.n and provides.v health.n benefits.n .

Wd Ss Os
Xp

L-WALL coffee.n boosts.v energy.n and provides.v health.n benefits.n .

Wd Ss
Os

AN

Xp

This output of the parser can be easily used to extract the atomic propositions
from the sentences. One only needs to define which sets of links constitute a
proposition and to check if there are coherent chains of such links in a sentence
parse. Ss and Os links will give us a proposition, links between a noun, participle
and its object, like in boy playing chess, will also constitute a proposition, and so
on. Table 1 shows the basic combinations of links that constitute a proposition.

For our example text sentence two atomic propositions are extracted:

coffee boosts energy and coffee provides health benefits.

The hypothesis sentence contains only one proposition, namely

coffee gives health benefits.

5.2 Logical Forms and Automated Deduction

After the propositions are extracted they are converted into logical forms. These
logical forms will constitute an input to the theorem prover. For this reason they
are formatted according to the syntactic requirements of the particular theorem
prover, Otter in our case.

The current logical representation is flat and syntax-dependent, and could
be considered a simplified version of other logical representations proposed in
the literature (e.g. Hobbs 1985, Copestake et al. Draft).

There are three types of objects: Subj (x), Obj (x), Pred(x), and a meaning
attaching element iq(x, <meaning of x>). With this notation, the proposition
coffee boosts energy has the following logical representation:

exists x exists y exists z (Subj (x) & iq(x, ‘coffee’) & Pred(y) & iq(y,
‘boosts’) & Obj (z) & iq(z, ‘energy’)).

Also, there are two variants of relationships attr(x, y) and prep(x, y); the fol-
lowing lines show an example of their usage:

Somali capital – Subj (x) & iq(x, ‘capital’) & attr(x, y) & Subj (y) &
iq(y, ‘somali’).
a zoo in Berlin – Obj (x) & iq(x, ‘zoo’) & prep(x, y) & Obj (y) & iq(y,
‘Berlin’).

1 Each picture shows one of the branches of the coordination as returned by Link
Parser.
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Table 1. The list of linkages used to extract propositions (only relevant links shown).
For the reference to the meaning of the linkages visit the Link Grammar Documentation
web-site http://bobo.link.cs.cmu.edu/link/dict/index.html.

Linkages Example Proposition

Ss/Sp Os/Op

The boy.n plays.v chess.n

Ss Os boy plays chess

Mg Os/Op

The boy.n playing.v chess.n is here

Mg Os boy plays chess

MX (with Xd,
Xc)

The boy.n , a chess.n player.n , is here

MXs
Xd Xc

boy is a chess
player

Bs/Bp (with R,
RS)

The boy.n who plays.v chess.n is here

R RS
Bs

Os

boy plays chess

Bs/Bp (with
R#, S#)

The boy.n the girl.n likes.v is here

Rn
Ds Ss

Bs the girl likes the
boy

Mv; Mv (with
MVp, Js/Jp and
by) The book.n read.v by the boy.n is good

Mv MVp
Js
Ds

the boy read the
book

Ss/Sp Pv MV p
Js/Jp with by

The book.n was.v read.v by the boy.n

Ss Pv MVp
Js
Ds

the boy read the
book

As soon as a proposition is converted to its logical representation it is ready to
be used as an input for Otter. However, Otter will not be able to prove anything
without some background knowledge. The background knowledge provided to
Otter comes from three different sources:

1. Knowledge about the relation between concepts, such as give and provide,
or table and furniture. This is extracted from WordNet.

2. Knowledge about the relationships, like attr(x, y), which could be substi-
tuted by prep(x, y) under some circumstances.

3. Knowledge about the different representations of the same concept. A num-
ber, for example, could be represented as a word (one) or as a numeric
expression (1 ).
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The word relations provided by WordNet were used to compute a measure
of entailment between pairs of words. Concept ci is in the entailment relation to
a concept cj , if ci is less generic than cj (by concept we mean here a particular
sense of a word, or synset, using WordNet terminology). In a slightly more formal
wording, ci entails cj if ci is equal to cj or ci is lower than cj in the WordNet
hyponymy hierarchy. We generalize this idea to allow a degree of entailment
between two arbitrary words. This degree of entailment depends on the length
of the path between the two words, and the number of senses of each word. The
final formula is:

rel(ci, cj) = p(ci)× p(cj)× score(ci, cj) (1)

score(ci, cj) = C length(ci,cj)−1 (2)

where p(ci) is the probability that a word in a sentence is presented by the
concept ci, and length(ci, cj) is the length of the path connecting the concepts.
The constant C (0 < C ≤ 1) has to be chosen empirically.

As it could be easily seen from the formula the final score is between zero and
one. The idea behind the formula is the following. First, we assume that a word
sense disambiguation system gives as an output the probability distribution over
all the senses of a word. Secondly, we assert that the relation between concepts
becomes weaker as the length of the path connecting the words increases. The
constant C helps to adjust the impact of the length between concepts in the final
relatedness score.

Thus, for our example we can obtain the rule:

all x (iq(x, ‘provide’) → iq(x, ‘give’)).

Figure 3 shows the result obtained for the comparison of two lexical concepts,
provide and give.

To account for the sources of information 1. and 2. the system used the
following rules:

1.provide#1(7)[2259805] –hyperonym– give#3(44)[2136207]

provide - give

(verb chain); maximum path length - 3

relatedness score = 0.0042 > 0

...

⇒ ∀x (iq(x, ‘provide’) → iq(x, ‘give’)).

give#3(44)[2136207]
7.provide#6(7)[2155855]–hyperonym–support#2(11)[2155507] –hyperonym–

Fig. 3. WordNet relatedness between the concepts provide and give; data and results.
The figure shows the paths connecting the lexical concepts and the final relatedness
score.
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a) Negation: all x all x77 (niq(x, x77)→ –iq(x, x77)).
b) Attribute-preposition relation: all x all y (attr(x, y) → prep(x, y)).
c) Numbers: all x (iq(x, ‘one’)→iq(x, ‘1’)).

Rule b) has been introduced to allow paraphrases of multi-word expressions, such
as the ones below, where an attribute of a noun is converted into a prepositional
phrase:

night flight ↔ flight in (the) night
pet spray ↔ spray for pets
peanut butter ↔ butter from peanut
abortion problem ↔ problem about abortion

5.3 Proposition Comparison

The text entails the hypothesis if for every proposition in the hypothesis there
is one proposition in the text sentence that could entail it, as shown in Figure 2.
The decision that proposition p1 entails proposition p2 can be easily made after
sending Otter both propositions and all the background rules, including those
obtained from the WordNet lexical database.

5.4 Results and Performance

The entailments addressed in the program belong to the class of lexico-
syntactical entailments discussed in Section 3. As mentioned above, only around
49% of all entailment pairs in the RTE dataset are entailments of this kind.
One might expect the system would not jump over the 50% barrier then. It is
not true though. The results are different because the system also gets points for
recognizing that there is no entailment relation between the text and hypothesis.
It almost always states the absence of the entailment relation correctly.

Also the mistakes introduced on the stage of the parsing or during the process
of proposition extraction brought some noise into the results, as some of the
decisions that were made happened to be correct or incorrect because of the
mistakes.

The actual results are shown in Table 2 and summarised here:

cws: 0.5067; accuracy: 0.5188; precision: 0.6119;
recall: 0.1025; f: 0.175.

The system successfully predicts the following types of entailments:

– WordNet generalization T: The decision is made. – H: The determination
is made.

– Logical generalization T: The good decision is made. – H: The decision
is made.

– Syntactic variations T: The zoo built recently by the government is open
for visitors now. – H: The zoo was built.

– NN syntactic structure T: The Brazilian president visited France. – H:
The president of Brazil visited France.
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Table 2. Performance of the system according to the PASCAL Recognizing Textual
Entailment Challenge evaluation method

Task Cws Accuracy

CD 0.6121 0.5867
IE 0.5519 0.5083
MT 0.4341 0.4917
QA 0.4649 0.4769
RC 0.4702 0.5214
IR 0.5452 0.5200
PP 0.4797 0.5111

Some of the mistakes of the system were caused by the overgeneralization of
the logical forms for specific language structures. The two following examples
illustrate this:

text. The gastronomic capital of France is Lyon.
hypothesis. The capital of France is Lyon.

text. The man came to the park by car.
hypothesis. The man came to a car park.

The first example is a typical intersective reading of adjectives. In general,
the gastronomic capital of a country is not necessarily the capital of the country.
However, all the predicates of the logical form of capital of France appear in
the logical form of gastronomic capital of France. Therefore, an entailment is
wrongly detected.

In the second example, our approach represents the dependency relation be-
tween car and park differently but the attribute-proposition relation rule makes
the logic prover ignore the difference. Again, an entailment is wrongly detected.

6 Comparison with Other Systems

The majority of the systems presented at the PASCAL RTE Challenge tried to
approximate entailment by computing lexical relations at the word level. The
roughest approximation was found by applying the BLEU metric for the machine
translation evaluation (Pérez and Alfonseca 2002) and lexical similarity scores
(Jijkoun and de Rijke 2005).

Our system was one of the few approaches that used a logical representation
of the input data. An example of another system relying on logic was the one by
Bos and Markert (2005). It is interesting to note that ours was the only system
where the sentence was divided into minimal semantic elements (“propositions”)
so that the subsequent data analysis was applied directly to propositions and
not to the original sentences. This division simplifies significantly the process of
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creation of a logical representation of the sentence and emphasizes the logical
nature of the entailment relation.

We have not proposed here any methods to extract information about entail-
ments in order to construct an entailment knowledge database that may help to
the recognition of entailment. One work on the topic deserving attention is the
one by MITRE (Burger and Ferro 2005).

7 Summary and Future Work

The present work implements the basic logical property A and B entails A. For
this, the system builds the logical form of each independent atomic proposition
from the text and hypothesis sentences, and sends the logical forms to the Otter
automatic prover. The information sent to Otter is extended with general axioms
and background information about the words used by the text and hypothesis.
WordNet is used as a lexical resource to detect the degree of entailment between
individual words. Overall, the system is simple, based on fundamental concepts,
and can be seen as a baseline on which to try to recognize more complex types
of textual entailment.

This paper also presented a discussion of the nature of textual entailment
with respect to the various sources of entailment and the types of entailments
depending on the tools required for their recognition.

The next step is to work on a more accurate implementation of the algorithm,
namely to include the analysis of more complex verb and noun groups, in partic-
ular with respect to the handling of prepositional attachments. We also plan to
work on the background information that needs to be sent to the theorem prover.
Finally, we are investigating alternative ways of assessing semantic similarity on
the word level and its relation to entailment and other logical concepts.

We believe that our work shows the feasibility of the combined use of logical
forms with lexical resources to detect the entailment between two sentences.
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Abstract. We use logical inference techniques for recognising textual
entailment, with theorem proving operating on deep semantic interpre-
tations as the backbone of our system. However, the performance of
theorem proving on its own turns out to be highly dependent on a wide
range of background knowledge, which is not necessarily included in pub-
lically available knowledge sources. Therefore, we achieve robustness via
two extensions. Firstly, we incorporate model building, a technique bor-
rowed from automated reasoning, and show that it is a useful robust
method to approximate entailment. Secondly, we use machine learning
to combine these deep semantic analysis techniques with simple shallow
word overlap. The resulting hybrid model achieves high accuracy on the
RTE testset, given the state of the art. Our results also show that the
various techniques that we employ perform very differently on some of
the subsets of the RTE corpus and as a result, it is useful to use the
nature of the dataset as a feature.

1 Introduction

Recognising textual entailment (RTE) is the task to find out whether some text
T entails a hypothesis text H. This task has recently been the focus of the RTE
challenge, an evaluation exercise organised by the PASCAL network in 2004/05
[DGM05]. Two examples from the dataset issued as part of this challenge are
shown below.1 In Example 1550 H follows from T (hence it is marked TRUE)
whereas this is not the case in Example 731 (which is therefore annotated as
FALSE).

Example: 1550 (TRUE)
T: In 1998, the General Assembly of the Nippon Sei Ko Kai (Anglican

Church in Japan) voted to accept female priests.
H: The Anglican church in Japan approved the ordination of women.

1 All examples in this article are from the corpus released as part of the RTE
challenge, keeping the original example identifiers. This corpus is available via
http://www.pascal-network.org/Challenges/RTE/.

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 404–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Example: 731 (FALSE)
T: The city Tenochtitlan grew rapidly and was the center of the

Aztec’s great empire.
H: Tenochtitlan quickly spread over the island, marshes, and swamps.

The recognition of textual entailment needs access to a wide range of syn-
tactic and lexical knowledge and is without doubt one of the ultimate challenges
for any natural language processing (NLP) system: if it is able to recognise en-
tailment with reasonable accuracy, it is clearly an indication that it has some
thorough understanding of how language works. Moreover, recognising entail-
ment bears similarities to Alan Turing’s famous test to assess whether machines
can think, as access to different sources of knowledge and the ability to draw
inferences seem to be among the primary ingredients for an intelligent system.
In addition, many NLP tasks have strong links to entailment: in summarisa-
tion, a summary should be entailed by the text; in machine translation, the
source and target text should mutually entail each other; in question answering,
a valid answer entails the question; and in information extraction, the extracted
information should also be entailed by the text.

In this article we discuss two methods for recognising textual entailment.
Firstly, we present a shallow method that relies mainly on weighted word overlap
between text and hypothesis. Secondly, we use a method based on deep semantic
analysis, borrowing techniques from the field of automated deduction, namely
theorem proving and model building, to perform logical inference. As theory
for natural language semantics we use Discourse Representation Theory, DRT
[KR93]. Semantic representations are built in a compositional way for the text
and hypothesis with the help of Combinatory Categorial Grammar, CCG [Ste01],
using a wide-coverage statistical parser [CC04].

To increase transferrability to other datasets and tasks, both the shallow
and deep method are domain-independent, and neither has been tailored to any
particular test suite. In this article we test their accuracy and robustness on the
RTE datasets as one of the few currently available datasets for textual inference.
We also combine the two methods in a hybrid approach using an off-the-shelf
machine learning tool.

In particular, we are interested in the following questions:

– Can either of the methods presented improve significantly over the baseline
and what are the performance differences between them?

– How far does deep semantic analysis suffer from a lack of lexical and world
knowledge and how can we perform robust logical inference in the face of
potentially large knowledge gaps?

– Does the hybrid system using both shallow and deep semantic analysis im-
prove over the individual use of these methods?

– How does the design of the test suite affect performance? Are there subsets
of the test suite that are more suited to any particular textual entailment
recognition method?
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This article is organised as follows. First, we will describe the shallow seman-
tic approach (Section 2). This is followed by a detailed description of the deep
semantic approach in Section 3, where we will also explain how to integrate
theorem proving and model building, and how this combination achieves a level
of robustness in using logical inference. Both Sections 2 and 3 list the features
derived from these methods that are then used in several machine learning exper-
iments. Section 4 describes these experiments, including a hybrid deep/shallow
system for entailment recognition. In Section 5 we perform an error analysis,
and Section 6 discusses the RTE challenge in general. Finally, related work is
presented in Section 7.

2 Shallow Semantic Analysis

We use several shallow surface features to model the text, hypothesis and their
relation to each other. A basic shallow feature we believe might play a role in
textual entailment is word overlap.

2.1 Word Overlap Measures

For many textual entailment example pairs there is a dependency between sur-
face string similarity of text and hypothesis and the existence of entailment. In
particular, the inclusion of all or almost all words of the hypothesis in the text
makes entailment likely. A case in point is Example 125 below, where all words
in the hypothesis are contained in the text and entailment holds.

Example: 125 (TRUE)
T: On November 25, 2001, a baby Asian elephant was born at the

National Zoo in Washington, DC.
H: baby elephant born

In contrast, the occurrence of words in the hypothesis that are unrelated to any
word in the text makes entailment unlikely. This is the case in Example 731 in
the Introduction where the words swamps, islands and marshes in the hypothesis
introduce new information that is not in the text.

Our general model for measuring word overlap is a simple bag-of-words
model, i.e. word order and syntactic structure are ignored. The exact procedure
is as follows:

1. Both text and hypothesis are tokenised and lemmatised.
2. The overlap measure between text and hypothesis is initialised as zero.
3. Should a lemma in the hypothesis be related to a lemma in the text, its

weight is added to the overlap measure, otherwise it is ignored.
4. In the end the overlap is normalised by dividing it by the sum of the weights

of all lemmas in the hypothesis. This ensures that the overlap is always a
real number between 0 and 1 and also ensures independence of the length of
the hypothesis.



RTE with Robust Logical Inference 407

Variations of this simple measure depend on the definition of word relatedness
as well as on which formula for weighting lemmas is used. Thus, it is possible to
define relatedness simply as equality of lemmas. This can handle examples like
125 above well, where all lemmas in the hypothesis are exactly matched in the
text. However, it falls short of recognising, for example, simple synonym variation
in word choice as the replacement of found by discovered in Example 1987 below.

Example: 1987 (TRUE)
T: The girl was found in Drummondville earlier this month.
H: The girl was discovered in Drummondville.

Therefore the word overlap we use takes into account equality, synonymy and
morphological derivations. WordNet [Fel98] is used as the knowledge source for
synonymy and derivations. We therefore say that a lemma l1 in the hypothesis
is said to be related to a lemma l2 in the text iff l1 and l2 are equal, belong to
the same WordNet synset (e.g., “murder” and “slay”), are related via WordNet
derivations (e.g. “murder” and “murderer”) or are related via a combination of
synonymy and derivations (e.g. “murder” via “murderer” to “liquidator”). No
word sense disambiguation is performed and all synsets for a particular lemma
are considered.

Regarding weight assignment, each lemma in the hypothesis is assigned its
inverse document frequency, accessing the Web as corpus via the GoogleAPI,
as its weight. We prefer this procedure over equal weighting of all lemmas as it
allows us to assign more importance to less frequent words.

2.2 Shallow Semantic Features

Apart from the overlap measure wnoverlap we take into account length (as
measured by number of lemmas) of text and hypothesis, because in most true
entailments the hypothesis is shorter than the text as it contains less informa-
tion. This is covered by three numerical features measuring the length of the
text, of the hypothesis and the relative length of hypothesis with regard to the
text.

3 Deep Semantic Analysis

3.1 Overview

In a nutshell, the deep semantic analysis aims to produce fine-grained seman-
tic representations for both the text and hypothesis of an entailment pair. It
then uses techniques from automated deduction, in particular first-order theo-
rem proving and finite model building, to predict whether the text entails the
hypothesis or not.

To achieve this, both the text and hypothesis are tokenised using
NLProcesser2 and fed into a robust wide-coverage parser, which uses a statistical
2 A product from Infogistics, see http://www.infogistics.com/textanalysis.html
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model based on CCG [CC04]. The parser produces CCG-derivations. Consider
for instance the derivations for Example 78 below:

Clinton ’s new book is not big seller here .
------- ------------- ----- ----- -------------- ------------------- ----- ------ ------------------- -----

N (NP[nb]/N)\NP N/N N (S[dcl]\NP)/NP (S[X]\NP)\(S[X]\NP) N/N N (S[X]\NP)\(S[X]\NP) .
------- ----------> -------------------------------<Bx ---------->
NP N (S[dcl]\NP)/NP N
-------------------< -----------

NP[nb]/N NP
--------------------------> ------------------------------------------>

NP[nb] S[dcl]\NP
--------------------------------------------------<

S[dcl]\NP
---------------------------------------------------------------------------<

S[dcl]
----------------------------------------------------------------->P

S[dcl]

Clinton ’s book is a big seller .
------- ------------- ----- -------------- -------- ----- ------ -----

N (NP[nb]/N)\NP N (S[dcl]\NP)/NP NP[nb]/N N/N N .
------- ---------->
NP N
-------------------< ---------------->

NP[nb]/N NP[nb]
--------------------> --------------------------->

NP[nb] S[dcl]\NP
-----------------------------------<

S[dcl]
------------------------------------------>P

S[dcl]

The CCG-derivations produced by the parser are the basis to construct
discourse representation structures (DRSs, the semantic representations from
DRT). This is done in a compositional way using the lambda-calculus as a
“glue” to connect CCG with DRT [BCS+04, Bos05]. The semantic represen-
tations are then translated into first-order logic expressions. This allows
us to perform inferences using a general-purpose theorem prover and model
builder.

3.2 Semantic Interpretation

The semantic representation language is a first-order fragment of the DRS-
language used in Discourse Representation Theory [KR93], conveying argument
structure with a neo-Davidsonian analysis and including the recursive DRS struc-
ture to cover negation, disjunction, and implication. A basic DRS is an ordered
pair of a set of discourse referents and a set of conditions imposed on these dis-
course referents. For convenience, we use the boxed notation to visualise DRSs,
with the discourse referents at the top and the conditions at the lower part
of the box. Consider for example the following entailment pair and the DRSs
constructed for it:

Example: 78 (FALSE)
T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.
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d(T):

x1 x2 x3

book(x1)
book(x2)

¬
x1=x2

clinton(x3)
of(x1,x3)

¬

e4 x5

big(x5)
seller(x5)
be(e4)

agent(e4,x1)
patient(e4,x5)

here(e4)

d(H):

x1 x2 e3 x4

book(x1)
clinton(x2)
of(x1,x2)
big(x4)

seller(x4)
be(e3)

agent(e3,x1)
patient(e3,x4)

Proper names and definite descriptions are treated as anaphoric, and bound
to previously introduced discourse referents if possible, otherwise accommo-
dated [VdS92, Bos03]. Some lexical items are specified as presupposition trig-
gers. An example is the adjective new which has a presuppositional reading, as
shown by the existence of two different “book” entities in d(T). Scope is fully
specified.

The DRS language, with its quantifier free and rather flat representations,
is useful for resolving ambiguities, such as pronoun resolution and presupposi-
tion projection. However, no efficient reasoning engines that work directly on
DRSs exist. Therefore we use a translation from DRSs to first-order formula
syntax, which opens the doors for using first-order theorem proving technology
[BBKdN01]. The literature on DRT offers several translation functions that map
DRS onto first-order logic — here we apply the so-called standard translation
from DRS to first-order logic (see e.g. [KR93, BBKdN01]). This function, f , is
defined by the following clauses:

f(

x1 . . . xn

C1
...

Cn

) = ∃x1 . . . ∃xn (f(C1) ∧ . . . ∧ f(Cn))

f(

x1 . . . xn

C1
...

Cn

⇒B) = ∀x1 . . . ∀xn ((f(C1) ∧ . . . ∧ f(Cn))→ f(B))

f(B1 ∨ B2) = f(B1) ∨ f(B2)
f(¬ B) = ¬ f(B)
f(x=y) = x=y



410 J. Bos and K. Markert

f(P(x)) = P(x)
f(R(x,y)) = R(x,y)

Here B, B1 and B2 are variables ranging over DRSs, Ci is a DRS-condition, P
is a one-place predicate symbol and R a two-place predicate symbol. To illustrate
the translation function, consider the result of translating d(T) and d(H) from
Example 78 above:

f(d(T)): ∃x1 ∃x2 ∃x3 (book(x1) ∧ book(x2) ∧ ¬ (x1=x2) ∧ clin-
ton(x3) ∧ of(x1,x3) ∧ ¬ ∃e4 ∃ x5( big(x5) ∧ seller(x5) ∧
be(e4) ∧ agent(e4,x1) ∧ patient(e4,x5) ∧ here(e4)))

f(d(H)): ∃x1 ∃x2 ∃e3 ∃x4 (book(x1) ∧ clinton(x2) ∧ of(x1,x2)
∧ big(x4) ∧ seller(x4) ∧ be(e3) ∧ agent(e3,x1) ∧ pa-
tient(e3,x4))

3.3 Theorem Proving

There are two kinds of first-order inference engines we use to perform reasoning:
a theorem prover, and a model builder. First we will discuss the use of the
theorem prover. We have integrated the prover Vampire [RV02] into our system,
which is a general-purpose off-the-shelf theorem prover.

Given a textual entailment pair T/H, a theorem prover can be used to find
an answer to conjecture (A):

f(d(T))→ f(d(H)) (A)

If the theorem prover manages to find a proof for this conjecture, then we
predict that T entails H. (Note that we use the term “predict” here. There are
cases in which the theorem prover finds a proof, although we are not actually
dealing with a true entailment. This is due to inaccurate semantic analysis. See
Section 5 for further discussion on this topic.)

In addition, we can also use a theorem prover to detect inconsistencies in a
T/H pair by letting it handle the input (B):

¬(f(d(T))∧f(d(H))) (B)

If the theorem prover returns a proof for (B), we know that combining T and
H yields an inconsistent state, thereby predicting that T does not entail H. An
example is a pair T: John is a doctor and H: John is not a doctor. (Note that
although it is the case that if T and H (combined) are inconsistent, then T does
not entail H, the reverse does not hold. Therefore consistency checking is only a
partial method to check for non-entailment.)

The RTE dataset contains only few inconsistent T/H pairs. Even although
Example 78 might look like a case in point, it is not inconsistent. It would be if
the T in the example were Clinton’s new book is not a big seller . The addition
of the adverb here makes T+H consistent.
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Let’s consider some examples that our system deals with successfully. Exam-
ple 1005 is a case with apposition, and Example 898 one involving VP coordi-
nation.

Example: 1005 (TRUE)
T: Jessica Litman, a law professor at Michigan’s Wayne State Uni-

versity, has specialized in copyright law and Internet law for more
than 20 years.

H: Jessica Litman is a law professor.

Example: 898 (TRUE)
T: After the war the city was briefly occupied by the Allies and then

was returned to the Dutch.
H: After the war, the city was returned to the Dutch.

Examples like these are rather trivial from the inference point of view, because
they rely almost exclusively on correct syntactic analyses (here: apposition and
coordination) and no additional knowledge is required to support the theorem
prover. However, the majority of the entailment pairs require background knowl-
edge to predict an entailment. In the next section we show what kind of back-
ground knowledge we use and how we integrate it.

3.4 Background Knowledge

To perform any interesting reasoning, the theorem prover needs background
knowledge to support its proofs. For the RTE challenge we distinguished between
three kinds of background knowledge: generic knowledge, lexical knowledge and
geographical knowledge.

Knowledge is represented as axioms in first-order logic. Assume that BK is
a conjunction of first-order axioms representing the relevant background knowl-
edge for a T/H pair. The input to the theorem prover is then:

BK ∧ (f(d(T))→ f(d(H))) (A′)

Generic Knowledge. Axioms for generic knowledge cover the semantics of
possessives, active-passive alternation, and spatial knowledge. There are a dozen
different axioms in the current system and these are the only manually generated
axioms. Some examples include:

∀x∀y∀z(in(x,y) ∧ in(y,z) → in(x,z))
∀e∀x∀y(event(e)∧agent(e,x)∧in(e,y)→in(x,y))
∀e∀x∀y(event(e)∧patient(e,x)∧in(e,y)→in(x,y))
∀e∀x∀y(event(e)∧theme(e,x)∧in(e,y)→in(x,y))
∀x∀y(in(x,y)→∃e(locate(e)∧patient(e,x)∧in(e,y)))
∀x∀y(of(x,y)→∃e(have(e)∧agent(e,y)∧patient(e,x)))
∀e∀x(event(e)∧agent(e,x)→by(e,x))
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The last axiom in this list, for instance, helps Vampire to find a proof for
Example 1977, which is a case of active-passive alternation.

Example: 1977 (TRUE)
T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

d(T):

e1 x2 x3 x4

male(x4)
of(x3,x4)
family(x3)
charge(x2)
deny(e1)

agent(e1,x3)
patient(e1,x2)
steadfastly(e1)

d(H):

e1 x2 x3

male(x3)
charge(x3)
deny(e1)

patient(e1,x3)
of(x2,x3)
family(x2)
by(e1,x2)

Lexical Knowledge. Lexical knowledge is created automatically from Word-
Net. A hyponymy relation between two synsets A and B is converted into
∀x(A(x)→B(x)). Two synset sisters A and B are translated into ∀x(A(x)→
¬B(x)). Here the predicate symbols from the DRS are mapped to WordNet
synsets using a variant of Lesk’s WSD algorithm [MS99]. The aforementioned
Example 78 would be supported by the following lexical axioms:

∀x(clinton(x)→person(x))
∀x(book(x)→artifact(x))
∀x(artifact(x)→ ¬person(x))

Consider for instance Example 1952 below. The axiom ∀x(soar(x)→rise(x))
suffices for finding a proof for this entailment pair:

Example: 1952 (TRUE)
T: Crude oil prices soared to record levels.
H: Crude oil prices rise.

d(T):

e1 x2 x5 x6

crude(x5)
oil(x6)

nn(x6,x5)
price(x5)
soar(e1)

agent(e1,x5)
patient(e1,x2)

record(x2)
level(x2)

d(H):

e1 x2 x3

crude(x2)
oil(x3)

nn(x3,x2)
price(x2)
rise(e1)

agent(e1,x2)
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Geographical Knowledge. Because a high number of examples in the develop-
ment set required knowledge about geography, we automatically compiled a set
of axioms from the CIA factbook (http://www.cia.gov/cia/publications/
factbook/ , covering knowledge about capitals, countries and US states. Some
examples are:

∀x∀y(paris(x)∧france(y)→in(x,y))
∀x∀y(pago pago(x)∧american samoa(y)→in(x,y))

However, we could not find any examples where the theorem prover found a
proof due to geographical knowledge in the test set.

3.5 Model Building

While theorem provers are designed to prove that a formula is a theorem (i.e.,
that the formula is true in any model), they are generally not good at deciding
that a formula is not a theorem. Model builders are designed to show that a
formula is true in at least one model. Hence, in addition to the Vampire theorem
prover we also use the model builder Paradox [CS03].

To exploit the complementary approaches to inference, we use both a theo-
rem prover and a model builder for any inference problem: the theorem prover
attempts to prove the input whereas the model builder simultaneously tries to
find a model for the negation of the input. If the model builder finds a model for

¬(f(d(T))→f(d(H))) (= ¬A)

we know that there cannot be a proof for its negation (hence no entailment).
And if the model builder is able to generate a model for

f(d(T))∧f(d(H)) (= ¬B)

we know that T and H are consistent (maybe entailment). (In practice, this is
also a good way to terminate the search for proofs or models: if the theorem
prover finds a proof for ¬φ, we can halt the model builder to try and find a
model for φ (because there won’t be one), and vice versa.)

Another interesting property of a model builder is that it outputs a model
for its input formula, if the input is satisfiable. A model is here the logical notion
of a model, describing a situation in which the input formula is true. Formally,
a model is a pair 〈D, F 〉 where D is the set of entities in the domain, and F a
function mapping predicate symbols to sets of domain members. For instance,
the model returned for f(d(T)) in Example 78 is one where the domain consists
of three entities (domain size = 3):

D = {d1,d2,d3} F(loc) = {}
F(book) = {d1,d2} F(seller) = {}
F(clinton) = {d3} F(be) = {}
F(of) = {(d1,d3)} F(agent) = {}
F(big) = {} F(patient) = {}
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Model builders like Paradox generate such finite models by iteration. They
attempt to create a model for domain size 1. If they fail, they increase the
domain size and try again, until either they find a model or their resources run
out. Thus, although there are possibly infinitely many models, model builders
generally build a model with a minimal domain size. (For more information on
model building consult [BB05]).

In the next section we show how to explore these finite models by using the
domain and model size in predicting entailment.

3.6 Approximating Entailment

In an ideal world we calculate all the required background knowledge and by ei-
ther finding a proof or a countermodel, decide how T and H relate with respect to
entailment. However, it is extremely hard to acquire all the required background
knowledge. This is partly due to the limitations of word sense disambiguation,
the lack of resources like WordNet, and the lack of general knowledge in a form
suitable for automated inference tasks.

To introduce an element of robustness into our approach, we use the models
as produced by the model builder to measure the “distance” from an entailment.
The intuition behind it is as follows. If H is entailed by T, the model for T+H
is not informative compared to the one for T, and hence does not introduce new
entities. Put differently, the domain size for T+H would equal the domain size of
T. In contrast, if T does not entail H, H normally contains some new information
(except when it contains negated information), and this will be reflected in the
domain size of T+H, which then is larger than the domain size of T. It turns
out that this difference between the domain sizes is a useful way of measuring
the likelihood of entailment: large differences are mostly not entailments, small
differences mostly are.

Consider the following example:

Example: 1049 (TRUE)
T: Four Venezuelan firefighters who were traveling to a training

course in Texas were killed when their sport utility vehicle drifted
onto the shoulder of a highway and struck a parked truck.

H: Four firefighters were killed in a car accident.

Although this example is judged as a true entailment, Vampire (the the-
orem prover that we use) does not find a proof because it lacks the back-
ground knowledge that one way of causing a car accident is to “drift onto
the shoulder of the highway and strike something”. On the other hand, Para-
dox, the model builder that we use, generates a model with domain size 11
for f(d(T)), and a model with domain size 12 for f(d(T))∧f(d(H)). The ab-
solute difference in domain sizes is small, and therefore likely to indicate an
entailment. Apart from the absolute difference we also compute the difference
relative to the domain size. For the example above the relative domain size yields
1/12 = 0.083.
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The domain size only tells us something about the number of entities used
in a model—not about the number of established relations between the model’s
entities. Therefore, we also introduce the notion of model size. The model size is
defined here by counting the number of all instances of two-place relations (and
three-place relations, if there are any) in the model, and multiplying this with
the domain size. For instance, the following (arbitrary) model

D = {d1,d2,d3}
F(cat) = {d1,d2}
F(john) = {d3}
F(of) = {(d1,d3)}
F(like) = {(d3,d1),(d3,d2)}

has a domain consisting of three entities and three instantiated two-place rela-
tions, yielding a model size of 3 ∗ 3 = 9.

Obviously, it is harder for model builders to generate a minimal model than
just any model. In practice, a model builder like Paradox generally constructs
models with a minimal domain size, but not necessarily one with a minimal
model size. It is unclear how much this influenced our results but we plan to ex-
periment with other model builders in future work, or taking aboard algorithms
that transfer a model into a minimal model.

3.7 Deep Semantic Features

Given our approach to deep semantic analysis, we identified eight features rel-
evant for recognising textual entailment. The theorem prover provides us with
two features: entailed determining whether T implies H, and inconsistent
determining whether T together with H is inconsistent. The model builder gives
us six features: domainsize and modelsize for T+H as well as the absolute
and relative difference between the sizes of T and T+H, both for the size of the
domains (domainsizeabsdif, domainsizereldif) and the size of the models
(modelsizeabsdif, modelsizereldif).

4 Experiments

There are not many test suites available for textual inference. We use throughout
this section the dataset made available as part of the RTE challenge. We used
the t-test for the difference between two proportions to measure whether the
difference in accuracy between two algorithms or an algorithm and the baseline
is statistically significant at the 5% level.

4.1 Dataset Design and Evaluation Measures

The organisers released a development set of 567 sentence pairs and a test set
of 800 sentence pairs. In both sets, 50% of the sentence pairs were annotated as
TRUE and 50% as FALSE, leading to a 50% most frequent class baseline for
automatic systems.
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The examples are further distinguished according to the way they were de-
signed via a so-called Task variable. Examples marked CD (Comparable Doc-
uments) comprise sentences with high lexical overlap in comparable news ar-
ticles, whereas the hypotheses of examples marked QA (Question Answering)
were formed by translating questions from e.g., TREC into statements. The
other subsets are IE (Information extraction), MT (Machine Translation) RC
(Reading Comprehension), PP (Paraphrase Acquisition) and IR (Information
Retrieval).

The different examples and subsets cover a wide variety of different aspects of
entailment, from incorporation of background knowledge to lexical to syntactic
entailment and combinations of all these. For a more exhaustive description of
dataset design we refer the reader to [DGM05].

4.2 Experiment 1: Human Upper Bound

To establish a human upper bound as well as investigate the validity of the
datasets issued, one of the authors annotated all 800 examples of the test
set for entailment, following the short RTE annotation guidelines available at
http://www.pascal-network.org/Challenges/RTE/Instructions. The an-
notation was performed before the release of the gold standard annotation for
the test set and was therefore independent of the organisers’ annotation. The
organisers’ and the author’s annotation yielded a high percentage agreement of
95.25%. However, 33% of the originally created examples were already filtered
out of the corpus before release by the organisers because of agreement-related
problems. Therefore we expect that human agreement on textual entailment in
general is rather lower. A further discussion of the gold standard dataset can be
found in Section 6.

4.3 Decision Trees for Entailment Recognition

We expressed each example pair as a feature vector, using different subsets of
the features described in Section 2 and Section 3 for each experiment. We then
trained a decision tree for classification into TRUE and FALSE entailment on
the development set, using the Weka machine learning tool [WF00], and tested
on the test set.

Apart from a classification, Weka also computes a confidence value between
0.5 and 1 for each decision, dependent on the leaf in the tree that the classified
example falls into: if the leaf covers x examples in the training set, of which y
examples are classified wrongly, then the error rate is y/x and the confidence
value is 1− y/x.

Following the RTE challenge, the evaluation measures are accuracy (acc)
as the percentage of correct judgements as well as confidence-weighted average
score (cws), which rewards the system’s ability to assign a higher confidence
score to correct judgements than wrong ones [DGM05]: after the n judgements
are sorted in decreasing order by their confidence value, the following measure
is computed:
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cws =
1
n

n∑
i=1

#correct-up-rank-i
i

All evaluation measures are computed over the whole test set as well as on the 7
different subsets (CD, IE, etc.). The results are summarised in Table 1. We also
computed precision, recall and F-measure for both classes TRUE and FALSE
and will discuss the results in the text whenever of interest.

Experiment 2: Shallow Features. In this experiment only the shallow fea-
tures (see Section 2) were used. The overall accuracy of 56.9% is significantly
higher than the baseline.

Column 2 in Table 1 shows that this decent performance is entirely due to
excellent performance on the CD subset. (Recall that the CD set was designed
explicitly with examples with high lexical overlap in mind.)

In addition, the method overestimates the number of true entailments, achiev-
ing a Recall of 0.926 for the class TRUE, but a precision of only 0.547 on the
same class. In contrast, it has good precision (0.761) but low recall (0.236) for
the FALSE class. Thus, there is a correspondence between low word overlap and
FALSE examples (see also the discussion of Example 731 in Section 2); high
overlap, however, is normally necessary but not sufficient for TRUE entailment
(see also Example 78 in Section 3).

Table 1. Summary of Results for Experiments 1 to 6

Exp 1: Human 2: Shallow 3: Strict 4: Deep 5: Hybrid 6: Hybr/Task
Task acc cws acc cws acc cws acc cws acc cws acc cws
CD 0.967 n/a 0.827 0.881 0.547 0.617 0.713 0.787 0.700 0.790 0.827 0.827
IE 0.975 n/a 0.508 0.503 0.542 0.622 0.533 0.616 0.542 0.639 0.542 0.627
MT 0.900 n/a 0.500 0.515 0.500 0.436 0.592 0.596 0.525 0.512 0.533 0.581
QA 0.961 n/a 0.531 0.557 0.461 0.422 0.515 0.419 0.569 0.520 0.577 0.531
RC 0.979 n/a 0.507 0.502 0.557 0.638 0.457 0.537 0.507 0.587 0.557 0.644
PP 0.920 n/a 0.480 0.467 0.540 0.581 0.520 0.616 0.560 0.667 0.580 0.619
IR 0.922 n/a 0.511 0.561 0.489 0.421 0.567 0.503 0.622 0.569 0.611 0.561
all 0.951 n/a 0.569 0.624 0.520 0.548 0.562 0.608 0.577 0.632 0.612 0.646

Experiment 3: Strict Entailment. To test the potential of entailment as
discovered by theorem proving alone, we now use only the entailment and
inconsistent features. As expected, the decision tree shows that, if a proof for
T implies H has been found, the example should be classified as TRUE, otherwise
as FALSE. The inconsistent feature was not used by the decision tree, which
was not surprising as very few examples were covered by that feature.

The deep semantic analysis was able to create semantic representations and
then search for proofs for 774 of all 800 T/H-pairs in the test data, achieving a
coverage of 96.8%. The precision (0.767) for the class TRUE is reasonably high:
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if a proof is found, then an entailment is indeed very likely. The exceptions where
we found a proof but entailment did not hold are discussed further in Section 5.
However, recall is very low (0.058) as only 30 proofs were found on the test set
(for some examples see Section 3). This yields an F-measure of only 0.10 for the
TRUE class. Due to the low recall, the overall accuracy of the system (0.52, see
Table 1) is not significantly higher than the baseline.

Thus, this feature behaves in the opposite way to shallow lexical overlap and
overgenerates the FALSE class. Missing lexical and background knowledge is the
major cause for missing proofs.

Experiment 4: Approximating Entailment. As discussed in Section 3.6
we now try to compensate for missing knowledge and improve recall for TRUE
entailments by approximating entailment with the features that are furnished
by the model builder. Thus, Experiment 4 uses all eight deep semantic analysis
features, including the features capturing differences in domain- and modelsizes.
The recall for the TRUE class indeed jumps to 0.735. Although, unavoidably,
the FALSE class suffers, the resulting overall accuracy (0.562, see Column 4 in
Table 1) is significantly higher than when using the features provided by the
theorem prover alone (as in Experiment 3). The confidence weighted score also
rises substantially from 0.548 to 0.608. The approximation achieved can be seen
in the different treatment of Example 1049 (see Section 3.6) in Experiments 3
and 4. In Experiment 3, this example is wrongly classified as FALSE as no proof
can be found; in Experiment 4, it is correctly classified as TRUE due to the
small difference between domain- and modelsizes for T and T+H.

There is hardly any overall difference in accuracy between the shallow and the
deep classifier. However, it seems that the shallow classifier in its current form
has very little potential outside of the CD subset whereas the deep classifier
shows a more promising performance for several subsets.

Experiment 5: Hybrid Classification. As shallow and deep classifiers seem
to perform differently on differently designed datasets, we hypothesized that a
combination of these classifiers should bring further improvement. Experiment 5
therefore used all shallow and deep features together. However, the overall per-
formance of this classifier (see Column 5 in Table 1) is not significantly better
than either of the separate classifiers. Closer inspection of the results reveals that,
in comparison to the shallow classifier, the hybrid classifier performs better or
equally on all subsets but CD. In comparison to the deep classifier in Column 4,
the hybrid classifier performs equally well or better on all subsets apart from MT.
Overall, this means more robust performance of the hybrid classifier over differ-
ently designed datasets and therefore more independence from dataset design.

Experiment 6: Dependency on Dataset Design. As Experiment 5 shows,
simple combination of methods, while maybe more robust, will not necessarily
raise overall performance if the system does not know when to apply which
method. To test this hypothesis further we integrated the subset indicator as a
feature with the values CD, IE, MT, RC, IR, PP, QA into our hybrid system.
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Indeed, the resulting overall accuracy (0.612) is significantly better than either
shallow or deep system alone. In addition, the performance over all subsets is
now more even and robust.

Note that using both a combination of methodologies and the subset indicator
is necessary to improve on individual shallow and deep classifiers for this corpus.
We integrated the subset indicator also into the shallow and deep classifier by
themselves, yielding classifiers Shallow+Task and Deep+Task, with no or only
very small changes in accuracy (these figures are not included in Table 1).

5 Error Analysis

A full error analysis of the hybrid system is beyond the scope of this paper as it
incorporates a multitude of factors, including errors of shallow and deep methods
as well as errors induced by the learning model and the combination of methods.
We will, however, discuss error types of the shallow word overlap and the main
theorem proving component of our system in the following two subsections.

5.1 Shallow Methods

As discussed in Experiment 2 above, the word overlap method tends to overgen-
erate the TRUE class. Typical examples that lead to such false positives can be
summarized as follows:

– Negation that is not present in the hypothesis but is present in the text (see
Example 78 in Section 3).

– Structural conversions, as we use a bag-of-words model only (for example,
active-passive conversions).

– Conditional information in text or hypothesis, for example in “if”-clauses;
ordinals; idioms. This includes Examples 1617, 2040, 2025, 2055, 2030, 2082
and 2079, which were also a problem for the theorem proving component
and are in detail discussed in Section 5.2 below.

– Underestimation of crucial non-matching words in the hypothesis (see Exam-
ple 828 below, where the mismatch of 20-year-old is underestimated due to
considerable overlap of other words like Jennifer Hawkins, Australia, beauty
queen etc.).

Example: 828 (FALSE)
T: Jennifer Hawkins is the 21-year-old beauty queen from Australia.
H: Jennifer Hawkins is Australia’s 20-year-old beauty queen.

– Word sense ambiguity. As the shallow method does not perform any WSD,
this can lead to incorrectly relating lemmata in hypothesis and text like hit
and shot in Example 1959 below.

Example: 1959 (FALSE)
T: Kerry hit Bush hard on his conduct on the war in Iraq.
H: Kerry shot Bush.
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5.2 Strict Entailment

Experiment 3 showed that strict entailment creates many false negatives due to
missing background knowledge. In contrast, when the theorem prover found a
proof it was usually correct. Only 30 proofs were found by the system, of which 23
were annotated as entailments in the gold standard. These include adequately
analysed phenomena such as apposition (5 times: 760, 929, 995, 1903, 1905),
relative clauses (3 times: 142, 1060, 1900), coordination and attachment(3 times:
898, 807, 893), active-passive alternation (twice: 1007, 1897), possessives (once:
1010), the use of background knowledge (6 times: 236, 836, 1944, 1952, 1987,
1994) and more or less straightforward cases (3 times: 833, 1076, 741). Two of
such examples (1005 from the training set and 898 from the test set) are given
in Section 3.

Incorrect proofs were found for seven cases. It is interesting to find out why
our system discovered a proof in these cases. It turns out that they are due to
incorrect lexical semantics, the lack of dealing with metaphors, the restricted ex-
pressivity of first-order logic, and the inability to deal with idiomatic expressions.
We will discuss these cases in detail.

Ordinals were not dealt with correctly in Examples 1617 and 2040. In both
cases the relative clause (1617) and the infinitive construction (2040) were not
part of the restriction of the ordinal, giving an incorrect semantic representation:

Example: 1617 (FALSE)
T: In 1782 Martin Van Buren, the first US president who was a native

citizen of the United States, was born in Kinderhook, N.Y.
H: The first US president was born in Kinderhook, N.Y.

Example: 2040 (FALSE)
T: Stjepan Mesic was the first Croatian president to deliver a public

address at Harvard.
H: Stjepan Mesic was the first Croatian president.

Example 2025 shows a text with a conditional. The current system does not
adequately deal with all discourse adverbials yet, causing it to assert that Poland
joins the EU rather than placing it in the antecedent of a conditional.

Example: 2025 (FALSE)
T: There are a lot of farmers in Poland who worry about their future

if Poland joins the European Union.
H: Poland joins the European Union.

A rather similar case is Example 2055, where the system correctly associated
Einstein to be the subject of being the president of Israel, but it incorrectly
assumed that being invited to X is being X. A restriction on this class of modal
verbs will fix this problem. (In the development data, however, there were similar
cases that were annotated as entailments.)
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Example: 2055 (FALSE)
T: The fact that Einstein was invited to be the president of Israel

is critical to an accurate understanding of one of the greatest
individuals in modern history.

H: Einstein is the president of Israel.

An interesting example is 2030. Here it seems that capital in 2030-T is used
metaphorically, in the sense that it is the most important location with respect
to gastronomy. As our system did not spot this, it incorrectly found a proof
instead.

Example: 2030 (FALSE)
T: Lyon is actually the gastronomic capital of France.
H: Lyon is the capital of France.

A neo-Davidsonian analysis based on first-order logic is problematic for cases
such as Example 2082. Although we analyse the modifiers of a verb all intersec-
tively, it seems that established in Italy should be analysed restrictively.

Example: 2082 (FALSE)
T: Microsoft was established in Italy in 1985.
H: Microsoft was established in 1985.

Example 2079, finally, shows that some entailment pairs require a sophisti-
cated analysis of idiomatic expressions:

Example: 2079 (FALSE)
T: US presence puts Qatar in a delicate spot.
H: Qatar is located in a delicate spot.

These examples of false positives show once more how hard recognising textual
entailment is. Overall, however, the backbone of our deep semantic analysis is
reasonably accurate. Its recall for TRUE entailments can be increased by finding
methods for selecting appropriate background knowledge, and revising some of
the lexical semantics will improve its precision.

6 Discussion of the Entailment Task

We will now discuss some observations we made on the task definition and the
annotated data sets.

6.1 Task Definition

The current RTE dataset classified entailment as binary TRUE and FALSE.
Following FRACAS, the semantic test suite in [CCVE+96], a classification that
respects three values (yes, don’t know, inconsistent), is probably more in its
place. For instance, not only are examples 1301 and 1310 below not entailments,
the hypotheses are inconsistent with the corresponding texts as well:
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Example: 1301 (FALSE) (sic)
T: The former wife of the South African president did not ask for

amnesty, and her activities were not listed in the political reports
submitted by the African National Congress to the Truth and
Reconciliation Commission in 1996 and 1997.

H: Winny Mandela, the President’s ex-wife, is requesting amnesty.

Example: 1310 (FALSE) (sic)
T: Although the hospital insists that King Hussein is not fully free

of the cancer, they are hopeful that he will recover.
H: The statement added that King Hussein has been cured com-

pletely.

6.2 Annotated Datasets

When establishing the upper bound in Experiment 1, we made several obser-
vations that could have an effect on the design of future test suites. The dis-
agreements in annotation fell roughly into three categories. Firstly, the amount
of background knowledge assumed by our annotation sometimes differed from
the one taken into account by the gold standard annotation. Thus, the anno-
tating author judged Example 825 below as FALSE, as she was not aware that
Beiji was in the north of Iraq. The question of how much background knowledge
can be assumed and how many examples should draw on extensive background
knowledge in future datasets was extensively discussed at the RTE workshop.

Example: 825 (TRUE) (own annotation FALSE)
T: A car bomb that exploded outside a U.S. military base near Beiji,

killed 11 Iraqis.
H: A car bomb exploded outside a U.S. base in the northern town of

Beiji, killing 11 Iraqis.

Secondly, in a few cases, sentences that were isolated from their original
context in the examples made it hard to annotate them correctly. Thus, our own
annotation for Example 961 was FALSE as the first name of Seiler as Audrey is
not inferrable from the text without a wider context.

Example: 961 TRUE (own annotation FALSE)
T: Seiler was reported missing March 27 and was found four days

later in a marsh near her campus apartment.
H: Abducted Audrey Seiler found four days after missing.

Thirdly, several entailments were incorrectly annotated the gold standard in
our opinion. Example 236 (see below), for instance, was judged as entailment.
But taking tense into account (which, incidentally, our system is currently not
able to do), it is strictly speaking not a textual entailment.
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Example: 236 (TRUE) (sic)
T: Yasir Arafat has agreed to appoint a longtime loyalist as interior

minister to take charge of the country’s security.
H: Yasir Arafat nominated a loyalist as interior minister.

Another example is 893: the adverb perhaps in the text clearly expresses doubt
on the date of establishment of settlements on Jakarta, and the hypothesis es-
tablishes it as a fact. This clearly is not entailment.

Example: 893 (TRUE) (sic)
T: The first settlements on the site of Jakarta were established at the

mouth of the Ciliwung, perhaps as early as the 5th century AD.
H: The first settlements on the site of Jakarta were established as

early as the 5th century AD.

7 Related Work

Our shallow analysis is similar to several shallow models presented as part of
the RTE challenge, in particular the word overlap methods by [JdR05] and the
shallow baselines by [HPV05]. The results achieved by us and them give a cur-
rent upper bound of 55–57% accuracy for shallow overlap methods. This is also
confirmed by [DGM05], who cite a non-participating system by Rada Mihalcea
based on shallow features only with an accuracy of 56.8%. [PA05] adapted the
BLEU algorithm that relies mainly on n-gram overlap. They report that the
resulting system did not beat the 50% baseline. This difference in results might
be due to the fact that the BLEU algorithm is not directional, i.e. it penalises
difference in information and length between text and hypothesis also if the
hypothesis is completely included and entailed by the text but, for example,
contains much less information. All these approaches confirm the fact that shal-
low methods do best on the CD subtask and have the tendency to overestimate
TRUE entailments. IDF models for entailment and question answering, but not
within the RTE framework, have also been proposed by [MdR03, SGH+04].

The main idea of our deep analysis, using a detailed semantic analysis and
first-order inference, goes back to [BB05]. Other approaches to textual entail-
ment that are comparable to our “strict” entailment as carried out in Experi-
ment 3 include the OTTER theorem prover [Akh05, FHH+05] and EPILOG in
[BBF+05]. Both these systems (like our “strict” system) do not beat the base-
line, with [BBF+05] explicitly mentioning lack of background knowledge and
inference rules as the reason, confirming our experience. We incorporate model
building as a central part of the inference mechanism as a partial solution to
this problem, an approach not adopted by any other system as far as we know.
We have shown that using model generation is a promising way to approximate
entailment and can improve the low recall of theorem proving. It is interesting
to compare our approach to [RNM05]. Although they do not use model builders,
a similar basic idea of relaxing the constraints of strict theorem proving and
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weighing the differences between hypothesis and text underlies their weighted
abduction approach.

As far as we are aware, our combination of a shallow with a deep approach
into a single hybrid system is unique and adds to the robustness of our approach.
We also show that differences in dataset design can be exploited by such a hy-
brid approach, resulting in a significant overall improvement. The task variable
was also explored by [NSDC05] and [RNM05] with neither of them reporting
statistically significant differences between their systems with and without the
task variable. We believe the reason for this discrepancy compared to our results
might lie in the fact that their systems do not incorporate two fundamentally dif-
ferent inference strategies. As discussed in Section 4, using the task variable with
the deep or shallow approach alone does not improve results, whereas the com-
bination of two different strategies plus the task variable yields improvements.

Results of other approaches to determining textual entailment indicate that
it is an extremely hard task. The RTE workshop revealed that participating
systems reached accuracy figures ranging between 0.50 and 0.59 and cws scores
between 0.50 and 0.69 [DGM05]. Comparing this with our own results (accuracy
0.61 and cws 0.65) shows how well our systems performs on the same data set.

8 Conclusions

Relying on theorem proving as a technique for determining textual entailment
yielded high precision but low recall due to a general lack of appropriate back-
ground knowledge. We used model building as an innovative technique to sur-
mount this problem to a certain extent. Still, it will be unavoidable to incorporate
automatic methods for knowledge acquisition to increase the performance of our
approach. Future work will be directed to the acquisition of targeted paraphrases
(as for example in [BL03]) that can be converted into background knowledge in
the form of axioms.

Our hybrid approach combines shallow analysis with both theorem proving
and model building and achieves high accuracy scores on the RTE dataset com-
pared to other systems that we are aware of. The results for this approach also
indicate that (a) the choice of entailment recognition methods might have to
vary according to the dataset design and/or application and (b) that a method
that wants to achieve robust performance across different datasets might need
the integration of several different entailment recognition methods as well as an
indicator of design methodology or application.
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Abstract. This paper describes the system that LCC has devised to
perform textual entailment recognition for the PASCAL RTE Challenge.
Our system transforms each text-hypothesis pair into a two-layered logic
form representation that expresses the lexical, syntactic, and semantic
attributes of the text and hypothesis. A large set of natural language
axioms are constructed for each text-hypothesis pair that help connect
concepts in the hypothesis with concepts in the text. Our natural lan-
guage logic prover is then used to prove entailment through abductive
reasoning. The system’s performance in the challenge resulted in an ac-
curacy of 55%.

1 Introduction

The formal definition of logical entailment states that the a sentence β is en-
tailed by a sentence α if and only if in every world in which α is true, β is also
true [Russell and Norvig 2003]. In the natural language domain it becomes much
more difficult to clearly define entailment due to the abundant number of ambi-
guities that are inherent in natural language. Many natural language sentences
can be interpreted in a multitude of ways, and each interpretation can entail a
different sets of sentences. As humans we can often use our common-sense rea-
soning ability to disambiguate the likely meaning of a sentence and determine if
another sentence follows from it. Providing this level of reasoning ability to an
automated system is a much more difficult task than strict logical entailment.

The PASCAL Recognizing Textual Entailment (RTE) Challenge attempts to
evaluate an automated system’s ability to recognize whether or not the meaning
of one text fragment can be inferred from or entailed by another text fragment
[Dagan et al. 2005]. The challenge evaluates a system’s entailment recognition
ability in seven application settings: Information Retrieval (IR), Comparable
Documents (CD), Reading Comprehension (RC), Question Answering (QA),
Information Extraction (IE), Machine Translation (MT), and Paraphrase Ac-
quisition (PP). Though the objectives of these application settings are varied,
the challenge serves to show how the ability to recognize entailment can be
beneficial to any natural language processing system.

In this paper we describe LCC’s approach to recognizing textual entailment
through the use of an automated reasoning system. We have implemented a
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natural language logic prover, called Cogex, that uniformly codifies text frag-
ments, as well as world knowledge resources, in order to use its inference en-
gine to verify any lexical and semantic relationships between two text fragments
[Moldovan et al. 2003]. Details of Cogex’s implementation are provided in Sec-
tions 3-5, the technique we use to determine whether entailment between two
text fragments exists is explained in Section 6, and an analysis of our system’s
performance in the challenge is provided in Section 7.

2 Approach

A logic prover is an excellent tool for the entailment recognition task because
the objective of a prover is to determine if there is a set of inference rules that
can be applied to some given proposition to validate a hypothetical proposition.
However, there are numerous complexities inherent to natural language that
make the use of a logic prover to recognize textual entailment a non-trivial task.
We have developed a natural language knowledge representation, axiom set, and
reasoning methodology to account for the complexities of natural language.

Cogex generates a multi-layered first order logic representation for the
text and hypothesis that encodes syntactic and semantic information expressed
in text. The first layer represents the syntactic relations derived from the re-
sults of a statistical parser, similar to [Collins 2003], and also includes seman-
tic entity class identifications detected by a named entity recognizer. The sec-
ond layer provides semantic relations detected by our semantic parser, Po-
laris, that express relations between words and phrases that are not expressed
in the syntax layer and helps remove some of the syntax layer’s ambiguity.
The third layer of the representation, which expresses contextual knowledge
as described in [Clark et al. 2005], is still under development and was not in-
cluded for the entailment recognition task. Other research groups, such as PARC
[Bobrow et al. 2005] and ASU [Tari and Baral 2005], have also implemented
knowledge representations that attempt to capture syntactic, semantic, and con-
textual knowledge.

For each text-hypothesis pair Cogex uses three sources to produce axioms
that will infer knowledge about the text during reasoning. WordNet, a pub-
licly available database, is used to generate lexical chains between words in the
text and hypothesis so Cogex can connect words that are semantically related.
Linguistic equivalence rules are generated to accommodate common syntactic
phenomenon. Additionally, some common-sense world knowledge axioms are pro-
vided to enable the prover to infer implicit knowledge from the text.

Cogex searches for entailment by performing “proof-by-contradiction” in
which the prover negates the hypothesis and searches for a contradiction to
the negated hypothesis. If a contradiction is found then there is evidence that
the hypothesis is entailed by the text. A special backoff strategy is employed
to allow Cogex to perform abductive reasoning. Upon completion of a proof,
Cogex measures the soundness of the inferences applied in the proof to
determine whether or not entailment holds.
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Several other teams participating in the RTE Challenge also approached the
entailment recognition task through logical inference. [Akhmatova 2005] also
uses a logic prover but splits the text and hypothesis into multiple proposi-
tions and attempts to validate each proposition in the hypothesis. The Stan-
ford [Raina et al. 2005] and UIUC [Braz et al. 2005] systems both use graphs
for knowledge representation and employ graph matching algorithms to perform
logical inference. The commonality between all of these systems is the attempt
to push systems to a level of reasoning that is beyond that of lexical analysis.

3 Logic Form Representation

The knowledge representation used by Cogex for this entailment recognition
task consists of two layers that express the syntactic and semantic propositions
made by the text and hypothesis. The syntax-based representation and the se-
mantic relation representation are detailed in the following subsections.

3.1 Syntax-Based Representation

The first layer of the logical representation is derived from a full syntactic parse
and acknowledges syntax-based relationships such as: (1) syntactic subjects, (2)
syntactic objects, (3) prepositional attachments, (4) complex nominals, and (5)
adjectival/adverbial adjuncts. These syntax relations provide signals to the de-
tection of semantic relations in the second layer. We also have a facility for
detecting word sense but have chosen to disable it due to degraded performance
caused by incorrect disambiguation.

As reported in [Moldovan and Rus 2002], there is a one-to-one mapping of the
words of the text into the predicates in the logical form. A predicate is generated
for every noun (NN), verb (VB), adjective (JJ), adverb (RB), preposition (IN),
or conjunction (CC) encountered in the text and hypothesis. The name of the
predicate is a concatenation of the lexeme’s base form and the part of speech of
the word. Nouns have predicates with a single argument. Adjectives and adverbs
have a single argument that identifies what is being modified. Verb predicates
have three arguments where the first represents the eventuality of the action, the
second represents the syntactic subject of the action, and the third represents
the direct object of the action.

Compound noun phrases (NNC), or complex nominals, are represented by a
grouping predicate that has the participant nouns of the phrase as its arguments.
Preposition (IN) predicates consist of two arguments where the first indicates
the predicate of the phrase head to which the prepositional phrase is attached
and the second argument indicates the prepositional object. Conjunctions (CC)
are converted into grouping predicates as well and behave much like complex
nominals. Additionally, named entities (NE) are detected by a named entity
recognizer and are included in the logical representation. These predicates are
named by the concatenation of the semantic class of the entity and a NE suffix
and have a single argument for the entity being classified. The following example
shows the first layer representation for the given text:
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Text: U.S. troops seized a relative and senior lieutenant to Sadr, who
was also wanted for murder.
Logic Form: u s NN(x1) & country NE(x1) & troops NN(x2) &
nn NNC(x3,x1,x2) & seize VB(e1,x3,x6) & relative NN(x4) &
and CC(x6,x4,x5) & senior JJ(x5) & lieutenant NN(x5) &
human NE(x6) & to TO(x6,x7) & Sadr NN(x7) & human NE(x7) &
also RB(e2) & want VB(e2,x8,x6) & for IN(e2,x9) & murder NN(x9)

A notable feature of the logical form representation used in Cogex is the
fixed-slot allocation mechanism of the verb predicates following the Davidsonian
notation introduced in [Hobbs et al. 1993]. This enables the logic prover to dis-
tinguish the roles of the subjects and objects in a sentence. In the above example,
if “relative and senior lieutenant to Sadr” is mistakenly taken to be the subject
of the action and “U.S. troops” is mistakenly taken to be the direct object of the
action, then the hypothesis, “Sadr’s senior lieutenant was apprehended.”, would
no longer be entailed by the sentence.

3.2 Semantic Relation Representation

The second layer of the logical representation of the text is obtained by using
a semantic parser, namely Polaris. The semantic relations discovered by Po-
laris are the underlying relations between concepts that exist within a word,
between words, between phrases, and between sentences [Moldovan et al. 2004].
Polaris uses numerous classifiers, trained through machine learning techniques,
and hand-coded rules to detect semantic relations. Table 1 lists the relations
that Polaris extracts from text.

Table 1. List of semantic relations recognized by Polaris

Semantic Relations

Possession Source-From Possibility Kinship
Topic Certainty Property-Attribute Holder Manner
Agent Means Result Theme-Patient
Temporal Accompaniment-Companion Stimulus Depiction
Part-Whole Experiencer Extent Recipient
Hyponymy Frequency Belief Predicate
Entail Influence Goal Cause
Associated-with/Other Meaning Make-Produce Measure
Instrument Synonymy-Name Explanation Justification
Location-Space Antonymy Purpose Plausibility-of

Semantic relations provide the semantic background for text, which allows
for a denser connectivity between the words and concepts expressed in the text,
and express relations among the words of the text that are not explicitly stated.
Semantic relations are also mapped to predicates where the name of the pred-
icate consists of the relation that it represents and an SR suffix to indicate
that it is a semantic relation. The arguments of these predicates are the events
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and entities that participate in the relation. In the following example the word
“seven” is completely disconnected from “truck drivers” and the connection is
only made through the MEASURE semantic relation. Further, the preposition “in”
in this sentence is the only indicator of where this action is taking place and
is disambiguated for the prover to its spatial sense by the LOCATION semantic
relation.

Text: A militant group in Iraq is holding seven foreign truck drivers.
Logic Form: militant JJ(x1) & group NN(x1) & in IN(x1,x2) &
iraq NN(x2) & country NE(x2) & hold VB(e1,x1,x6) &
seven NN(x3) & number NE(x3) & foreign JJ(x6) & truck NN(x4) &
driver NN(x5) & nn NNC(x6,x4,x5)
Semantic Relations:
– HYPONYMY(militant group, group)
– PROPERTY ATTRIBUTE HOLDER(militant, group)
– LOCATION(Iraq, militant group)
– AGENT(militant group, holding)
– THEME(truck drivers, holding)
– MEASURE(seven, truck drivers)
– PROPERTY ATTRIBUTE HOLDER(foreign, truck drivers)
– HYPONYMY(truck driver, driver)
– THEME(driver, truck)

4 Natural Language Axioms

The task of recognizing textual entailment in a logic prover requires the prover
to be able to determine if the information in the hypothesis follows from the
information in the text. Cogex depends on a suite of natural language axioms
to derive new inferences from the text of a given pair while deciding if the hy-
pothesis is in fact true. Specifically, Cogex uses (1) WordNet Lexical Chains
to increase semantic connectivity, (2) Linguistic Rewriting Rules to drive the
generation of paraphrasing axioms, (3) Semantic Relation Calculus to facilitate
inference over the detected semantic relations in order to derive unstated se-
mantic relations, and (4) World-Knowledge axioms to express knowledge that
cannot otherwise be automatically derived. Each axiom class is detailed along
with examples in the following subsections. Unless otherwise specified, all vari-
ables should be considered existentially quantified.

4.1 WordNet Lexical Chains

An important requirement of the entailment recognition task is the ability to
recognize if a pair of different words are semantically related. For many of the
text-hypothesis pairs in the data set, there are only one or two words that the
text and hypothesis do not have in common, making the condition of entail-
ment dependent on deriving valid connections between those dissimilar words.
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WordNet lexical chains is the facility we have implemented to detect pairs of
different words in the text and hypothesis that are semantically related, and
generate axioms that express this relation.

WordNet [Miller 1990] consists of numerous sets of words called synonym sets
or synsets, where each set of words share the same lexical concept. These synsets
are linked together by WordNet relations that express how the different concepts
are interrelated. Lexical chains are sequences of synsets related through WordNet
relations that create a path between two words. A complete description of our
lexical chains implementation is available in [Moldovan and Novischi 2002]. For
example, there are HYPERNYM and DERIVATION relations between the first
sense of the noun region and the third sense of the verb locate which produces
the following lexical chain:

region:n#1 → HYPERNYM → location:n#1 →
DERIVATION → locate:vb#3

From each unmatched word in the hypothesis, we attempt to create a lexical
chain to each word in the text. Initially, we only created lexical chains for the
disambiguated senses of the words in the text and hypothesis, but due to inade-
quate disambiguation performance we were forced to generate lexical chains for
all senses of the words in the pair. We attempt to ensure the relevancy of the
lexical chains by limiting the path length to two relations. For every lexical chain
found between the text and hypothesis, an axiom is created with the text word
as the antecedent and the hypothesis word as the consequent. The corresponding
axiom to the above lexical chain is provided below:

all x1 (region NN(x1) → locate VB(e1,x2,x1))

4.2 Linguistic Rewriting Rules

There are many examples in the challenge data set where the semantic content
of the hypothesis and text is identical, but there are small syntactic and/or
morphologic variations. Cogex uses linguistic rewriting rules to account for
these variations and to provide some coreference ability as well. These axioms
are instantiated based on patterns found in the parse trees for the text and
hypothesis and are only made available to the text-hypothesis pair that generated
them. Below we present examples of some of the more important axioms for the
textual entailment recognition task.

Complex Nominals and Coordinated Conjunctions. Several forms of
coreference need to be resolved between concepts used in text-hypothesis pairs.
A special kind of coreference is the case of name alias, in which an entity is
referred to by its full proper name, whereas the same entity may be referred to
in another place by an acronym, a partial name, or by an alias. Consider the
following example where the poll is referred to as an “opinion poll” in the text
and just as a “poll” in the hypothesis:
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Text: The opinion poll was conducted on ...
opinion NN(x1) & poll NN(x2) & nn NNC(x3,x1,x2) &
conduct VB(e1,x4,x3) & on IN(e1,x5) & ...
Hypothesis: The poll was carried out on ...
poll NN(x1) & carry VB(e1,x2,x1) & out RB(e1) &
on IN(e1,x3) & ...

Above, the nn NNC is the direct object of the verb in the text and poll NN
is the direct object of the verb in the hypothesis. The following axioms are
generated by Cogex to facilitate coreference between “opinion poll” and “poll”:

1. all x1 x2 x3 (opinion NN(x1) & poll NN(x2)& nn NNC(x3,x1,x2) →
opinion NN(x3) & poll NN(x3))

2. all x1 (opinion NN(x1) | poll NN(x1) →
opinion NN(x1) & poll NN(x1) & nn NNC(x1,x1,x1))

The first axiom is utilized to coreference “poll” with “opinion poll”, but
an unavoidable side effect of this axiom is that it also incorrectly coreferences
“opinion” with “opinion poll”. It is insufficient to simply coreference the head
word due to cases like “Microsoft Corp.” where the head word, “Corp”, would be
incorrectly coreferenced. Additionally, no evidence is offered by the hypothesis
that the poll that is being referenced is in fact an opinion poll and not some
other type of poll, but since these axioms will only be generated for this pair,
the probability that they are the same poll is very high. Thus, even though
this axiom is necessary to correctly recognize entailment in the above pair, it is
unsound and has the ability to generate invalid proofs. For this reason, Cogex
penalizes the score of proofs that utilize these axioms as discussed in Section 6.1.
Similar axioms are used to handle coreferencing for coordinated conjunctions.

Apposition Axioms. Many of the text-hypothesis pairs have been designed
strictly to test an entailment recognition system’s ability to handle appositions.
The following example requires a system to recognize that the substantive, “a
Sunni Muslim...”, is referring to Ghazi Yawar:

Text: Ghazi Yawar, a Sunni Muslim who lived for years in ...
Hypothesis: Yawar is a Sunni Muslim.

Cogex handles appositions by creating an axiom that links the head of the
noun phrase in the substantive to the head of the noun phrase it describes. For
this pair, the following axiom is generated:

all x1 x2 x3 (ghazi NN(x1) & yawar NN(x2) & nn NNC(x3,x1,x2) →
sunni NN(x4) & muslim NN(x5) & nn NNC(x3,x4,x5))

4.3 Semantic Relation Calculus

One goal of the challenge preparers was to develop text-hypothesis pairs that
tested if systems could recognize whether or not semantic entailment held when
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there is significant syntactic overlap between the text and hypothesis. With our
semantic relations enabled, we can verify the semantic connectivity between
the text and hypothesis by using a set of rule pairing axioms for the semantic
relations. These enable inference of unstated semantics from those detected in
the text. The first of the following examples of rule pairings can be interpreted
as “if x1 is the purpose of x2 and x3 is part of x2, then x1 is the purpose of x3.”

all x1 x2 x3 (purpose sr(x1,x2) & partwhole sr(x3,x2)→purpose sr(x1,x3))
all x1 x2 x3 (synonymy sr(x1,x2) & agent sr(x1,x3) → agent sr(x2,x3))
all x1 x2 (synonymy sr(x1,x2) → synonymy sr(x2,x1))
all x1 e1 e2 (agent sr(x1,e1) & purpose sr(e2,e1) → purpose (e2,x1))
all x1 x2 x3 (cause sr(x1,x2) & cause sr(x2,x3) → cause sr(x1,x3))
all x1 x2 x3 (purpose sr(x1,x2) & topic sr(x3,x1) → purpose sr(x3,x2))

4.4 World Knowledge

We have incorporated a relatively small common-sense knowledge base of 310
hand-coded world knowledge axioms, where 80 have been tuned for the devel-
opment set data and 230 have been tuned for the TREC 2002 and 2003 data.
The axioms help to express common-sense knowledge that could not otherwise
be automatically derived. We restricted ourselves from analyzing the test set in
the process of creating these axioms, and consequently, the contribution of these
axioms to Cogex’s performance is more significant in the development set than
in the test set. However, as discussed in Section 7.5, these axioms have a negative
effect on the system’s performance. In the following example, the detection of
entailment is a trivial task if the world knowledge axiom, “a hometown is where
a person is born”, is made available to the prover:

Text: In Waco, near Nelson’s hometown of Abbott, ...
Hypothesis: Nelson was born in Abbott.
World Knowledge Axiom: all x1 x2 x3 ( POS(x2,x1) &
hometown NN(x2) & of IN(x2,x3) → bear VB(e1,x4,x1) &
in IN(e1,x3))

5 Reasoning Methodology

The proof method employed by Cogex is “reductio ad absurdum” or “proof by
contradiction” in which a hypothetical proposition is proved by showing that
it is impossible for the hypothetical proposition to be false. This is performed
in the textual entailment domain by showing that there are statements made
in the text that prevent the hypothesis from being false. Specifically, the logic
form representation of the hypothesis is negated and inferences are drawn from
the logic form representation of the text to determine if there is a contradiction
between propositions in the negated hypothesis and propositions inferred from
the text. The presence of a contradiction serves as evidence that the hypothesis
is entailed by the text.
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Fig. 1. Cogex Architecture

Figure 1 illustrates the high level components of Cogex and how they inter-
act when detecting entailment for a text-hypothesis pair. A detailed explanation
of these components is provided in the following subsections.

5.1 Axiom Partitioning

Cogex utilizes the Set of Support Strategy [Wos 1988] to divide the knowledge
base into two sets of axioms called the Usable List and Set of Support (SOS).
The SOS list consists of axioms that are supported by the problem under study,
and the Usable list consists of auxiliary axioms that can be used to infer new
information from the axioms in the SOS. Axioms in the SOS are weighted based
on their lexical ordering and the weight indicates the order in which they should
be chosen to participate in the search. At each step of the search Cogex removes
the lightest-weight axiom from the SOS, places it in the Usable list, and performs
hyperresolution and paramodulation to infer new axioms. Any newly resolved
axioms are appropriately weighted based on their lexical ordering and placed in
the Set of Support. The search continues in this fashion until a contradiction is
found in the knowledge base or the Set of Support is empty.

For the textual entailment recognition task, the text and negated hypothesis
logic form representations are placed in the Set of Support to guide the search.
The natural language axioms described in Section 4 are placed in the Usable
list so that they may be used to infer new information from the pair’s text. The
negated hypothesis is assigned the largest possible weight to ensure that it will
be the last axiom to participate in the search, a requirement of Cogex’s backoff
strategy described in Section 5.2.

5.2 Backoff Strategy

Cogex’s inability to find a proof once the Set of Support is empty indicates
that there is some set of constraints posed by the negated hypothesis that can-
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not be resolved. The backoff strategy attempts to resolve these constraints by
unbinding arguments in the predicates of the hypothesis logic form, and/or re-
moving predicates that are not critical to the meaning of the hypothesis. The
backoff strategy is necessary to account for defects that may occur in the logic
form representation and the incompleteness of our knowledge base as described
in Section 6.

The backoff strategy requires that the hypothesis be the last axiom to be
evaluated by the prover so that it may guarantee that all possible knowledge
that can be inferred from the text is already in the knowledge base. If no proof
is found upon the insertion of the negated hypothesis, Cogex analyzes the
hypothesis to determine what predicates in it are preventing a contradiction
from occurring. Arguments of the predicate that prevented the contradiction
from occurring are incrementally unbound until a contradiction is found or the
predicate becomes disconnected from the rest of the logic form. If a predicate
becomes disconnected and continues to prevent a contradiction from occurring,
it is dropped from the hypothesis. Cogex continues in this manner, unbinding
arguments and dropping predicates, until a proof is found. For each argument
that is unbound and predicate that is dropped, Cogex penalizes the score of
the final proof.

In cases where multiple predicates are preventing Cogex from finding a
proof, the system attempts to drop the predicate of least importance first. This
is performed by initially ordering the predicates of the hypothesis such that
predicates of least syntactic importance, based on their part of speech class and
connectedness nature, will be dropped first. Semantic relation and named entity
predicates are first, complex nominals and coordinate conjunctions are second,
nouns and verbs are third, adjectives and adverbs are fourth, and prepositions,
possessives, and personal pronouns are last in the logical form ordering.

5.3 Example Proof

In this section we present a complete proof executed by Cogex for the following
text-hypothesis pair:

Text: Cedras, Biamby, and Francois also led the 1991 takeover.
Hypothesis: Cedras took part in the 1991 coup.

Below are the logic form representations produced by Cogex for the text and
hypothesis sentences. For clarity, only the first layer of the representation is
presented since it is all that is required for the proof.

Text LF: Cedras NN(x1) & human NE(x1) & Biamby NN(x2) &
human NE(x2) & and CC(x4,x1,x2,x3) & Francois NN(x3) &
human NE(x3) & also RB(e1) & lead VB(e1,x4,x6) & 1991 NN(x5) &
date NE(x5) & takeover NN(x6)

Hypothesis LF: Cedras NN(x1) & human NE(x1) &
take part VB(e1,x1,x2) & in IN(e1,x4) & 1991 NN(x3) &
date NE(x3) & coup NN(x4)
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The axioms utilized by Cogex perform this proof are presented below as well as
their classification. A lexical chain is created between takeover and coup because
these words reside in the same synset. One of the linguistic rewriting rules that
was not discussed in Section 4.2 is used to express that when a year is directly
followed by a noun, that noun occurs in that year. Additionally, a world knowl-
edge axiom is required to express that if someone or something leads something,
they take part in it.

WordNet Lexical Chains
all x1 (takeover nn(x1) → coup nn(x1))

Linguistic Rewriting Rules
all x4 x5 (1991 nn(x4) & takeover nn(x5) → in in(x5,x4))

World Knowledge
all e1 x1 x2 (lead vb(e1,x1,x2) → take part vb(e1,x1,x3) &
in in(e1,x2))

The following is the resulting proof executed by Cogex:

1 [] - human ne(x1)| - date ne(x3)| -cedras nn(x1)| -1991 nn(x3)|
-coup nn(x4)| -take part vb(e1,x1,x2)| -in in(e1,x4).
2 [] cedras nn(x1).
3 [] human ne(x1).
4 [] lead vb(e1,x7,x5).
5 [] 1991 nn(x4).
6 [] date ne(x4).
7 [] takeover nn(x5).
8 [] -1991 nn(x4)| -takeover nn(x5)|in in(x5,x4).
9 [] -lead vb(e1,x1,x2)|take part vb(e1,x1,$c1).
10 [] -lead vb(e1,x1,x2)|in in(e1,x2).
11 [] -takeover nn(x1)| coup nn(x1).
12 [hyper,7,11] coup nn(x5).
13 [hyper,4,9] take part vb(e1,x7,c1).
14 [hyper,4,10] in in(e1,x5).
15 [hyper,1,2,3,5,6,12,13,14] $F.

6 Entailment Recognition

Typically, a logic prover performs entailment recognition by attempting to find
a finite set of axioms that can be applied to some pre-defined knowledge base to
arrive at the given hypothesis. If the prover is unable to find a set of axioms that
proves the hypothesis, then it can be concluded that entailment does not exist.
A requirement of this methodology is that the knowledge base have access to an
axiom set that is sound and complete for the domain of the proof. The difficulty
in applying this strategy in the NLP domain for recognizing textual entailment
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is that the axiom set that we build for each entailment pair is neither sound nor
complete and the logic form representation does not accurately represent all of
the complexities of natural language. By creating lexical chains for all senses, a
significant number of unsound axioms are created. As illustrated by examples
in Section 4.2, it is difficult to create linguistic rewriting rules that guarantee
sound behavior as well. Even world knowledge axioms are subject to unsound
behavior when constructed too coarsely. Furthermore, the large set of axioms
that are employed by Cogex is incomplete because they represent only a small
portion of knowledge that is necessary to fully comprehend natural language.
Additionally, the correctness of our logic form is contingent on the output of the
statistical parser which is not always accurate.

We account for the incompleteness of our axiom set with the backoff strategy
described in Section 5.2 which allows the prover to relax constraints in the hy-
pothesis that are preventing it from finding a proof. With a complete axiom set,
the prover can use deduction to determine if the constraints of the hypothesis
are met by the text, but without completeness we must rely on abductive proofs
[Hobbs et al. 1993] to determine whether or not entailment exists.

An unsound axiom set enables the prover to generate propositions that are
not supported by the knowledge base, which in turn allows the prover to detect
entailment where it does not exist. Thus, even without backoff strategies, Cogex
cannot rely on the detection of a proof to indicate entailment in a text-hypothesis
pair. Another hazard that can be encountered in an unsound knowledge base is
the generation of conflicting propositions. When performing proof-by-refutation
the goal is to find a set of propositions that will conflict with the negated hy-
pothetical propositions, but this method cannot execute properly if a conflict is
found between propositions inferred strictly from the knowledge base. However,
this is currently not a concern with our system because negation is not repre-
sented in the text’s logic form and there are no axioms that produce negated
propositions; without any negated predicates, no contradiction can occur.

6.1 Proof Scoring

An evaluation of the validity of proofs returned by Cogex is made by initially
assigning each proof with a perfect score and then assessing penalties for any
possibly unsound actions taken. Unsound actions consists of the use of axioms
that may be unsound and the relaxation of hypothesis constraints by unbinding
arguments and dropping predicates. After an initial proof has been found, the
prover continues searching for different proofs that can be found without relaxing
any additional hypothesis constraints and upon completion returns the proof
with the highest score.

For each set of axioms described in Section 4, a weight has been applied that
indicates to the prover how much to penalize the resulting proof when one of the
axioms in the set is used. The amount of weight applied to each set of axioms has
been determined through empirical analysis over TREC 2002-2003 questions and
signifies how likely it is that the axiom is unsound. Complex nominal decomposi-
tion axioms have been given the highest weight due to their ability to break down
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syntactic constraints and create incorrect syntactic relations between predicates.
Lexical chain axioms must also be weighted heavily because without word sense
disambiguation, a lexical chain only signifies that there is some concept in which
the word pair is linked and there is no assurance that the concept in which they
are linked is the same as the one being expressed in the text-hypothesis pair. A
lexical chain axiom’s weight is based on the type relations in the chain and the
length of the chain. The other linguistic rewriting rules are not weighted heavily
because they merely express syntactically equivalent forms of the text. Addi-
tionally, no weight is applied to our relatively small set of hand-crafted world
knowledge axioms because we suspect the human element in the development
process will help to ensure the soundness of these axioms.

As described in Section 5.2, the prover relaxes hypothesis constraints by
unbinding predicate arguments and dropping terms from the hypothesis as nec-
essary. Penalties are assessed to the proof for each argument that is unbound
and each predicate that is dropped. Just as with the axioms, through experimen-
tation we have discovered which classes of predicates have the most significant
effect on the determination of the existence of entailment for a text-hypothesis
pair. Uninformative part of speech elements, such as prepositions and conjunc-
tions, receive a very small weight, while more informative elements such as verbs,
nouns, and modifiers receive larger weights. Named entities and semantic rela-
tions are assigned the highest weight because they express some of the higher
level concepts in the hypothesis that must be inferable from the text for entail-
ment to exist.

After all of the appropriate penalties have been assessed, a normalized version
of the score that takes into account the weight and number of predicates in the
hypothesis logic form is calculated. If this normalization is not performed, hy-
potheses with fewer words would receive higher proof scores than those with more
words, making it difficult to compare them and determine an effective threshold.
The proof score is normalized by first determining the maximum penalty that
could have been assessed by dropping all of the predicates of the hypothesis logic
form. The actual penalty is divided by the maximum drop penalty to determine
what percentage of the maximum penalty has been assessed and this value is
subtracted from one to produce the normalized score as shown in Equation 1.

norm score = 1−
(

max score − proof score

max penalty

)
(1)

6.2 Judgment and Confidence Determination

True and false entailment are judged by determining if the normalized score
of a text-hypothesis pair is above or below a given threshold. We utilized the
development set to empirically determine the threshold at which the highest
accuracy for the set is achieved. This threshold was then applied in the test set
evaluation. Further experimentation with the development set revealed that the
nature of the scores for each application setting were very different and for that
reason different thresholds should be applied to each setting.
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Confidence for each text-hypothesis pair is measured as the distance between
the normalized score and the threshold. This enables scores that are further from
the threshold to have a higher confidence score than scores that are closer to the
threshold. The difference between the normalized score and the threshold is nor-
malized such that the resulting confidence score is a value between zero and one.

7 Performance Analysis

7.1 Test Set

Results for Cogex’s performance in the challenge are summarized in Table 2.
Precision is defined as the number of pairs where entailment was correctly recog-
nized divided by the number of pairs where entailment was recognized. Recall is
defined as the number of pairs where entailment was correctly recognized divided
by the number of pairs where entailment exists. The Confidence Weighted Score
(CWS) is calculated by the algorithm presented in [Dagan et al. 2005]. Two ad-
ditional metrics, mean true score and mean false score, were important to our
own analysis of the system’s performance during the development process. These
metrics report the mean scores received by true and false entailment pairs in
the data set. For our threshold technique, described in Section 6.2, to operate
successfully, there needs to be a significant separation between the mean true
and mean false scores.

Table 2. Results for the test set

Task Accuracy CWS Precision Recall F-measure true false

IR .478 .386 .477 .467 .472 .521 .613
CD .780 .822 .920 .613 .736 .641 .248
RC .514 .534 .512 .614 .558 .660 .627
QA .485 .434 .484 .477 .481 .568 .594
IE .483 .580 .490 .783 .603 .767 .736
MT .542 .440 .564 .367 .444 .498 .525
PP .460 .450 .475 .760 .585 .740 .774
all .551 .560 .549 .573 .561 .623 .559

The data set construction methodology employed for each application set-
ting had a significant effect on system performance as evidenced by the varied
accuracies of Cogex. There is also a large variance in the mean true and mean
false scores, which makes it extremely difficult to choose a single threshold that
is appropriate for entailment detection in all application settings. We were orig-
inally reluctant to select different thresholds for each task because we felt that
the presence or absence of entailment in a text-hypothesis pair should be inde-
pendent of the source of the pair. However, as discussed in Section 6, without a
sound and complete axiom set, it is impossible to implement a reasoning system
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that can uniformly recognize entailment for all possible text-hypothesis pairs.
Thus, since we are reliant upon a threshold to determine whether entailment
exists, it is appropriate to select different thresholds for each task. This also
reflects real-word usage, since for each type of application the system would be
tuned for best performance in that setting. Post-challenge experimentation with
multiple threshold selection yielded an accuracy of 56.2% on the test set.

Cogex, and most other systems participating in the challenge, performed
significantly better on the comparable documents application setting than the
other tasks. Due to the way text-hypothesis pairs are chosen in this task, there
is often little to no information in the text of false pairs that could help us
logically infer the hypothesis, making it very difficult to find a case where the
hypothesis cannot be false. Being unable to find contradictions with the hypoth-
esis, the backoff strategy is forced to drop a large number of predicates from
the hypothesis and return extremely low scores for the false entailment pairs.
The large difference between the true and false entailment scores allows us to
easily separate the pairs and establish an appropriate threshold which results in
an extremely high precision. In the following example very few words overlap
and there are no axioms that can be used to derive knowledge that supports the
hypothesis, making it easy for Cogex to falsely derive entailment.

Text: Hyperhidrosis is more common than you think. This condition
affects 1 out of 25 people.
Hypothesis: Asians have an even higher rate of incidence—1 of every
5 suffers from hyperhidrosis.

Cogex’s worst accuracy was received in the paraphrase acquisition applica-
tion setting. Additionally, the system’s best recall is received in this application
setting. This phenomenon is also due to the method in which this set of entail-
ment pairs was constructed. The hypothesis and text sentences of these pairs
tend to have a larger percentage of overlapping words which means that in cases
where entailment exists, little inferencing work is required to prove it. However,
when entailment does not exist, the backoff strategy is only required to relax a
minimal number of constraints posed by hypothesis to arrive at a proof. Thus,
high scores are returned for proofs whether or not entailment exists as shown
by the mean true and mean false scores. The same can be said for the pairs in
the information extraction application setting. The following is an example of a
pair Cogex incorrectly labels as True due to the high word overlap.

Text: Design problems would delay the release of mobile computer chipset
dubbed Alviso until next year.
Hypothesis: Design problems would allow the release of mobile com-
puter chipset dubbed Alviso until next year.

The main hindrances to Cogex’s performance were defects in the knowledge
representation, unsound axioms, and an incomplete axiom set. The logic form
representation utilized by Cogex is generated from a statistical parse which is
not always accurate and without a correct parse it is impossible to generate a



442 D. Hodges et al.

Table 3. Accuracy of knowledge representations

Layer Component Accuracy

1 Syntactic Parser and Logic Form Transformations 86%
2 Polaris Semantic Relations 40%

correct logic form. The semantic layer of the logic form representation is gener-
ated by our semantic parser which currently is only able to detect a subset of the
semantic relations in open text. Table 3 summarizes the accuracy of each layer
of the knowledge representation. We experimented by spending some time hand
correcting a small set of the logic forms in the test set and immediately received
a higher accuracy. Additionally, our current logic form representation does not
support negation which is a necessary ability to handle a number of the pairs in
the test set. An analysis of how unsoundness and incompleteness in the axiom
set affected Cogex is provided in Section 7.5.

An additional hindrance to Cogex’s performance is the scoring algorithm.
The results in Table 2 show that in a number of the tasks the mean true score is
less than the mean false score. This suggests that the current scoring algorithm,
which was originally designed for our question answering system, may not be
appropriate for all of these different entailment recognition tasks. This failure is
exemplified by the paraphrase acquisition example presented above.

7.2 Development Set

Performance results for the development sets are presented in Table 4. There is
a quite a large difference in the performance of the system between the two data
sets and the test set, which indicates that there is not a sufficient number of text-
hypothesis pairs in either set to provide a solid representation of the reasoning
requirements of this entailment recognition task. Having only the development
sets as training data for our system, we were forced to use them to determine
appropriate thresholds for the system’s operation on the test set.

Table 4. Results for the development set

Data Set Accuracy CWS Precision Recall F-measure

dev1 .648 .663 .646 .650 .648
dev2 .609 .510 .589 .736 .654

7.3 Annotator Agreement

During the development process we attempted to produce our own set of anno-
tations for the test set to get an idea of how the system was performing. During
this annotation process there were numerous disagreements among ourselves and
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upon receiving the key we found even more disagreements with the “Gold Stan-
dard” annotations. Ultimately, we found 77 pairs in the test set for which we
disagreed upon the appropriate annotation, yielding a Kappa statistic of 0.8075.
The source of the disagreement among ourselves and the key set is due to the
different accepted definitions of entailment. Implicature is used throughout nat-
ural language to express information that should be entailed by text without
concretely stating it, making it difficult for any reasoning system to detect the
presence of entailment. Another pitfall is in the underspecification of context
information. A single natural language sentence can take on many meanings in
different contexts, and understanding which context is being used is necessary to
determine if entailment exists. Until a universally agreed-upon first order logic
form representation of text can be developed, it will be impossible to develop an
entailment data set with 100% agreement. Consequently, the annotator percent-
age of agreement should be established as an upper bound for the entailment
recognition task.

7.4 Proof Difficulty

Before evaluating the text-hypothesis pairs in the test set with our system, we
manually determined how difficult it is to prove entailment in each of the true
entailment text-hypothesis pairs. We established five different difficulty levels:
easy, moderate, difficult, intractable, and invalid. Proofs are considered easy in
cases where the entailment is simply a matter of eliminating information from
the first sentence, recognizing an apposition, or replacing one or two words with
synonyms. Proofs are considered moderately difficult when one or more axioms
are required to derive the second sentence of the entailment pair from the first
one. The expectation is that all entailment pairs that have been deemed easy
or moderate can be handled by our current system implementation provided
sufficient axioms are created by the system. Difficult proofs are those that cannot
be handled by Cogex without adding substantial new functionality, such as
negation, coreference resolution, and predicate variables in axioms, or without
using ad hoc axioms, those not applicable beyond the case which motivates
them. We have labeled text-hypothesis pairs as intractable if we believe that
entailment could not be correctly detected by an automated system. Invalid is
used to indicate that, in our opinion, an entailment pair which was labeled TRUE
should have been labeled FALSE.

Table 5 illustrates the distribution of text-hypothesis pairs for each difficulty
level and the system’s ability to detect entailment at the different difficulty lev-
els. It is clear that Cogex’s performance on the text-hypothesis pairs classified
as easy or moderate is significantly better than its performance on other pairs.
Many of the text-hypothesis pairs with the moderate classification require some
external world knowledge or additional linguistic rewriting rules to enable Co-
gex to find better proofs. As expected, the system’s unsound and incomplete
axiom set is one of the biggest hindrance to its performance, but what is in-
teresting is that completeness seems to be more important than soundness. We
suspect that providing the system with additional resources for dynamic axiom
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Table 5. Results for the true entailment pairs of the test set categorized by proof
difficulty

Difficulty Pairs Accuracy CWS

easy 81 .852 .892
moderate 122 .582 .610
difficult 126 .444 .413
intractable 1 1.000 1.000
invalid 70 .457 .501

generation should enable it to successfully prove many of these pairs classified as
moderate. However, caution should be used in the generation of unsound axioms
due to their ability to generate false positives. Since our system is designed to
accurately detect entailment in only the easy and moderate cases, we expect that
with a perfect axiom set the system can accurately detect entailment in 50.75%
of the pairs in the test set.

7.5 Axiom Effectiveness

Having determined that the performance of the system is highly dependent upon
the axiom set that is made available to it, we performed an analysis of the
effectiveness of each axiom class employed by Cogex. For this analysis, we used
the test set and different empirically chosen thresholds for each system run. It
was necessary to choose different thresholds for each system run because the
different axiom classes have a significant effect on proof scoring and accordingly,
threshold selection. We ran these experiments with semantic relations enabled
and disabled to determine the contribution they make to Cogex’s performance.
The results of this analysis are provided in Tables 6 & 7. None corresponds to
the system’s baseline performance without any axioms, LRR corresponds to the
linguistic rewriting rules described in Section 4.2, LEX corresponds to the lexical
chain axioms described in Section 4.1, WK corresponds to the world knowledge
axioms described in Section 4.4, and all corresponds to the system with all of
the above axioms in place.

It is initially somewhat startling to see how well the system performs without
any axioms enabled, but there is good reason for this. Without any axioms
Cogex operates very much like a word overlap detector and word overlap is a
property that is often exhibited by true entailment pairs. Additionally, an axiom-
less Cogex is still able to verify syntax constraints posed by the hypothesis,
allowing it to demote pairs in which these constraints are not met.

The addition of the linguistic rewriting rules to the axiom set only provides a
small boost to the system’s performance, which indicates that in many cases the
barrier to entailment detection is not the syntax constraints that are resolved
by these axioms. Also, many of the problems that these axioms are designed
to resolve can be handled by unbinding predicate arguments, an action of the
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Table 6. System performance per axiom set configuration without semantic relations

Axiom Class Accuracy CWS Precision Recall F-measure

none .574 .580 .561 .687 .618
LRR .578 .583 .564 .692 .622
LEX .584 .562 .562 .777 .652
WK .572 .577 .556 .722 .628
LRR+LEX .585 .563 .563 .769 .650
LRR+WK .574 .579 .559 .709 .625
LEX+WK .582 .558 .557 .805 .658
all .584 .560 .561 .784 .654

Table 7. System performance per axiom set configuration with semantic relations

Axiom Class Accuracy CWS Precision Recall F-measure

none .579 .579 .569 .662 .612
LRR .580 .578 .567 .687 .621
LEX .585 .561 .566 .742 .642
WK .578 .573 .565 .689 .621
LRR+LEX .585 .561 .563 .764 .648
LRR+WK .579 .574 .562 .724 .633
LEX+WK .587 .553 .563 .779 .654
all .588 .555 .566 .764 .650

backoff strategy that is not heavily penalized by Cogex. However, an important
result of the addition of these axioms is that both precision and recall receive
a proportionally significant boost which verifies that these axioms for the most
part are sound and contribute to the completeness of the axiom set.

Lexical chain axioms provide a much more significant boost to Cogex’s
performance. The ability to recognize synonyms in the text and hypothesis is
an important skill for this entailment recognition task. The most significant
performance boost occurs for the recall metric which indicates that these axioms
are of extreme importance to the completeness of the axiom set. The system’s
precision receives a proportionally small boost which leads us to believe that
some of the lexical chain axioms being produced are unsound. The f-measure
and accuracy show that this is clearly a case where sacrificing soundness for
completeness is a good idea. The combination of linguistic rewriting rules and
lexical chains produces the system’s highest accuracy of 58.5%. In this case
Cogex’s recall is primariliy driven by the lexical chain axioms and the system
receives a slight boost in precision with the addition of the linguistic rewriting
rules. This configuration is optimal because both of these sets of axioms are able
to contribute to the completeness of the axiom set without adding a significant
amount of unsound behavior.
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An interesting result occurs when the system has only the relatively small
set of hand-coded world knowledge axioms available. The accuracy and precision
both drop significantly, but the recall goes way up. Just as with the lexical chain
axioms, the recall boost is a sign of the contribution to the axiom set’s complete-
ness and the precision drop is a sign of unsound axioms. This is a surprising result
since this set of axioms was hand-coded, which we felt would ensure soundness
and not necessarily completeness. However, the task of producing sound axioms
is a much more difficult than it appears to be on the surface, and naturally we
attempt to generate axioms that are as general as possible to encourage com-
pleteness which, in turn leads to unsoundness. Word sense disambiguation is a
necessary element for these common-sense axioms because in most cases they
apply for only one sense of the word, and since we were forced to do without
it, it is not surprising to see the axioms being used in an unsound manner.
Furthermore, all of these axioms were created without examining the test set,
which prevented us from creating world knowledge axioms that were necessary
for pairs in the test set. Just as with the lexical chains, the addition of linguis-
tic rewriting rules to the world knowledge axioms improves Cogex’s ability to
recognize entailment in a few cases where linguistic knowledge is required. The
addition of world knowledge axioms to the lexical chain axiom set results in the
highest recall indicating that these two axiom sets do contribute significantly to
Cogex’s completeness but also lower accuracy and precision scores due to the
unsoundness of the world knowledge base.

As expected from previous results, running the system with all axiom sets
enabled produces slightly worse performance than running the system with just
linguistic rewriting rules and lexical chain axioms. Here, the system’s accuracy
is being supported by the large number of sound axioms being generated by
linguistic rewriting rules and the lexical chain axioms and only receives a small
hit in performance due to the world knowledge axioms. Thus, we can conclude
that there is a trade-off between soundness and completeness and the key to
good performance is to utilize axiom sets that do not sacrifice too much of one
for the other.

Overall, the addition of semantic relations to the logic form boosts accuracy
and precision while hurting recall. Semantic relations force Cogex to reconcile
the hypothesis’s semantic constraints as well as the lexical and syntactic con-
straints posed by the first layer of the logic form. The additional constraints as
well as the representation’s incomplete semantic layer, due to semantic parser’s
accuracy, make it more difficult for Cogex to find proofs for each text-hypothesis
pair, and as a result, recall drops. However, the new requirement that the se-
mantics of the hypothesis be entailed by the semantics of the text significantly
increases precision and accuracy.

With semantic relations enabled, it is no longer the case that the LRR+LEX
axiom set combination produces the best performance. We suspect the rea-
son for this is the significant weight that is given to semantic relation predi-
cates. Due to the method in which normalized scores are calculated, as show in
Equation 1, the addition of this weight to each semantic relation effectively



Applying COGEX to Recognize Textual Entailment 447

diminishes the importance of all the other predicates in the logic form. Thus,
the syntactic constraints of the hypothesis become less important and the addi-
tion of linguistic rewriting rules does little to improve performance. Our semantic
relations parser is currently only returning a proportionally small number of re-
lations and we suspect that as we are able to detect more semantic relations,
Cogex’s performance will increase for the entailment recognition task.

8 Conclusion

The ability to accurately recognize textual entailment adds significant value to
any natural language processing system. Entailment recognition systems based
purely on word overlap, lexical similarity, or statistical analysis cannot offer
the level of reasoning that is required by the majority of the entailment pairs
presented in this task and more importantly the level of reasoning required in
real world applications. The logic prover is an essential tool in advancing the
reasoning capabilities of natural language systems closer to the human level.

Our system, Cogex, shows great potential for performing high level reason-
ing in natural language. This paper has detailed the major components involved
in our natural language prover and what barriers there are to it’s performance.
Our syntactically and semantically rich knowledge representation allows us to
capture both explicit and implicit knowledge expressed in open text. The large
collection of static and dynamically generated axioms produced by Cogex help
to boost the accuracy and recall of our entailment recognition system. The novel
backoff strategy employed by Cogex allows the system to handle the shortcom-
ings of the knowledge representation and the axiom set.

The performance of Cogex in this entailment recognition task was on par
with the rest of the systems in the challenge and we believe that through the
development of a better syntactic parser and a knowledge representation that
includes more high level concepts implicitly stated in text, we will be able to
provide Cogex with a much more accurate representation of text. Additionally,
the implementation of new resources for axiom generation will vastly improve
the performance of Cogex.
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Abstract. We describe the system we used at the PASCAL-2005 Recognizing
Textual Entailment Challenge. Our method for recognizing entailment is based
on calculating “directed” sentence similarity: checking the directed “semantic”
word overlap between the text and the hypothesis. We use frequency-based term
weighting in combination with two different word similarity measures.

Although one version of the system shows significant improvement over ran-
domly guessing decisions (with an accuracy score of 57.3), we show that this is
only due to a subset of the data that can be equally well handled by simple word
overlap. Furthermore, we give an in-depth analysis of the system and the data of
the challenge.

1 Introduction

The Recognizing Textual Entailment (RTE) challenge, which is organized within the
PASCAL network (Pascal), is a task where systems are required to detect semantic
entailment between pairs of natural language sentences. For example, the sentence

– The memorandum noted the United Nations estimated that 2.5 million to 3.5 million
people died of AIDS last year

is considered to logically entail the sentence

– Over 2 million people died of AIDS last year.

While the recognition of textual entailment is not an end-to-end task in itself, it is
generally felt that robust entailment checkers have the potential of improving the per-
formance of systems for a variety of end-to-end tasks, including reading comprehen-
sion, question answering, information extraction, machine translation, and paraphrase
acquisition.

In principle, the RTE challenge offers opportunities for a broad spectrum of tech-
niques, ranging from shallow baseline approaches based on lexical overlap and word
similarity measures well-known from the field of information retrieval to methods based
on deep natural language processing that require significant amounts of elaborate
knowledge engineering. At the PASCAL-2005 RTE challenge the whole spectrum was

J. Quiñonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 449–460, 2006.
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represented; see (Dagan et al., 2005a). Our focus is on methods situated at the light-
weight end of the scale. The main research aim for our participation in the PASCAL-
2005 RTE challenge was to understand the potential and limitations of simple entail-
ment checking methods based on word similarity. More specifically, in this paper we
address the following issues:

– How well does a baseline entailment checker based on word similarity work? How
much do similarity measures contribute to the performance?

– When determining whether a pair of sentences is a positive entailment instance, the
similarity score between the two sentences needs to be above some threshold. How
reliably can this threshold be estimated from development data?

– How well does our light-weight similarity measure separate positive and negative
entailment examples?

– What are easy cases where word similarity methods are likely to succeed, and what
are hard cases where they are likely to break down and where more elaborate meth-
ods are called for?

The remainder of the paper is organized as follows. In Section 2 we describe our sys-
tem and provide details on the setting used for our experiments. Then, in Section 3
we compare several versions of the system and explore the contributions of its various
components. In Sections 4–8 we describe more general and methodological issues, in-
cluding thresholding, the distribution of positive and negative examples, and easy vs.
hard cases for our system. We wrap up in Section 9.

2 System Description and Experimental Setting

At the Pascal-2005 RTE challenge, systems had to address the following task: given a
pair of sentences T , H (text, hypothesis), determine whether T logically entails H and
provide an estimate of the system’s confidence. The example entailment pairs come
from a number of natural language processing (NLP) areas: comparable documents
(CD), reading comprehension (RC), question answering (QA), information extraction
(IE), machine translation (MT), and paraphrase acquisition (PP). See (Dagan et al.,
2005a) for further details.

To address the RTE challenge, we proceed as follows. For every text, hypothesis
pair (T,H), we view each sentence as a bag of words and calculate a directed sentence
similarity score between them. To check for entailment, we compare the score against
a threshold. This method is implemented as shown in the pseudo-code in Figure 1.
Essentially, for every word in the hypothesis H we find the most similar word in the
text T according to the measure wordsim(w1,w2). If such a similar word exists (i.e.,
maxSim is non-zero), we add the weighted similarity value to the total similarity score.
Otherwise, we subtract the weight of the word, penalizing words in the hypothesis with-
out matching words in the text.

The threshold for the final entailment checking is selected using the development
corpus of text, hypothesis pairs (see Subsection 2.3). The confidence of a decision made
by the system is determined by looking at the distance between the similarity value and
the threshold. For example, for positive decisions (sim≥ threshold):
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let T = (T1,T2, . . . ,Tn)
let H = (H1,H2, . . . ,Hm)
totalSim = 0
totalWeight = 0
for j = 1 . . .m do

maxSim = maxi wordsim(Ti,Hj)
if maxSim = 0 then maxSim =−1
totalSim += maxSim∗weight(Hj)
totalWeight += weight(Hj)

end for
sim = totalSim/totalWeight
if sim≥ threshold then return TRUE
return FALSE

Fig. 1. Pseudo-code for our textual similarity method: determining whether the text T entails the
hypothesis H

confidence =
sim− threshold
1− threshold

The algorithm is parametrized with two functions:

– weight(w): the importance of the word w for the similarity identification;
– wordsim(w1,w2): the similarity between the two words w1 and w2 , with range

[0,1].

Next, we describe the choices we considered for these two functions.

2.1 Weighting Words

The weighting of words with respect to importance is based on core intuitions from
research in Information Retrieval, where Inverse Document Frequency (IDF) is often
used as a measure of term importance; see e.g., (Baeza-Yates and Ribeiro-Neto, 1999).
Recently, Monz and de Rijke (2001) used IDF for light-weight entailment checking in
the setting of information fusion: merge information (i.e., text snippets) on a single topic
but try to avoid redundancy, i.e., if a snippet entails another segment, only the entailing
segment should be included in the fused information; in that paper, evaluation was done
using a purpose-built corpus.

For our experiments in the present paper we use the normalized inverse collection
frequency of words, calculated on a large collection of newspaper texts. That is, for a
word w we compute

ICF(w) = log
# occurences of all words

# occurences of w
,

and the actual weight of a word is calculated as normalized ICF, so that, for instance,
the weight for the most frequent word (“the”) is 0.
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2.2 Word Similarity Measures

We experimented with two similarity measures: Dekang Lin’s dependency-based word
similarity (Lin, 1998) and the measure based on lexical chains in WordNet due to
Hirst and St-Onge (1998). For both measures, words were first converted to lemmas.
Our choice of the measures was motivated by their relative “promiscuity”, i.e., the fact
that they identify as similar more word pairs than other measures, as indicated by the
analysis of five WordNet-related measures in (Budanitsky and Hirst, 2001) and our own
experiments with Lin’s dependency-based similarity. In future work we plan to study
whether promiscuity is indeed helpful in the context of textual entailment.

We used both similiary measures for our official submission, as described in
(Jijkoun and de Rijke, 2005). The dependency-based similarity measure performed
somewhat better (accuracy 55.3 vs. 53.6). For this reason, we only focus on Lin’s
dependency-based word similarity in the remainder of this paper.

2.3 Experimental Setting

For the experiments described below, we used the material provided by the organizers
of the Pascal-2005 RTE challenge: a development and test corpus, with 567 and 800
sentence pairs, respectively, manually annotated for logical entailment.

The evaluation measures used are accuracy (A), confidence-weighted score (CWS),
as well as precision (P) and recall (R) for the entailment identification; see (Dagan et al.,
2005a) for details.

3 Versions of the System

In this section we present and discuss several versions of our entailment checker. Our
aim is to understand how well the word similarity-based system works and what the
contribution of different components is, thus addressing the first of the research ques-
tions raised in the introduction.

The design of our system involves a number of important choices, whose effects
are not obvious: (i) weighting words by importance, and (ii) using a word similarity
measure. We want to determine whether the use of these techniques is justified.

In addition to these choices, we considered an option motivated by examples from
the development corpus, like

T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.

Clearly, the text T does not entail the hypothesis H because of the presense of “not.” We
added a simple ad-hoc rule to the system, that checks for not or n’t in both sentences of
a pair, and rejects entailment if a particle is present in exacly one of the two sentences.

In our experiments we evaluated the following versions of the system:

– M: the main version, with word importance weighting, Lin’s word similarity and
the rule for handling not,

– M-not: the same but without the not-rule,
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Table 1. Accuracy, precision, and recall scores for (different flavors of) our baseline system

M M-not M-not-sim M-not-sim-imp
optimal threshold 0.4 0.4 0.2 0.3
accuracy on development corpus 58.2 56.6 57.1 57.0
accuracy on test corpus 57.3 57.1 54.4 54.3
precision on test corpus 55.1 54.7 53.0 53.3
recall on test corpus 78.8 83.5 76.3 69.3

– M-not-sim: also without word similarity, and
– M-not-sim-imp: also without word weighting.

Note that the simplest version of the system, M-not-sim-imp, assigns entailment scores
based solely on word overlap.

The results are presented in Table 1. There, we list the various flavors of our baseline
system; the threshold values used as listed in row 2. Optimal thresholds were chosen so
as to maximise accuracy on the development corpus.1

Interestingly, in Table 1 we see that the more “elaborate” system M outperform-
seach of its subsystems, both on the development corpus and on the test corpus with
automatically selected threshold. Looking at the accuracy scores on the test corpus, we
see that each component of the main system M adds to the overall score, weighting
helps (54.4 vs. 54.3), word similarity helps (57.1 vs. 54.4) and the not-rule helps (57.3
vs. 57.1). Another thing worth noting is that the simplest system, M-not-sim-imp, does
not perform significantly better than random (which was the intention of the organiz-
ers Dagan et al. (2005a)), while M does.

With respect to the 25 full runs submitted to the PASCAL-2005 RTE Challenge
(Dagan et al., 2005a), both M and M-not (with accuracy scores of 57.3 and 57.1, respec-
tively) perform above the median (55.2) and are only outperformed by the Web-based
probabilistic system of Glickman et al. (2005) and the MT-based system of Bayer et al.
(2005) (both with accuracy scores of 58.6). While this might be interpreted as a “suc-
cess” for our simple methods, we interpret this outcome as an indication that deep lan-
guage technology still faces very non-trivial challenges in recognizing textual
entailment.

There are some further observations worth making. While differences in accuracy
scores on the test corpus between the systems M and M-not are insignificant, their per-
formance on the development corpus differs more substantially. However, in our further
experiments with random splittings of the Pascal-2005 RTE collection into development
and test data (see below), behavior of all versions of the system was similar on both
corpora.

Summarizing our findings in this section, we claim that whereas simple word-
overlap methods do not work well for the RTE task, they can be easily extended with

1 As an aside, the system used to generate the official runs that were submitted for our participa-
tion in the Pascal-2005 RTE challenge (M-not) actually showed an accuracy score of 55.3; due
to a bug, the threshold of 0.5 used there was selected based only on half of the development
corpus. Had we used the entire development corpus for our official runs, the accuracy score
would have been 57.1, as in Table 1, row 4.
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simple weighting and word similarity measures, resulting in a system with a competitive
performance.

4 Choosing a Threshold

Next, we turn to the second of our research questions from the introduction: How robust
is the choice of thresholds? We approached this question from a number of angles.

To check how sensitive the different versions of the system are to varying corpora,
we performed several experiments, splitting the entire collection randomly into devel-
opment and test data, keeping the proportion of positive/negative examples and exam-
ples for the six subtasks as they were in the original split (i.e., in total 567 pairs for
development and 800 pairs for testing). For each split and each version of the system,
the optimal threshold was selected on the development data and then applied to the
test data. The results, for the systems M and M-not-sim-imp, are presented in Table 2.
While there is some variation in the resulting accuracy scores for M, all are significantly
better than random at the 0.01 level (Dagan et al., 2005a). These experiments indicate
that the system’s behavior is consistent and that fine-tuning entailment thresholds on
development data does generally produce good performance on test examples.

Our next observation concerns the performance on the development corpus vs. the
performance on the test corpus: the former is not necessarily a good predictor of the
latter. In particular, while simple subsystems (M-not-sim and M-not-sim-imp) perform
reasonably well on the development corpus, their performance on the test corpus is
substantially lower. In our experiments with random splittings, we observed a similar
phenomena: whereas generally better performance on the development corpus led to
better performance on the test data (with thresholds tuned on the development corpus),
we were unable to establish strong statistical correlation (we used Spearman’s rank
correlation coefficient).

In an attempt to see how the choice of threshold depends on the choice of corpus,
we looked at the performance of the versions of our system with different thresholds.
Figure 2 shows the accuracy on the development and test data depending on a threshold,
for the full system M (top) and the simplest subsystem M-not-sim-imp (bottom).

While for the simplest system, M-not-sim-imp, thresholds optimal for the develop-
ment corpus are clearly suboptimal for the test corpus (the peaks in accuracy are located
at different values of the threshold), for the full system, M, the correlation is very high.
This does indeed indicate that for simple overlap (M-not-sim-imp) the optimal threshold
is highly corpus-dependent, but that the choice is quite consistent in the more complex
system (M). That is, M’s reasonable performance is not an accident.

Table 2. Accuracy scores based on alternative optimal thresholds: as estimated on the official
development corpus (Official), and on 10 random splittings of the development and test corpus
(Min, Max, Median)

System Official Min Max Median
M 57.3 54.9 57.8 57.0
M-not-sim-imp 54.3 52.5 56.5 55.1
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Fig. 2. (Top): thresholds on the main system M. (Bottom): thresholds on the simplest system M-
not-sim-imp. The horizontal axis shows possible thresholds, and the vertical axis—accuracy of a
system.

We have not systematically investigated how the size of the development corpus af-
fects the quality of threshold, but anecdotal evidence (the bug in our official submission,
see footnote 1) suggests that the size of the development corpus is an important issue,
and that at least several hundreds of pairs are necessary for training.

Finally, we hypothesize that the optimal thresholds depend on the source of the ex-
amples, i.e., they may be different for the seven subtasks (CD, IE, MT, QA, RC, PP, IR).
However, since currently only 50–100 entailment pairs are available for development
per subtask, it is difficult to support this claim experimentally at this time.
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5 The Distribution of Positive and Negative Examples

Every system that makes an entailment decision based on a threshold of some similarity
score between the text and the hypothesis (e.g., most systems in the PASCAL-2005 RTE
Challenge) is based on the assumption that the similarity scores somehow separate neg-
ative and positive examples. Ideally, for a good variant of a similarity scoring method,
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Fig. 3. Distribution of true positive and negative examples. (Top): for the full system M. (Bottom):
for the system without the not-rule (M-not). The horizontal axis gives the possible values of the
system’s entailment score, and the vertical axis shows the number of pairs (positive vs. negative)
with this entailment score.
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negative examples would mostly have low scores and positive examples—mostly high
scores.

To see whether this is indeed the case for our entailment checkers, we plotted the
number of true positive and true negative entailment pairs that were assigned different
scores by the system. Figure 3 shows the results for the systems M and M-not on the
full corpus of 1367 entailment pairs.

Quite surprisingly, for the word-similarity based system M-not (Figure 3(Bottom))
the distributions of positive and negative examples with respect to the score of the sys-
tem are very similar and the graphs have peaks near the same values. Most negative
examples are “concentrated” around the same entailment score as positive examples.
Moreover, there are actually more negative than positive examples with entailment
score 1. This means that the system does not really manage to separate positive and
negative examples, but simply uses the fact that the distribution of negatives is some-
what “flatter”: the peak around score 0.8 is lower and some mass is moved left, to lower
values. It seems that the “only” reason the system shows a performance that is better
than random is that the distribution of the negative examples with respect to weighted
word overlap is flatter than the distribution of the positive examples (except for the high
peak in both distributions around score 1.0).

Note that the situation is somewhat different when we include our simple not-rule
(Figure 3(Top)). Now, negative examples have a second clear peak around 0 (this is
exactly the entailment score assigned by the not-rule). Apart from improving accuracy,
it seems that the not-rule actually does something reasonable, providing for a somewhat
clearer separation between positive and negative examples.

As an aside, for the other, simpler subsystems (M-not-sim and M-not-sim-imp), the
slopes of the graphs are even flatter and the two curves are even closer together, making
it even more difficult to separate positive and negative examples.

In sum, we conclude that in general, the similarity-based system M fails to actually
separate positive and negative examples of the entailment pairs: their distributions with
respect to the system’s score are very similar. A more substantial separation is only
achieved using the ad-hoc not-rule.

6 Easy vs. Hard Cases

Ideally, we would want to use our word similarity-based system to identify entailment
pairs that are “hard” for a purely word-based systems, i.e., where more sophisticated
analysis (syntactic relations, reasoning with world knowledge) is required. Can we use
a variant of our entailment checking methods to find such “hard” cases?

Unfortunately, the answer seems to be “no.” As the curves in Figure 3 indicate,
there is no single region among possible entailment scores with a substantial number of
TE examples and high confidence of the system (i.e., mostly positive or mostly negative
examples). As mentioned previously, the distributions of positive and negative examples
are fairly similar. The best observation we were able to make is that among TE pairs
with scores less than 0.1 (216 pairs of 1367, or 16%), as much as 69% of the pairs
were negative entailment examples. Still, we believe that the accuracy 0.69 is not high
enough to consider these examples as “easy.”
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For now it seems that we need a different way of identifying “easy” vs. “hard”
cases—a reliable category of “easy” examples is identified in the next section.

7 Performance on Different Subtasks

We also compared the performance of our entailment checking system on different
subtasks, reflecting the different sources from which the entailment pairs were selected
by the task organizers. The table below shows the accuracy, precision and recall of the
system M for all subtasks:

Subtask Accuracy Precision Recall
CD 84.0 84.9 82.7
IE 59.2 55.2 96.7
MT 45.8 46.8 60.0
QA 46.2 47.0 60.0
RC 52.1 51.2 92.9
PP 56.0 53.5 92.0
IR 50.0 50.0 71.1
Overall 57.3 55.0 78.8

From the table it is clear that the overall accuracy of the system is relatively high only
due to the reasonable performance on the CD (comparable documents) subtask. This
particular subtask appears to be quite easy for our system, whereas on other tasks the
performance is not better than randomly guessing. Manual examination of the entail-
ment candidate pairs from the CD subtask shows that the pairs usually have many words
in common. Here are two examples:

(T) Voting for a new European Parliament was clouded by concerns over apathy.
(H) Voting for a new European Parliament has been clouded by apathy.

Entailment: TRUE, System’s score: 0.88

(T) A small bronze bust of Spencer Tracy sold for $174,000.
(H) A small bronze bust of Spencer Tracy made $180,447.

Entailment: FALSE, System’s score: 0.44

In the second example the similarity is substantially lower since the numbers (which
occur relatively rarely in our newspaper collection, and thus get higher weight) are
different.

In our subsequent analysis, we found that even the subsystem M-not-sim-imp (sim-
ple word overlap) performed well on the CD subtask, with an accuracy score of 86.0.
This suggests that examples from the CD task can indeed be considered “easy” and that
they probably need not be included in future editions of the RTE task.

When CD examples were removed from the development and testing corpora, the
system did not perform better than random (accuracy 51.2). We interpret this as a good
sign: examples from other subtasks, apparently, require other, deeper methods of entail-
ment recognition.
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8 Precision and Recall

For all subtasks, except CD, our precision scores are substantially worse than our recall
scores. The system M judged 72% of the test pairs as positive, compared to 50% true
positives in the test set. This comes as no surprise: since most examples have entailment
scores larger than the selected threshold (see Figure 3), most errors are also in this
“positive” area, thus most errors are false positives.

In many classification problems thresholds can be used to fine-tune the precision-
recall balance, which is obviously a very useful option for any real-world application.
However, we found that for our system precision on the test data cannot be improved by
changing the threshold. This is due to the great uncertainty for large values of the entail-
ment score (Figure 3) and unseparability of positive and negative examples mentioned
above.

9 Conclusions

We described a system for recognizing textual entailment based on lexical similarity.
Although the system performs significantly better than randomly guessing, the reason-
able performance is only based on one subtask (CD, comparable documents). For this
subtask even much simpler systems (viz. plain word overlap) give similar performance.
For all other subtasks none of the variants of our system performed better than random.
Moreover, we found that the system cannot be further tuned without overfitting, which
indicates that other, deeper textual features need to be explored.
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Dorkó, Gyuri 117
Duffner, Stefan 117
Dunnion, John 372

Eichhorn, Jan 117
Everingham, Mark 117

Farquhar, Jason D.R. 117
Ferro, Lisa 309
Fowler, Abraham 427
Fritz, Mario 117

Garcia, Christophe 117
Girju, Roxana 261
Glickman, Oren 177, 287
Griffiths, Tom 117

Henderson, John 309
Herrera, Jesús 231
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Pérez, Diana 191
Punyakanok, Vasin 261
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