Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3857))

Abstract

The bilinear mapping technique that uses the (Weil and Tate) pairings over elliptic (or hyperelliptic) curves represents a great breakthrough in cryptography. This paper surveys this new trend in cryptography, and emphasizes the design of efficient cryptographic primitives that are provably secure in the standard model (i.e., without the random oracle model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateniese, G., Camenisch, J., de Medeiros, B., Hohenberger, S.: Practical Group Signatures without Random Oracles, IACR ePrint Archive, 2005/385 (2005), http://eprint.iacr.org/2005/385

  2. Barreto, P.: The Pairing-Based Crypto Lounge, http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html

  3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures: How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Google Scholar 

  6. Boldyreva, A.: Threshold Signature, Multisignature and Blind Signature Schemes Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

    Google Scholar 

  10. Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006), http://crypto.stanford.edu/~dabo/abstracts/threshold.html

    Chapter  Google Scholar 

  11. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001); Journal version in SIAM Journal of Computing 32(3), 586–615 (2003)

    Chapter  Google Scholar 

  12. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-Based Techniques. In: Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS 2005. ACM, New York (2005); Full version available at http://www.cs.stanford.edu/~xb/ccs05/

    Google Scholar 

  15. Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles, IACR ePrint Archive, 2005/381 (2005), http://eprint.iacr.org/2005/381

  16. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Google Scholar 

  18. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003); Full version available at http://eprint.iacr.org/2003/083

    Chapter  Google Scholar 

  19. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004); Full version available at http://eprint.iacr.org/2003/182

    Chapter  Google Scholar 

  20. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  21. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption. ACM TISSEC 3(3), 161–185 (2000); Extended abstract in Proc. 6th ACM CCS (1999)

    Article  Google Scholar 

  22. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs and Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Fischlin, M.: The Cramer-Shoup Strong-RSA Signature Scheme Revisited. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Gentry, C., Silverberg, A.: Hierarchical Identity-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000); Journal version in Journal of Cryptology 17(4), 263–276 (2004)

    Chapter  Google Scholar 

  28. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels, IACR ePrint Archive, 2005/076 (2005), http://eprint.iacr.org/2005/076

  29. Menezes, A., Okamoto, T., Vanstone, S.: Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. IEEE Transactions on Information Theory 39, 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Miller, V.: The Weil Pairing, and its Efficient Calculation. Journal of Cryptology, 17(4) (2004)

    Google Scholar 

  31. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve Traces for FR-reduction. IEICE Trans. Fundamentals E84-A(5) (2001)

    Google Scholar 

  32. Okamoto, T.: Efficient Blind and Partially Blind Signatures Witout Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairings. In: Symposium on Cryptography and Information Security, SCIS 2000, Japan (2000)

    Google Scholar 

  34. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  35. Verheul, E.: Self-blindable Credential Certificates from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  36. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005), http://eprint.iacr.org/2004/180

    Chapter  Google Scholar 

  37. Zhang, F., Chen, X., Susilo, W., Mu, Y.: A New Short Signature Scheme Without Random Oracles from Bilinear Pairings, IACR ePrint Archive, 2005/386 (2005), http://eprint.iacr.org/2005/386

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okamoto, T. (2006). Cryptography Based on Bilinear Maps. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2006. Lecture Notes in Computer Science, vol 3857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617983_3

Download citation

  • DOI: https://doi.org/10.1007/11617983_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31423-3

  • Online ISBN: 978-3-540-31424-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics