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Abstract. The XSL “algorithm” is a method for solving systems of
multivariate polynomial equations based on the linearization method. It
was proposed in 2002 as a dedicated method for exploiting the structure
of some types of block ciphers, for example the AES and Serpent. Since
its proposal, the potential for algebraic attacks against the AES has been
the source of much speculation. Although it has attracted a lot of atten-
tion from the cryptographic community, currently very little is known
about the effectiveness of the XSL algorithm. In this paper we present
an analysis of the XSL algorithm, by giving a more concise description
of the method and studying it from a more systematic point of view. We
present strong evidence that, in its current form, the XSL algorithm does
not provide an efficient method for solving the AES system of equations.
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1 Introduction

In 2002 Courtois and Pieprzyk showed that recovering an AES encryption key
was equivalent to solving a large system of multivariate quadratic equations over
a small finite field [10,11]. They exploited the fact that the only non-linear com-
ponent of the cipher (the S-Box) is based on the inverse map over the finite field
F28 , and were able to obtain a set of multivariate quadratic equations that com-
pletely described the S-Box transformation. By combining all equations through-
out the cipher, they were able to express the full encryption transformation as
a large, sparse and overdefined system of multivariate quadratic equations over
F2 (in total 8000 equations with 1600 variables for the AES with 128-bit keys).

The problem of solving systems of multivariate quadratic equations over a
finite field is known to be NP-complete, and it is widely believed that the com-
monly applied techniques (such as Gröbner Basis algorithms) cannot generally be
used for efficiently solving systems with more than a handful of variables. How-
ever the system derived from the AES is very structured, and the hope is that a
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dedicated method can exploit this rich structure. With that in mind, a method
called XSL was proposed in [10,11], which it was claimed could provide an effi-
cient way to recover the encryption key for certain types of block ciphers. Accord-
ing to the estimates presented in [10], with the XSL algorithm one could mount
a (at least theoretical) successful attack against the AES with 256-bit keys.

Around the same time, Murphy and Robshaw [13] showed how to express
the AES encryption as a far simpler system of equations over F28 . It was noticed
then that, if XSL worked as predicted, this system should be easier to solve than
the original one over F2, and in theory could provide an efficient attack against
the AES with 128-bit keys [13,14].

Since the introduction of the XSL algorithm, the potential for algebraic at-
tacks against block ciphers (and in particular the AES) has been the source of
much speculation. Although it has attracted a lot of attention from the crypto-
graphic community, currently very little is known about the effectiveness of the
XSL algorithm, and of algebraic attacks in general, against block ciphers.

In this paper we present an analysis of the XSL algorithm. Based on our
results we conclude that, as presented in [11], the XSL algorithm should not
provide an efficient method for solving the AES system of equations.

2 Linearization Methods

The XSL algorithm was introduced in [10,11], and it is derived from an earlier
algorithm called XL [8]. The XL algorithm and its many variants [7,9,11] are all
based on the method of linearization, a well-known technique for solving large
systems of multivariate polynomial equations. In this method we consider all
monomials in the system as independent variables and try to solve it using linear
algebra techniques. Note that the linearization method can only be successful if
the number of linearly independent equations is approximately the same as the
number of monomials in the system. The XL algorithm and its variants attempt
to generate enough equations when this is not the case.

The XL is a simple algorithm: if we consider a system of m quadratic equa-
tions and n variables over a finite field K,

f1(x1, . . . , xn) = 0 , . . . , fm(x1, . . . , xn) = 0, (1)

the algorithm simply multiplies the original equations by all monomials Mi up
to a prescribed degree D − 2, and attempts to solve the system of all resulting
equations

Mi · fj(x1, . . . , xn) = 0 (2)

of degree at most D by linearization.
Although not fully understood when first introduced, currently there seems to

be a much better understanding of the behaviour of the XL algorithm, including
its merits and limitations [1,2,3,4,12]. In particular it has been shown that some
of the heuristics used in deriving the complexity of the XL algorithm [8] were
too optimistic [12].
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The XSL algorithm works slightly different. Whereas in the XL algorithm
the equations are multiplied by all monomials up to a certain degree, in the XSL
algorithm the equations are multiplied only by “carefully selected monomials”.
The goal here is to create fewer new monomials when generating the new equa-
tions. Additionally, there is a last step (called T′ method), in which we try to
obtain new linearly independent equations without creating any new monomials.

Analysis of the XSL algorithm does not seem to be an easy task, and currently
very little is known about its behaviour. There are a number of reasons for this.
Firstly, XSL can be considered an ad-hoc method, and the algorithm relies on
the system presenting a somewhat special form, such as having “S-Boxes” with
overdefined system of equations, repeated layers of linear equations, and so on.
Secondly there are different versions of the algorithm (two attacks are given
in [10], which are substantially different from the attack proposed in [11]), and in
all cases, the description given leaves some room for interpretation. Furthermore,
given the size of the systems involved, it is very difficult to implement and run
experiments even on small examples to verify the heuristics in [10,11].

In the following sections, we give a more concise description of the XSL
algorithm and study it from a more systematic point of view in an attempt to
get an insight into the algorithm and better understand its behaviour.

3 The XSL Algorithm

There are different versions of the XSL algorithm. The first version was proposed
in [10], where two different attacks were described: the first one eliminating the
key schedule equations (but requiring a number of plaintext-ciphertext pairs),
and a second, more specific attack, that used the key schedule equations (and
should work with a single plaintext-ciphertext pair). Later a different version
of the algorithm was introduced in [11] (called “compact XSL”). Only the first
attack was described in [11], although it is straightforward to extend the method
to the second attack.

In this paper we concentrate on the “compact XSL” algorithm. Although the
algorithm can in theory be applied to a number of block ciphers, our analysis is
focused on the AES, and we take into account the special structure of the systems
derived from this cipher. The systems used are over F2 and always include the
key schedule equations (i.e. we perform the second XSL attack).

The XSL algorithm, as described in [11], is supposed to work only on special
types of ciphers; it assumes that the cipher is built with layers of small S-Boxes
interconnected by linear key-dependent layers. The S-Box is such that it can
be described by an overdefined set of quadratic equations. To apply the second
attack (i.e. including the key schedule), the key schedule needs to have a similar
structure to the encryption (which is the case for the AES).

The XSL algorithm consists of four main steps:

1. Process the existing set of equations, by choosing certain sets of monomials
and equations that will be used during the later steps of the algorithm.
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2. Select the value of the parameter P , and multiply the chosen equations by
the product of P − 1 selected monomials. This is the “core” of the XSL
attacks and should generate a large number of equations whose terms are
the product of the monomials chosen earlier.

3. Perform the T′ method, in which some selected equations are multiplied by
single variables. The goal is to generate new equations without creating any
new monomials. Iterate with as many variables as necessary until the system
has enough linearly independent equations to apply linearization1.

4. Apply linearization, by considering each monomial as a new variable and
performing Gaussian elimination. This should yield a solution for the system.

In the following sections we describe the first three steps, in an attempt to
better understand the behaviour of the XSL algorithm. During our analysis, we
illustrate the working of the algorithm on a small variant of the AES defined
in [5]. The cipher used (denoted by SR(3,1,1,4)) has a 4-bit block and 3 rounds,
and its operations are over the field F24 . We note however that this small cipher
is used only to assist the understanding of the algorithm’s various steps; all
results obtained are valid for the full AES, and we always present figures for this
cipher. We use the following notation throughout this paper (similarly to [11]):

B: number of S-Boxes in each encryption round; Nr: number of encryption rounds;
R: set of all equations; R: cardinality of R;
E : subset of R consisting of all L.I. equations; E: cardinality of E ;
T : set of all monomials in the system; T : cardinality of T ;
T ′

i : set of monomials in the system such T ′: cardinality of T ′
i ;

that xi · T ′
i ⊆ T ; s: number of bits on the S-Box;

t: number of monomials in the S-Box equations; r: number of equations in an S-Box;
t′i: number of monomials in the S-Box equations to be used in the T′ method;
L: number of subsets of linear layer equations; S: total number of S-Boxes;
Sm: number of encryption S-Boxes; Sk: number of key schedule S-Boxes;
bi: number of neighbouring S-Boxes for equations in the subset i;
Nb: number of columns in the data array; Na: number of rows in the data array.

4 Step 1 - Processing of the Original Set of Equations

The processing method suggested in [11] is that for every S-Box, a basis of
t − r monomials is chosen and the remaining r monomials are written as linear
combinations of the elements of the basis. Furthermore, the basis should be
chosen such that the variables (i.e. monomials of degree 1) are not in the basis,
and the constant monomial 1 is in the basis.

For the AES, we have r = 24 and t = 81, so each S-Box has a basis consisting
of 57 monomials. If we denote by wij and xij the jth bit of the input and output
of the ith S-Box respectively, we can choose our basis such that it consists of the

1 The T′ method has also been proposed as the final step of the XL algorithm, in the
so-called XL2 method [9].
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monomials xijwik, with j �= k, and 1. In our small example, we have r = 12 and
t = 25, so after this processing the S-Box equations would be given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w10 +w10x11 + w11x10 + w11x12 + w12x10 + w13x11 + 1
w11 +w10x11 + w10x13 + w11x13 + w12x10 + w12x13 + w13x10 + w13x11

w12 +w10x11 + w10x12 + w12x11 + w12x13 + w13x10 + w13x11

w13 +w10x11 + w10x12 + w10x13 + w11x10 + w11x13 + w12x10 + w12x13 + w13x10

x10 +w10x11 + w10x12 + w11x10 + w11x13 + w12x11 + 1
x11 +w10x12 + w10x13 + w11x10 + w11x13 + w13x10 + w13x11 + w13x12

x12 +w10x13 + w11x10 + w11x12 + w11x13 + w12x10 + w13x12

x13 +w10x11 + w10x12 + w10x13 + w11x10 + w12x10 + w13x10 + w13x11 + w13x12

w10x10 +w10x11 + w11x10 + w12x13 + w13x12 + 1
w11x11 +w10x12 + w10x13 + w11x12 + w12x10 + w12x11 + w12x13 + w13x10 + w13x12

w12x12 +w10x11 + w11x10 + w11x13 + w12x13 + w13x11 + w13x12

w13x13 +w10x13 + w11x12 + w12x11 + w13x10,

and the basis would be given by

{ w10x11, w10x12, w10x13, w11x10, w11x12, w11x13,
w12x10, w12x11, w12x13, w13x10, w13x11, w13x12, 1 }.

The set consisting of the monomials in the bases of all the S-Boxes is used to
multiply the remaining equations in the system (the linear layer equations) in
step 2 of the algorithm, while the S-Box relations are used to carry out substitu-
tions in the linear layer equations (Section 5). One of the main ideas of the XSL
algorithm is that during the attack the equations are always expressed as sum
of terms that are the product of monomials in the bases of P different S-Boxes.

When performing the second XSL attack, we need to do the same processing
with the key schedule S-Boxes. In this case we denote by kij and sij the jth bit of
the input and output of the ith key schedule S-Box, respectively. Similarly to the
encryption S-Boxes, we choose our basis such that it consists of the monomials
kijsik, with j �= k, and 1. We note however the key schedule has a slightly
different structure from the encryption, such that not every key variable goes
through an S-Box. The suggestion in [10] is that we should introduce the so-
called “artificial S-Boxes”, with the necessary variables and no equations. We find
this a unnecessary and somewhat cumbersome step, which makes our analysis
a bit more complex. In particular, it is harder to derive accurate figures for the
number of monomials and equations in the resulting system. In our opinion it is
better to rewrite the key schedule system such that these “artificial S-Boxes” are
no longer required (see Appendix A). Either way, the chosen form for the key
schedule equations should not be relevant in the analysis that follows and does
not have any significant influence on the complexity of the attack described.

The linear layer equations (from the encryption and the key schedule) are the
equations that will be used directly in step 2 of the algorithm. Each equation
(called “active equation”) will be multiplied by monomials of the basis from
some (P − 1) different S-Boxes (called “passive S-Boxes”). The S-Box relations
are not explicitly used in the algorithm, but rather in an indirect form. The
linear layer equations are linear in the many variables of the system, and these
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variables are not in the basis of any S-Box. Thus the XSL algorithm requires
us to substitute the variables by their expressions as linear combination of the
monomials from the corresponding S-Box basis prior to multiplication. Again,
the idea of the XSL algorithm is that during the attack the equations are always
expressed as sum of terms that are the product of monomials in the bases of the
S-Boxes. For example, in our small cipher the initial key addition operation is
expressed by the following subsystem:

⎧
⎪⎨

⎪⎩

p0 + w10 + k00

p1 + w11 + k01

p2 + w12 + k02

p3 + w13 + k03,

(3)

where the pi variables correspond to the plaintext values. After performing the
substitution of the monomials w1j and k0j by their respective expressions from
the corresponding S-Boxes bases, the subsystem (3) is written as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 +w10x11 + w11x10 + w11x12 + w12x10 + w13x11+
+k00s01 + k01s00 + k01s02 + k02s00 + k03s01,

p1 +w10x11 + w10x13 + w11x13 + w12x10 + w12x13 + w13x10 + w13x11+
+k00s01 + k00s03 + k01s03 + k02s00 + k02s03 + k03s00 + k03s01,

p2 +w10x11 + w10x12 + w12x11 + w12x13 + w13x10 + w13x11+
+k00s01 + k00s02 + k02s01 + k02s03 + k03s00 + k03s01,

p3 +w10x11 + w10x12 + w10x13 + w11x10 + w11x13 + w12x10 + w12x13 + w13x10+
+k00s01 + k00s02 + k00s03 + k01s00 + k01s03 + k02s00 + k02s03 + k03s00.

The processing above is performed on all equations arising from the linear
layer system (including the key schedule). This results in (Nr + 1) · B · s + Ke

quadratic equations over F2, with 2s · S variables and S · (t − r − 1) monomials
(excluding the constant monomial), where Ke is the number of key schedule
equations and S is the total number of S-Boxes in the cipher. In our small
example S = 6 and Ke = 8, so we have 4 ·1 ·4+8 = 24 equations on 48 variables
and 72 monomials. For the AES-128, we have S = 10 · (16 + 4) = 200 and
Ke = 192. Thus there are 1600 equations, 3200 variables and 11200 monomials
(Appendix A).

5 Step 2 - Multiplying the Equations

In this step, the attacker selects the value of the parameter P (refer to [11] on
how to compute P ), and then multiplies each of the equations derived from the
cipher linear layer after the substitution described above by the product of (P−1)
monomials from different S-Boxes. Only the monomials in the bases are used.
To ensure that the equations generated contain only terms that are the product
of monomials from P different S-Boxes, a few neighbouring S-Boxes need to be
excluded (i.e. S-Boxes that have monomials in common with the active equation).
This can be visualised in the diagram illustrating the encryption operation in
our small example (Figure 1). For example, when multiplying the equations in
the subset Lin2, we should not include the monomials in S-Boxes S2, S3 and K2.
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k3i =
∑

j αijs2j

k0i k1i k2i

k1ik0i k2is1is0i

k3i

x1iw1i w2i x2i w3i x3i ciphertextplaintext

KLin1 KLin2

Lin2 Lin3Lin0 Lin1

K0

{k0is0i} {k1is1i}

S1

{w1ix1i}

S2

{w2ix2i}

K2

{k2is2i}

S3

{w3ix3i}

K1
s2i

Fig. 1. S-Boxes and Linear Layers on the SR(3,1,1,4) encryption

After multiplication, we expect to have R =
∑L

i=1 s
∑P

k=1(t−r−1)k−1
(
S−bi

k−1

)

equations (though not all linearly independent), where L is the number of subsets
of linear layer equations and bi is the number of neighbouring S-Boxes for the
subset i. In total, we expect to have T =

∑P
k=0(t− r− 1)k

(
S
k

)
monomials in the

system (Appendix A).
As computed in the previous section, we have 1600 quadratic equations on

3200 variables and 11200 monomials for the AES-128 before multiplication2. So
it appears that we start with an underdefined system, which in principle should
not be solvable. Note however that, apart from the initial substitution, we have
not used the S-Boxes relations yet.

It is not completely clear from the description in [11] how to include the
S-Boxes equations. The authors say that “each time, in the attack we want to
use one of the other r terms [not in the S-Box basis], we will write them as
linear combination of the elements of the basis” [11]. Although this description
leaves the method somewhat open for interpretation, we believe that the most
likely way to proceed is to generate all equations via multiplication and then
perform (as much as possible) substitutions of monomials not in the bases by
their expressions with the corresponding linear combination of monomials in the
basis. This should hopefully introduce many new equations. Note that because
the initial system used by the XSL algorithm is underdefined, the system can
only be solved if further substitutions are performed.

As before, let wij and xij be the jth bit of the input and output of the ith

S-Box respectively, such that the basis consists of the monomials xijwik, with
j �= k, and 1 (note that on the key schedule S-Boxes, the variables should be
kij and sij , but for simplicity we rename these variables). We denote by [wij ],
[xij ] and [xijwij ] the expressions of these monomials as linear combination of
the monomials in the S-Box basis. When performing substitutions, we need to
make sure that variables are always substituted in pairs, from the same S-Box
(wij and xik). This is required to ensure that the resulting new equations are
still made up of terms that are the product of monomials from the bases of the
S-Boxes. Furthermore, we should also make sure that the substitutions do not
create monomials of degree higher than 2P .

2 Appendix A of [11] describes how to simplify the equations and reduce the number
of variables. However this new format does not seem to be suitable for the XSL
attack.
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The relations used for substitution and generation of new equations are

(xijwik) · (xijwik) = xijwik for any i, j, k
(xijwik) · (xijwil) = (xijwik) · [wil] = [wik] · (xijwil) for any i, j, k
(xijwik) · (xilwik) = (xijwik) · [xil] = [xij ] · (xilwik) for any i, j, k

xijwik = [xij ] · [wik] for j �= k
xijwik = [xij ] · [wik] = [xijwik] for j = k.

(4)

For each S-Box, the number of relations is s2+s3+s3+s(s−1)+2s = 2s3+2s2+s.
Note that substitutions using any of the relations in (4) will always result in

(or only be possible by) monomials made up of the product of some monomials
from the same S-Box. However, the XSL algorithm described in [11] excludes
monomials from neighbouring S-Boxes when multiplying the original equations,
and so the generated equations have only terms of the form

xi1j1wi1k1 · xi2j2wi2k2 · . . . · xiljl
wilkl

, (5)

with l ≤ P and all ir’s pairwise distinct. This means that no substitutions
can be made such that the resulting new equations contain only terms that are
the product of up to P monomials from different S-Boxes. Substitutions always
introduce new monomials, and this is not intended to happen with the XSL
algorithm. Without any substitutions, we never get any new expressions, and
the method essentially ignores the S-Box equations. Therefore, no matter how
large the parameter P is, there is no hope that the XSL algorithm (as described
in [11]) can solve the initial set of equations3.

The problem with the XSL algorithm arises from the attempt to have only
monomials made up of the product of P different S-Boxes, and as such some
S-Boxes needed to be excluded when multiplying. The simplest way to get round
this situation is to allow the product of any P monomials from the bases, not
necessarily from different S-Boxes, and use all S-Boxes when multiplying, includ-
ing the neighbouring ones. The effect is that we should expect a larger number of
monomials in the end (as well as equations), but this will also allow the substitu-
tions, and we will be able to include the S-Boxes relations in the computations.

A more systematic way to proceed is however to add the relations (that
were to be used for substitution) to the initial set of equations, and perform the
algorithm without any further substitutions. Care has to be taken though, as
some of the new equations have degree 4 rather than 2 (e.g. xijwik = [xij ]·[wik]),
and these should be multiplied by the product of up to P −2 monomials only. We
note also that, as the monomial xijwij does not belong to the S-Box basis, we
should not include some of the relations involving this monomial (for example,
xijwij = [xijwij ]) in the initial set of equations.

It can be shown that this new procedure is essentially equivalent to the previous
one, and all new equations created by substitution can also be generated by apply-
ing the method to this enlarged set of equations. We call this modified method sXL
(standing for substitute and XL), and examine it in the following section.
3 Substitutions could still be performed by modifying the last step of XSL (T′ method),

but this is obviously not the way it was originally proposed.
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5.1 The sXL Algorithm

The sXL algorithm seems to be the natural way to get round the flaw in the
original XSL algorithm described in [11]. In the sXL algorithm, equations are
first processed as described in Section 4. We then add the many new relations
(4) resulting from the S-Boxes equations to the original linear layer equations,
and multiply all equations in this set by the product of (P − 1) monomials from
the bases of (not necessarily distinct) S-Boxes, for an appropriate value P .

In the initial set, there were (Nr +1) ·B ·s+Ke quadratic equations on 2s ·S
variables and S · (t − r − 1) monomials. To this set we add

S · (s(s − 1) + s(s − 1)2 + s(s − 1)2 + s(s − 1) + s) = S · (2s3 − 2s2 + s)

quartic equations derived from the relations in (4) (we are excluding some rela-
tions using the monomial xijwij). We call this new set S.

To analyse the running time of the sXL algorithm, we need to compute the
minimal value Pm of the parameter P for which the method yields a solution of
the system. We initially ignore the T′ method (Section 6).

In order to compute Pm, we introduce new variables Yijk and substitute the
monomials (xij ·wik) in the equations in S by Yijk. We denote the resulting new
set of equations by S ⊂ K[Y ]. The new variables Yijk are related by the various
relations of type

Yijk · Yipq = xijwik · xipwiq = xijwiq · xipwik = Yijq · Yipk, (6)

where we might have to use the S-Box relations if j = q or p = k. We call this
set R ⊂ K[Y ], and it contains S · s2(s−1)2

4 equations.
We now consider the system of equations S ∪R ⊂ K[Y ], and execute the XL

algorithm on this system. The algorithm is required to run to a certain degree
Dm to yield a solution.

We now have the following proposition (proof is given in Appendix B):

Proposition 1. Let S be the set consisting of the original linear layer equations
together with the relations (4) resulting from the S-Boxes equations, all written as
sum of terms made up of the product of monomials in the S-Boxes bases. Denote
by Pm the minimal value of the parameter P for which the algorithm described
above (sXL) yields a solution of the system. Similarly, let S ∪R ⊂ K[Y ] denote
the set of equations derived from S and the relations (6) by substituting the
monomials (xij · wik) by Yijk . If Dm denotes the minimal degree for which the
XL algorithm yields a solution of this system, then Pm = Dm.

Proposition 1 states that the sXL algorithm is essentially equivalent to an initial
substitution (substituting the monomials (xij ·wik) by Yijk), and then applying
the XL algorithm to the resulting system in K[Y ] (thus the name sXL - substitute
and XL). For the AES-128, we start the XSL algorithm with 1600 equations,
3200 variables and 11200 monomials (i.e. an underdefined system). To run the
sXL algorithm, we use the set S, which contains 182400 linearly independent
equations. The set R has 156800 linearly independent equations, and after adding
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all relations and substituting the monomials, the set S∪R has 276800 equations
(each S-Box contains 1376 linearly independent equations) on 11200 variables.
By Proposition 1 above and Theorem 1 from [12], we expect to run the algorithm
up to degree at least D = 51 for the method to yield a solution. If we include
the T′ method as last stage (essentially running the XL2 method [9]), we expect
to run the algorithm to degree at least D = 20. Thus in the best case, the
complexity of the attack is at least

(dim(φ(UD)))ω = (dim(UD) − dim(kerφ))ω

≥
(∑20

i=0

(
11200

i

)
− 156800 ·

∑18
i=0

(
11200

i

))ω

≈ 2492,

where φ, UD, UD are defined in the proof of Proposition 1 (Appendix B), and
ω = 2.376 is the highly optimistic Gaussian reduction exponent given in [11].
Furthermore it should be clear that there seems to be no benefit in running this
method instead of simply applying XL or XL2 to the simplified AES system
of 8000 equations over 1600 variables described in [10]. Using the same results
from [12], we expect in this case to run the algorithm up to degree at least
D = 44 for the XL algorithm and at least D = 29 for the XL2 method. Again,
in the best case the complexity of the attack is at least

T ω =

(
29∑

i=0

(
1600

i

))ω

≈ 2488.

We recall that the inefficiency of the XL algorithm against the AES has already
been shown in [11], and this was in fact the motivation for the proposal of
the XSL algorithm. We have shown however that the XSL algorithm presented
in [11] has a flaw in its description, and the natural modification (i.e. sXL) is
essentially equivalent to the XL algorithm (or XL2) on a much larger system,
resulting therefore in a less efficient method of attack against the AES.

6 Step 3 - The T′ method

The T′ method is the final stage of the XSL algorithm before linearization.
We recall that to apply linearization, we require that the number of linearly
independent equations in the system needs to be approximately the same as the
number of monomials (in the notation introduced earlier, E ≈ T ). Starting with
a system resulting from step 2 (which may still have T much larger than E), the
T′ method works by multiplying some selected equations by single variables xi

(reducing modulo x2
i + xi when necessary) in an attempt to obtain new linearly

independent equations without creating any new monomials. The hope is that
after a few iterations we have E = T − 1. Although the method seems to have
been designed to work on systems of equations over F2, it is possible to modify
it to work on equations over other finite fields.

Let R be a system of multivariate polynomial equations of degree at most D
with n variables {x1, x2, . . . , xn} over the finite field K = F2. We assume that



An Analysis of the XSL Algorithm 343

R contains E linearly independent equations. Let T be the set of all monomials
in the system, and T ′

i be the set of monomials that can be multiplied by the
variable xi and still belong to T , i.e. T ′

i = {t ∈ T |xi · t ∈ T }.
Denote by T and T ′

i the cardinality of the sets T and T ′
i , respectively. Assum-

ing that E ≥ T −T ′
i +C and C ≥ 1, we can apply the following “algorithm” [11].

1. Perform a Gaussian elimination on the system R to bring it to a form in
which each monomial is a known linear combination of monomials in T ′

i .
Since we have E ≥ T −T ′

i +C, we should have around C equations of which
all monomial are in T ′

i .
2. Multiply these equations by xi, reducing modulo x2

i + xi when necessary.
Add any new linearly independent equations to the system R.

3. Repeat steps 1 and 2 on the resulting system with other variables xj until
E = T − 1.

It is expected in [11] that the number of new equations generated grows at
exponential rate, and that if the initial system has a unique solution, then after
a few iterations (perhaps using as little as three variables) the algorithm should
generate enough equations to solve the system by linearization.

Consider the polynomials in R as vectors over K in the polynomial algebra
K[x1, . . . , xn] and E the vector space (of dimension E) generated by R. With
an abuse of notation, we denote the space generated by all monomials of degree
at most D by T . By using the field relation x2 + x = 0 to reduce the degree of
monomials when necessary, we have T = dim(T ) =

∑D
i=0

(
n
i

)
.

For any variable xi, let T ′
i ⊆ T be the subspace of T defined earlier. We can

write

T = T ′
i ⊕ U and T ′

i = dim(T ′
i ) =

D−1∑

i=0

(
n

i

)

+
(

n − 1
D − 1

)

. (7)

In order to apply the T′ method, we need E ∩ T ′
i �= ∅. The vectors in E ∩ T ′

i

correspond to the equations that are multiplied by the variable xi when running
the algorithm. A sufficient condition is that

dim(E) > dim(U) = dim(T ) − dim(T ′
i ), (8)

or equivalently, that E > T − T ′
i . We denote the subspace E ∩ T ′

i by Ci, and its
dimension by Ci = E − T + T ′

i .
We note that the multiplication of the equations in E ∩ T ′

i by xi induces
a linear transformation Xi : T ′

i → T ′
i . By appropriately choosing an ordered

basis for T ′
i , Xi can be represented by the T ′ × T ′ matrix

(
0 0
0 Id

)

, where Id

corresponds to the T ′
i

2 × T ′
i

2 identity matrix. The image of Xi is generated by
{xi, x1xi, x2xi, . . . , x1 . . . xi . . . xn}. The T′ method simply computes Xi(Ci) and
adds the resulting vectors to the space E . If we denote by ηk the number of new
equations generated by the kth iteration of the algorithm using the variable xik

,
then

ηk ≤ min(γ + ηk−1, dim(Im(Xik
))), (9)
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where γ = E − T + T ′ for the initial system if xik
is a new variable, otherwise

γ = 0. This shows that the number of new equations generated by the method
does not grow at exponential rate as suggested in [11].

It should be clear that if Xi(Ci) ⊆ Ci, then the T′ method applied to the
variable xi in a particular iteration of the algorithm does not generate any new
linearly independent equations. We should then try other variables, as suggested
in [11], in the hope that new equations are generated. These could be then
added to the system, and the process could be repeated with further variables
(including xi). However, once the condition above is met by all variables, no new
equations can be generated. Thus we have the following lemma.

Lemma 1. Let R be a system of m multivariate equations of degree D ≥ 2 with
n variables {x1, x2, . . . , xn} over the finite field K = F2, and let Ci and Xi be
the K-subspace of K[x1, . . . , xn] and the linear transformation with respect to the
variable xi, as defined above. If Xi(Ci) ⊆ Ci for every 1 ≤ i ≤ n, then the T′

method does not generate any new linearly independent equation.

Therefore if a system satisfies the conditions of Lemma 1 before we have enough
linearly independent equations to apply linearization, the T′ method surely fails.
Although it is not clear how likely a system is to satisfy these conditions, in
Appendix C we present an example of a small system for which the T′ method
does not work.

We can make some further remarks about the T′ method when it is applied
as the final step for XL-type algorithms. Suppose that S is the initial system of
m quadratic equations with n variables over the finite field F2. The XL algorithm
multiplies these equations by all monomials up to a prescribed degree d = D−2,
obtaining a much larger system R with R =

∑D−2
i=0

(
n
i

)
·m equations. We expect

to have

T =
D∑

i=0

(
n

i

)

and T ′
i =

D−1∑

i=0

(
n

i

)

+
(

n − 1
D − 1

)

, (10)

and therefore T − T ′
i =

(
n−1
D

)
. The T′ method is supposed to work as soon as

the number of linearly independent equations (E) is larger than T − T ′
i . By the

results of [12], we see that this condition can only be satisfied if T ′ is greater-
or-equal to the coefficient of the Dth term of the expected Hilbert Series of a
generic algebra of type (n + 1; m; d1, . . . , dm).

Furthermore, given a variable xi, the set R of equations can be divided into
three subsets: (a) all equations obtained by multiplying monomials of degree
up to d − 1 = D − 3, (b) all equations obtained by multiplying monomials of
degree d = D−2 with the variable xi, and (c) equations obtained by multiplying
monomials of degree d = D − 2 without xi. Thus we can write

R =
D−2∑

i=0

(
n

i

)

· m =

(
D−3∑

i=0

(
n

i

)

+
(

n − 1
D − 3

)

+
(

n − 1
D − 2

))

· m (11)
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To apply the T′ method, we should first perform a Gaussian reduction on the
set R, and then multiply the equations in T ′

i by the variable xi in an attempt
to obtain new linearly independent equations.

It is clear that all equations in (a) and (b) are in T ′
i . However, the equations

in (b) are fixed by xi and no new equations will be generated by multiplication.
For equations in (a), any new equations would have been already included when
running the XL algorithm, so no new linearly independent equations can be
generated by multiplication either.

The only useful equations of R for the T′ method are therefore the ones in
(c), and the method can work if applied to (at most)

(
n−1
D−2

)
· m equations. This

fact had already been remarked in [6].
In [15] it is shown how the T′ method can be interpreted in terms of Buch-

berger’s Gröbner Basis algorithm. The method is further discussed (in the con-
text of the XL2 [9] algorithm) in [2,4], where some doubts are cast on the
general applicability of the method. It is remarked that the T′ method may
not be able to run because some of the monomials in T \ T ′ cannot be ex-
pressed as linear combination of monomials in T ′ (and therefore cannot be
reduced). In particular, this will happen if C = E − T + T ′ is small, be-
cause as we saw above, after the XL algorithm many equations are already
in T ′.

It is also noted in [2] that the method should operate with all variables instead
of just two or three. In this case the XL2 method is equivalent to running the XL
algorithm one degree higher and eliminating all the highest degree monomials.
However it is not hard to construct examples where two variables prove to be
enough.

The T′ method is perhaps the least understood part of XL-type algorithms.
Experiments have proved to be inconclusive, and more study may be needed to
verify whether it can be used in general as a final step of algorithms for efficiently
solving systems of multivariate equations.

7 Conclusion

Since the proposal of the XSL algorithm, the potential for algebraic attacks
against block ciphers, and in particular the AES, has been the source of much
speculation and has attracted a lot of attention from the cryptographic commu-
nity. Although not much is known about the effectiveness of algebraic attacks
as a cryptanalytic technique, it is widely believed that the most promising ap-
proach is the development of dedicated methods for specific block ciphers. The
XSL algorithm is perhaps the first attempt to exploit the particular structure of
the AES system of equations. We have shown however that, as presented in [11],
the XSL algorithm cannot solve the system arising from the AES. By discussing
some alternatives for the algorithm, we come to the conclusion that, in its cur-
rent form, it is unlikely that the algorithm can provide an efficient method for
solving the AES system of equations.
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and Gröbner Bases Algorithms. Cryptology ePrint Archive, Report 2004/112, 2004.

http://www.schneier.com/crypto-gram-0210.html


An Analysis of the XSL Algorithm 347

A The XSL Attack on the AES-128

In this Appendix we make some computations concerning the XSL attack against
the AES with 128-bit keys.

A.1 Key Schedule

The AES key schedule presents a different structure from the encryption, in that
not all key variables go through an S-Box. The suggestion in [10] is that, when
performing the second XSL attack, one should introduce the so-called “artificial
S-Boxes”, with some key variables and no equations. Instead of that, in our
analysis we rewrite the key schedule system such that these “artificial S-Boxes”
are no longer required.

There are Sk = NaNr S-Boxes in the AES key schedule, and a total of
sNaNb(Nr + 1) subkeys variables, of which sNaNr go through an S-Box during
the key schedule. So we choose to introduce sNaNr new variables, to represent
the bits of the S-Box output sj,3,i. For the AES-128, we have Na = Nb = 4,
Nr = 10, and so Sk = 40. A diagram for the key schedule of the AES-128 is
shown in Figure 2.

The key schedule set of equations used in the XSL attack consists initially
of sNaNbNr linear equations. We can however express all subkeys variables as
linear expression of the 2sNaNr S-Boxes variables (representing the bits of kj,3,i

and sj,3,i), as shown in the equations below:

k0,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i + s1,3,i + s0,3,i

k1,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i + s1,3,i

k2,0,i = k0,3,i + k1,3,i + k2,3,i + k3,3,i + s2,3,i

kj,0,i = kj,3,i + kj−1,3,i + kj−2,3,i + kj−3,3,i for j = 3 . . . (Nr − 1)
k0,1,i = k0,3,i + k2,3,i + s1,3,i

k1,1,i = k1,3,i + k3,3,i + s2,3,i

kj,1,i = kj,3,i + kj−2,3,i for j = 2 . . . (Nr − 1)
k0,2,i = k0,3,i + k3,3,i + s2,3,i

kj,2,i = kj,3,i + kj−1,3,i for j = 1 . . . (Nr − 1)
kNr,0,i = kNr−4,3,i + kNr−3,3,i + kNr−2,3,i + kNr−1,3,i + sNr−1,3,i

kNr ,1,i = kNr−4,3,i + kNr−2,3,i + sNr−1,3,i

kNr ,2,i = kNr−4,3,i + kNr−1,3,i + sNr−1,3,i

kNr ,3,i = kNr−4,3,i + sNr−1,3,i

The equations above can also be used to simplify the key schedule linear layer
equations relating variables from S-Boxes. These equations can be written as

kj,3,i = kj+4,3,i + sj+3,3,i for j = 0 . . . (Nr − 5). (12)

We therefore have Na(Nr−4) sets of s linear equations, and so Ke = Na(Nr−4)s.
For the AES-128, we have Ke = 192. The number of key schedule S-Boxes needed
to express the different subkeys is given in Table 1.
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k10i

{k13is13i}
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k31i

k30i

{k33is33i}
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k40i
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k21i

k20i

{k23is23i}

s03i s23is13i s33i

Fig. 2. Diagram for the AES-128 key schedule

Table 1. Number of S-Boxes used in equations involving kj,r,i

j 0 1 2 3 4 5 6 7 8 9 10

kj,0,i 4 4 4 4 4 4 4 4 4 4 4

kj,1,i 3 3 2 2 2 2 2 2 2 2 3

kj,2,i 3 2 2 2 2 2 2 2 2 2 2

kj,3,i 1 1 1 1 1 1 1 1 1 1 2

A.2 Complexity of the XSL Attack on the AES-128

In this section we show that, in addition to the issues raised in Section 5, the XSL
heuristics presented in [11] overestimate the number of equations generated by the
algorithm4. Firstly, when deriving the complexity of the attacks, the XSL heuris-
tics assume that all equations generated by the method are linearly independent.
It should be clear that they are not. Even for P = 2, there are many relations of
the type fi · [fj ] = fj · [fi]. Secondly, the XSL algorithm states that neighbouring
S-Boxes need to be excluded when multiplying the linear layer equations. This also
needs to be taken into account when estimating the total number of equations.

The subsets of linear layer equations from the encryption have common vari-
ables with four S-Boxes from the current round, one S-Box from the next round
(except in the first and last rounds, where some monomials are replaced by the
plaintext or the ciphertext), and a number of key schedule S-Boxes. The num-
ber of neighbouring S-Boxes for the key schedule equations can be derived from
Table 1, while the number of neighbouring S-Boxes for the encryption equations
is given in Table 2.
Therefore the number of equations obtained by multiplication should be

R =
L∑

i=1

s

P∑

k=1

(t − r − 1)k−1

(
S − bi

k − 1

)

(13)

4 Note that although the key schedule equations were not used in [11], the way the
heuristics were used to obtain the number of equations can be easily applied to the
system including the key schedule.
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Table 2. Number of neighbouring S-Boxes for the encryption equations (defining wj,k,i)

j 0 1 2 3 4 5 6 7 8 9 10

wj,0,i 5 9 9 9 9 9 9 9 9 9 8

wj,1,i 4 8 7 7 7 7 7 7 7 7 7

wj,2,i 4 7 7 7 7 7 7 7 7 7 6

wj,3,i 2 6 6 6 6 6 6 6 6 6 6

instead of Ss(t− r)(P−1)
(

S
P−1

)
given in [11]. Likewise, the number of monomials

is

T =
P∑

k=0

(t − r − 1)k

(
S

k

)

(14)

instead of (t − r)P
(

S
P

)
given in [11]. For the AES-128, we have

S = Sm + Sk = NaNbNr + NaNr = 200,

L = NaNb(Nr + 1) + Na(Nr − Nb) = 200,

while bi can be obtained from Tables 1 and 2.
Using these figures and the formulas given in [11], we obtain P = 9, giving

T ≈ 2100 and T ω ≈ 2238 for the second XSL attack against the AES-128. We
note however that we are not taking into account the linear dependencies between
these equations, and so the complexity is likely to be much higher.

We also note that, with these new figures and assuming that almost all R
equations are linearly independent [11], the T′ method seems to be irrelevant for
the attack. In fact, since T ≈ 100T ′, when P = 9 we already have R > T − 2
(so there is no need for the T′ method), while for P = 8 we are still in the
situation that R < T − T ′ (and are therefore unlikely to be able to use the T′

method).

B Relation Between sXL and XL

We present here the proof of Proposition 1 from Section 5.1.
Let S be the set of equations consisting of the original linear layer equations

(after the processing described in Section 4), and the relations (4) resulting from
the S-Boxes equations. All these equations are written as sum of terms made up
of the product of monomials in the bases of the S-Boxes.

Let D ∈ N and UD be the set of equations generated by running the sXL
algorithm with the parameter P = D on the set S. Denote by K[{xij · wik}]
the subring of K[x, w] generated by the various monomials of type (xij · wik)
contained in the bases of the S-Boxes. Furthermore, let K[{xij · wik}]≤2D and
K[x, w]≤2D be the K-vector spaces generated by the respective polynomials of
total degree at most 2D. It is clear that we have UD ⊂ K[{xij · wik}]≤2D.

Similarly to [12], we define

χ(D) = dimK(K[{xij · wik}]≤2D) − dimK(UD).
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The sXL algorithm will yield a solution for the system if χ(D) = 1 (we are
ignoring by now the T′ method)5. We denote by Pm the minimal value of D for
which this relation is satisfied.

We now introduce new variables Yijk and substitute the monomials (xij ·wik)
in the equations in S by Yijk. As the equations in S are either quadratic or
quartic, this can be done in a straightforward way. We denote this new set of
equations by S ⊂ K[Y ]. To this set we add the equations (6)

Yijk · Yipq = Yijq · Yipk, (15)

contained in the set R ⊂ K[Y ]. Let UD be the set of equations generated by
running the XL algorithm up to degree D on the set S ∪ R ⊂ K[Y ]. It is clear
that we have UD ⊂ K[Y ]≤D. Now we define

χ(D) = dimK(K[Y ]≤D) − dimK(UD).

Again, we can solve the system directly by linearization if χ(D) = 1, but more
generally, we only need χ(D) ≤ D. We denote by Dm the minimal degree D for
which this relation is satisfied.

Let φ be the K-homomorphism defined as

φ : K[Y ]≤D −→ K[{xij · wik}]≤2D

Yijk −→ xijwik .

It is clear that φ(K[Y ]≤D) = K[{xij ·wik}]≤2D and φ(UD) = UD. Let VD be the
subset of K[Y ]≤D defined as

VD = 〈
D−2∏

l=1

Yiljlkl
· R〉. (16)

Lemma 2. VD is the kernel of the homomorphism φ.

Proof. In one direction, it is clear that VD ⊆ kerφ. Now let B = {Mi} be
the canonical basis of K[Y ]≤D and r the number of distinct monomials of type
φ(Mi). It is clear that each φ(Mi) is a non-null monomial of K[{xij · wik}]≤2D,
and thus r is the rank of φ. We can then choose b = #B−r linearly independent
polynomials of the form Mi + Mj with φ(Mi) = φ(Mj). Since dim(kerφ) = b, it
follows that these polynomials form a basis of kerφ.

Let M1 =
∏

l m1l, where m1l =
∏

r Yiljrkr are monomials involving only
variables (i.e. quadratic monomials in K[{xij ·wik}]) from the same S-Box. It is
clear that M2 =

∏
l m2l, with φ(m1l) = φ(m2l). So without loss of generality,

we assume that M1 = m1 =
∏

r Yijrkr and M2 = m2 =
∏

l Yijlkl
.

If we write ν : jr → kr and M1 =
∏

j Yijν(j), then there exists a permutation
σ ∈ SK such that M2 =

∏
j Yiσ(j)ν(j) . Write σ as a product of transpositions

5 In fact, by renaming monomials if necessary, we should be able to successfully solve
the system if χ(D) ≤ D [8].
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σ =
∏

p τp, where τp = (ap, bp) with ap, bp ∈ {kr}. Denote by tp the product
τp−1τp−2 . . . τ0, where t0 = id and t∞ = σ. If we call

Zjk =

{
Yijk if j �= k

[Yijk ] if j = k
,

then we have
∏

i

Ziν(i) +
∏

i

Zτp(i)ν(i) =
(
Zapν(ap)Zbpν(bp) + Zapν(bp)Zbpν(ap)

) ∏

i�=ap,bp

Ziν(i)

∏

i

Ztp(i)ν(i) +
∏

i

Ztp+1(i)ν(i) =
(
Zapν(ap)Zbpν(bp) + Zapν(bp)Zbpν(ap)

) ∏

tp(i) �=ap,bp

Ztp(i)ν(i).

Therefore

M1 + M2 =
∏

i

Zt∞(i)ν(i) +
∏

i

Zt0(i)ν(i) ∈ 〈(ZαβZγδ + ZαδZγβ) · K[Y ]≤D−2〉,

and kerφ = VD. ��

Therefore, according to the lemma we have

K[Y ]≤D

VD

∼= K[{xij · wik}]≤2D and
UD

VD

∼= UD.

It follows that χ(D) = χ(D) and Pm = Dm.

C An Example for which the T′ Method Fails

In Appendix B of [11] a concrete working example for the T′ method is presented.
The example consisted of a system of 8 quadratic equations with 5 variables, such
that T = 16 and T ′ = 10. By alternately applying the method with respect to the
variables x1 and x2, a total of 15 linearly independent equations were obtained
and the system could then be solved by linearization.

Below we present an example for which the T′ method does not work. Our
system has 7 linearly independent quadratic equations over F2 with 5 variables
(so we have E = 7, T = 16 and T ′ = 10). Our system has also a unique solution
(x2 = x3 = x5 = 0, x1 = x4 = 1). In our case, however, there is only one
exceeding equation, i.e. C = E − T + T ′ = 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x2 + x1x4 + x2x3 + x2x5 + x4x5 + x1 + x3 + x4 + x5 + 1 = 0
x1x2 + x1x3 + x2x5 + x3x5 + x4x5 + x4 + 1 = 0
x2x3 + x3x5 + x3x4 + x2 + x3 + x4 + x5 + 1 = 0
x1x5 + x1x3 + x3x4 + x4x5 + x5 = 0
x1x5 + x1x3 + x2x4 + x2 + x3 = 0
x1x3 + x2x4 + x3x5 + x1 + x2 + x5 + 1 = 0
x2x5 + x2x3 + x4x5 + x2 + x3 + x5 = 0

(17)
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The system (17) is such that for every variable xi, we have Ci ⊆ ker(Xi) and
therefore Xi(Ci) = {0}. So we are unable to obtain a single new equation. For
example, on working with the variable x1, we can represent the system as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2x3 = x1x3 + x1x4 + x1x5 + 1
x2x4 = x1x3 + x1x5 + x2 + x3

x2x5 = x1x3 + x1 + x3 + x4

x3x4 = x1x3 + x1x4 + x1 + x2 + x4 + 1
x3x5 = x1x5 + x1 + x3 + x5 + 1
x4x5 = x1x4 + x1x5 + x1 + x2 + x4 + x5 + 1
1 = x1x2 + x1x4 + x1 + x2 + x4.

(18)

However, when multiplying the last equation by x1 we have

x1 · (1 + x1x2 + x1x4 + x1 + x2 + x4) = 0.

The same is valid for all the remaining variables. For example, with respect to
x2: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x3 = x2x5 + x1 + x3 + x4

x1x4 = x2x3 + x2x4 + x2 + x3 + 1
x1x5 = x2x4 + x2x5 + x1 + x2 + x4

x3x4 = x2x3 + x2x4 + x2x5

x3x5 = x2x4 + x2x5 + x2 + x3 + x4 + x5 + 1
x4x5 = x2x3 + x2x5 + x2 + x3 + x5

0 = x1x2 + x2x3 + x2x4 + x1 + x3 + x4.

Again the same occurs:

x2 · (x1x2 + x2x3 + x2x4 + x1 + x3 + x4) = 0.

Therefore no new equations can be generated and the T′ method fails for this
system.
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