

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 987 – 1001, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automated Business-to-Business Integration of a
Logistics Supply Chain Using Semantic Web Services

Technology

Chris Preist1, Javier Esplugas-Cuadrado2, Steven A. Battle1,
Stephan Grimm3, and Stuart K.Williams1

1 Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK
{chris.preist, steve.battle, skw}@hp.com

2 Hewlett-Packard Espanola SL, Jose Echegaray no8, La Rozas, Spain. 28230
javier.esplugas.cuadrado@hp.com

3 Forschungszentrum Informatik(FZI), Haid-und-Neu-Strasse 10-14,
76131 Karlsruhe, Germany

grimm@fzi.de

Abstract. In this paper, we present a demonstrator system which applies se-
mantic web services technology to business-to-business integration, focussing
specifically on a logistics supply chain. The system is able to handle all stages
of the service lifecycle – discovery, service selection and service execution.
One unique feature of the system is its approach to protocol mediation, allowing
a service requestor to dynamically modify the way it communicates with
aprovider, based on a description of the provider’s protocol. We present the
architecture of the system, together with an overview of the key components
(discovery and mediation) and the implementation.

1 Introduction

The demonstrator system presented in this paper uses semantic web services technol-
ogy to tackle the problem of business-to-business integration (B2Bi). It was devel-
oped as one of four case studies used in the European Union Semantic Web-enabled
Web Services (SWWS) project. Increasingly, when two companies wish to do busi-
ness with each other, they establish a means of exchanging messages via the internet.
This connection can be used for a variety of purposes – placing orders, invoicing,
making payments, initiating and tracking shipment of goods and providing customer
service information, among many others. The aim of such a connection is to allow
automated or semi-automated processing of many of the transactions which take place
between the two companies, and thus reduce costs and increase speed.

However, to set up such a relationship requires a large initial investment of time
and money. A team of developers need to reconcile the business processes of the two
organizations and design a set of messages and permissible message sequences that
can flow between them. This can be a formidable task. To ease this, standards bodies
have developed standard sets of messages and guidelines for how they should be
used. Three key standards in the world of B2Bi are EDIFACT, AnsiX12 and Roset-

988 C. Preist et al.

taNet. By agreeing on one such standard, two organizations can ease the integration
task. However, these standards have reasonable flexibility in them, both in terms of
message content and message sequencing. This means that even having agreed a stan-
dard, significant effort is required to agree and implement exactly how it is used. As a
result of this, even a standards-based B2Bi connection can take six months to set up.

Semantic Web Services technology [1, 2] uses the tools of the semantic web to de-
scribe both the purpose of a service and the behaviour of its provider during service
execution. This has the potential to significantly speed up this integration process; If
one business partner gives a description of how to interact with it, it is possible to use
mediation technology [3] to adapt the interaction of the other business partner so as to
be compatible. Ideally, this would be fully automated, reducing integration time from
months to minutes.

Prior to integration, the selection of a business partner can also be time consuming.
By providing semantic descriptions of the services a business offers, then discovery
techniques [4, 5, 6] can support this process. This is particularly important when se-
lection is needed rapidly, such as the emergency replacement of a link in a supply
chain. Our system supports automated discovery and selection of a service provider,
and description-driven mediation which allows automated integration. The paper is
structured as follows. In section 2, we introduce a motivating example, in the domain
of logistics, and show how semantic web technology can be used to support it. In
section 3, we present the architecture of the system we have developed, and show
how it is used in the logistics domain. In section 4, we present the discovery module,
and in section 5 we present the mediation modules. In section 6, we discuss the im-
plementation. In section 7 we discuss limitations of the current implementation, les-
sons learned and related work. We then present the business value of the system, and
conclude.

2 The Logistics Example

To motivate this work, we use an example scenario. We consider a manufacturing
company in Bristol, UK which needs to distribute its goods internationally. It does not
maintain its own transportation capability, but instead outsources this to other compa-
nies, which we refer to as Freight Forwarders. These companies provide a service to
the manufacturing company – they transport crates on its behalf. However, the manu-
facturing company still needs to manage relationships with these service providers.
One role within this company, which we refer to as the Logistics Coordinator, is
responsible for doing this. Specifically, it carries out the following tasks;

1. Commissioning new service providers, and agreeing the nature of the service they
will provide. (E.g. locating a new freight forwarder in Poland, and agreeing that it
will regularly transport crates from Gdansk to Warsaw.)

2. Communicating with service providers to initiate, monitor and control shipments.
(E.g. informing the Polish freight forwarder that a crate is about to arrive at
Gdansk; receiving a message from them that it has been delivered in Warsaw, and
they want payment.) This is done using one of the messaging standards,
EDIFACT.

 Automated Business-to-Business Integration of a Logistics Supply Chain 989

3. Coordinating the activity of service providers to ensure that they link seamlessly to
provide an end-to-end service. (E.g. making sure the shipping company plans to
deliver the crate to Gdansk when the Polish transport company is expecting it. In-
forming the Polish company when the shipping company is about to drop it off.)

4. Communicating with other roles in the company to coordinate logistics with other
corporate functions. (E.g. sales to know what to dispatch; financial to ensure pay-
ment of freight forwarders.)

In our scenario, we consider a specific logistics supply chain from Bristol, UK to
Warsaw, Poland (Fig 1). It consists of three freight forwarders: The first is a trucking
company, responsible for transporting crates from the manufacturing plant in Bristol
to the port of Portsmouth, UK. The second is a shipping company, responsible for
shipping crates from Portsmouth to the Polish port of Gdansk. The third is another
trucking company, which transports crates to the distribution warehouse in Warsaw.
We assume that the Logistics Provider communicates with the Freight Forwarders
using the EDIFACT standard, and is already successfully using this logistics chain.

Fig. 1. Example Logistics Supply Chain

However, at some point a problem arises; the shipping company is temporarily un-
available and a new freight forwarder must be used for one shipment. At this point the
Logistics Coordinator must;

1. Locate a new shipping service provider able to meet its needs.
2. Agree a service definition with it as to what exactly it should do. (When the crate

will be transported, to where, how much it will cost, etc.)
3. Perform B2B integration with the provider, to ensure messages can flow between

them. We assume the new provider communicates using RosettaNet.
4. Initiate and monitor the shipment via the logistics supply chain.
5. Coordinate the three freight forwarders to ensure a seamless end-to-end service,

resulting in the crate being shipped from Bristol to Warsaw.

Semantic Web Services technology can be deployed throughout this lifecycle to
automate or semi-automate what currently takes significant time and effort.

1. Service Discovery can be used to locate potential service providers, based on them
advertising descriptions of their service capabilities.

UK POLANDNORTH SEA

Supplier Customer UnitFreight
Forwarder 1

Freight
Forwarder 2

Freight
Forwarder 3

UK POLANDNORTH SEA

Supplier Customer UnitFreight
Forwarder 1

Freight
Forwarder 2

Freight
Forwarder 3

990 C. Preist et al.

2. Service Definition allows the refining of a service description to specify exactly
what the provider and requestor agree the service should do.

3. Message and Protocol Mediation allow a new provider to be integrated and com-
municated with, even though it uses a different messaging standard.

We now describe how our scenario can be automated using semantic web services. A
software agent acting on behalf of the company has detailed information about the
transportation task which must be carried out. It contacts a discovery agent which has
access to descriptions of services various organisations can provide, and asks for
providers able to ship between Portsmouth and Gdansk. The discovery agent responds
with a list of possible freight forwarders likely to be able to meet these requirements.

The software agent then selects one or more of the possible freight forwarders, and
sends a more detailed description of the task it requires to be performed, including the
date the shipment will arrive at Portsmouth, and the date it must reach Gdansk. The
freight forwarders respond with lists of services they can offer which meet these re-
quirements. For example, one forwarder may say that it has a ship leaving Portsmouth
on the required day which will arrive in Gdansk the day before the deadline. It will
also give the cost of placing a crate on that ship.

The requesting agent then selects one of the proposed services (possibly by inter-
acting with a user to make the final decision) and informs the provider of the decision.
Effectively, the two parties enter into an agreement at this point.

As the shipment takes place, it is coordinated by an exchange of messages between
the two parties. The messages use an industry standard, RosettaNet, which describes
the format and order of the messages. The exchange starts when the crate is about to
arrive in Portsmouth, with a RosettaNet Advanced Shipment Notification being sent
by the requestor to freight forwarder 2, and ends with the sending of a Proof of Deliv-
ery and Invoice by freight forwarder 2 when the crate arrives in Gdansk.

3 Overall System Architecture

The overall system architecture used in the demonstrator system is provided by the
generic SWWS Technical Architecture. The underlying conceptual model is provided
by the SWWS Conceptual Architecture [7]. Here, we summarise the technical archi-
tecture and relate it to the specific actors in our B2B scenario.

In Agent Technology research, a distinction is made between a micro-architecture
and a macro-architecture. A micro-architecture is the internal component-based
architecture of an individual entity within a community. A macro-architecture is the
structure of the overall community, considering each entity within it as a black box. It
is also helpful to consider this distinction in semantic web services. Initially, we will
present the macro-architecture for our community. There are three possible roles that
a software entity can have; service requestor agent, service provider agent and discov-
ery provider agent.

A service requestor agent acts on behalf of an individual or organisation to procure
a service. It receives a service requirement description from its owner, and interacts
with other agents in an attempt to fulfil the requirement it has been given. It has some
model, in an ontology, of the domain of the service and also has some model of the
kind of actions that can be taken (through message exchange) in this domain. In our

 Automated Business-to-Business Integration of a Logistics Supply Chain 991

scenario, the Logistics Coordinator takes the role of service requestor agent in rela-
tionship with each of the Freight Forwarders.

A service provider agent is able to provide a service on behalf of an organisation.
In our scenario, service provider agents represent the three freight forwarder compa-
nies used, as well as additional companies which could potentially be used by the
logistics provider. It has a service offer description in some domain ontology (ideally,
the same as the requestor agent), which gives an abstract description of services it can
provide. In our scenario, for example, this would state that a company can ship crates
from UK ports to Baltic ports. It also has a means to generate more concrete descrip-
tions of the precise services it can deliver. (For example, a specific shipment of
crate42 from Portsmouth to Gdansk on 25/03/05.) Furthermore, it has a formal de-
scription of the message protocol used to deliver the service. This includes mappings
from the content of messages into concepts within the domain ontology. It also in-
cludes mappings from message exchange sequences into actions. In our scenario, a
field in the initial Advance Shipment Notification (ASN) message might map onto the
‘weight’ attribute of the ‘crate’ concept within the domain. The sequence consisting
of one party sending the ASN and the other party acknowledging receipt may corre-
spond to a ‘notify shipment’ action in the domain ontology.

A discovery provider agent contains descriptions of service offers, together with
references to provider agents able to provide these services. These service offer de-
scriptions are all expressed in some domain ontology associated with the discovery
provider agent. Within this ontology is a ‘service description’ concept which effec-
tively acts as a template for the descriptions of services that the discovery provider
can contain. In our scenario, the ontology defines concepts relevant to logistics and
transportation, and the descriptions the discovery provider contains are descriptions of
transportation services the freight forwarders are able to offer.

We illustrate the macro-architecture by describing the interactions which can take
place between the different agents. These interactions are roughly in order of the
service lifecycle progression [8] adopted by the conceptual architecture.

1. Provider agent registering a capability with the discovery provider.
Initially, any service provider agent must register its service offer descriptions with
the discovery provider using a simple message exchange protocol. It does this in
terms of the ontology used by the discovery provider, and hence may require ontology
mediation. In our scenario, each Freight Forwarder will register abstract descriptions
of the services it can provide.
2. Requestor agent finding possible providers.
Discovery takes place through a simple message exchange protocol between a service
requestor agent and a discovery agent. The requestor agent sends a message contain-
ing a service requirement description, and the discovery agent responds with a mes-
sage containing a list of URIs of service provider agents. These correspond to those
provider agents with offer descriptions which match the service requirement descrip-
tion, according to the discovery agent’s algorithm. In our scenario, the Logistics Co-
ordinator will send a description of the shipment it requires – that it is from Ports-
mouth to Gdansk, it must arrive by 27th March, etc. It will receive back a list of all
freight forwarders which have advertised a service capability compatible with these
requirements, as e.g. one that covers all the Baltic Sea area with its shipping services.

992 C. Preist et al.

3. Requestor and Provider agents define service.
Following discovery, the requestor agent exchanges messages with one or more pro-
vider agents to define the service it will receive, and to select which provider agent to
use. In our architecture, we assume a single simple service definition protocol is used
by all requestor and provider agents. Our simple protocol consists of two rounds of
message exchange. Initially, the service requestor agent sends a service requirement
description to each provider agent it is considering using. The provider agent replies
with a list of (almost) concrete service descriptions of the services it is able to provide
which meet the needs of the requestor. The requestor can select one of these, with the
provider confirming the selection to the requestor. The confirm message contains a
URI reference where the description of the choreographies, which will be used during
service delivery, can be found. If the requestor does not select one within a certain
time window, sending no response to the provider, this is taken as cancelling.

In our scenario, the Logistics Coordinator sends a description of the shipment it re-
quires to one or more of the Freight Forwarders located at the previous stage. They
respond with specific detailed descriptions of relevant shipment services – for exam-
ple, one may state that the crate can be carried on a ship departing on 24th March at
3pm, with a cost of 30 euros. A given freight forwarder may provide several options
at this stage. The Logistics Coordinator reviews these, and makes a selection (either
automatically using stored preference information or, more likely, by providing the
best options to a user who makes the final decision.)
4. Service Delivery
Service delivery starts when one party (depending on the choreography used) sends an
initiating message. The choreography used at this stage will correspond to the sequence
of messages specified by the RosettaNet or EDIFACT standard. Each service provider
has a description of the service delivery choreography associated with each service it
can provide. At the end of the service definition protocol, as a parameter of the confirm
message, it informs the requestor of a URI which references this description. The re-
questor is then responsible for accessing this description, interpreting it and engaging in
a message exchange with the provider which satisfies the requirements of the choreog-
raphy described. Exactly how this is done will be described in section 5.

Having described the macro-architecture, we now turn to the micro-architecture.
We look at two of the three roles that software entities can have – requestor agent and
provider agent – and present a micro architecture for each. The micro architecture of
the discovery service provider agent will be covered in section 4. Figure 2 illustrates
our architecture for the service requestor agent. The application logic is responsible
for decision making with regard to which service to select and how to make use of it.
Normally, this will be integrated with back-end systems within the organisation which
the service requestor agent represents. In our demonstrator, we provide a user inter-
face to allow a user to make the decisions that would be made by such a system.

The first role of the application logic is to define a service requirement description
for the service it needs. When this has been done, it passes the description to the dis-
covery and definition component, which exchanges appropriate messages to do this.
The message format and contents are prepared and passed to the transport routines for
transmission via an appropriate transportation protocol. At points where a decision is
required – namely, when one or more provider is chosen after discovery and when a
service is selected – it is made by the application logic.

 Automated Business-to-Business Integration of a Logistics Supply Chain 993

Fig. 2. Service Requestor Agent Micro-Architecture

Fig. 3. Service Provider Agent Micro Architecture

When a service has been defined, the application logic initiates the delivery
process by using the delivery module. The delivery module is able to carry out
protocol mediation. It accesses the description of the choreography given by the
service provider. This shows how message contents map into the domain ontology

994 C. Preist et al.

of the knowledge base, and also how sequences of messages correspond to actions
within this domain ontology. The application logic can request the execution of one
of these actions. This will result in the delivery module initiating an exchange of
messages with the service provider. When an exchange terminates (either through
successful completion or some failure) the application logic is informed of this. The
delivery module also handles messages from the provider which are not part of an
exchange initiated by the requestor. These correspond to actions within the domain
which the provider is initiating. It informs the application logic of the actions and
updates the knowledge base with relevant data from the messages. Details of this
process are given in section 5.

We now turn our attention to the provider agent (figure 3). In our architecture we
assume that protocol mediation takes place within the requestor, so the provider can
be simpler. The application logic module is responsible for deciding which services to
offer a given requestor and also for the provisioning of the service itself. This will
usually be provided by back-end systems belonging to the provider’s organisation.

Initially, the application logic prepares a service offer description and registers this
with the discovery service provider. From that point on, in our architecture, the pro-
vider agent is reactive. The service definition module can receive a service require-
ment description from a requestor. The application logic then prepares a set of possi-
ble services which satisfy the requirement, and this is sent to the requestor. If the
definition module receives a selection message from the requestor, it returns the URI
of the choreography description which it obtains from the application logic. As the
provider agent does not need to perform mediation, service delivery is carried out by a
hard-wired protocol description which interacts with the application logic when busi-
ness actions are required.

4 Service Description and Discovery

We now describe the service discovery functionality in more detail. The approach we
use is inspired by that of [5]. During discovery and service selection, the business-
level description of the service plays a key part. It gives a detailed description of the
service in terms of the domain in which it provides value to the user, using some do-
main ontology. In our logistics domain, this will be a description of what goods are to
be transported, where they will be transported from, which vehicle is being used,
when the vehicle will depart, what its destination is, when it is expected to arrive, and
other relevant terms of service such as insurance liability, cost and payment condi-
tions, etc. At the end of the service selection stage, a concrete service description
should be agreed between the requestor and provider, and effectively forms an infor-
mal ‘contract’ between the two parties. An example is the following:

Contract ≡
Shipping ⊓ ∃ startLocation.{Portsmouth} ⊓ ∃ endLocation.{Gdansk} ⊓

 ∃ dateOfDeparture.=2005-03-24 ⊓ ∃ dateOfArrival.=2005-03-26 ⊓
 ∃ item.{SmallCargo#typeA} ⊓ ∃ vehicle.{CargoShip#34} ⊓ ∃ price.=90 ⊓
 ∃ currency.{Euro} ⊓ ∃ meansOfPayment.{EuroCreditTransfer}

 Automated Business-to-Business Integration of a Logistics Supply Chain 995

This concrete service description states that an item of small cargo will be carried
on cargo ship 34 from Portsmouth to Gdansk, leaving on the 24th March and arriv-
ing on the 26th, and payment of 90 €€ will be made by credit transfer. It is expressed
as an OWL-DL concept whose properties are restricted to specific values, allowing
a unique configuration of the service. The terms used in this description are defined
in a logistics domain ontology and in more generic ontologies for geography and
vehicles.

As it stands, such a concrete description of a service is clearly inappropriate for ad-
vertising or discovery, as requests and adverts would have to include many such
classes covering all acceptable service parameter configurations. Instead, requestors
and providers abstract from concrete parameter information, switching to less specific
class descriptions. In such abstract service descriptions they specify the set of con-
crete services that they are willing to accept. For example, a freight forwarder may
advertise the following capability, using an OWL-DL based description approach for
abstract service descriptions explained in [6].

Sp ≡ Shipping ⊓ ∃ startLocation.EUPort ⊓ ∃ endLocation.BalticPort ⊓
 ∀ item.Container ⊓ ∀ vehicle.Ship ⊓
 ∃ meansOfPayment.(Cheque ⊔ BankTransfer)

This states that the service provider offers shipping services from EU ports to Baltic
ports, can carry containers, and can accept payments by cheque or bank transfer. By
using concepts and subconcepts to restrict the description appropriately, the service
provider can give a precise view of the service it offers. It registers this with the dis-
covery agent. Similarly, a requestor can describe the kind of service it needs;

Sr ≡ Shipping ⊓ ∃ startLocation.{Portsmouth} ⊓
 ∃ endLocation.{Gdansk} ⊓ ∃ dateOfArrival.≤2005-03-27 ⊓
 ∃ item.CargoContainer ⊓
 ∀ meansOfPayment.(CreditCard ⊔ BankTransfer)

This requests the shipping of a cargo container from Portsmouth to Gdansk, to ar-
rive by the 27th March at the latest. Payment can be made by credit card or bank
transfer. Hence, by using OWL-DL concepts, we can give descriptions of various
granularities, from abstract service requests/offers to specific agreed parameter
values in contracts.

When the discovery agent receives a service request, it returns the set of all service
advertisements which intersect with the request. An advert and a request intersect if
they specify at least one common concrete service. The discovery agent uses an inter-
nal DL reasoner (RACER [9]) to check for intersection. Full details of the inferencing
mechanism are given in [6]. The list of services returned includes URIs referencing
the service providers, allowing the requestor to make direct contact. A requestor then
makes contact with one or more of them to select and agree a concrete service. In
some domains, negotiation of parameters may be necessary at this stage [10]. How-
ever, in our domain it is adequate for a provider to offer a list of relevant concrete
services to the requestor, and allow them to select one. Again, this functionality can
be provided by using a DL reasoner, this time internally to the service provider.

996 C. Preist et al.

5 Mediation During Service Execution

Mediation is essential in our scenario to allow the rapid integration of a new freight
forwarder into a logistics chain. We now present an overview of the approach taken.
For a detailed description, see [11]. Communication is required during the execution
of the service, as the shipment is initiated and progresses, to coordinate the behaviour
of the service requestor and provider. In our scenario, we assume that the logistics
coordinator usually communicates with freight forwarders using EDIFACT, but must
now use RosettaNet with its new provider.

Our approach to mediation is based around the insight that, even though there may be
several different communications protocols used to communicate about a given task, it
is often the case that the underlying models of the task that are implicit in these proto-
cols are very similar to each other. In the case of the logistics domain, analysis of the
EDIFACT, ANSI X12 and RosettaNet protocols found that the set of actions carried out
to execute the task, and the sequencing constraints on them, are identical. Hence, an
abstract protocol can be identified and abstracted from the specific communications
protocols [12]. In our system, the application logic communicates with the mediation
component in terms of the actions within the abstract protocol – it informs the mediation
component when it wishes to initiate such an action, and is informed by the mediation
component when the other party carries out an action. The abstract protocol is repre-
sented as concurrent processes described by finite state machines, which can be used by
the mediation component to determine what actions are permitted at any given stage in
the process. The actions used are given in Table 1.

Each action in the abstract protocol maps to some exchange of messages in a spe-
cific standard such as RosettaNet or EDIFACT. This mapping will vary from standard
to standard. We refer to this mapping as a concrete protocol relating to a specific
standard. For example, in RosettaNet, the informReadyForCollection action maps to a
sequence consisting in the Logistics Coordinator sending an Advanced Shipment
Notification message (with up to 3 re-sends if no response within half an hour), fol-
lowed by it receiving a response from the Freight Forwarder. In EDIFACT, however,
it maps to a three-way exchange consisting of a DESADV message, responded to by
an EDIFACT::ACK, followed by a re-send of the DESADV message. A concrete
protocol is represented as concurrent processes described by finite state machines,
which are used by the mediation component to manage the exchange of messages
when an action takes place. The finite state machines are encoded in RDF, with tran-
sitions between states encoded procedurally in JavaScript.

When the application logic wishes to initiate an action, it informs the mediation
component. The mediation component checks that this action is permissible in the
current state of the abstract protocol, and if it is, it executes the appropriate state ma-
chine within the concrete protocol. This will result in the sending and receiving of
messages. On termination, the mediation component informs the application logic of
the success or otherwise of the action. When the mediation component receives a
message from the other party which does not correspond to an action it has initiated, it
pattern-matches against the action mappings in the concrete protocol to identify which
action the other party is initiating. (If the protocol is well-designed, this should be
unique.) It then executes the appropriate concrete protocol to respond to this action,
and informs the application logic to allow the service requestor to respond.

 Automated Business-to-Business Integration of a Logistics Supply Chain 997

Table 1. Communicative acts involved in the execution of a logistics service

Communicative Act Direc-
tion

Communicative intent

informReadyForCollec-
tion

LC to
FF

Inform the FF that the shipment is available
for collection.

requestShipmentStatus LC to
FF

Request an update of the shipment status
from the FF.

informShipmentStatus FF to
LC

Inform the LC of the shipment status

informReadyToDeliver FF to
LC

Inform the LC that the FF is ready to deliver
the shipment.

informShipmentDeliv-
ered

FF to
LC

Inform the LC (and provide proof) that the FF
has infact delivered the shipment.

requestPayment FF to
LC

Request payment for delivering the shipment
from the LC.

In addition to dealing with the message sequencing, the concrete protocol also con-
tains data mappings for the syntax of the messages, showing how the different fields
in the message correspond to different concepts in the domain ontology. When a mes-
sage is received, content within that message is ‘lifted’ into an RDF knowledge base
to become an instance of a concept in the logistics ontology. The application logic is
able to read and assert information in this knowledge base as necessary. When a mes-
sage needs to be transmitted by the mediation component, it ‘lowers’ appropriate
concept instances within this knowledge base into an XML syntax appropriate to the
chosen standard. The technology used to do this is described in [13]. Using this me-
diation technology, a requestor can communicate with different providers using dif-
ferent standards, while allowing the application logic to be encoded in terms of busi-
ness actions. All it need do is insert the appropriate concrete protocol into its media-
tion component. Because we assume that the requestor is ‘semantically enabled’ (i.e.
its internal logic uses RDF) the mediation component can be part of it. If it were not,
mediation could take place as a semantically enabled intermediary agent using similar
techniques. These alternative design decisions are discussed in [11].

During service execution, the freight forwarders’ behaviour must be coordinated.
For example, when the first is about to deliver the crate to Portsmouth docks, the
second freight forwarder must be informed. This is achieved through a combination of
the business logic and the mediation component. The actions involved are straight-
forward, and can be encoded as part of the business workflow. However, the mes-
sages involved are in different protocols, so require mediation. The first trucking
company sends notification in EDIFACT. The mediation system recognizes that this
message corresponds to an ‘informReadyToDeliver’ action, which the workflow
identifies as requiring an ‘informReadyForCollection’ exchange with the shipment
company. This is initiated, and the mediation component generates the appropriate
RosettaNet messages. Specific data, such as the estimated time of delivery, are trans-
ferred from one message to the other through a process of lifting/lowering to/from the
RDF database.

998 C. Preist et al.

6 Implementation

The demonstrator system is implemented primarily in JAVA, as a distributed system
with each requestor or provider agent as an independent entity. Different components
internal to each agent access each other via Java RMI, to ease re-use of components
beyond the demonstrator. Communication between agents takes place primarily
through web service technology. To facilitate this, the agents are deployed on a web
server platform consisting of Tomcat servlet container and Axis SOAP engine.

The Discovery Service is a self-contained web service that can be deployed re-
motely and accessed via a standard web service interface. The generic discovery ser-
vice is linked to a repository containing OWL-DL service descriptions compliant to
an early form of WSMO (http://www.wsmo.org/). Reasoning is performed by the
RACER DL reasoner. The Freight Forwarders provide web service interfaces for the
exchange of messages involved in service specification. Service execution requires
the exchange of EDIFACT or RosettaNet messages, which takes place over a standard
http port, as specified by either the EDIFACT or RosettaNet standard. The logistics
coordinator interacts with the discovery service via its web service interface, and the
freight forwarders both for service specification, via their web service interfaces, and
service execution, via a standard http port using RosettaNet or EDIFACT messages in
XML. The components within the logistics coordinator are implemented in JAVA,
with the RDF knowledge base provided by HP's JENA semantic web application
framework (http://jena.sourceforge.net/). Transformation of XML messages into
RDF, and vice-versa, was carried out using a combination of XML Schema and the
JENA rules engine. As noted above, the application logic is provided by a user inter-
face allowing the user to make decisions the application logic would. If the system
were used in a real environment, this functionality would be provided by a business
workflow system integrated with the corporate IT systems.

7 Analysis and Related Work

The system presented in this paper is a demonstrator, not a deployed application. For
this reason, certain simplifications have been made which need to be revisited. The
first issue is that of representation; OWL does not have sufficient support for concrete
domain predicates so that date ranges cannot properly be expressed and reasoned
with. However RACER does support this feature and extensions to OWL such as
OWL-E [14] provide a solution to this problem. Secondly, the system is not as secure
as is necessary. The use of JavaScript in the choreography descriptions provides a
security loophole; the system should provide a restricted JavaScript environment with
a limited set of methods and reduced functionality. The messages sent during service
execution should be packaged using S/MIME, to ensure non-repudiation. Thirdly, the
system is not as robust as required – for example, conversations are not currently
persistent objects, and hence will be lost if either party crashes. These issues require
enhancements of the system, but do not invalidate the underlying design, and we are
confident that they can be carried out straightforwardly.

If the system is to be deployed, it needs to be integrated with the internal workflow
and decision support systems of the various service requestors and providers. Cur-

 Automated Business-to-Business Integration of a Logistics Supply Chain 999

rently, these decisions are made by the user, using a bespoke user interface geared
around the specific scenario described in this paper. The ideal approach to integration
would be to have all internal systems re-engineered to communicate with each other
(and the SWS components) using RDF data in a shared enterprise knowledge base –
however, this is unlikely to be acceptable in the short term! Bespoke translation of
relevant data into/out of RDF using the lifting tool would be more straightforward.

The approach followed for discovery based on semantic service descriptions works
in a relatively small and closed environment, where parties refer to well defined and
settled domain ontologies when specifying their service descriptions. However, it
does not scale to an open environment in which parties use arbitrary ontological vo-
cabularies that are not connected. This would require ontology mediation during dis-
covery.

The approach adopted in this demonstrator is strongly influenced by architectural
work in multi agent systems. Adept [15] was one of the first multi-agent systems to
use a service agreement between provider and requestor. The role of contracts be-
tween requestors and providers has been incorporated in a semantic-web framework
in the SweetDeal system [16]. Our approach to representing contracts is not as ex-
pressive as that used in SweetDeal, and it appears that the non-monotonicity they
provide is not required in our domain. Trastour et. al. [8] describe the B2B lifecycle in
terms of transformations of a DL contract, which has strongly influenced our ap-
proach.

Trastour et. al. [17] augment RosettaNet PIPs with partner-specific OWL con-
straints to determine if parties have compatible processes, and automatically propose
modifications if not. This is a simple application of semantic web technology which
can ease, but not automate, the linking of two business partners using RosettaNet.

Work on semantic web services provides approaches to service discovery (e.g. [4])
and generation and execution of composite services (e.g. [18]), however the majority
of this work focuses on one specific part of the service lifecycle and so does not pro-
vide an integrated solution which can be applied to real problems. WSMX [19] is an
exception to this, in that it provides an execution framework for semantic web ser-
vices throughout the lifecycle. While promising, it does not yet provide protocol me-
diation capabilities or rich business-level descriptions. IRS-II [20] also supports a
service lifecycle, but focuses on the composition of simple web services rather than
choreography of complex business services.

8 Business Value of the System and Conclusions

If the system, enhanced as described above, were deployed in a business context it
would have significant benefits. Specifically;

 - By performing service discovery using detailed descriptions of capabilities, it is
possible to rapidly locate many freight forwarders able to offer the service required.
Because the service description is structured and detailed, it eliminates the many 'false
positives' that a yellow-pages style service (or UDDI) would give. This will save a
substantial amount of time, and therefore money, during the search for providers.
Furthermore, it will increase the visibility of each provider, so will benefit them pro-
vided they offer a competitive service.

1000 C. Preist et al.

 - By providing semi-automated assistance during the service selection phase, the
system replaces a large number of phone calls with a simple selection of contract by
the user. This again reduces time. Because it significantly reduces the effort needed to
check out each possible freight forwarder, it allows a user to make a wider search of
the options and therefore is likely to result in a better final choice.
 - By allowing the service requestor to adapt its protocol to communicate with the
service provider, the system dramatically reduces the time and effort required to inte-
grate the two parties. Since integration can take months currently, this results in a
very substantial cost saving. Furthermore, it means that the choice of service provider
becomes far more flexible, as the time and effort of integration no longer results in
lock in. This makes it easier to open up logistics chains to competitive tender where
appropriate, with the resultant possibility of reducing costs further.

While the demonstrator is focussed around logistics, and so is equipped with on-
tologies appropriate to this domain, the software developed could be applied to other
domains of B2B interaction and integration if given the appropriate ontologies and
knowledge. For example, it can be used in purchasing, order management, billing and
other areas of supply chain management. The protocol mediation, data mediation and
discovery components are designed to be used independently of each other, and can
be applied outside the domain of B2B in other semantic web service applications,
providing further potential value.

In this paper, we have presented a demonstrator system using semantic web ser-
vices technology which allows a requestor to discover logistics service providers,
select appropriate logistics services, coordinate the services to form a composite ser-
vice chain, and communicate with the service providers using arbitrary protocols
through dynamic mediation. As far as we are aware, this is the first system imple-
mented which manages the full service lifecycle of a realistic business example. The
demonstrator itself is not of product quality, and needs augmenting to be more secure
and robust before deployment. However, we believe our results demonstrate the fea-
sibility of this approach to B2Bi problems in general, and expect the use of dynamic
integration via semantic descriptions to become an important industrial technique in
the near future.

Acknowledgements. Thanks to Zlaty Marinova, Dan Twining, Peter Radokov,
Silvestre Losada, Oscar Corcho, Jorge Pérez Bolaño and Juan Miguel Gomez for
work on the system implementation, and all on the SWWS project for stimulating
discussions.

References

1. McIlraith, S. and Martin, D.: Bringing Semantics to Web Services. IEEE Intelligent Sys-
tems, 18(1) (2003) 90-93

2. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet Comput-
ing, (September 2003) 34-41

3. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications, 1 (2002) 113-117

4. Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K: Semantic Matching of Web Ser-
vice Capabilities. Proc. International Semantic Web Conference (2002) 333-347

 Automated Business-to-Business Integration of a Logistics Supply Chain 1001

5. Trastour, D., Bartolini, C. and Gonzalez-Castillo,J.: A Semantic Web Approach to Service
Description for Matchmaking of Services. In Proceedings of the Semantic Web Working
Symposium, Stanford, CA, USA, July 30 - August 1, 2001

6. Grimm, S., Motik, B. and Preist, C.: Variance in eBusiness Service Discovery. Proc. of the
ISWC Workshop on Semantic Web Services, 2004.

7. Preist, C.: A Conceptual Architecture for Semantic Web Services. Proc. 3rd International
Semantic Web Conference (2004) 395-409

8. Trastour, D., Bartolini, C. and Preist, C.: Semantic Web Support for the B2B E-commerce
pre-contractual lifecycle. Computer Networks 42(5) (August 2003) 661-673

9. Haarslev,V. and Moller, R.: Description of the RACER System and its Applications. Proc.
International Workshop on Description Logics (DL-2001), Stanford, USA, 2001.

10. He, M., Jennings, N.R. and Leung, H: On Agent Mediated Electronic Commerce. IEEE
Transactions on Knowledge and Data Engineering 15(4) (2003) 985-1003

11. Williams, S.K., Battle, S.A. and Esplugas Cuadrado, J.: Protocol Mediation for Adaptation
in Semantic Web Services. HP Labs Technical Report HPL-2005-78

12. Esplugas Cuadrado, J., Preist, C. and Williams, S.: Integration of B2B Logistics using Se-
mantic Web Services. Proc. Artificial Intelligence: Methodology, Systems, and Applica-
tions, 11th International Conference, (2004)

13. Battle, S.A.: Round Tripping between XML and RDF. Poster Proc. of ISWC 2004.
14. Jeff Z. Pan and Ian Horrocks. OWL-E: Extending OWL with Expressive Datatype Expres-

sions. IMG Technical Report, School of Computer Science, the University of Manchester,
April 2004

15. Jennings, N.R., Faratin, P.,Johnson,M.J., O’Brien,P. and Wiegand, M.E.: Using Intelligent
Agents to Manage Business Processes. Proceedings of the First Int. Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (1996) 345-360

16. Grosof, B. and Poon, T.: SweetDeal: Representing Agent Contracts with Exceptions using
Semantic Web Rules, Ontologies and Process Descriptions. International Journal of Elec-
tronic Commerce 8(4):61-98 (2004)

17. Trastour, D., Preist, C. and Coleman, D.: Using Semantic Web Technology to Enhance
Current Business-to-Business Integration Approaches. Proc. 7th Enterprise Distributed Ob-
ject Computing Conference, 2003, p222-231

18. McIlraith, S. and Son, T.C.: Adapting Golog for Composition of Semantic Web Services.
Proc. 8th International Conference on Knowledge Representation and Reasoning, 2002,
p482-493

19. Oren, E., Wahler, A., Schreder, B., Balaban, A., Zaremba, M., and Zaremba, M.: Demon-
strating WSMX – Least Cost Supply Management. Proc. Workshop on WSMO Implemen-
tations, 2004.

20. Motta, E., Domingue, J., Cabral, L., and Gaspari, M.: IRS-II: A Framework and Infrastruc-
ture for Semantic Web Services. Proc. 2nd International Semantic Web Conference, 2003,
p306-318

	Introduction
	The Logistics Example
	Overall System Architecture
	Service Description and Discovery
	Mediation During Service Execution
	Implementation
	Analysis and Related Work
	Business Value of the System and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

