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Abstract. In this paper, we propose a new approach to detect activated
time series in functional MRI using support vector clustering (SVC). We
extract Fourier coefficients as the features of fMRI time series and cluster
these features by SVC. In SVC, these features are mapped from their
original feature space to a very high dimensional kernel space. By finding
a compact sphere that encloses the mapped features in the kernel space,
one achieves a set of cluster boundaries in the feature space. The SVC
is an effective and robust fMRI activation detection method because of
its advantages in (1) better discovery of real data structure since there
is no cluster shape restriction, (2) high quality detection results without
explicitly specifying the number of clusters, (3) the stronger robustness
due to the mechanism in outlier elimination. Experimental results on
simulated and real fMRI data demonstrate the effectiveness of SVC.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive tool to observe
the brain neural activities when the subject is undertaking cognitive or motor
tasks. Most activation detection techniques can be categorized as model-driven
and data-driven approaches. Apart from principle component analysis (PCA)
and independent component analysis (ICA), clustering is a family of effective
data-driven approaches to identify unknown responses in fMRI data. The aim of
clustering approach is to separate the time series into clusters — each contains
voxels with similar activation patterns. Existing clustering approaches to fMRI
data analysis include but not limited to crisp C-means [1], Kohonen clustering
neural network [2], fuzzy C-means (FCM) [3], hierarchical clustering [1], etc.

However, most existing methods are suffering from the problem of choosing
the number of clusters. The detected set of voxels varies significantly when the
number of clusters is set to different values. For example, in crisp C-means and
FCM, the user has to define a suitable value for the number of clusters C; in hier-
archical clustering, there is similar dilemma in determining a proper cut for the
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Fig. 1. fMRI Data Processing Scheme

dendrogram. Moreover, the existing fMRI clustering methods implicitly assume
the potential clusters are scattered in certain shapes, such as hyper-spherical
(when using Euclidean distance) and hyper-ellipsoidal (when using Mahalanobis
distance). This oversimplified assumption leads to partitions against the natural
data structure and thus achieves results with high false alarm rate.

Support vector machine (SVM) [4] is a preferred classifier in many theoretical
and empirical areas, due to its salient properties such as margin maximization
and kernel substitution for classifying data in a high dimensional kernel space.
Inspired by SVM, the support vector clustering (SVC) algorithm is proposed [5].

In this paper, we explore the application of SVC to solve the fMRI activation
detection problem. The whole scheme is illustrated in Fig. 1. We first extract
features from fMRI time series using the Fourier transform, and then apply SVC
to cluster these Fourier coefficients. They are mapped to a high dimensional ker-
nel space using a kernel function, e.g. the Gaussian kernel. In the kernel space,
we calculate the smallest sphere enclosing these mapped features, which appears
in the feature space as a set of contours enclosing the original features. These
contours are interpreted as cluster boundaries. The points within the same con-
tinuous region encompassed by the contour are considered as a cluster. SVC has
been shown to be able to generate clusters with arbitrary shapes and eliminate
the outlier by using a regularization constant that controls the compactness of
the sphere in the kernel space – points out of that sphere is considered as outliers.

2 Materials and Methods

2.1 Dataset

Simulated Dataset Generation. According to a new BOLD response mod-
eling technique [6], the BOLD response s(t) is modeled as the combination of
two gamma functions ga(t) and gb(t) convoluted with stimulus c(t):

ga(t) =
(
1 − e−1/da

)2
(t + 1)e−t/da, gb(t) =

(
1 − e−1/db

)2
e−t/db,

s(t) = fa(ga ∗ c)(t − d0) + fb(gb ∗ c)(t − d0) + fc(ga ∗ c)(t − d0)(gb ∗ c)(t − d0)
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Table 1. Parameters for the simulated data

Region fa fb fc da db d0

A 0.7 0.04 0.6 2 12 3
B (left and right) 0.5 0.3 0.5 3 6 2

C 0.35 0.1 1 5 5 4

To simulate the real-world fMRI data and to get concrete performance mea-
surements for comparison, we construct four artificial activation regions, i.e. A,
B(left and right), and C regions in Fig. 2(b), with three sets of values for the
parameters (see Table 1) in the above-mentioned BOLD response model. The
baseline image is constructed by averaging time courses on the 29th slice in the
processed real auditory fMRI dataset (cf. Fig. 2(a)) from Wellcome Department
of Cognitive Neurology at University College London. The size of simulated data
is 79 × 95 × 1, and the length for each time series is 200. Then we add onto all
the voxels the additive white Gaussian noise with intensities proportional to the
baseline voxel intensities. In the experiment, we simulate various contrast-to-
noise ratio (CNR).

In Vivo fMRI Dataset. We also use the auditory fMRI data acquired by
Wellcome Department of Cognitive Neurology at University College London to
validate the effectiveness of our method. We use it with the permission from the
Functional Imaging Laboratory. The experiment was conducted to measure the

(a) (b)

(c) (d) (e)

Fig. 2. Simulated Dataset (a) baseline slice generated from the 29th slice of real data;
(b) spatial layout of simulated BOLD activation; (c) average activation time series in
A; (d) average activation time series in B; (e) average activation time series in C
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activation in the subjects brain when given an auditory bi-syllabic stimulation.
This whole brain BOLD/EPI data was acquired with a modified 2-T SIEMENS
scanner and the TR is set to 7 sec. The spatial resolution of the volume data
is 64 × 64 × 64, and the size of each voxel is 3mm × 3mm × 3mm. In this
experiment, the subject is given a boxcar stimulation: first begins with rest, and
then switches between rest (6 scans, last for 42 sec) and stimulation (6 scans, last
for 42 sec). By discarding the first few scans, the acquired 96 scans are reduced
to 84 scans. The structural dataset that has been aligned with the function data
is also provided for reference.

2.2 Methods

Preprocessing. To remove the head motion effect in raw fMRI data, we first
spatially realign the slices with the first slice. Then the dataset is normalized
by subtracting the mean amplitude from each time series and adjust their vari-
ances to one in order to emphasize their variation patterns. The last prepro-
cessing step is first-order polynomial detrending [7] that removes the undesired
drift.

Data Analysis. (1)Data Reduction: To accelerate feature extraction and data
clustering, also to avoid ill-balance clustering result, we use t-test to remove
the data points that will definitely not be considered as the activated voxels.
All the voxels that are likely to be activated will be acquired by setting a
low threshold in the t-test. (2)Feature Extraction: BOLD response to the pe-
riodic stimulus can be well characterized by the Fourier coefficients [8]. As the
paradigm in our experiment is typical box-car, which is periodic, we use the
Fourier transform to acquire the features for clustering. Another merit of us-
ing Fourier transform to extract features is to avoid explicitly modeling the
delay from the stimulation, as the delay changes in various brain locations
and for different subjects. Suppose the fMRI dataset is Y, a T × N matrix,
where N is the number of time series, each with a length T . Columns in Y
are time series and rows in Y correspond to scans. Since we have performed
the normalization and detrending in the preprocessing stage, the columns of
Y are zero mean, zero drift time series. The harmonic components are calcu-
lated as

α�(t) = sin
(

�

2
ωt

)
· (� mod 2 + 1) + cos

(
� + 1

2
ωt

)
· (� mod 2), � = 1 . . . L,(1)

where ω is the fundamental frequency of the experimental paradigm, L ≤ (2π)/
(�t ·ω) is the number of harmonic components, and �t is the temporal sampling
period. We then form a T × L design matrix A = [a1 . . .aL]. So far, the data
can be expressed as Y = A · X + ε [9], where X is an L × N harmonic image
matrix containing the linear coefficients, and ε is the noise matrix. An estimate
of X can be computed using a least squares fit, i.e. X̂ = (AtA)−1AtY. We treat
X̂ as the input data in the next SVC step.
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Support Vector Clustering. There are two major steps in support vector
clustering: a training step to train a kernel radius function and a cluster labeling
step to assign a cluster index to each data point.

(1) Training: Assume X = {xi}, i = 1 . . .N is the input data. Using a non-
linear transformation, X can be transformed to a high-dimensional kernel space,
where we can find the smallest hyper-sphere that encloses the maps of {xi}, i.e.
{φ(xi)} with the radius R:

‖φ(xj) − a‖2 ≤ R2 + ξj , (2)

where a is the center and ξ ≥ 0 are the slack variables that enables soft bound-
aries calculation. Using the Lagrangian with a regularization constant C in its
penalty term, L = R2 −

∑
j

(
R2 + ξj − ‖φ(xj) − a‖2

)
βj −

∑
j ξjµj + C

∑
j ξj ,

problem (2) can be solved by dealing with its dual problem:

max W =
∑

j

φ(xj)2βj −
∑

i,j

βiβjφ(xi)φ(xj) (3)

s.t. 0 ≤ βj ≤ C,
∑

j

βj = 1, j = 1 . . .N. (4)

Support vectors are the points on the boundary of the sphere with 0 < βj < C.
The trained kernel radius function is defined as f(x) := R2(x) = ‖φ(x) −
a‖2 = K(x,x) − 2

∑
j βjK(xj ,x) +

∑
i,j βiβjK(xi,xj), where the kernel func-

tion K(xi,xj) substitutes the inner products φ(xi) · φ(xj). In this work, we use
the most commonly used kernel function, Gaussian kernel, which is defined as
K(xi,xj) = exp

(
−‖xi − xj‖2/2δ2

)
.

(2)Cluster labeling: As the trained kernel radius function is topologically
invariant, the level set of f(·) can be decomposed into several disjoint sets [10] ,
Lf(R̂2) := {x : f(x) ≤ R̂2} = C1 ∪ . . . ∪ Cp, where R̂ = R(xi), i = 1 . . .N is the
radius in kernel space, p is the number of clusters determined by f(·), and Ci,
i = 1 . . . p are different clusters.

3 Experiment and Results

3.1 On Simulated Dataset

For the simulated dataset, the data processing scheme (cf. Fig. 1) is performed.
After preprocessing, the t-test was used to reduce the dataset, which generated
the result as shown in Fig. 3(a). As there are three different activation patterns
in the simulated dataset, our target is to find four clusters: three contain three
types of activated voxels, and the fourth is for the non-activated voxels. The
performance of SVC is compared with those of crisp C-means, ICA [11], and
FCM. For crisp C-means and FCM, we set the number of clusters to be four. ICA
was constrained to generate three independent components. For the SVC, we set
the kernel width σ to 0.2 and the regularization parameter C to 103. Four clusters
are detected by SVC. In FCM, the cluster label for each voxel is determined by
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(a) (b) (c) (d) (e)

Fig. 3. Detection results from (a) after t-test (b) C-means (c) ICA (d) FCM (e) SVC

(a) (b)

Fig. 4. Performance of C-Means, ICA, FCM, and SVC (a) Sensitivity (b) Specificity

finding the largest membership value; and in ICA, each voxel is assigned to the
largest component. For the detected clusters, we find the ”activated” clusters
whose centroids are the most correlated ones to the stimulus paradigm.

Fig. 3 shows the detection results from C-means, ICA, FCM, and SVC, when
CNR is set to 1.2. When CNR increases from 0.4 to 2, the sensitivity (the per-
centage of voxels correctly detected as activated) and specificity (the percentage
of voxels correctly detected as non-activated) of the four methods are plotted in
Fig. 4. One can find that the proposed SVC achieves both higher sensitivity and
specificity than other methods under different CNR’s.

3.2 On In Vivo Dataset

For the in vivo dataset, as we do not know the desired number of clusters, in
order to achieve a set of finer clusters, we set the width parameter σ to 0.15 in
SVC; while for FCM and C-means, the number of clusters is set to 30. Other
settings are similar as discussed in 3.1. Fig. 5 shows that activated voxels on the
29th slice detected by C-means, FCM, ICA, and SVC cover the Brodmanns area
(BA) 42 (primary auditory cortex) and BA 22 (auditory associated area) when
they are superimposed on the accompanied structural data. But SVC detected
more continuous activated regions, which are demonstrated to have stronger
relationship with the stimulus (see Fig. 6(a)); however the voxels detected by
C-means, but not by SVC, are shown to be almost irrelevant (see Fig. 6(b)).
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(a) (b) (c) (d)

Fig. 5. The activated clusters detected by (a) C-means, (b) ICA, (c) FCM, (d) SVC

(a) (b)

Fig. 6. The in vivo activation detection results (a) the averaged signal detected by
SVC (b) The averaged signal detected by C-means but not by SVC

4 Discussions and Conclusion

The main contribution of this paper is finding an effective and reliable activation
detection method, support vector clustering (SVC), which is free of the cluster
shape assumption existing in most fMRI clustering approaches, and is able to
remove the outlier points. The experimental results show the effectiveness of
SVC in comparison with commonly used crisp C-means, FCM and ICA.

In the SVC algorithm that uses Gaussian kernel, the width parameter σ
determines how fine the samples are clustered. Users can have a control over
the clustering result by tuning this parameter: increasing σ will lead to a coarse
clustering result, and vice versa. Empirical value for σ is in the range from 0.1 to
3. The regularization constant C affects the amount of outlier points, and hence
influences the compactness of the generated clusters. Further research may be
on how to automatically determine the values for the two parameters in fMRI
activation detection by incorporating the field expert knowledge.
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