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Jérôme Callut and Pierre Dupont

Department of Computing Science and Engineering,
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Abstract. We propose in this paper a novel approach to the induction
of the structure of Hidden Markov Models. The induced model is seen as
a lumped process of a Markov chain. It is constructed to fit the dynamics
of the target machine, that is to best approximate the stationary distri-
bution and the mean first passage times observed in the sample. The
induction relies on non-linear optimization and iterative state splitting
from an initial order one Markov chain.
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1 Introduction

Hidden Markov Models (HMMs) are widely used in many pattern recognition
areas, including applications to speech recognition [10], biological sequence mod-
eling [4], information extraction [5,6] and optical character recognition [8], to
name a few. In most cases, the model structure, also referred to as topology, is
defined according to some prior knowledge of the application domain. Automatic
techniques for inducing the HMM topology are interesting as the structures are
sometimes hard to define a priori or need to be tuned after some task adaptation.
The work described here presents a new approach towards this objective.

Previous works with HMMs mainly concentrated either on hand-built models
(e.g. [5]) or heuristics to refine predefined structures combined with EM estima-
tion [6]. More principled approaches are the Bayesian merging technique due
to Stolcke [12] and the maximum likelihood state-splitting method of Ostendorf
and Singer [9]. The former approach however has not been shown to clearly
outperform alternative approaches while the latter is specific to the subclass of
left-to-right HMMs modeling speech signals.

The present contribution describes a novel approach to the structural induc-
tion of HMMs. The general objective is to induce the structure and to estimate
the parameters of a HMM from a sample assumed to have been drawn from an
unknown target HMM. The goal however is not the identification of the target
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model but the induction of a model sharing with the target the main features of
the distribution it generates. We restrict here our attention to features that can
be deduced from the sample. These features are closely related to fundamental
quantities of a Markov process, namely the stationary distribution and mean
first passage times (MFPT). In other words, the induced model is built to fit
the dynamics of the target machine observed in the sample, not necessarily to
match its structure.

Section 2 reviews some useful definitions coming from the theory of discrete
Hidden Markov Models and Markov Chains. We use here a specific representation
class for distributions generated by HMMs, called Partially Observable Markov
Models (POMMs). This class is general enough since any discrete HMM can
equivalently be represented by a POMM [2].

HMMs are able to model a class of distributions broader than finite order
Markov chains. In particular, section 3 describes why HMMs, with an appro-
priate topology, are well suited to represent long term probabilistic dependen-
cies in a compact way. We also argue why accurate modeling of these depen-
dencies cannot be achieved through the classical approach of Baum-Welch es-
timation of a fully connected model. These observations motivate the use of
MFPT to guide the search of an appropriate model. The resulting induction
algorithm is presented in section 4. Comparative results given in [3] illustrate
the superiority of POMM induction over variable order Markov chains (equiv-
alent to back-off smoothed Ngrams) and EM estimation of a fully connected
HMM.

2 Partially Observable Markov Models, Markov Chains
and Lumped Processes

We introduce here Partially Observable Markov Models and we review some
fundamental notions of the Markov chains theory.

Definition 1 (POMM). A Partially Observable Markov Model (POMM) is
a HMM M = 〈Σ, Q, A, B, ι〉 where Σ is an alphabet, Q is a set of states,
A : Q × Q → [0, 1] is a mapping defining the probability of each transition,
B : Q × Σ → [0, 1] is a mapping defining the emission probability of each let-
ter on each state, and ι : Q → [0, 1] is a mapping defining the initial proba-
bility of each state. Moreover, the emission probabilities satisfy: ∀q ∈ Q,∃a ∈
Σ such that B(q, a) = 1.

In other words, each state of a POMM only emits a single letter. This model
is called partially observable since, in general, several distinct states can emit
the same letter. As for a HMM, the observation of a string emitted during a
random walk does not allow one to identify the states from which each letter
was emitted. However, the observations define state subsets from which each
letter may have been emitted. Any distribution generated by a HMM with |Q|
states over an alphabet Σ can be represented by a POMM with O(|Q|.|Σ|)
states [2].
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The notion of POMM is closely related to a standard Markov Chain (MC).
Indeed, in the particular case where all states emit a different letter, the process
of a POMM is fully observable. Moreover the Markov property is satisfied as, by
definition, the probability of any transition only depends on the current state.
Some fundamental properties of a Markov chain are recalled hereafter and the
links between a POMM and a MC are further detailed. A MC can be represented
by a 3-tuple T = 〈Q, A, ι〉 where Q is a finite set of states, A is a |Q| × |Q|
transition probability matrix and ι is a |Q|−dimensional vector representing
the initial probability distribution. The stationary distribution and mean first
passage times are two fundamental quantities characterizing the dynamics of
a Markov chain1. The stationary distribution is a |Q|−dimensional stochastic
vector π such that πT A = πT . The q-th entry of π can be interpreted as the
expected proportion of the time the Markov process in steady-state reaches state
q. Given two states q and q′, the Mean First Passage Time (MFPT) Mqq′ is the
expected number of steps before reaching state q′ for the first time while leaving
initially from state q.

Given a MC, a partition can be defined on its state set and the resulting
process is said to be lumped.

Definition 2 (Lumped process). Given a regular MC, T = 〈Q, A, ι〉, let
q(t) be the state reached at time t during a random walk in T . The set κ =
{κ1, κ2, . . . , κr} denotes a partition of the set of states Q. The function Kκ =
Q → κ maps the state q to the block of κ that contains q. The lumped process
T//κ outcomes Kκ(q(t)) at time t.

While the states are fully observable during a random walk in a MC, a lumped
process is associated with random walks where only state subsets are observed.
In this sense, the lumped process makes the MC only partially observable as in
the case of a POMM. Conversely, a random walk in a POMM can be consid-
ered as a lumped process of its underlying MC with respect to an observable
partition of its state set. Each block of the observable partition corresponds to
the state(s) emitting a specific letter. In this case, both models define the same
string distribution. The induction algorithm presented in section 4 is based on
the MFPT extended to lumped processes.

Definition 3 (MFPT for a lumped process). Given a regular MC T =
〈Q, A, ι〉, κ a partition of Q and κi, κj two blocks of κ, an absorbing MC
T κj is created from T by transforming every state of κj to be absorbing. Fur-
thermore, let wκj be the MTA vector of T κj . The mean first passage time
Mij//κ from κi to κj in the lumped process T//κ is defined as follows: Mij//κ =
∑

q∈κi

πq

πκi
w

κj
q if κi �= κj and Mii//κ = 1

πκi
, where πq is the stationary distribution

of state q in T , πκi =
∑

q∈κi
πq is the stationary distribution of the block κi in

the lumped process T//κ and wκj is the mean time to absorption vector related
to κj [3,7].

1 We focus here on regular MCs, which are MCs with strongly connected transition
graphs and no periodic states [7].
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Fig. 1. A parametric POMM Tθ (left) modeled by an order 1 MC (center) or an order

2 MC (right)

3 Modeling Long-Term Probabilistic Dependencies

A stochastic process {Xt | t ∈ N} contains long-term dependencies if an outcome
at time t significantly depends on an outcome that occurred at a much earlier
time t′: P (Xt | Xt−1, . . . , Xt′) �= P (Xt | H) when H = {Xt−1, . . . , Xt−p} and
p < t − t′. Hence, the relevant history size for such a process is defined as the
minimal size of H such that P (Xt |Xt−1, . . . , Xt′) = P (Xt |H), ∀t, t′ ∈ N, t′ < t.
When the size of the relevant history is bounded, Markov chains of a sufficient
order can model the long-term dependencies. On the other hand, if a conditioning
event Xt′ can be arbitrarily far in the past, more powerful models such as HMMs
or POMMs are required.

3.1 Modeling Long-Term Dependencies with Finite Order MC

Let us consider the parametric POMM Tθ displayed on the left of Figure 1.
Emission of e or f in this model depends on whether b or c was emitted right
before the last consecutive d’s. Depending on the number of consecutive d’s, the
b or c outcomes can be arbitrarily far in the past. In other words, the size of the
relevant history (i.e. the number of consecutive d’s + 1) is unbounded. The ex-
pected number of consecutive d’s is however finite and given by

∑∞
i=0 θi = 1

1−θ .
Consequently, the expected size of the relevant history is 1

1−θ + 1. It should be
noted that when θ = 0, Tθ can be modeled accurately by an order 2 MC2 since
the relevant history size equals 2.

A model would badly fit the distribution defined by Tθ if it would first emit
f rather than e after having emitted b. The probability of such an event is
Perror = P (tf < te | Xt = b) where tf and te denote the respective times of the
first f or e after the outcome b. In the target model Tθ, Perror = 0. If the same
process is modeled by an order 1 MC (center of Figure 1), Perror = 0.5. Indeed,
when the process reaches state d, there is an equal probability to reach states e or
f. In particular, these probabilities do not depend on previous emissions of b or c.

2 A state label b|a in an order 2 MC means that the process emits b after having
emitted a. The probability of the transition from state b|a to state d|b encodes the
second order dependence P (Xt = d|Xt−1 = b, Xt−2 = a).
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An order 2 MC, as depicted on the right of Figure 1, would have Perror = 0.475
when θ = 0.95. In general, the error of an order p MC is given by Perror = θp−1

2 .
For instance, when θ = 0.95, the expected size of the relevant history is 21 and
Perror for such a model is still 0.17. Bounding the error probability to 0.1 would
require to estimate a MC of order p = �log0.95(0.2) + 1� = 33. An accurate
estimate of such a model requires a huge amount of training data, very unlikely
to be available in practice. Hence, POMMs and HMMs can better model long-
term dependencies when the relevant history size is unbounded.

3.2 Topology Matters to Fit Long-Term Dependencies with HMMs

Bengio has shown that the use of a good HMM topology is crucial in order to
model long term dependencies [1]. Indeed, the classical Baum-Welch algorithm
applied to a fully connected graph is hindered by a phenomenon of diffusion
of credit: the probability of being in a state at time t becomes gradually inde-
pendent of the states reached at a previous time t′ 	 t. In other words, the
dependencies on the past outcomes of the process ends up vanishing. This phe-
nomenon is related to the powers of the transition matrix A used in the forward
and backward recursions of the Baum-Welch algorithm. Let ιt be a row vector
representing the distribution of being in each state at time t. This distribution
d steps further is given by ιt+d = ιtA

d. If the successive powers of A converge
quickly to a rank 1 matrix3 then ιt+d becomes independent of ιt. In such a case,
the estimation algorithm is likely to be stuck in an inappropriate local minimum
of the likelihood function.

For a primitive matrix4 A, the rate of convergence to rank 1 can be char-
acterized using the Perron-Frobenius theorem [11]. It implies that a primitive
stochastic matrix has a unique eigenvalue equal to 1 and that all other eigenval-
ues are strictly smaller than 1 (in absolute value). If the rank of A is r, then the
spectral decomposition of A is given by A = λ1U1V

T
1 + . . . + λrU rV

T
r , where

λi is the i-th largest eigenvalue in absolute value and U i, V i are respectively
the right-hand and left-hand eigenvectors associated with λi. Furthermore, the
spectral decomposition of Ad is given by Ad = λd

1U1V
T
1 + . . .+λd

rUrV
T
r that is,

taking A to the power d amounts to take its eigenvalues to the power d. Conse-
quently, while taking the successive powers of A, λ1 = 1 remains unchanged and
all other eigenvalues are decreasing until cancellation. The rate of convergence
to rank 1 follows a geometric progression with a ratio that can be approximated
by the second5 largest eigenvalue λ2.

Classically, the Baum-Welch algorithm is initialized with a uniform random
matrix6. Such a matrix typically has a very low λ2. The Baum-Welch algorithm
is thus badly conditioned to learn long-term dependencies when initialized in
this way. On the other hand, initializing this algorithm with a matrix having λ2

close to 1 requires prior knowledge of the model topology.
3 All rows of a rank 1 stochastic matrix are equal.
4 The transition matrix of a regular MC is primitive.
5 In the case of the POMM Tθ of Figure 1, λ2 = θ.
6 Each entry is uniformly drawn in [0, 1] and rows are normalized to sum up to 1.
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Table 1. MFPT in T0.95 (left), modeled by an order 1 MC (center) or an order 2 MC

(right)

T//κ e f

b 21.0 67.0
c 67.0 21.0

MC1 e f

b 44.0 44.0
c 44.0 44.0

MC2 e f

b 42.85 45.15
c 45.15 42.85

3.3 Long-Term Dependencies and MFPT

The MFPT in a lumped process T//κ contains information about the long-term
dynamics of the process. Indeed, the MFPT from the block κb to the block κe

is an expectation of the length of random walks starting with b before emitting
e for the first time. Let us assume that the emission of e is conditioned by the
fact that the process has first emitted b. The MFPT from b to e is equal to
the expected length of the relevant history to predict e from b. Table 1 shows
some interesting MFPT in the example Tθ of Figure 1 with θ = 0.95. In the
target Tθ, Mbe = Mcf is equal to the expected size of the relevant history (21,
see section 3.1). Furthermore, there is a rather long expected time between the
outcomes b and f (equivalently between c and e). When Tθ is approximated by
an order 1 MC, Mbe = Mbf = Mce = Mcf = 44. This means that independently
of whether (b or c) were emitted, the outcomes e and f are expected to occur 44
steps later. An order 2 MC only slightly improves the fit to the correct MFPT
with respect to an order 1 model.

4 POMM Induction to Model Long-Term Dependencies

A random walk in a POMM can be seen as its underlying MC lumped with
respect to the observable partition, as detailed in section 2. We present here an
induction algorithm making use of this relation. Given a data sample, assumed
to have been drawn from a target POMM TP , our induction algorithm estimates
a model EP fitting the dynamics of the MC related to TP . The estimation relies
on the stationary distribution and the mean first passage times which can be
derived from the sample.

In the present work, we focus on distributions that can be represented by
POMMs without final (or termination) probabilities and with regular underlying
MC. Since the target process TP never stops, the sample is assumed to have
been observed in steady-state. Furthermore, as the transition graph of TP is
strongly connected, it is not restrictive to assume that the data is a unique finite
string s resulting from a random walk through TP observed during a finite time7.
Under these assumptions, all transitions of the target POMM and all letters of
its alphabet will tend to be observed in the sample. Such a sample can be called
structurally complete.

7 The sample statistics could equivalently be computed from repeated finite samples
observed in steady-state.
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Algorithm POMMStateSplit
Input: A string s from a target POMM

A precision parameter ε

Output: A POMM EPcur

EP ← initialize(s);

M̂ ← sampleMFPT(s);
Lik ← logLikelihood(EP, s);
repeat

Likcur ← Lik;
EPcur ← EP ;
foreach state q in EPcur do

EPnew ← optimizeMFPT(EPcur, q, M̂);
Liknew ← logLikelihood(EPnew, s);
if Liknew > Lik then

EP ← EPnew;
Lik ← Liknew;

until Lik−Likcur
Likcur

< ε;

return EPcur

:Algorithm 1: POMM Induction by state splitting Fig. 2. Splitting of state q

As the target process TP can be considered as a lumped process, each letter of
the sample s is associated with a unique state subset of the observable partition
κ. All estimates introduced here are related to the state subsets of the target
lumped process. The starting point of the induction algorithm is an order 1 MC
estimated from the sample. For any pair of letters a, b the transition probability
Âab is estimated by maximum likelihood by counting how many times a letter a
is immediately followed by b in the sample. The stationary distribution of this
order 1 MC fits the letter distribution observed in the sample. However, this
is not sufficient to reproduce the target dynamics. Hence, the induced model is
further required to comply with the MFPT between the blocks of TP//κ, that
is between the letters observed in the sample. Given a string s defined on an
alphabet Σ, let M̂ denote a |Σ| × |Σ| matrix where M̂ab is the average number
of symbols after an occurrence of a in s to observe the first occurrence of b.

Algorithm 1 describes the induction algorithm. Iterative state splitting in the
current model allows one to increase the fit to the MFPT as well as the likeli-
hood of the model with respect to s, while preserving the stationary distribution.
After the construction of the initial order 1 MC, M̂ is estimated from s and the
log-likelihood of the initial model is computed. At each iteration step, every state
q of the current model is considered as a candidate for splitting. During the call
to optimizeMFPT, the considered state q is split into two new states q1 and q2

as depicted in Fig. 2. The input states i1, . . . , ik and output states o1, . . . , ol are
those directly connected to q in the current model8, in which all transition prob-
abilities A are known. The topology after splitting provides additional degrees
of freedom in the transition probabilities. The new transition probabilities x, y, z
form the variables of an optimization problem, which can be represented by the
matrices X (k × 2), Y (2 × l) and Z (2 × 2).

8 Input and output states are not necessarily distinct.
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The objective function to be minimized measures a least squares error with
respect to the target MFPT: W (X, Y, Z) =

∑|Σ|
i,j=1, i�=j(M̂ij − Mij//κ)2, where

Mij//κ is computed according to definition 3. The best model according to the
log-likelihood value is selected and the process is iterated till convergence of the
log-likelihood function. The optimization problem is non-linear both in the objec-
tive function and the constraints. It can be solved using a Sequential Quadratic
Programming (SQP) method [3].

5 Conclusion

We propose in this paper a novel approach to the induction of the structure of
Hidden Markov Models. The induced model is constructed to fit the dynamics of
the target machine, that is to best approximate the stationary distribution and
the mean first passage times (MFPT) observed in the sample. HMMs are able
to model a class of distributions broader than finite order Markov chains. They
are well suited to represent in a compact way long term probabilistic depen-
dencies. Accurate modeling of these dependencies cannot be achieved however
through the classical approach of Baum-Welch estimation of a fully connected
model. These observations motivate the use of MFPT to guide the search of an
appropriate model topology. The proposed induction algorithm relies on non-
linear optimization and iterative state splitting from an initial order one Markov
chain. Experimental results illustrate the advantages of the proposed approach
as compared to Baum-Welch HMM estimation or back-off smoothed Ngrams.

Our future work will include extension of the proposed approach to other
classes of models, such as lumped processes of periodic or absorbing Markov
chains. The current implementation of our induction algorithm considers all
states of the current model as candidates for splitting. More efficient ways of
selecting the best state to split at any given step are under study. Applications
of the proposed approach to larger datasets will also be considered, typically in
the context of language or biological sequence modeling.
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