Skip to main content

Matching Point Sets with Respect to the Earth Mover’s Distance

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

The Earth Mover’s Distance (EMD) between two weighted point sets (point distributions) is a distance measure commonly used in computer vision for color-based image retrieval and shape matching. It measures the minimum amount of work needed to transform one set into the other one by weight transportation.

We study the following shape matching problem: Given two weighted point sets A and B in the plane, compute a rigid motion of A that minimizes its Earth Mover’s Distance to B. No algorithm is known that computes an exact solution to this problem. We present simple FPTAS and polynomial-time (2 + ε)-approximation algorithms for the minimum Euclidean EMD between A and B under translations and rigid motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Comp. Geom., pp. 121–153. Elsevier Science Publishers B.V, North-Holland (1999)

    Google Scholar 

  3. Atkinson, D.S., Vaidya, P.M.: Using geometry to solve the transportation problem in the plane. Algorithmica 13, 442–461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Maheshwari, A., Morin, P.: Fast approximations for sums of distances clustering and the Fermat-Weber problem. Comp. Geom. Theory & Appl. 24, 135–146 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimensions. In: Proc. of the 4th ACM-SIAM SODA, pp. 291–300 (1993)

    Google Scholar 

  6. Chandrasekaran, R., Tamir, A.: Algebraic optimization: The Fermat-Weber location problem. Math. Programming 46(2), 219–224 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, S., Guibas, L.: The Earth Mover’s Distance under transformation sets. In: Proc. of the 7th IEEE ICCV, pp. 173–187 (1999)

    Google Scholar 

  8. Giannopoulos, P., Veltkamp, R.C.: A pseudo-metric for weighted point sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–731. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Grauman, K., Darell, T.: Fast contour matching using approximate Earth Mover’s Distance. In: Proc. of the IEEE CVPR, pp. 220–227 (2004)

    Google Scholar 

  10. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: 3rd Int. Workshop on Statistical and Computational Theories of Vision (2003)

    Google Scholar 

  11. Klein, O., Veltkamp, R.C.: Approximation algorithms for the Earth Mover’s Distance under transformations using reference points. Technical Report UU-CS-2005-003, IICS, Utrecht University, The Netherlands (2005)

    Google Scholar 

  12. Lv, Q., Charikar, M., Li, K.: Image similarity search with compact data structures. In: Proc. of the 13th ACM CIKM, pp. 208–217 (2004)

    Google Scholar 

  13. Mumford, D.: Mathematical theories of shape: Do they model perception? In: SPIE Geometric Methods in Comp. Vision, vol. 1570, pp. 2–10 (1991)

    Google Scholar 

  14. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41(2), 338–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a metric for image retrieval. Int. Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  16. Typke, R., Giannopoulos, P., Veltkamp, R.C., Wiering, F., van Oostrum, R.: Using transportation distances for measuring melodic similarity. In: Proc of 4th Int. Symp. on Music Inf. Retrieval (ISMIR), pp. 107–114 (2003)

    Google Scholar 

  17. Varadarajan, K.R., Agarwal, P.K.: Approximation algorithms for bipartite and non-bipartite matching in the plane. In: Proc. of the 10th ACM-SIAM SODA 1999, pp. 805–814 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabello, S., Giannopoulos, P., Knauer, C., Rote, G. (2005). Matching Point Sets with Respect to the Earth Mover’s Distance. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_47

Download citation

  • DOI: https://doi.org/10.1007/11561071_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics