ENHANCING INTERACTION SUPPORT IN THE
CORBA COMPONENT MODEL

Sylvain Robert', Ansgar Radermacher', Vincent Seignole?, Sébastien
Gérard', Virginie Watine? and Frangois Terrier'

|CEA-LIST, DRT/LIST/DTSI/SOL, CEA Saclay, 91191 Gif sur Yvette Cedex, France; *Thales
Alice pilot program, Thales Communications, 91300 Massy, France

Abstract: Even if promising with respect to software complexity management,
component-based approaches, like CCM and EJB, have until now fall short in
achieving their breakthrough in the real-time and embedded community. Our
aim is to adapt one of these approaches - namely the CCM - to the specific
needs of this area. In such a process, we have identified several crucial points,
among which is interaction management. The current CCM runtime
interaction support is actually poor and lacks flexibility. That is the reason
why, drawing our inspiration from similar works of the ADLs field, we
propose to gather all interaction-related processing in connectors. This paper
details the rationale underlying our choice, and outlines all modifications
needed to introduce the connector meta-element in the CCM. It also illustrates
the relevance of CCM connectors in the scope of a telecommunication use
case.

Keywords: CCM, ADL, Components, Connectors, Real Time, Embedded, Interaction

1. INTRODUCTION

The current trend of real time embedded software is towards complexity.
Complexity of the developed software, of course, but also complexity of the
development processes. Component-based approaches, like CCM? or EJB",
are likely to help developers coping with this issue. However, they have until
now been considered to be poorly adapted to embedded software design,
notably because of their associated runtime infrastructures which consume



138 Sylvain Robert, Ansgar Radermacher, Vincent Seignole, Sébastien
Gérard, Virginie Watine and Frangois Terrier

too much resources (e.g. memory footprint). For instance, using the CCM
implies using a CORBA-compliant middleware layer, which is generally not
affordable in the embedded domain. Hence, a gap has to be bridged, before
these approaches can spread in embedded software development practices.

We aim to bridge this gap in the scope of the CCM approach, within
ongoing collaborative research projects’. In such a process, we have
identified three main steps. First, CCM containers shall be extended with
real-time specific support (e.g. scheduling). Then, deployment guidance (i.e.
the way the application is installed and launched on the target) has to be
adapted. At last, our execution framework should also be usable on systems
with limited memory resources. This latter goal is achieved by two
measures: (i) choosing a lightweight version of the CCM', (i) making it
possible to use light (which means lighter than CORBA) execution
infrastructures, like real time operating systems.

The paper focuses on the second aspect, i.e. the integration of new
interaction mechanisms that reduce the dependencies to CORBA. As a side
effect, these interactions offer more design flexibility. The approach we
propose adds a brand new entity in the CCM: the connector. While
components are loci for business logic, connectors are loci for interaction
management logic®. They encapsulate all interaction-related processing, thus
providing a better separation of concerns. Integrating connectors with CCM
is not straightforward, since it imposes a modification of all CCM facilities
(e.g. extending the IDL language to be able to define connectors, or adapting
deployment and configuration). In the following, we describe our approach
to this technical issue and illustrate its relevance an example. The structure
of this paper is as follows: Section 2 is an introductive overview of CCM. In
Section 3, we describe our view of the CCM connector concept, and show
how connectors integrate with the original CCM development process. We
also give a short illustration of the introduced concepts. Eventually, section 4
gives a short overview of related work, before concluding.

2. AN OVERVIEW OF THE CCM

The CCM specification® covers the whole software development process,
from specification to components packaging. It is completed by the OMG'
Deployment & Configuration specification’, which provides guidelines for
applications configuration and deployment. Describing all CCM facilities

* The IST COMPARE project (http://www.ist-compare.org) and the ITEA MERCED project
(http://www.itea-merced.org)

' Object Management Group, http://www.omg.org



Enhancing Interaction Support in the CORBA Component Model 139

would be tedious and not relevant in the context of this paper. Thus, in the
following, we sketch only CCM main features: the component model, the
execution architecture, and the development process.

In the CCM, components are basically software entities providing
services to any of their counterparts. Conversely, they specify the services
they need to execute properly. In CCM terminology, a component owns
facets (i.e. provided interfaces) and receptacles (required interfaces). On top
of that, components may own event sources and sinks, which are the event
based equivalents of receptacles and facets. Attributes may also be defined
for each component, mostly to enable components configuration at
instantiation. Components are defined and declared thanks to a specific
language, the Interface Definition Language (IDL). Writing components
specifications in IDL is the first step in a CCM application development
process. As an example, we provide the declaration of a component “C”,
providing a port “a_intf” of “IMyIntf” type.
component C {

provides IMyIntf a_intf; // A facet
consumes E a_E; // An event sink

2

The CCM proposes an execution model based on the component-
container pattern, with the objective to separate business (components) and
non-functional (containers) concerns. Containers are the glue between
components and the underlying execution / communication platform. They
mediate all interactions between components, be they remote or co-located.
The container is in particular responsible for providing to the component a
context object, which can then be used by the component to perform various
actions: for instance retrieving a reference to a facet of another component,
or publishing an event.

Two main development processes may be differentiated: developing a
(single) CCM component and building an application using existing CCM
components. The first consists in developing a component corresponding to
an interface specification. Fig. 1 shows the successive phases of such a
process. Once the interface of the component is written using the IDL, a
component skeleton (written in the targeted implementation language) may
be obtained using an IDL compiler. This skeleton has then to be completed
by the functional (or business) code, and the whole is compiled, in order to
obtain a component implementation. This latter step is repeated as many
times as necessary: for instance, in order to obtain one Linux, and one
Windows implementation. At last, the implementations of the component are
packaged together with the component descriptors (XML files describing the
contents of the packages) and IDL files.



140 Sylvain Robert, Ansgar Radermacher, Vincent Seignole, Sébastien
Gérard, Virginie Watine and Frangois Terrier

Component Component (
IDL skeleton(s) implementation(s) Component
files (binaries) package
1 t
Business Component

code Descriptors
(XML)

Figure 1. Developing a CCM component

Supposing that all components needed for a given application are
identified and the corresponding packages are available, the CCM provides
further guidance® to properly build, configure, and run the application. First,
the application architecture (components instances, connections) have to be
defined in dedicated (XML) assembly files. These files are used as an input
to a deployment tool, which is then in charge of components instantiation
and configuration, also performs the specified connections, and eventually
launches the application.

3. CCM CONNECTORS OVERVIEW

In this section, we highlight the interest we have found in defining
connectors for CCM and outline the modifications made to CCM in order to
integrate this new artifact. The impact of connectors on the CCM
development process is also evaluated. In the end, we provide a short
illustration of connectors usage.

3.1 Why a CCM connector?

In its native field (Architecture Description Languages®), the connector’
is a clearly distinguished entity (from components), dedicated to interaction
management. Depending on the work considered, the capabilities of
“connectors” may vary a lot. For instance in Unicon®, the connector is given
numerous functional features: a type, an interaction protocol, and other
functional features like real-time ones. The elements that may be considered
as connectors are also very different from one work to another: sometimes,
all kinds of interaction supports are considered (from pipes to scheduler) and
even HW artefacts may be parts of the application architecture design®.



Enhancing Interaction Support in the CORBA Component Model 141

In the scope of the CORBA component model, introducing connectors
would have two major impacts: enriching CCM interactions models (CCM
originally supports only synchronous method invocation and a specific form
of event delivery), and making CCM components interactions independent
from CORBA. This latter issue is particularly important for embedded
systems, since the HW platforms can scarcely afford embedding a CORBA
implementation. An additional motivation is that the way interactions are
dealt with is part of the application domain’s expertise. Thus, building
reusable interaction media enables to gather and reuse (i.e. capitalize)
software practitioners’ knowledge on interaction management. At last, it is
obvious that connectors could facilitate component assembly (for instance,
two components having provided/required interfaces of different types, but
potentially compatible could be linked by means of an “adaptation”
connector).

3.2 CCM connectors main features

A CCM connector is an artifact that mediates some interactions between
two or more components, while performing intermediary processing. Since
components are potentially distributed, it is obvious that connectors are not
monolithic, but fragmented. A connector is actually an aggregation of what
we call connector fragments, each of these fragments being linked to and co-
localized with a participant in the interaction. For instance, Fig. 2 shows the
deployment view of a connector split into two fragments that are co-located
with the components using them. Each fragment has to be bound to the
component that will use it. Please note that the connection between a
component and a connector fragment is always a local method invocation.
The remote connection, if necessary, occurs only between the two connector
fragments. A major point is that the way the communication between the
connector fragments is performed does not forcedly rely on CORBA, i.e. the
communication layer used is specific to the connector under consideration.

: IMyIntf ‘;
i Caller AM ' Pollér Callee E
: fragment ¢ <:> + fragment Sensor '
3‘ gpsData  caller ; :\ callee gpsinfo i

------------------------------------------------------

Figure 2. Distributed connector fragments



142 Sylvain Robert, Ansgar Radermacher, Vincent Seignole, Sébastien
Gérard, Virginie Watine and Frangois Terrier

Connector fragments are connected to the components participating to
the interaction. This means that these fragments have to exhibit CCM ports
that match those of the components. Hence, the abstract model of connector
fragments has to be the same as the one of components, basically a
combination of (provided and required) ports. However, due to the
introduction of connectors, ports will only define the interface in terms of
operations and are not responsible for the interaction mechanism that is
chosen. Therefore, event-based ports are no longer desirable, for they require
using a CORBA middleware event service. Thus, in a CCM design using
connectors, components and connector fragments will only exhibit
receptacles and facets. At last, it is quite obvious that connector fragments
will - like components - require configuration means. Hence, we have
decided that connector fragments will own attributes as well.

While working on connectors definition, it has rapidly occurred to us that
from a methodological point of view, two classes of connectors had to be
distinguished. We call those two categories adaptive and fixed connectors.
Adaptive connectors have the particularity that their definition is not fixed,
but templated. They ensure a well-defined interaction mechanism (e.g.
asynchronous method call), but the interfaces they exhibit are strictly
dependent on those of the components they are connected to. Adaptive
connectors are interesting in situations where a given interaction mechanism
is likely to be used for a variety of interface definitions. For instance, a
connector for asynchronous invocations would not be useful, if its port
would provide always the same interface: it has to be possible to instantiate
the connector and its ports with a certain interface. The advantage of
adaptive connectors is that they impose no constraints on components. Fixed
connectors have, on the contrary, a fixed set of provided and required
interfaces. Therefore, they constrain the definition of the components.
Actually, these connectors are very similar to CCM components, excepting
their fragmented (and distributed) structures. From a methodological point of
view, these two types of connectors are fundamentally different. Adaptive
connectors will be preferably used to connect already existing components.
On the contrary, using fixed connectors requires an early awareness from the
component designer, who will have to define the components in accordance
with the connectors he plans to use. Moreover, depending on the class of
connectors used, the development processes (and the corresponding support
tools) will be different, as shown in the next section.



Enhancing Interaction Support in the CORBA Component Model 143

3.3 A CCM design with connectors

For fixed connectors, the process is the same as for components. Connectors
are first described in IDL. For this purpose, we have extended the IDL with
the connector keyword, and customized accordingly our IDL compiler.
Then, based on this specification, several implementations are produced. For
instance, one implementation running on top of CORBA, and another that
uses Java RMI. These implementations and the IDL are eventually packaged
together with descriptor files (an extension has been made on the OMG
D&C specification® that enables connectors-related features descriptions).

Connector

template IDL IDL Connector
| generator (1) defintive IDL

Components

interfaces

definitions Code Connector

generator (2) implementation(s)
Connector

template code

Figure 3. Developing adaptive CCM connectors

The development of adaptive connectors involves more steps. Since these
connectors must have the capability to adapt themselves to components
interfaces, what shall be provided initially are connector’s “raw material”,
and the associated generation tool. Raw materials are a (template) connector
IDL description and one or more (template) connector implementation(s).
The generators enable definitive IDL and connector code generation. The
corresponding generation process is schematized in Fig. 3. The template
declarations are performed by means of IDL extensions we propose. For
instance, here follows the template declaration of a connector
RemoteMethodCall, with an ISyncinterface template parameter.



144 Sylvain Robert, Ansgar Radermacher, Vincent Seignole, Sébastien
Gérard, Virginie Watine and Frangois Terrier

connector RemoteMethodCall<ISyncinterface> {
provides ISyncinterface to_caller;
uses ISyncinterface to_calles;

}i

In the section dealing with CCM introduction, we indicated that the CCM
specification also describes the application building and deployment process.
Connectors can be integrated well in this process, since they have basically
the same shape as components. It was only necessary to define an extension
of the OMG D&C specification® to add a connector meta-element in the
deployment artifacts. Connectors are packaged strictly the same way as
components: an archive (e.g. .zip) is built, which contains connector IDL
description, connector implementation(s), and the corresponding descriptor
files. However, in the case of adaptive connectors, all connector items have
to be obtained prior to packaging. With connectors, the deployment process
is as follows: (1) Instantiate components and connector fragments on their
respective nodes; (2) perform connections between (co-localized)
components and connectors fragments; (3) perform connections between
remote connector fragments (note that this step depends on the
communication mechanisms used by the considered connector
implementation); and (4) launch the application. Note that from components
point of view, nothing has changed: they obtain a reference for each of their
facets without “being aware” that this reference points to a connector
fragment.

34 Using connectors with CCM: an illustration

In order to test and assess our approach, we are currently carrying out an
experimental design. Our application will simulate voice transmission
through a simplified UMTS" protocol stack. In this scope, we have defined
a set of connectors that have significantly eased our design. For instance, we
have designed a connector which ensures a ‘“‘slotted aloha” access protocol.
This protocol, which is frequently used in the telecommunication domain, is
the following: :
e The client initiate the slotted aloha protocol
e A randomly temporized call is performed on the server until the
client receives a positive or negative acknowledgement, or the
maximum number of calls is reached
Using a “slotted aloha” connector, the process is as follows: (1) the
connector is properly configured (e.g. maximum number of calls); (2) the
client component initiates the protocol by calling a method of the connector
— the call is asynchronous, so the client may then keep on its own



Enhancing Interaction Support in the CORBA Component Model 145

processing; (3) the connector performs the slotted aloha protocol by
randomly calling server component, and waits for an acknowledgement. The
process is stopped when an acknowledgement is received, or the maximum
number of calls is reached; (4) The connector continuously exhibits the
acknowledgement status, which can be polled any time by the client
component. Using a connector in this case offers several advantages. First, a
better separation of concerns, since all the protocol is managed by the
connector instead of being ensured by the client component. Then, the
connector can be easily reused. For instance, in the UMTS protocol stack,
we will use it at two different places, only by modifying connector
configuration.

4. RELATED WORK

Besides the foundations in the ADL domain’, the Qedo (QoS Enabled
Distributed Objects) project'? develops a CCM implementation that adds
interaction via streaming, but it does not provide a general framework to add
new interaction mechanism. The QuO (Quality Objects) project at BBN'
adds Quality of service and connectors (as well a connector setup language,
CSL) to CORBA. The integration of QuO into the CCM implementation
CIAO has been investigated'* and has led to some aspects also considered by
us. However, their intent was more on the resource management and
allocation aspects than on fine-grain interaction support. Eventually, we shall
precise that even if we closely follow ongoing works on CORBA at the
OMG (e.g. minimum CORBA® or real-time CORBA*), we have no direct
relation with these latter, for our focus is strictly on the CCM.

S. CONCLUSIONS AND PERSPECTIVES

We have described in this paper our strategy to improve interaction
support in the CORBA Component Model. By analogy with Architecture
Description Languages, we have defined a new entity, called “connector”,
which is dedicated to interaction management. Using CCM connectors
enables a better separation between business logic and non-functional logic.
Connectors also capitalize interaction management expertise, while reducing
design efforts. And, most important in the scope of embedded systems,
connectors make CCM-based applications independent from CORBA. We
have performed all necessary modifications to the CCM, and are currently
assessing our approach on a use-case. The first feedbacks from the design
are positive, and we plan to have further usage of connectors. But CCM



146

Sylvain Robert, Ansgar Radermacher, Vincent Seignole, Sébastien
Gérard, Virginie Watine and Frangois Terrier

enhancement with regards to real-time and embedded systems design (which
is the global target of the projects we are involved in) remains an ongoing
work. In particular, further real-time support has to be provided by the
execution framework (container) to the applicative components. In the next
parts of the projects, we plan for instance to evaluate the inclusion of
scheduling facilities at framework level.

REFERENCES

10.

11
12.
13.

14.

Lightweight CORBA Component Model — OMG draft adopted specification, Object
Management Group, 2003.

CORBA Components, version 3.0, Object Management Group, 2002.

Minimum CORBA specification, version 1.0, formal/02-08-01, Object Management
Group, 2002.

Real-time CORBA specification, version 1.2, formal/05-01-04, Object Management
Group, 2005.

Specification for deployment and configuration of component based applications -
draft adopted specification, OMG, 2003.

Towards a Taxonomy of Software Connectors, N. R. Mehta, N. Medvidovic and S.
Phadke, ICSE 2000.

Software Connectors and their role in component development, D. Bélek & F.
Plasil, DAIS'01.

Abstractions for Software Architecture and Tools to support them, M. Shaw, Robert
Deline et al., Software Engineering, vol. 21, number 4, 1995.

A Classification and Comparison Framework for Software Architecture Description
Languages, N. Medvidovic, R. N. Taylor, IEEE transactions on software
engineering, vol. 26, n. 1, 2000.

General UMTS Architecture v5.0.1, 3 Generation Partnership Project, Technical
Specification Group Services and System Aspects, 2004.

Enterprise JavaBeans Specification version 2.1, Sun Microsystems, 2003.
Qedo, QoS Enabled Distributed Objects. http://www.qedo.org

Using QDL to Specify QoS Aware Distributed (QuO) Application Configuration, P.
Pal et al., Proceedings of ISORC 2000, The 3rd IEEE International Symposium on
Object-Oriented Real-time distributed Computing, March 15 - 17, 2000, Newport
Beach, CA, http://quo.bbn.com/

A Qos-aware CORBA component model for distributed real-time and embedded
system development. Nanbor Wang and Chris Gill. OMG Real-time and embedded
workshop 2003, Arlington VA. see http://www.omg.org/ workshops/proceedings/




