Skip to main content

The Capacity of DNA for Information Encoding

  • Conference paper
Book cover DNA Computing (DNA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3384))

Included in the following conference series:

Abstract

Information encoding and processing in DNA has proved to be an important problem for biomolecular computing, including the well studied codeword design problem. A lower bound is established for the capacity of DNA to encode information using a combinatorial model of DNA homology given by the so-called h-distance. This bound decreases exponentially with a parameter τ that roughly codes for stringency in reaction conditions. We further introduce a new family of near-optimal codeword sets, so-called shuffle codes. This construction, which is optimal in terms of efficiency, can also be used to produce set of codewords with a given constant GC-content. These codes yield estimates of the capacity of DNA oligonucleotides to store abiotic information in DNA arrays as defined in [11]. Finally, we discuss the sensitivity of the corresponding DNA chip encodings to store and discriminate inputs, including the regions of maximum discrimination and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn., p. 91. John Wiley & Sons Publisher, Chichester (2000)

    Book  MATH  Google Scholar 

  3. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–277 (2002) See also [14], 205-214

    Article  MATH  Google Scholar 

  4. Baum, E.: Building an Associative Memory Vastly larger than the Brain. Science 268, 583–585 (1995)

    Article  Google Scholar 

  5. Brenneman, B., Condon, A.: Sequence Design for Biomolecular Computation (2001) (In press), http://www.cs.ubc.edu/~condon/papers/wordsurvey.ps

  6. Deaton, R.J., Chen, J., Bi, H., Garzon, M., Rubin, H., Wood, D.H.: A PCRbased protocol for In Vitro Selection of Non-crosshybridizing Oligonucleotides. In: [14], pp. 105–114 (2002)

    Google Scholar 

  7. Deaton, R.J., Chen, J., Bi, H., Rose, J.A.: A Software Tool for Generating Non-crosshybridizing Libraries of DNA Oligonucleotides. In: [14], pp. 211–220 (2002b)

    Google Scholar 

  8. Deaton, R., Garzon, M., Murphy, R.E., Rose, J.A., Franceschetti, D.R., Stevens Jr., S.E.: The Reliability and Efficiency of a DNA Computation. Phys. Rev. Lett. 80, 417 (1998)

    Article  Google Scholar 

  9. Garzon, M.H., Deaton, R.J.: Codeword Design and Information Encoding in DNA Ensembles. J. of Natural Computing (2004) (in press)

    Google Scholar 

  10. Garzon, M.H., Bobba, K., Hyde, B.P.: Digital information encoding on DNA. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 152–166. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Garzon, M., Blain, D., Bobba, K., Neel, A., West, M.: Self-Assembly of DNAlike structures In-Silico. Genetic Programming and Evolvable Machines 4(2), 185–200 (2003)

    Article  Google Scholar 

  12. Garzon, M., Neathery, P.I., Deaton, R., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A New Metric for DNA Computing. In: Proc. 2nd Annual Genetic Programming Conference, pp. 472–478. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  13. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens Jr., E.: On the Encoding Problem for DNA Computing. In: Poster at The Third DIMACS Workshop on DNA-based Computing, U of Pennsylvania. Preliminary Proceedings, pp. 230–237 (1997)

    Google Scholar 

  14. Hagiya, M., Ohuchi, A. (eds.): DNA 2002. LNCS, vol. 2568. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. King, O.: Bounds for DNA codes with constant GC-content. Journal of Combinatorics 10(1) R33, 13 (2003)

    Google Scholar 

  16. Marathe, A., Condon, A., Corn, R.: On Combinatorial DNA Word Design. In: Winfree, E., Gifford, D.K. (eds.) Proceedings 5th DIMACS Workshop on DNA Based Computers, pp. 75–89. American Mathematical Society (1999)

    Google Scholar 

  17. Roman, J.: The Theory of Error-Correcting Codes. Springer, Berlin (1995)

    Google Scholar 

  18. SantaLucia Jr., J., Allawi, H.T., Seneviratne, P.A.: Improved Nearest Neighbor Paramemeters for Predicting Duplex Stability. Biochemistry 35, 3555–3562 (1990)

    Article  Google Scholar 

  19. Wetmur, J.G.: Physical Chemistry of Nucleic Acid Hybridization. American Mathematical Society DIMACS Series 48(1999), 1–23 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phan, V., Garzon, M.H. (2005). The Capacity of DNA for Information Encoding. In: Ferretti, C., Mauri, G., Zandron, C. (eds) DNA Computing. DNA 2004. Lecture Notes in Computer Science, vol 3384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11493785_25

Download citation

  • DOI: https://doi.org/10.1007/11493785_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26174-2

  • Online ISBN: 978-3-540-31844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics