
Teaching High Performance Computing
Parallelizing a Real Computational Science

Application

Giovanni Aloisio, Massimo Cafaro, Italo Epicoco, and Gianvito Quarta

Center for Advanced Computational Technologies,
University of Lecce/ISUFI, Italy

{giovanni.aloisio, massimo.cafaro,

italo.epicoco, gianvito.quarta}@unile.it

Abstract. In this paper we present our approach to teaching High Per-
formance Computing at both the undergraduate and graduate level. For
undergraduate students, we emphasize the key role of an hands on ap-
proach. Parallel computing theory at this stage is kept at minimal level
since this knowledge is fundamental, but our main goal for undergraduate
students is the required ability to develop real parallel applications. For
this reason we spend about one third of the class lectures on the theory
and remaining two thirds on programming environments, tools and li-
braries for development of parallel applications. The availability of widely
adopted standards provides us, as teachers of high performance comput-
ing, with the opportunity to present parallel algorithms uniformly, to
teach how portable parallel software must be developed, how to use par-
allel libraries etc. When teaching at the graduate level instead, we spend
more time on theory, highlighting all of the relevant aspects of parallel
computation, models, parallel complexity classes, architectures, message
passing and shared memory paradigms etc. In particular, we stress the
key points of design and analysis of parallel applications. As a case study,
we present to our students the parallelization of a real computational
science application, namely a remote sensing SAR (Synthetic Aperture
Radar) processor, using both MPI and OpenMP.

1 Introduction

Introducing parallel computing in the undergraduate curriculum provides cur-
rent students with the knowledge they will certainly need in the years to come.
For undergraduate students, we emphasize the key role of an hands on approach.
The study program provides students with a degree in Computer Engineering;
the program can be considered at the bachelor level. We refer to just one course
of the undergraduate program in this paper. We do also have master level courses
(Parallel Computing I and Parallel Computing II) and Ph.D. level courses. In
the undergraduate program parallel computing theory is kept at minimal level
since this knowledge is fundamental, but our main goal for undergraduate stu-
dents is the required ability to develop real parallel applications. For this reason

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 10–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Teaching HPC Parallelizing a Real Computational Science Application 11

we spend about one third of the class lectures on the theory and remaining
two thirds on programming environments, tools and libraries for development of
parallel applications.

At the undergraduate level we simply introduce briefly the need for paral-
lelism, the concepts of speedup, efficiency and scalability, and the models un-
delying message passing and shared memory programming. We rely on Foster’s
PCAM design methodology [1] when designing message passing applications,
and on dependency analysis of loop variables for shared memory programming.

Performance analysis include Amdahl [2] and Gustafson-Barsis [3] laws, the
Karp-Flatt metric [4] and iso-efficiency analysis. The availability of widely
adopted standards provides us, as teachers of high performance computing, with
the opportunity to present parallel algorithms uniformly, to teach how portable
parallel software must be developed, how to use parallel libraries etc. We utilize
both MPI OpenMP. The course introduces the most important functionalities
available in the MPI 1.2 specification, and all of the OpenMP library. The main
programming language is C.

Each student is required to parallelize, as a short project, a real application.
We have found that assigning projects to groups of students does not work as
expected. We thought that organizing students in groups would have fostered
the key concept of collaboration, and provided fertile ground for discussions etc.
This proved to be true for graduate students, whilst for undergraduates the net
effect was that only one or two students per group actually did the job assigned.
Therefore, we require that undergraduate students carry out individually their
projects. The project is not necessarily done during the course: each student
is required to present his project when actually taking the course examination
(which can also happen several months after the end of the course, since we do
have ten examination per year for each course). Thus, a student may work on
his/her project as much as he/she needs. Likewise, we do allow up to one year
for the final bachelor thesis (this differs from many universities both in Europe
and USA, but is quite common in Italy); in turn we usually get very satisfactory
results.

This paper presents the parallelization made by one of our undergraduate
students of a real computational science application, namely a remote sensing
SAR [5] raw data processor, using both MPI and OpenMP. SAR processing [6]
applies signal processing to produce a high resolution image from SAR raw data.
High image precision leads to more complicated algorithms and higher comput-
ing time; in contrast, space agencies often have real-time or near real-time re-
quirements. As matter of fact, SAR processing algorithms are computationally
intensive and require fast access to secondary storage. In order to accelerate the
processing, SAR focusing has been implemented on special purpose architec-
tures and on HPC platforms. Nevertheless, special purpose architectures have
relatively high cost, when compared to HPC platforms that are now becoming
increasingly popular for this task. The paper is organized as follows. Section 2
recalls the SAR processor application and the rules of the parallelization con-
test we organized. Section 3 describes the winning parallel SAR processor and
Section 4 concludes the paper.



12 G. Aloisio et al.

2 SAR Image Processing

The SAR sensor is installed on a satellite or aircraft that flies at constant alti-
tude. SAR works transmitting a beam of electromagnetic (EM) radiation in the
microwave region of the EM spectrum. The back scattered earths radiation is in-
tercepted by the SAR antenna and recorded. The received echoes are digitalized
and stored in memory as a two dimensional array of samples. One dimension of
the array represents the distance in the slant range direction between the sensor
and the target and it is referred to as the range direction. The other dimension
represents the along-track or azimuth direction.

The main goal of SAR processing is to reconstruct the scene from all of the
pulses reflected by each single target. In essence, it can be considered as a two
dimensional focusing operation. The first, relatively straightforward, is range
focusing; it requires the de-chirping of the received echoes. Azimuth focusing
depends upon the Doppler histories produced by each point in the target field
and it is similar to the de-chirping operation used in the range direction. This is
complicated however by the fact that these Doppler histories are range depen-
dent, so azimuth compression must have the same range dependency. It is also
necessary to correct the data in order to account for sensor motion and Earth
rotation.

SAR focusing has been implemented, generally, using the classic range-Doppler
algorithm [7] or chirp-scaling algorithm [8]. The range-Doppler algorithm does
first range compression operation and then azimuth compression. During az-
imuth processing, a space-variant interpolation is required to compensate the
migration of signal energy through range resolution cells. In general, interpola-
tion may require significant computational time.

The AESAR package, a sequential range-Doppler SAR image processor de-
veloped by the Italian Space Agency, has been selected for our last year parallel-
lization contest. The contest rules for undergraduate students were: (i) students
can freely decide how to parallelize the code, (ii) modifications to the legacy
code must be kept at a minimum due to engineering costs, and the target ar-
chitecture is an HP AlphaServer SC machine. This machine is a cluster of SMP
nodes, and each node contains four alpha processors. For graduate students the
target machine was an HP RX6000, a cluster of Itanium 2 nodes, each node
containing two processors, and the code could be refactored and reengineered as
needed. We describe now the chosen computational science application and how
the sequential range-Doppler algorithm works. This is is the most widely used
algorithm for SAR focusing. We describe first the sequential algorithm. The core
steps of range-Doppler algorithm follow.

After raw data have been read, the image frame is divided into blocks, over-
lapped in azimuth direction. Then, a Fast Fourier Transform (FFT) is performed
in the range direction; subsequently range compression is performed through a
complex multiplication of the range lines with a range reference function. The
range reference function is obtained from Doppler rate, extracted by a param-
eter file. Finally, an IFFT (Inverse FFT) is performed in the range direction.
Before azimuth FFT, the corner turning operation must be performed. It con-



Teaching HPC Parallelizing a Real Computational Science Application 13

sists of a transposition of the memory arrangement of 2-dimensional array of
data. Then, the FFT in azimuth direction is performed, followed by range cell
migration correction which requires a shift and interpolation operation. The az-
imuth compression requires a complex multiplication of the azimuth column by
the azimuth reference function. The azimuth reference function is calculated
for each azimuth column, using the Doppler centroid value estimated before.
Finally, an IFFT in azimuth direction is performed to complete the focusing
process.

3 Parallel SAR Processor

After a careful analysis of the sequential algorithm, the student decided to instru-
ment and profile code execution in order to determine computationally intensive
numerical kernels. He found that the majority of the time is spent on Range
and Azimuth Compression. According to the range-Doppler algorithm, the stu-
dent then proposed an hybrid parallelization approach. Course grain parallelism
for this application entails distributing the image frame segments to MPI pro-
cesses. The entire raw image frame is divided into a fixed number of segments,
and for each segment range and azimuth compression is computed sequentially.
The segments are independent of each other and partly overlapped as needed
by the focusing algorithm. The size of the overlap region is imposed by phisical
constraint on the processing.

Fine grain parallelism, usually not suitable for MPI applications, is instead ef-
fective using OpenMP. Therefore, our student parallelization strategy distributes
the lines belonging to a given segment to available threads. Given a segment,
both range and azimuth compression are computed in parallel, one after the
other. The hybrid MPI/OpenMP approach takes advantage of the benefits of
both message passing and shared memory models, and makes better use of the
proposed architecture, a cluster of SMP nodes. Indeed, since the number of seg-
ments is fixed, so is the number of MPI processes. In such a situation, requiring a
specific number of processes severely limits scalability. Instead, the simultaneous
use of OpenMP allows exploiting additional CPUs: the natural MPI domain de-
composition strategy for the application can still be used, running the required
number of MPI processes, and OpenMP threads can be used to further distribute
the work among threads.

The frame-level parallelization has been implemented using MPI. To opti-
mize the performance, the student made segment computation independent from
other segments. Indeed, he tried first sending the overlapped lines needed by a
segment computation to the process in charge of that segment. Even though the
communication network was a Quadrics QS-Net, he found that for this appli-
cation and target machine it is best to avoid inter-node communication. This
of course leads to an implementation that includes redundant computation: to
process each segment independently from the others, it is necessary that each
process is also responsible for the rows in the overlap region. Then, for the MPI
implementation there is no communication overhead.



14 G. Aloisio et al.

The image segmentation mechanism must satisfy the following requirement:
the size of segments, must be greater than the number of overlapped lines, be-
cause this is the length of the filter used to process raw data in azimuth direction.
Moreover, a bigger segment size implies reduced performances due to the FFT
routines. This leads to a total of nine segments. The constraint on the number of
segments entails that when the number of MPI processes does not divide evenly
the number of the segments, the computational load is not balanced properly
and so the parallel algorithm should include a load balancing strategy.

The segment-level parallelization model has been implemented using OpenMP.
The student correctly identified and removed loop carried dependencies in order
to parallelize loops. In order to achieve better performances, the student tried to
minimize parallel overhead. The main issue and source of overhead is the pres-
ence of critical sections, where multiple threads potentially can modify shared
variables. The student minimized this overhead partially rewriting the sequen-
tial code so that each thread, when possible, has its own copy of the variables,
even though the approach entails the use of additional space. Other factors that
contribute to parallel overhead are: (i) parallel directives used to execute parallel
loops, (ii) the loop scheduling to balance the computational load and the atomic
construct used to provide exclusive access to variables being updated; (iii) ac-
cesses to different locations in the same cache line (set of entries in a single
cache location). The former two sources of overhead increase linearly with the
number of threads involved. The latter depends on the number of threads that
read and/or write different locations in the same cache line and on the amount
of data assigned to each thread.

3.1 Parallel Model

Here we describe the student model for this application that predicts the parallel
time when using p MPI processes and t OpenMP threads. Given

– n number of segments;
– r total number of rows;
– c total number of columns;
– o number of overlapped rows between contiguous segments;
– Ti time spent for data inizialization, Doppler evaluation;
– Tec time spent for echo correction for one row;
– Tr conv time spent to compute the convolution between one row and chirp

signal;
– Ta conv time spent to compute the convolution between one column and

estimated chirp signal along range direction;
– Trcm time spent for range cell migration correction for one azimuth column;
– Tfile time spent to write a line to file.

T (p, t) = Ti +
⌈

n

p

⌉
(Trange + Tazimuth) (1)



Teaching HPC Parallelizing a Real Computational Science Application 15

where Trange is defined by:

Trange = (Tec + Tr conv)(
r

n
+ o)

1
t

(2)

and Tazimuth is

Tazimuth = (Trcm + Ta conv + Tfile)
c

t
(3)

These parameters have been evaluated profiling the application. The sequen-
tial code exploited the traditional Cooley-Tukey FFT algorithm. The student
was aware, due to class lectures, that better alternatives exist. He substituted
the FFT calls with the corresponding functions from the FFTW library [9] and
estimated that performances are better for 4096 complex elements. Considering
this, he fixed the number of segments (nine).

The model has been validated against experimental runs of the application in
order to assess its ability to predict the parallel time, and related measures such
as speedup and efficiency, as shown in Figures 1, 2 and 3. The application was
run varying the number of MPI processes from one to three, and the number
of threads per process from one to four, since the parallel queue available to
students on the target machine is made of three SMP nodes, each one containg
four CPUs. As shown in Figure 1, the model correctly approximates the parallel
execution time; in particular, the slightly superlinear speedup obatined when
using a single MPI process and a varying number of OpenMP threads, up to four,
is due to cache effects. Finally, when using two MPI processes and four OpenMP
threads, for a total of eight CPUs, we observe a decrease of efficiency. This is
expected, since in this case the computational load is not perfectly balanced
because one process is responsible for five segments, whilst the other gets the
remaining four segments.

Fig. 1. Parallel Time



16 G. Aloisio et al.

Fig. 2. Speedup

Fig. 3. Efficiency

4 Conclusions

In this paper we have described the parallelization of a real computational sci-
ence application, SAR processing, reporting the experience of an undergraduate
student parallelizing a range-Doppler legacy code using an hybrid MPI/OpenMp
approach. When the students are given enough time, the experience reported in
this paper is a good representative of average outcomes for this HPC course. The
one-student team approach was feasible because students had enough time (sev-
eral months if needed) to complete their homework project. And it was interest-
ing to see that students did not require too much help from teachers/assistants.



Teaching HPC Parallelizing a Real Computational Science Application 17

Moreover, cooperation was explicitly forbidden during the project: there is no
point in having one student teams if students can collaborate. However, exchange
of experience is always beneficial and we do allow this during the course. We have
found that, besides teaching traditional examples of parallel applications such
as matrix multiplication etc, students like the hands on approach we use in our
Paralleling Computing course. The parallel contest we organize as part of the
course proves to be extremely useful, especially for undergraduate students to
better understand parallel computing theory and related practical issues. The
student was able to parallelize the proposed application and to correctly model
its parallel execution time, thus meeting the main goals of the course.

References

1. Foster I.: Designing and Building Parallel Programs, Addison-Wesley, 1995
2. Amdahl G: Validity of the single processor approach to achieving large scale com-

puting capabilities, Proc. AFIPS, Vol. 30, pp. 483–485, 1967
3. Gustafson, J. L.: Reevaluating Amdahl’s law, Communications of the ACM 31(5),

pp. 532–533, 1988
4. Karp A. H., Flatt H. P.: Measuring parallel processor performance, Communica-

tions of the ACM 33(5), pp. 539–543, 1990
5. Elachi, C.: Spaceborne Radar Remote Sensing: Applications and Techniques, IEEE

Press, 1988
6. Barber B.C.: Theory of digital imaging from orbital synthetic-aperture radar, INT.

J. Remote Sensing, 6, 1009, 1985
7. Smith A. M.: A new apporach to range-Doppler SAR processing, Journal Remote

Sensing, 1991 VOL. 12, NO 2, 235-251
8. Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F.H.: Precision SAR

Processing Using Chirp Scaling. IEEE Transactions on Geoscience and Remote
Sensing, 32(4):786-799, July 1994

9. Frigo M., Johnson S. G.: FFTW: An Adaptive Software Architecture for the FFT.
ICASSP conference proceedings 1998 vol. 3, pp. 1381-1384


	Introduction
	SAR Image Processing
	Parallel SAR Processor
	Parallel Model

	Conclusions



