
 

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 552 – 559, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Reducing Transaction Abort Rate of Epidemic Algorithm 
in Replicated Databases 

Huaizhong Lin1,*, Zengwei Zheng1,2, and Chun Chen1 

1 College of Computer Science, Zhejiang University, 310027 Hangzhou, China 
{linhz, zhengzw, chenc}@zju.edu.cn 

2 City College, Zhejiang University, 310015 Hangzhou, China 
zhengzw@zucc.edu.cn 

Abstract. Easy to deploy, robust, and highly resilient to failures, epidemic algo-
rithms are a potentially effective mechanism for propagating information in 
large peer-to-peer systems deployed on Internet or ad hoc networks. In the pa-
per, we explore the epidemic algorithms used for transaction processing in rep-
licated databases that reside in weakly connected environments. We concentrate 
on the transaction commit voting process of the epidemic algorithms and sug-
gest a new voting method, which takes an optimistic approach in conflict recon-
ciliation. The optimistic voting protocol decreases abort rate and improves av-
erage response time of transactions. 

1   Introduction 

In recent years, the wireless communication and wide area network technologies, 
especially Internet, evolve rapidly. Weakly connected environments, which are char-
acterized by low bandwidth, excessive latency, instability of connection, and constant 
disconnection, are used more and more frequently. Data replication is the common 
approach to improve system performance and availability. But due to the massive 
communication overhead in weakly connected environments, eager replication may 
bring about unacceptable number of failed or blocked transactions, and result in dra-
matic drop of system performance [1,2]. 

Epidemic algorithms [3], which mimic the spread of a contagious disease, have re-
cently gained popularity as a potentially effective solution for disseminating informa-
tion in large-scale systems, particularly P2P systems deployed on Internet or ad hoc 
networks. In addition to their inherent scalability, they are easy to deploy, robust, and 
resilient to failure. It is possible to adjust the parameters of an epidemic algorithm to 
achieve high reliability despite process crashes and disconnections, packet losses, and 
a dynamic network topology.  

Epidemic algorithms can be used for managing replicated data [4-9]. In an epi-
demic approach, sites perform update operations locally and communicate peer-to-
peer in a lazy manner to propagate updates. Transactional consistency is achieved by 

                                                           
* Supported by the Natural Science Fundation of Zhejiang Province, China (Grant no. 

M603230) and the Research Fund for Doctoral Program of Higher Education from Ministry 
of Education, China (Grant no. 20020335020). 



 Reducing Transaction Abort Rate of Epidemic Algorithm in Replicated Databases 553 

 

decentralized conflict detect and reconciliation. Sites communicate in a way that 
maintains the causal order of updates and the communication can pass through one or 
more intermediate sites. Therefore, the epidemic model provides an environment that 
is tolerant of communication failures and doesn’t require continuous connection be-
tween sites. Epidemic model is suitable for transaction processing of replication sys-
tems in weakly connected environments. 

Several protocols have been proposed for implementing epidemic model in repli-
cated databases, like ROWA (Read-One Write-All) protocol [4], quorum protocol [5], 
voting protocol [7,8], etc. In this paper, we describe the optimistic voting protocol, 
which introduces condition and order vote in the election process in transaction 
commitment. Condition vote postpones the final decisions on conflicting transactions 
and therefore improves the chances for transactions to get yes vote. Order vote pre-
scribes the commit order of transactions that have read-write and write-write conflicts 
and eliminates transaction aborts due to these kinds of data conflicts. Optimistic vot-
ing protocol reduces abort rate and improves average response time of transactions 
when compared to other protocols. 

The rest of the paper is organized as follows. In section 2, we develop the neces-
sary background and introduce the epidemic model used in replicated databases. In 
section 3, we describe the optimistic voting protocol. In section 4, we perform the 
performance evaluation. We conclude the paper in section 5. 

2   Epidemic Model 

We consider a distributed system consisting of n sites labeled S1,S2,…,Sn and data 
items replicated fully or partially at all sites. Epidemic model assumes a fail-stop 
model of site failures and an unreliable communication medium. Sites communicate 
each other through messages passing in a pair-wise manner. Messages can arrive in 
any order, take an unbounded amount of time to arrive, or may be lost entirely, how-
ever, messages will not arrive corrupted. For this reason, timeout is not used in the 
protocols to detect conflicts and deadlocks. 

Epidemic model is based on the causal delivery of log records where each record 
corresponds to one transaction instead of one operation. An event model [5] is used to 
describe the system execution, (E, →), where E is a set of transaction events and → is 
the happened-before relation which is a partial order on all events in E. The partial 
order → satisfies the following two conditions: 

(1) Events occurring at the same site are totally ordered; 
(2) If e is a sending event and f is the corresponding receiving event, then e→f. 

Vector clocks are used to ensure the property that if two events are causally or-
dered, their effects should be applied in that order at all sites. Each site Sk keeps a 
two-dimension time-table, which corresponds to Sk’s most recent knowledge of the 
vector clocks at all sites. Upon communication, Sk sends a message including its own 
time-table and all records that receiving site hasn’t received. Then the receiving site 
processes the events according to causal order and incorporates the time-table in an 
atomic step to reflect the new information from Sk. 



554 H. Lin, Z. Zheng, and C. Chen 

 

The site Sk determines the records that receiving site Sj hasn’t received according 
the following predicate [5] : 

HasRecvd(Tk, t, Sj) ≡ Tk[j, Site(t)]≥Time(t) 
Where t is an event, Site(t) is the site at which t occurred, and Time(t) is the local 

time at Site(t) when t occurred. 
Upon completion of operations, a read-only transaction can be committed locally 

whereas an update transaction pre-commits and becomes a candidate. The read set, 
write set, and the update values of the candidate are recorded in log. Then sites ex-
change their respective log records to detect global conflicts and propagate values 
written by the transaction. A candidate is voted on and is eventually either committed 
(if it wins a plurality of the total system votes) or aborted. 

When a transaction pre-commits, it is attached with a global distinct timestamp de-
noted by (local_ts, site_index), which is composed of a local timestamp and a distinct 
site index. Formally, we define a total order < on timestamps as follows. Suppose two 
timestamps ts(T1)=(local_ts1, site_index1) and ts(T2)=(local_ts2, site_index2), then 
ts(T1)<ts(T2) if and only if: 

(1) local_ts1<local_ts2, or 
(2) local_ts1=local_ts2 and site_index1<site_index2. 

The information of local timestamp is piggybacked in the usual epidemic messages 
and a site adjusts its local timestamp as follows [10]: when site A receives a message 
from site B, it advances its local timestamp to max{ local_tsA, the local_tsB carried by 
message}. If there are no communications between sites, their local timestamps will 
drift apart. But this doesn’t matter since, in the absence of such communications, 
there is no need for synchronization in the first place and the drift will not affect the 
correctness of the protocol. 

3   Optimistic Voting Protocol 

3.1   Condition and Order Vote 

Suppose two conflicting transactions Ti and Tj are issued by two sites concurrently. 
To maintain serializability, previous epidemic protocols consider that there is only 
one transaction can be committed and each site can only cast yes vote to one transac-
tion in election, for example Ti. In optimistic voting protocol, to increase the chances 
to get yes vote for transaction Tj, sites can cast condition vote on it (whereas it is cast 
no vote in quorum or voting protocols). The condition vote on Tj can be transformed 
to yes vote if Ti is aborted. The use of condition vote postpones the final vote decision 
on transactions. 

Definition 1. When voting on transaction T, suppose C={T1,…,Tp} is the set in which 
each transaction conflicts with T, the condition vote cond(C) means that it can be 
transformed to yes vote in case each transaction in C is aborted, otherwise to no vote. 

The transform rules of condition vote are as follows: 

(1) If ∃Ti∈C, Ti has been aborted, then cond(C) → cond(C-Ti); 
(2) If ∀Ti∈C, Ti has been aborted, then cond(C) → yes; 
(3) If ∃Ti∈C, Ti has been committed, then cond(C) → no. 



 Reducing Transaction Abort Rate of Epidemic Algorithm in Replicated Databases 555 

 

For two transactions Ti and Tj that only have read-write and write-write conflicts, if 
the correct order can be preserved at all sites, e.g. Ti is committed before Tj, then the 
two conflicting transactions Ti and Tj can all be committed maintaining consistency. 
Order vote prescribes the commit order of these kinds of conflicting transactions. 
Additionally, it is easily observed that condition and order vote can coexist on one 
transaction T. 

Definition 2. When voting on transaction T, suppose C={T1,…,Tp} is the set in which 
each transaction has only read-write and write-write conflicts with T, the order vote 
order(C) means that it can be transformed to yes vote when all transactions in C have 
been committed or aborted at one site. 

The transform rule of order vote is as follows: 

If at one site, ∀Ti∈C, Ti has been committed or aborted, then order(C) → yes. 
Each site Sk maintains a list of candidates by the receiving order. Let listk denote 

the candidate set in which the vote on each transaction by the site is not no vote. 
When Sk receives a new candidate T, it votes on T according to the following rules. 
For convenience of description, Let 

cond_set={ Ti⏐Ti∈listk, wr_conflict(Ti,T) is true }, 
order_set={ Ti⏐Ti∈listk, rw_conflict(Ti,T) or ww_conflict(Ti,T) is true, and 

wr_conflict(Ti,T) is false }. 

(1) If ∃x∈ReadSet(T), ReadVN(T,x)<CurrVN(Sk,x), it means that the value read 
by T has been overwritten, then vote no; 

(2) If cond_set=∅ and order_set=∅, it means that there are no transactions in listk 
that have conflict with T, then vote yes; 

(3) If ∃Ti∈cond_set∪order_set, ts(Ti)>ts(T), then vote no; 
(4) If ∀Ti∈cond_set∪order_set, ts(Ti)<ts(T), then vote cond(cond_set) + or-

der(order_set). The ’+’ denotes that the vote is transformed to yes vote if and 
only if both the condition and order vote are transformed to yes, otherwise to 
no vote. 

The correctness proof of optimistic voting can be found in [9]. 
The votes collected in optimistic voting protocol can be viewed as optimistic quo-

rum. The optimistic quorum differs from ordinary quorum in replicated databases in 
that the quorum is conditional and can only be transformed to really quorum based on 
the results of other transactions. This optimistic quorum increases the chance for a 
transaction to win a majority of sites, thus reducing the transaction abort rate. 

3.2   An Example 

We explain the optimistic voting protocol with an example. Suppose three transac-
tions T1, T2 and T3 ( ts(T1)<ts(T2)<ts(T3) ). 

Fig. 1 shows the voting process of voting protocol. Because three transactions have 
data conflict with each other, only one transaction can be committed. Fig. 2 shows 
optimistic voting process, which avoid the abort of T3 by use of order vote. From the 
figures, we observe that T2 in optimistic voting can be committed earlier than in  



556 H. Lin, Z. Zheng, and C. Chen 

 

voting protocol by use of order vote. For clarity, we omit some unimportant informa-
tion exchanges in Fig. 1 and Fig. 2. 

 

Fig. 1. Voting protocol 

 

Fig. 2. Optimistic voting protocol 



 Reducing Transaction Abort Rate of Epidemic Algorithm in Replicated Databases 557 

 

4   Performance Evaluation 

We perform experiments to show performance improvement attained by optimistic 
voting (OV) protocol. Additionally, we investigate two representative epidemic repli-
cation schemes from the literature, ROWA protocol [4] and voting protocol [7] (quo-
rum protocol [5] is similar to voting protocol). The evaluations are done at 10 desk-
tops connected via a 10Mbps Ethernet network. 

The simulation assumes that data items are fully replicated at all sites and tickets 
are uniformly distributed among sites. Each site generates transactions randomly 
according to a global transaction generation rate. Data items are accessed uniformly 
by transactions. Each site periodically initiates a synchronization session with a given 
synchronization interval by sending a pull request to another randomly selected site. 

Since we focus on the transaction abort rate and commit delay of different proto-
cols, we don’t model any read-only transactions. Each transaction read 5-10 data 
items and write 5 data items that are in the read set, so there are no blind writes. The 
main parameters and settings used in the experiments are summarized in Table 1. 

Table 1. Experimental parameters 

Parameters Descriptions Values 
N Site number 10 
Sync. interval Average synchronization interval 1~5s 
Trans. rate Average generation rate of update transactions 0.2~20/s 
Data items Total data item number 500 

 

Fig.3 illustrates the transaction abort rate of three protocols for various values of 
transaction generation rate. From the figures, it is obvious that optimistic voting pro-
tocol outperforms the other two protocols. 

 

Fig. 3. Abort rate vs. transaction generation rate (Synchronization interval=1.0s) 

 



558 H. Lin, Z. Zheng, and C. Chen 

 

In optimistic voting protocol presented above, the condition and order vote of a 
transaction is dependent on other transactions. This dependency relation in optimistic 
voting is one-way, i.e. a transaction can only depend on transactions that have smaller 
global timestamp than it (noted as protocol A). The one-way dependency ensures that 
there are no cycles among transactions and therefore no global deadlocks. This one-
way dependency can be converted to depending on transactions that have larger 
global timestamp (noted as protocol B). We explore the impacts on performance of 
different dependency direction by experiments. Fig.4 and Fig.5 illustrate the transac-
tion abort rate of protocol A, protocol B, and voting protocol for various values of 
transaction generation rate and synchronization interval. From the figures, it is obvi-
ous that protocol A is better than protocol B with average 5.4% performance gain. It 
is the natural direction for a transaction to depend on other transactions with smaller 
global timestamp. The transaction with smaller timestamp has been stay in the system 
for a longer time span and will be committed or rollbacked much earlier, which makes 
the transform of condition and order vote more quickly, thus reduce the delay of a 
transaction in the system. Additionally, we can notice that both protocol A and B 
outperforms the voting protocol. 

 

Fig. 4. Abort rate vs. transaction generation rate (Synchronization interval=1.0s) 

 
Fig. 5. Abort rate vs. synchronization interval (Transaction generation rate=5.0/s)

 



 Reducing Transaction Abort Rate of Epidemic Algorithm in Replicated Databases 559 

 

5   Conclusion 

Epidemic replication schemes are used extensively in transaction processing in 
weakly connected environments. Some continuously connected systems also use 
epidemic model to improve system efficiency. The optimistic voting protocol pre-
sented in this paper improves system performance in epidemic model and is of high 
practical values. 

References 

1. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In 
Proceedings of ACM SIGMOD International Conference on Management of Data. Mont-
real, Canada, 1996. 173-182. 

2. T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, consistency, and practi-
cality: are these mutually exclusive. In Proceedings of ACM SIGMOD International 
Conference on the Management of Data. Seattle, Washington, 1998. 484-495. 

3. Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Massoulié. 
Epidemic Information Dissemination in Distributed Systems. IEEE Computer, 2004, (5): 
60-67. 

4. D. Agrawal, A. El Abbadi, and R. Steinke. Epidemic algorithms in replicated databases. In 
Proceedings of 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Da-
tabase Systems. Tucson, Arizona, 1997. 161-172. 

5. J. Holliday, R. Steinke, D. Agrawal, and A. El Abbadi. Epidemic quorums for managing 
replicated data. In Proceedings of 19th IEEE International Performance, Computing, and 
Communications Conference. Phoenix, Arizona, 2000. 93-100. 

6. K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible up-
date propagation for weakly consistent replication. In Proceedings of 16th ACM Sympo-
sium on Operating System Principles. St. Malo, France, 1997. 288-301. 

7. U. Çetintemel, P. J. Keleher, and M. J. Franklin. Support for speculative update propaga-
tion and mobility in Deno. In Proceedings of 21st International Conference on Distributed 
Computing Systems. Phoenix, Arizona: IEEE Computer Society Press, 2001. 509-516. 

8. P. J. Keleher. Decentralized replicated object protocols. In Proceedings of 18th Annual 
ACM Symposium on Principles of Distributed Computing. Atlanta, Georgia, 1999.  
143-151. 

9. Huaizhong Lin and Chun Chen. Optimistic voting for managing replicated data. Journal of 
Computer Science and Technology, 2002, 17(6): 874-881. 

10. M. M. Deris, A. Mamat, and M. P. Hamzah. Replicated data management for transactions 
sharing in distributed database. In Proceedings of 4th International Conference/Exhibition 
on High Performance Computing in Asia-Pacific Region. Beijing, China: IEEE Computer 
Society Press, 2000. 836-841. 


	Introduction
	Epidemic Model
	Optimistic Voting Protocol
	Condition and Order Vote
	An Example

	Performance Evaluation
	Conclusion
	References

