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Abstract. In the paper we design an adaptive numerical method to
solve stiff ordinary differential equations with any reasonable accuracy
set by the user. It is a two-step second order method possessing the
A-stability property on any nonuniform grid [3]. This method is also
implemented with the local-global step size control developed earlier in
[8] to construct the appropriate grid automatically. It is shown that we
are able to extend our technique for computation of higher derivatives
of fixed-coefficient multistep methods to variable-coefficient multistep
methods. We test the new algorithm on problems with exact solutions
and stiff problems as well, in order to confirm its performance.

1 Introduction

The problem of an automatic global error control for the numerical solution of
ordinary differential equations (ODEs) of the form

x,(t) = g(t,ﬂ?(t)), te [thtO + T}v x(tO) = xO’ (1)

where z(t) € R™ and g : D € R""' — R" is a sufficiently smooth function, is
one of the challenges of modern computational mathematics. ODE (1) is quite
usual in applied research and practical engineering (see, for example, [1], [4],
[6], [7]). Often, problem (1) is stiff and requires numerical methods with special
properties of stability. A-stable methods are desired in such a situation (see, for
example, [1], [], [1]).

Unfortunately, there are very few algorithms with the property indicated
above among linear multistep formulas because of the Dahlquist’s second bar-
rier [2]. It says that there exist no A-stable multistep methods of any order higher
than two (even on uniform grids). The problem becomes more complicated on
nonuniform grids. Thus, the only known now family of multistep formulas which

* This work was supported in part by the National Research Foundation of South
Africa.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 42-F9] 2005.
(© Springer-Verlag Berlin Heidelberg 2005



On Stable Integration of Stiff Ordinary Differential Equations 43

are A-stable on any grid is the one-parameter family of two-step methods de-
rived by Dahlquist et al. [3]. Note there is no sense to consider ”longer” methods
because, anyway, they will be of order two at most. We concentrate on two par-
ticular choices of the parameter. One of them was made in the paper mentioned
above (see [3]). Another one is our own choice. We compare both algorithms on
numerical examples.

The methods presented in [3] are the good choice for a variable step size im-
plementation. They have no step size restriction with a point of view of stability.
Our idea is to supply these methods with the local-global step size control [§]
alming to attain any reasonable accuracy for the numerical solution of problem
(1) in automatic mode. We also extend the technique of computation of higher
derivatives [9] to variable-coefficient multistep methods. It imposes a weaker
condition on the right-hand side of problem (1) for the step size selection to be
correct, than in [8], where we differentiated interpolating polynomials.

The paper is organized as follows: Sect. 2 presents the family of A-stable two-
step methods on uniform and nonuniform grids. Sect. 3 is devoted to the local
and global errors estimation technique for the numerical methods mentioned
above. The last section in the paper gives us numerical experiments confirming
practical importance of the algorithms under consideration.

2 A-Stable Two-Step Methods

Further, we suppose that ODE (1) possesses a unique solution z(¢) on the whole
interval [to,to + T]. To solve problem (1) numerically, we introduce a uniform
grid w, with step size 7 on the interval [to,to + 7] and apply the A-stable linear
two-step method of order 2 in the form

2 2
Zaixk+1—i = szig(tk+l—i7xk+1—i)a k=1,2,...,K -1, (2)
i=0 i=0

where

1 v—1 vy
ag = ——, ay = ——, ag = ———,
y+1 y+1 y+1
py = 1 F1 Gt A (O o)
2(y + 1)2’ 2(y + 1)27 2(y +1)2

and the free parameter satisfies the condition 0 < v < 1. Note that we have used
a slightly different way to present the family of stable two-step methods from
[3]. The starting values x, k = 0,1, are considered to be known.

We apply the following idea in order to fix the parameter . Let us consider
the linear test equation 2’ = Az where X is a complex number. We want to
provide the best stability at infinity for method (2). This property is close to
L-stability of Ehle [5] and useful when integrating very stiff ODEs. It means for
multistep methods that we need to minimize the spectral radius of the companion
matrix of method (2) (see [1]).
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The companion matrix of method (2) when Re 1 — —oo has the following
form:

» pbr — ay pbs — as by b

€ . — T — T

Coo(y) = _ lim ag — pbg ag — pby | = bo Do
Re pi—-oo 1 0 10

where p = 7. Unfortunately, p(C(y)) > 0 (i.e., the spectral radius of the
matrix Coo(7) is greater than zero) for any 0 < v < 1 because both coeffi-
cients by and by cannot vanish simultaneously (see (2)). Nevertheless, a simple
computation shows that eigenvalues of the matrix C(7y) are

- —(y—1)2+(y+1)y/?—18y+1

2 6y +2

Then, we easily calculate that the minimum of the expression max{|A{],|Az2|}
will be achieved when v = 4 = 9 — 4v/5 ~ 0.055. Thus, we conclude that
p(Coo(m1)) = || = [Xo| = [18 = 8V/5]/|3v/5 — 7| ~ 0.381.

We remark that Dahlquist et al. [3] suggested another choice for 5. They
tried to minimize the error constant of method (2) and preserve good stability
properties. Their choice was v = 1/5.

Formula (2) implies that the step size 7 is fixed. Unfortunately, the latter re-
quirement is too restrictive for many practical problems. Therefore we determine
continuous extensions to nonuniform grids for both methods (2) with different
~’s and come to the following formulas:

02 + (205, + 1)(9 — 4/5)
205 (0% + 9 — 4V/5)
02(2v/5 — 4) + 76 — 34/5
(9 — 4v/5) (62 + 20), + 9 — 4V/5)
* zek(9:+9—4\/5) g(t’“‘l’x’“‘l)>’

Trr1 + (8 — 4V5)ay + (45 — gy = m(

Xg(thy1, Thy1) +

T —éx —lx =T 759%+20k+1 (t ZTht1)
k+1 5 k 5 k—1 = Tk 20, (505 + 1) G\lk+1, Th+1 ”
1002 — 2 507 4+ 100), + 1

5050 = I\ o1, T
+59k(59k+1)g( o)+ 100y, (50x + 1) 9(tr—1, @k 1))

where 7y, is a current step size of the nonuniform grid w, with a diameter 7 (i.e.,

def def . . . .
r = maxg {7 }) and 6 = Ti/Tk—1 18 a ratio of adjacent step sizes. We have

used our choice for 7, i.e. 71, in formula (3) and 2 to obtain method (4).

3 Local and Global Errors Estimation

We recall that both methods (3) and (4) are A-stable on an arbitrary nonuniform
grid. Thus, we control step sizes by the accuracy requirement only. With this
idea in mind, we impose the following restriction on the step size change:
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T/Tmin < 2 < 00. (5)

Formula (5) implies that the ratio of the maximum step size to the minimum one
is bounded with the constant 2. We need the latter formula for the local-global
step size control to be correct (see, for example, [I0]). On the other hand, any
code solving real life problems must be provided with bounds for the maximum
step size and for the minimum one, that is equivalent to (5), because of an
asymptotic form of the theory of ODE methods and round-off errors. Thus,
condition (5) gives us nothing new in practice.

Further, we present the theory of local and global errors computation for
methods (3) and (4) together. So, it is convenient to consider the family of
numerical methods [3] in the general form

O O (v — 1)“ by
Ok + Ok + Ok +

9(thy1, Thy1) + T

Tk—1

(1 =)0 =)

50+ )2 9(tr,zk)  (6)

Y(0F 4 20k + )

205 + )2 g(tk—1,Tk-1)

+7’k

where +y is the free parameter and 6y is the most recent step size ratio.
For method (6), the standard theory in [§] gives

. -1 - QR
ATpy1 ~ 5 (ao(k)In - kao(k)amg(thrl,karl)) 0
2

xri Z(al 2(0k) + 3b: (KU (0h) ),

-1
Avir ~ (a0(k) L = ibo(R)Dsg (s, ne)

2 (8)
X Z(ka 02 9(tht1—is Thy1-1) — ai(k)ln)Axk-i-l—i + A1,
=1

<.

k=1-1,1,...,K — 1, where a;(k) and b;(k), ¢ = 0,1,2, are the correspon-
dent coefficients of method (6), and functions ¢; in formula (7) are defined as
follows:

1—1
Pi0) E 1+ 300 =12

Here, the corrected numerical solution Zjyi def Tp41 + Azxpyr is of order 3,
029(tk+1,xr+1) denotes a partial derivative of the mapping g(tx+1,Zg+1) with
respect to the second variable, I, is the identity matrix of dimension n. The
starting errors Axy, k = 0,1,...,] — 1, are considered to be zero because the
starting values are computed accurately enough (see the starting procedure in
[10] or [1ID).
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Note that formulas (7) and (8) have been derived with errors of O(7*) and
O(7?), respectively. We also point out that formula (3) has been given in a
slightly different form than it was presented in [§]. Here, we have derived the
local error of method (6) with respect to the more recent step size 7, and the
necessary step size ratio 6 rather than with respect to the step sizes 73, and
Tk_1. We have done that for a convenience of presentation of further results
concerning derivative computation.

To calculate the approximate derivative 565521 (at most with an error of O(7))
one can use a Newton (or Hermite) interpolation formula of sufficiently high de-
gree [§]. On the other hand, it imposes an unnecessarily stiff smoothness require-
ment. Therefore we show how to adapt the method of derivative computation in
[9] to variable-coefficient method (6).

First of all we introduce the matrix

1 0 0 0
L(=vn(8) (~vi(en)” (—1(6)°
1 (_¢2(@k)) (_w2(8k)) (—¢2(@k))s
Vill,s) % (1) (_wlg@’“)) (_wl%@v)) B (—WE)@k)) ()
0 1 2(—11(6))" s(=1h1(61))° "
o1 2(=v2(63))’ s(~a(00)"
6 1 2(—11)1—5;1(91@))1 ce S(_wlfer'l (Qk))571
where
i—1 m
Ui(O) E i(Or, 1, Ormii) E 1+ > [[ 05k, i=1.2....,1 (10)
m=1j=1

for any I-step method of order s, when computing the (s 4 1)-th derivative of a
numerical solution. Formula (9) is a generalization of the extended Vandermonde
matrices in [9] to nonuniform grids. The principal point for us is that the matrix
Vi(l,s) is nonsingular for any grid. The latter follows from Lemma 2 in the
paper mentioned above, formula (10) and the fact that all the step size ratios
are positive. Then, the way presented in [9] gives a formula for computation
of the necessary derivative 555321 with an error of O(7). Thus, formula (7) is
transformed to the convenient form

1 2
41 =~ (ao(k)l, — Tibo e g(Tky1, Tha1 Te Y Ci(k)g(tkt1—i, Tra1—i
A (k). bo (k)0 g(t ) (k)g(t )

i=1
where
_ —P(0x)

607 (0x + 1)(0r + )

_ PO
607 (0 + )’

—P(0)

co(k) " 60k 0k + 1) (6k +7)

c1(k) ca(k)
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and P(0y) = 0} + 4903 + 6707 + 470, + 42 is a polynomial with respect to the
parameter 7y, being a fixed number, and the most recent step size ratio 0.

We further refer to [10] or [11] for the local-global step size control algorithm
and for the starting procedure. The step size selection is based on the error
estimates presented above.

4 Numerical Experiments

In this section, we give a number of numerical examples confirming the efficiency
of the methods presented above for nonstiff and stiff integrations as well. We
start with numerical experiments on problems with known solutions. They are
nonstiff, and our goal is to check the capacity of both algorithms with the local-
global step size control to attain the set accuracy of computation in automatic
mode.

The first test problem is taken from [6] and it has the form

() = 2aa(t) b aa(t),  @h(t) = 10texp (5(x3(t) - 1)>m4(t), (11a)

a5(t) = 2tay(t), a4(t) = —2tIn(z1(t)), te€[0,3] (11b)
with 2(0) = (1,1,1,1)”. Problem (11) possesses the exact solution

z1(t) = exp(sint?), zo(t) = exp(5sint?), z3(t) = sint® + 1, z4(t) = cost®.

Therefore it is convenient to verify how our adaptive methods will reach the
required accuracy.

The second problem is quite practical. This is the restricted three body prob-
lem (see, for example, [6]):

z1(t) + po . z1(t) —
yi(t) )

z2(t)  wa(t)
MORET0X

(0 = (@04 +202)”. 9a6) = (@10 -2 +wa(02)”, (120)

where t € [0,T], T = 17.065216560157962558891, u1 = 1 — po and pe =
0.012277471. The initial values of problem (12) are: x1(0) = 0.994, 2/ (0) = 0,
x2(0) = 0, 24(0) = —2.00158510637908252240. It has no analytic solution, but
its solution-path is periodic. Thus, we are also capable to observe the work of
both methods in practice.

Having fixed the global error bounds and computed the local tolerances by
the formula ¢ = 63/ 2, we apply methods (3) and (4) with the local-global step
size control to problems (11) and (12) and come to the data collected in Ta-
bles[Il 2l We see that both choices of the parameter 7 in the family of numerical

o () = @1(t) + 225(t) — (12a)

2Y(t) = aa(t) — 20(t) — (12b)
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Table 1. Global errors obtained for variable-coefficient methods (3) and (4) (with the
local-global step size control) applied to problem (11)

Method required accuracy
€g =107 €g = 10702 €g = 10703 €g = 10704 €g = 1070°

(3) | 8.005x 10792 7.305 x 107% 7.281 x 107 9.702 x 107 9.823 x 107
(4) | 7.191 x 107°% 9.041 x 107% 8.648 x 107" 7.758 x 107%° 7.566 x 1079

Table 2. Global errors obtained for variable-coefficient methods (3) and (4) (with the
local-global step size control) applied to problem (12)

Method required accuracy
€g =107 €g = 10772 €g =107 €g =107 €g = 107"

(3) | 2.083 x 10T 9.445 x 107° 7.113 x 107 7.077 x 107 7.081 x 107
(4) ] 9.092x107%% 9.373 x 1072 7.704 x 107%* 7.703 x 107%° 7.714 x 1079¢

methods (6) lead to quite nice results. Both methods have computed the numer-
ical solutions with the set accuracy. We only want to point out that our choice
(method (3)), when v = 9 — 44/5, gives the required numerical solutions faster.
The average execution time for method (3) is less by a factor of 1.4 for the first
test problem and by a factor of 1.3 for the second test problem compared with
method (4).

Now we try methods (3) and (4) on the Van der Pol’s equation

(1) = wa(t), ah(@) =2 (1= 21 m) - 21@), te,2  (13)

o
25 - - - - - T T - T 1519

Fig. 1. The components z1 and x2 of the Van der Pol’s equation calculated by methods
(3) and (4) with e, = 107"
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where z(0) = (2,0)7, and p = 100. Problem (13) is considered to be very stiff
when the parameter p is a big number. Despite the small order of the methods
under consideration the results obtained are quite promising. The components of
the numerical solution of problem (13) are given in Figure 1. Both methods have
produced the same result (up to an error of 10~1) which completely corresponds
to the picture in [7].

The final point to mention is that our choice of v (method (3)) has again

computed the numerical solution of Van der Pol’s equation faster (with a factor
of 1.4). This is a good reason to implement it in practice.
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