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Abstract. In this paper, we explore a novel approach to perform a probabilistic 
fast analysis of web communications. Instead of relying on pattern matching 
algorithms, we look at simple network and transport level parameters and try to 
infer what happens at the application level. Our approach provides the ability to 
perform a trade-off between analysis speed and precision that could prove 
useful for some traffic analysis applications. 

Introduction 

The appearance of new threats (e.g. worms, DDOS attacks) has led network operators 
to provide intrusion detection services to their customers. In this paper we consider 
one of the challenges implied by this activity; the ability to monitor communications 
within operator networks. This task can be considered challenging for several reasons 
(limited traffic analysis abilities, large amounts of traffic, limited ability to introduce 
new mechanisms). We focus on HTTP based communications because they constitute 
one of the largest aggregate of packets on the Internet. The goal of this paper is to 
present techniques that would enable such communications to be analyzed in the 
network while complying with the aforementioned limitations. 

Measurement Information 

Our goal is to check whether network or transport level information could be used to 
infer application level operations. In a first part we examine how protocols might 
render this operation difficult. HTTP [ 1] exchanges can be viewed at several levels. 
At the lowest level, the HTTP protocol is based on a request-response protocol where 
each request attempts to perform an HTTP operation on an object at the server. We 
later call this level micro-session level. Information in HTTP 1.1 messages is 
organized into information elements called headers. Although HTTP 1.1 defines more 
than 40 different headers, requests and responses usually only use a few them. 

HTTP 1.1 provides the ability for web clients and servers to multiplex several 
HTTP request-responses exchanges over a single TCP connection. Among persistent 
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connections we can additionally distinguish between connections using pipelined 
requests and regular connections. Pipelined connections are used by the client to 
perform several requests without waiting for an answer from the server. This ability is 
however limited by the structure of html documents. Therefore micro-sessions can be 
distinguished at the network level by either looking at: 

• Connections set-up and ending in the case of non persistent connections. 
• Request-Response session patterns [ 3] in the case of non-pipelined persistent 

connections. These patterns can be found by observing TCP sequence numbers. 
• Request-Response session patterns in the case of persistent pipelined connections. 

However only the first micro-session can be distinguished from other exchanges. 

An interesting question is thus whether pipelined, persistent connections are 
supported in the real life. [ 3] shows that most browsers are either unable to use 
persistent-pipelined connections or configured by default to avoid using them. 

Method and Objects Size Inference 

Our assumption is that objects sizes can be inferred from network or transport level 
measurements. Several factors can play a role in making this process more difficult. 
For example at the transport level, measurement information includes HTTP headers.  
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Fig. 1. Header and total sizes for various types of responses 

Figure 1 provides the relation between header sizes, types of response and total 
sizes in the case of our web server. These values where obtained by capturing 
responses packets from the server over several hours. Six types of responses 
(identified by code numbers) were captured. 

Figure 1 shows that 200 (OK) responses can be distinguished from other responses 
by looking at the total size. Some 200 responses have a size that collides with other 
types of responses. However objects associated with these responses constitute less 
than 1% of existing objects. 304 (not modified) responses can also be distinguished 
from other responses by looking at the total size. 

Additionally, tests show that persistent connections include additional HTTP 
headers. These headers have a fixed size (57 bytes). As a result knowing whether a 
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connection is persistent is sufficient to deduce the influence of the persistence on the 
HTTP header size. This knowledge can be obtained by looking at multiple 
connections establishment-teardown over short periods of time. Table 1 provides the 
relation between response sizes and codes. 

Table 1. Response  code classification using response size for persistent connections 

Result Response Size 
200 RS >550 or 250<RS<460 
304 240<RS <250 
301, 400, 403, 404 460<RS<550 

 

Using a similar methodology, we define a set of classification criterion in order to 
infer the method used in HTTP requests.  

 
Figure 1 shows that 200 responses can carry HTTP headers whose size are not 

fixed. As a result using an average HTTP header size value to estimate objects sizes 
in the case of GET requests can lead us erroneous results. By looking more closely at 
HTTP headers we can classify header fields according to their behavior: 

• Some headers values never change (e.g. response code, server id, accept range). 
• Some header values change but have a fixed size (e.g. last modified and date). 
• Some header sizes change depending on the document (e.g. content type, size). 

As a result for a given object, the response size should remain constant. This means 
that by keeping the relation between response sizes and object sizes, we can get an 
exact estimate of objects sizes. 

URI Inference 

For URI Inference, our goal is to use parameters such as the object size, the date and 
time at witch a request was performed or the IP address of the requesting client. The 
relation between these parameters can be found in log files on the web server. 

The model we selected to perform inference operations is a Bayesian network. 
Bayesian networks are graphical models that can be used to represent causal 
relationships between variables. A Bayesian network is usually defined as an acyclic 
directed graph G, ( )EVG ,= , where V  is a set of nodes and E  the set of  vertexes, a 
finite probability set ( )ΡΖΩ ,,  and a set of variables defined on ( )ΡΖΩ ,, , so that : 
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where ( )iVC , is the set of causes for 
iV  in the graph. 

The inference in a causal network consists in propagating unquestionable 
information within the network, in order to deduce how beliefs concerning the other 
nodes are modified. This propagation is related to causal relations between nodes. 
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In order to limit the resources used by our model, a first step was to aggregate 
possible parameter values. IP addresses were aggregated into country codes and date 
and time were also aggregated in some way. As the cost of inference in a Bayesian 
network increases exponentially with the number of variables we also evaluated the 
ability for each parameter (size, country codes, time, date) to explain URIs. This led 
us to the selection of country code and size variables (Bayesian network in Figure 3). 
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Fig. 2. Resulting Bayesian network 

Implementation and Tests 

A traffic analyzer was implemented as an extension to IPFilter [ 4] to capture HTTP 
sessions. Sessions are delimited as specified in section  0. When a session ends, the 
corresponding information (size, IP addresses, time, and date) is handed to a user 
space process and stored in a file. 

Validation tests were performed using our departmental web server. This web 
server includes roughly 15k objects and receives 10k requests a day. Models were 
built using a one month log file including 309k requests. The validation was 
performed by simulating requests to the server using the same log file. Results are 
presented in Table 2. Among requests, only requests with a "200" response codes 
were used for method inference. Only inferred "GET", "200" requests were used for 
object size and URI inference. 

Table 2. Ability to predict correct parameter values 

Parameter Requests considered  Correct Responses % Correct  
Response Code 300986 288568 96 
Method 228189 208347 92 
Object Size 154289 150505 98 
URI 154289 135212 88 

 
An implementation of our inference process was performed in C in order to test its 

performance. The implementation was performed on FreeBSD using a 2.4Ghz 
Pentium Xeon (512KBytes cache, 1GBytes RAM). Results show that our inference 
process should be able to analyze roughly 1M requests per second using a 2.5Mb 
model. Assuming standard Internet traffic this would allow us to treat a 20Gb/s full 
duplex link.  
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