Skip to main content

Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application

  • Chapter
  • First Online:
Engineering and Application of Pluripotent Stem Cells

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 163))

Abstract

Engineered cardiac tissue might enable novel therapeutic strategies for the human heart in a number of acquired and congenital diseases. With recent advances in stem cell technologies, namely the availability of pluripotent stem cells, the generation of potentially autologous tissue grafts has become a realistic option. Nevertheless, a number of limitations still have to be addressed before clinical application of engineered cardiac tissue based on human stem cells can be realized. We summarize current progress and pending challenges regarding the optimal cell source, cardiomyogenic lineage specification, purification, safety of genetic cell engineering, and genomic stability. Cardiac cells should be combined with clinical grade scaffold materials for generation of functional myocardial tissue in vitro. Scale-up to clinically relevant dimensions is mandatory, and tissue vascularization is most probably required both for preclinical in vivo testing in suitable large animal models and for clinical application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAVS1:

Adeno-associated virus integration site (safe harbor site)

ABCG2:

ATP-binding cassette transporter protein

AMI:

Acute myocardial infarction

ARVCM:

Arrythmogenic right ventricular cardiomyopathy

ASC:

Adipose tissue-derived cell

AV-block:

Atrioventricular block

AV-node:

Atrioventricular node

BCRP:

Breast cancer resistance protein

BMP:

Bone morphogenic protein

CD117:

c-kit

CD106/VCAM-1:

Vascular cell adhesion molecule 1

CD166/ALCAM:

Activated leukocyte cell adhesion molecule

CD172A/SIRP-alpha:

Signal regulatory protein alpha

CDC:

Cardiosphere-derived cell

CMPM:

Cardiac myocyte-populated matrix

c-Myc:

Avian myelocytomatosis viral oncogene homolog

COUP-TF I and II:

Chicken ovalbumin upstream promoter transcription factor I and II

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR-associated system

CRPC:

Cardiac resident progenitor cell

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

DNA:

Deoxyribonucleic acid

EBIO:

1-Ethyl-2-benzimidazolinone

ECM:

Extracellular matrix

eGFP:

Enhanced green fluorescent protein

EHT:

Engineered heart tissue

ESC:

Embryonic stem cell

FACS:

Fluorescence-activated cell sorting

FGF-16:

Fibroblast growth factor 16

GATA4:

GATA-binding protein 4

GFP:

Green fluorescent protein

hESC:

Human embryonic stem cell

hiPSC:

Human induced pluripotent stem cell

HUVEC:

Human umbilical vein endothelial cell

ICF:

Immunodeficiency, centromeric region instability, facial anomalies

iPSC:

Induced pluripotent stem cell

IWP:

Inhibitor of Wnt production

Klf4:

Kruppel-like factor 4

linneg/c-kitpos :

CD31, CD34, CD45 negative/CD117 positive

LVEF:

left ventricular ejection fraction

Meis-1:

Meis homeobox 1

miR-128:

micro RNA 128

MLC2a:

Myosin light chain 2a

MLC2v:

Myosin light chain 2v

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

MYDGF:

Myeloid-derived growth factor

Nkx2.5:

NK2 homeobox 5

NRCM:

Neonatal rat cardiomyocytes

NRG1β/ERBB:

Neuregulin 1/estrogen receptor beta

Oct4:

Octamer-binding protein 4

p38 MAPK:

p38 mitogen-activated protein kinase

PCR:

Polymerase chain reaction

PDGFRβ:

Platelet-derived growth factor receptor β

PSC:

Pluripotent stem cell

RGD:

Arginyl-glycyl-aspartic acid motif

sca-1:

Stem cell antigen-1

Sox2:

Sex determining region Y-box 2

SP:

Side population

TALEN:

TAL effector nuclease

TnI:

Troponin I

USSC:

Unrestricted somatic stem cell

VSD:

Ventricular septal defect

Wnt:

Wingless protein

ZFN:

Zinc-finger nuclease

α-MHC, MYH6:

α-myosin heavy chain promoter

References

  1. WHO (2011) Cardiovascular diseases (CVDs). Fact Sheet No 317. World Health Organization, Geneva. Available at http://www.who.int/mediacentre/factsheets/fs317/en/index.html

    Google Scholar 

  2. Nadal-Ginard B (1978) Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15(3):855–864

    Article  CAS  Google Scholar 

  3. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83(1):15–26

    Article  CAS  Google Scholar 

  4. Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  Google Scholar 

  5. Leor J et al (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3):III56–III61

    CAS  Google Scholar 

  6. Zimmermann WH et al (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68(1):106–114

    Article  CAS  Google Scholar 

  7. Zimmermann WH, Tiburcy M, Eschenhagen T (2007) Cardiac tissue engineering: a clinical perspective. Futur Cardiol 3(4):435–445

    Article  CAS  Google Scholar 

  8. Kreutziger KL, Murry CE (2011) Engineered human cardiac tissue. Pediatr Cardiol 32(3):334–341

    Article  Google Scholar 

  9. Nichols M et al. (2012) European cardiovascular disease statistics 2012. European Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis

    Google Scholar 

  10. Boldt LH, Haverkamp W (2009) Arrhythmogenic right ventricular cardiomyopathy: diagnosis and risk stratification. Herz 34(4):290–297

    Article  Google Scholar 

  11. Burnside N, MacGowan SW (2012) Malignant primary cardiac tumours. Interact Cardiovasc Thorac Surg 15(6):1004–1006

    Article  Google Scholar 

  12. Leja MJ, Shah DJ, Reardon MJ (2011) Primary cardiac tumors. Tex Heart Inst J 38(3):261–262

    Google Scholar 

  13. Stiver K et al (2015) Left atrial myxoma causing coronary steal: an atypical cause of angina. Tex Heart Inst J 42(3):270–272

    Article  Google Scholar 

  14. Reynen K (1995) Cardiac myxomas. N Engl J Med 333(24):1610–1617

    Article  CAS  Google Scholar 

  15. Ceresoli GL et al (1997) Primary cardiac lymphoma in immunocompetent patients: diagnostic and therapeutic management. Cancer 80(8):1497–1506

    Article  CAS  Google Scholar 

  16. Penny DJ, Vick Iii GW (2011) Ventricular septal defect. Lancet 377(9771):1103–1112

    Article  Google Scholar 

  17. Scully BB et al (2010) Current expectations for surgical repair of isolated ventricular septal defects. Ann Thorac Surg 89(2):544–551

    Article  Google Scholar 

  18. Noonan JA, Nadas AS (1958) The hypoplastic left heart syndrome; an analysis of 101 cases. Pediatr Clin N Am 5(4):1029–1056

    Article  CAS  Google Scholar 

  19. Mair R (2010) Aortenatresie, hypoplastisches Linksherzsyndrom und hypoplastischer Linksherzkomplex. Herzchirurgie. Springer, Berlin, pp 461–472

    Chapter  Google Scholar 

  20. Tchervenkov CI et al (1998) Biventricular repair in neonates with hypoplastic left heart complex. Ann Thorac Surg 66(4):1350–1357

    Article  CAS  Google Scholar 

  21. Eschenhagen T et al (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11(8):683–694

    Article  CAS  Google Scholar 

  22. Fink C et al (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14(5):669–679

    Article  CAS  Google Scholar 

  23. Kofidis T et al (2002) In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 124(1):63–69

    Article  CAS  Google Scholar 

  24. Zimmermann WH et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90(2):223–230

    Article  CAS  Google Scholar 

  25. Kensah G et al (2011) A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng Part C Methods 17(4):463–473

    Article  Google Scholar 

  26. Hansen A et al (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107(1):35–44

    Article  CAS  Google Scholar 

  27. Naito H et al (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl):I72–I78

    Google Scholar 

  28. Schueller PO et al (2007) Intracoronary autologous bone marrow cell transplantation beneficially modulates heart rate variability. Int J Cardiol 119(3):398–399

    Article  Google Scholar 

  29. Orlic D et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  Google Scholar 

  30. Nygren JM et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10(5):494–501

    Article  CAS  Google Scholar 

  31. Strauer BE et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  Google Scholar 

  32. Meyer GP et al (2009) Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J 30(24):2978–2984

    Article  Google Scholar 

  33. Schaefer A et al (2010) Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial--an echocardiographic study. Eur J Echocardiogr 11(2):165–171

    Article  Google Scholar 

  34. Gnecchi M et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219

    Article  CAS  Google Scholar 

  35. Korf-Klingebiel M et al (2015) Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 21(2):140–149

    Article  CAS  Google Scholar 

  36. Pijnappels DA et al (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103(2):167–176

    Article  CAS  Google Scholar 

  37. Rose RA et al (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26(11):2884–2892

    Article  CAS  Google Scholar 

  38. Gruh I, Martin U (2009) Transdifferentiation of stem cells: a critical view. Adv Biochem Eng Biotechnol 114:73–106

    CAS  Google Scholar 

  39. Urbanek K et al (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 100(18):10440–10445

    Article  CAS  Google Scholar 

  40. Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  Google Scholar 

  41. Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  Google Scholar 

  42. Mishra R et al (2011) Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123(4):364–373

    Article  CAS  Google Scholar 

  43. Sato H et al (2007) Detection of TUNEL-positive cardiomyocytes and c-kit-positive progenitor cells in children with congenital heart disease. J Mol Cell Cardiol 43(3):254–261

    Article  CAS  Google Scholar 

  44. Emmert MY et al (2012) Higher frequencies of BCRP+ cardiac resident cells in ischaemic human myocardium. Eur Heart J 34(36):2830–2838

    Article  CAS  Google Scholar 

  45. Oh H et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  Google Scholar 

  46. van Vliet P et al (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 16(5):163–169

    Article  Google Scholar 

  47. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  Google Scholar 

  48. Bolli R et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  Google Scholar 

  49. van Berlo JH et al (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341

    Article  CAS  Google Scholar 

  50. Keith MC, Bolli R (2015) “String theory” of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 116(7):1216–1230

    Article  CAS  Google Scholar 

  51. Martin CM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    Article  CAS  Google Scholar 

  52. Pfister O et al (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103(8):825–835

    Article  CAS  Google Scholar 

  53. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99(2):507–512

    Article  CAS  Google Scholar 

  54. Zhou S et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  CAS  Google Scholar 

  55. Oyama T et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341

    Article  CAS  Google Scholar 

  56. Messina E et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  Google Scholar 

  57. Smith RR et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  CAS  Google Scholar 

  58. Lee ST et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57(4):455–465

    Article  Google Scholar 

  59. Malliaras K et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122

    Article  Google Scholar 

  60. Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980

    Article  CAS  Google Scholar 

  61. Xu Y et al (2014) Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater 10(8):3449–3462

    Article  CAS  Google Scholar 

  62. Li Z et al (2016) Thermosensitive and highly flexible hydrogels capable of stimulating cardiac differentiation of cardiosphere-derived cells under static and dynamic mechanical training conditions. ACS Appl Mater Interfaces 8(25):15948–15957

    Article  CAS  Google Scholar 

  63. Kim DH et al (2012) Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr Biol 4(9):1019–1033

    Article  CAS  Google Scholar 

  64. Chimenti I et al (2011) Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials 32(35):9271–9281

    Article  CAS  Google Scholar 

  65. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  66. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  67. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  Google Scholar 

  68. Haase A et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5(4):434–441

    Article  CAS  Google Scholar 

  69. Streckfuss-Bömeke K et al (2012) Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J 34(33):2618–2629

    Article  CAS  Google Scholar 

  70. Narazaki G et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506

    Article  Google Scholar 

  71. Mauritz C et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5):507–517

    Article  Google Scholar 

  72. Schenke-Layland K et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26(6):1537–1546

    Article  CAS  Google Scholar 

  73. Kim JB et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646

    Article  CAS  Google Scholar 

  74. Di Stefano B, Prigione A, Broccoli V (2009) Efficient genetic reprogramming of unmodified somatic neural progenitors uncovers the essential requirement of Oct4 and Klf4. Stem Cells Dev 18(5):707–716

    Article  Google Scholar 

  75. Kim JB et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419

    Article  CAS  Google Scholar 

  76. Huangfu D et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797

    Article  CAS  Google Scholar 

  77. Shi Y et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574

    Article  CAS  Google Scholar 

  78. Wernig M et al (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26(8):916–924

    Article  CAS  Google Scholar 

  79. Maherali N et al (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3(3):340–345

    Article  CAS  Google Scholar 

  80. Stadtfeld M et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  CAS  Google Scholar 

  81. Fusaki N et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    Article  CAS  Google Scholar 

  82. Macarthur CC et al (2012) Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells Int 2012:564612

    Article  CAS  Google Scholar 

  83. Okita K et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  Google Scholar 

  84. Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771

    Article  CAS  Google Scholar 

  85. Ban H et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108(34):14234–14239

    Article  CAS  Google Scholar 

  86. Hockemeyer D et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857

    Article  CAS  Google Scholar 

  87. Hockemeyer D et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Article  CAS  Google Scholar 

  88. Maggio I et al (2014) Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4:5105

    Article  CAS  Google Scholar 

  89. Merkert S et al (2014) Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprintless targeted human pluripotent stem cells. Stem Cell Rep 2(1):107–118

    Article  CAS  Google Scholar 

  90. Merkert S, Martin U (2017) Targeted gene editing in human pluripotent stem cells using site-specific nucleases. Adv Biochem Eng/Biotechnol. https://doi.org/10.1007/10_2017_XX

  91. Mummery C (2011) Induced pluripotent stem cells--a cautionary note. N Engl J Med 364(22):2160–2162

    Article  CAS  Google Scholar 

  92. Ronen D, Benvenisty N (2012) Genomic stability in reprogramming. Curr Opin Genet Dev 22(5):444–449

    Article  CAS  Google Scholar 

  93. Schwanke K et al (2006) Generation and characterization of functional cardiomyocytes from rhesus monkey embryonic stem cells. Stem Cells 24(6):1423–1432

    Article  CAS  Google Scholar 

  94. Passier R et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23(6):772–780

    Article  CAS  Google Scholar 

  95. Dai W et al (2007) Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol 43(4):504–516

    Article  CAS  Google Scholar 

  96. Graichen R et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76(4):357–370

    Article  CAS  Google Scholar 

  97. Xu XQ et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970

    Article  CAS  Google Scholar 

  98. Burridge PW et al (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28

    Article  CAS  Google Scholar 

  99. Lian X et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857

    Article  CAS  Google Scholar 

  100. Lian X et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175

    Article  CAS  Google Scholar 

  101. Zhu WZ et al (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107(6):776–786

    Article  CAS  Google Scholar 

  102. Ben-Ari M et al (2016) Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm 13(12):2379–2387

    Article  Google Scholar 

  103. Zhang J et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136

    Article  CAS  Google Scholar 

  104. Burridge PW et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860

    Article  CAS  Google Scholar 

  105. Kempf H et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep 3(6):1132–1146

    Article  CAS  Google Scholar 

  106. Kempf H, Zweigerdt R (2017) Adv Biochem Engin/Biotechnol. doi: https://doi.org/10.1007/10_2017_XX

  107. Kleger A et al (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122(18):1823–1836

    Article  CAS  Google Scholar 

  108. Jara-Avaca M et al (2017) EBIO does not induce cardiomyogenesis in human pluripotent stem cells but modulates cardiac subtype enrichment by lineage-selective survival. Stem Cell Rep 8(2):305–317

    Article  Google Scholar 

  109. Zhang Q et al (2011) Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21(4):579–587

    Article  CAS  Google Scholar 

  110. Devalla HD et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7(4):394–410

    Article  CAS  Google Scholar 

  111. Protze SI et al (2017) Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 35(1):56–68

    Article  CAS  Google Scholar 

  112. Guo XM et al (2006) Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18):2229–2237

    Article  Google Scholar 

  113. Wang X et al (2006) Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with ES-derived cardiomyocytes in vitro. Biotechnol Prog 22(3):811–818

    Article  CAS  Google Scholar 

  114. Dubois NC et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018

    Article  CAS  Google Scholar 

  115. Uosaki H et al (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6(8):e23657

    Article  CAS  Google Scholar 

  116. Tohyama S et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12(1):127–137

    Article  CAS  Google Scholar 

  117. Hattori F, Fukuda K (2012) A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells. European Patent 1983042 B1

    Google Scholar 

  118. Hattori F, Fukuda K (2012) Method for inducing cell death in pluripotent stem cells and differentiated cells other than cardiac myocytes. European Patent 2415862 A1

    Google Scholar 

  119. Hattori F et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7(1):61–66

    Article  CAS  Google Scholar 

  120. Klug MG et al (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Investig 98(1):216–224

    Article  CAS  Google Scholar 

  121. Zandstra PW et al (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9(4):767–778

    Article  CAS  Google Scholar 

  122. Xu XQ et al (2008) Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy 10(4):376–389

    Article  CAS  Google Scholar 

  123. Shimko VF, Claycomb WC (2008) Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 14(1):49–58

    Article  CAS  Google Scholar 

  124. Pfannkuche K et al (2010) Fibroblasts facilitate the engraftment of embryonic stem cell-derived cardiomyocytes on three-dimensional collagen matrices and aggregation in hanging drops. Stem Cells Dev 19(10):1589–1599

    Article  CAS  Google Scholar 

  125. Liau B et al (2011) Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32(35):9180–9187

    Article  CAS  Google Scholar 

  126. Kensah G et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34(15):1134–1146

    Article  CAS  Google Scholar 

  127. Miki K et al (2015) Efficient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell 16(6):699–711

    Article  CAS  Google Scholar 

  128. Kuang Y et al (2017) Efficient, selective removal of human pluripotent stem cells via Ecto-alkaline phosphatase-mediated aggregation of synthetic peptides. Cell Chem Biol 24(6):685–694 e4

    Article  CAS  Google Scholar 

  129. Caspi O et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272

    Article  CAS  Google Scholar 

  130. Lesman A et al (2010) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 16(1):115–125

    Article  CAS  Google Scholar 

  131. Shapira-Schweitzer K et al (2009) A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. J Mol Cell Cardiol 46(2):213–224

    Article  CAS  Google Scholar 

  132. Chen QZ et al (2010) An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31(14):3885–3893

    Article  CAS  Google Scholar 

  133. Stevens KR et al (2009) Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A 15(6):1211–1222

    Article  CAS  Google Scholar 

  134. Stevens KR et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 106(39):16568–16573

    Article  CAS  Google Scholar 

  135. Matsuura K et al (2011) Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials 32(30):7355–7362

    Article  CAS  Google Scholar 

  136. Kwon OH et al (2000) Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res 50(1):82–89

    Article  CAS  Google Scholar 

  137. Schaaf S et al (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10):e26397

    Article  CAS  Google Scholar 

  138. Breckwoldt K et al (2017) Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat Protoc 12(6):1177–1197

    Article  CAS  Google Scholar 

  139. Tiburcy M et al (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135(19):1832–1847

    Article  CAS  Google Scholar 

  140. Larsen R (2009) Überwachung der Herz-Kreislauf-Funktion. Anästhesie und Intensivmedizin in Herz-, Thorax- und Gefäßchirurgie. Springer, Berlin, pp 51–69

    Chapter  Google Scholar 

  141. Hoppe UC, Erdmann E (2011) Chronische Herzinsuffizienz. In: Erdmann E (ed) Klinische Kardiologie. Springer, Berlin, pp 123–179

    Chapter  Google Scholar 

  142. Willruth AM et al (2011) Comparison of global and regional right and left ventricular longitudinal peak systolic strain, strain rate and velocity in healthy fetuses using a novel feature tracking technique. J Perinat Med 39(5):549–556

    Article  Google Scholar 

  143. Perles Z et al (2007) Assessment of fetal myocardial performance using myocardial deformation analysis. Am J Cardiol 99(7):993–996

    Article  Google Scholar 

  144. Wiegerinck RF et al (2009) Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr Res 65(4):414–419

    Article  Google Scholar 

  145. Holubarsch C et al (1998) Shortening versus isometric contractions in isolated human failing and non-failing left ventricular myocardium: dependency of external work and force on muscle length, heart rate and inotropic stimulation. Cardiovasc Res 37(1):46–57

    Article  CAS  Google Scholar 

  146. Mulieri LA et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5):1743–1750

    Article  CAS  Google Scholar 

  147. Sarsero D et al (2003) (−)-CGP 12177 increases contractile force and hastens relaxation of human myocardial preparations through a propranolol-resistant state of the beta 1-adrenoceptor. Naunyn Schmiedeberg’s Arch Pharmacol 367(1):10–21

    Article  CAS  Google Scholar 

  148. Holubarsch C et al (1996) Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation 94(4):683–689

    Article  CAS  Google Scholar 

  149. Siedner S et al (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548(2):493–505

    Article  CAS  Google Scholar 

  150. Black 3rd LD et al (2009) Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng Part A 15(10):3099–3108

    Article  CAS  Google Scholar 

  151. Engelmayr Jr GC et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7(12):1003–1010

    Article  CAS  Google Scholar 

  152. Tulloch NL et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59

    Article  CAS  Google Scholar 

  153. Zhang D et al (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34(23):5813–5820

    Article  CAS  Google Scholar 

  154. Jackman CP, Carlson AL, Bursac N (2016) Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111:66–79

    Article  CAS  Google Scholar 

  155. Mannhardt I et al (2016) Human engineered heart tissue: analysis of contractile force. Stem Cell Rep 7(1):29–42

    Article  CAS  Google Scholar 

  156. Seta H et al (2017) Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure in vivo. Sci Rep 7:45499

    Article  CAS  Google Scholar 

  157. Nunes SS et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10(8):781–787

    Article  CAS  Google Scholar 

  158. Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785

    Article  Google Scholar 

  159. Kim JS et al (2008) Correlation of serial cardiac magnetic resonance imaging parameters with early resolution of ST-segment elevation after primary percutaneous coronary intervention. Circ J 72(10):1621–1626

    Article  Google Scholar 

  160. Masugata H et al (1999) Relationship between myocardial tissue density measured by microgravimetry and sound speed measured by acoustic microscopy. Ultrasound Med Biol 25(9):1459–1463

    Article  CAS  Google Scholar 

  161. Kawel N et al (2012) Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(4):500–508

    Article  Google Scholar 

  162. Dahlmann J et al (2013) The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34(10):2463–2471

    Article  CAS  Google Scholar 

  163. Zweigerdt R et al (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700

    Article  CAS  Google Scholar 

  164. Olmer R et al (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18(10):772–784

    Article  CAS  Google Scholar 

  165. Radisic M et al (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93(2):332–343

    Article  CAS  Google Scholar 

  166. Shimizu T et al (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710

    Article  CAS  Google Scholar 

  167. Masumoto H et al (2012) Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 30(6):1196–1205

    Article  CAS  Google Scholar 

  168. Gao L et al (2017) Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res 120(8):1318–1325

    Article  CAS  Google Scholar 

  169. Nakane T et al (2017) Impact of cell composition and geometry on human induced pluripotent stem cells-derived engineered cardiac tissue. Sci Rep 7:45641

    Article  CAS  Google Scholar 

  170. Zhang B et al (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15(6):669–678

    Article  CAS  Google Scholar 

  171. Komae H et al (2017) Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. J Tissue Eng Regen Med 11(3):926–935

    Article  CAS  Google Scholar 

  172. Togo S et al (2011) Differentiation of embryonic stem cells into fibroblast-like cells in three-dimensional type I collagen gel cultures. In Vitro Cell Dev Biol Anim 47(2):114–124

    Article  CAS  Google Scholar 

  173. Hewitt KJ et al (2011) Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. PLoS One 6(2):e17128

    Article  CAS  Google Scholar 

  174. Lin B et al (2012) High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 95(3):327–335

    Article  CAS  Google Scholar 

  175. Dar A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99

    Article  Google Scholar 

  176. Zimmermann WH et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12(4):452–458

    Article  CAS  Google Scholar 

  177. Singla DK et al (2011) Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium. Mol Pharm 8(5):1573–1581

    Article  CAS  Google Scholar 

  178. Rojas SV et al (2017) Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One 12(5):e0173222

    Article  CAS  Google Scholar 

  179. van Laake LW et al (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102(9):1008–1010

    Article  CAS  Google Scholar 

  180. Mummery CL, Davis RP, Krieger JE (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med 2(27):27ps17

    Article  Google Scholar 

  181. Garbern JC, Mummery CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3(4):a014019

    Article  CAS  Google Scholar 

  182. Riegler J et al (2015) Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ Res 117(8):720–730

    Article  CAS  Google Scholar 

  183. Shiba Y et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325

    Article  CAS  Google Scholar 

  184. Shiba Y et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a Guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther 19(4):368–381

    Article  Google Scholar 

  185. Weinberger F et al (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8(363):363ra148

    Article  CAS  Google Scholar 

  186. Williams AR et al (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223

    Article  Google Scholar 

  187. Okura H et al (2012) Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction. Biochem Biophys Res Commun 425(4):859–865

    Article  CAS  Google Scholar 

  188. Emmert MY et al (2013) Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 34(10):2428–2441

    Article  CAS  Google Scholar 

  189. Kim BO et al (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112(9 Suppl):I96–104

    Google Scholar 

  190. Moelker AD et al (2007) Intracoronary delivery of umbilical cord blood derived unrestricted somatic stem cells is not suitable to improve LV function after myocardial infarction in swine. J Mol Cell Cardiol 42(4):735–745

    Article  CAS  Google Scholar 

  191. Ghodsizad A et al (2009) Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart 95(1):27–35

    Article  CAS  Google Scholar 

  192. Gahremanpour A et al (2013) Xenotransplantation of human unrestricted somatic stem cells in a pig model of acute myocardial infarction. Xenotransplantation 20(2):110–122

    Article  Google Scholar 

  193. Templin C et al (2012) Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 126(4):430–439

    Article  CAS  Google Scholar 

  194. Xiong Q et al (2011) A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 29(2):367–375

    Article  CAS  Google Scholar 

  195. Xiong Q et al (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127(9):997–1008

    Article  CAS  Google Scholar 

  196. Kawamura M et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126(11 Suppl 1):S29–S37

    Article  CAS  Google Scholar 

  197. Roberts RM et al (2015) Livestock models for exploiting the promise of pluripotent stem cells. ILAR J 56(1):74–82

    Article  CAS  Google Scholar 

  198. Wu Z et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46–54

    Article  CAS  Google Scholar 

  199. Ezashi T et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106(27):10993–10998

    Article  CAS  Google Scholar 

  200. Esteban MA et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284(26):17634–17640

    Article  CAS  Google Scholar 

  201. Kues WA et al (2013) Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 22(1):124–135

    Article  CAS  Google Scholar 

  202. Gandolfi F et al (2012) Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 47(Suppl 5):11–17

    Article  Google Scholar 

  203. Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102(25):8966–8971

    Article  CAS  Google Scholar 

  204. Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 10(1):77–86

    Article  Google Scholar 

  205. Shimada H et al (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77(1):2

    Article  CAS  Google Scholar 

  206. Chong JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  Google Scholar 

  207. Keenan CM, Vidal JD (2006) Standard morphologic evaluation of the heart in the laboratory dog and monkey. Toxicol Pathol 34(1):67–74

    Article  Google Scholar 

  208. Malinow MR, Hill JD, Ochsner 3rd AJ (1977) Heart rate in caged Macaca Fascicularis. Effects of short-term physical exercise. J Med Primatol 6(2):69–75

    Article  CAS  Google Scholar 

  209. Kaplan JR, Manuck SB, Gatsonis C (1990) Heart rate and social status among male cynomolgus monkeys (Macaca Fascicularis) housed in disrupted social groupings. Am J Primatol 21(3):175–187

    Article  Google Scholar 

  210. Misner DL et al (2012) Investigation of mechanism of drug-induced cardiac injury and torsades de pointes in cynomolgus monkeys. Br J Pharmacol 165(8):2771–2786

    Article  CAS  Google Scholar 

  211. Yang XM et al (2010) Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning. Basic Res Cardiol 105(1):119–128

    Article  Google Scholar 

  212. Suemori H et al (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222(2):273–279

    Article  CAS  Google Scholar 

  213. Akama K et al (2011) Proteomic identification of differentially expressed genes in neural stem cells and neurons differentiated from embryonic stem cells of cynomolgus monkey (Macaca Fascicularis) in vitro. Biochim Biophys Acta (BBA) Proteins Proteomics 1814(2):265–276

    Article  CAS  Google Scholar 

  214. Kobayashi M et al (2008) BMP4 induces primitive endoderm but not trophectoderm in monkey embryonic stem cells. Cloning Stem Cells 10(4):495–502

    Article  CAS  Google Scholar 

  215. Wunderlich S et al (2012) Induction of pluripotent stem cells from a cynomolgus monkey using a polycistronic simian immunodeficiency virus-based vector, differentiation toward functional cardiomyocytes, and generation of stably expressing reporter lines. Cell Reprogram 14(6):471–484

    Article  CAS  Google Scholar 

  216. Zhang X et al (2017) Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells. Stem Cell Res 20:21–29

    Article  CAS  Google Scholar 

  217. Shiba Y et al (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sylvia Merkert for help with TALEN-mediated targeted transgene integration into the AAVS1 locus and Anke Gawol for the generation of clonal iPSC lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Gruh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jara Avaca, M., Gruh, I. (2017). Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. In: Martin, U., Zweigerdt, R., Gruh, I. (eds) Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, vol 163. Springer, Cham. https://doi.org/10.1007/10_2017_24

Download citation

Publish with us

Policies and ethics