Skip to main content

Chirality and the Origin of Homochirality

  • Chapter
  • First Online:

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

General

  • Avalos M., Babiano R., Cintas P., Jimenez J.L., Palacios J.C. (2000). From parity to chirality: Chemical implications revisited. Tetrahedron Asymmetry, 11, 2845–2874.

    Google Scholar 

  • Bouchiat M.A., Pottier L. (1984). An atomic preference between left and right. Scientific American, 76–86.

    Google Scholar 

  • Brack A. (July, 1998), L'asymétrie du vivant in ``Pour la Science – Dossier Hors Série,'' Paris (France) ``Les symétries de la nature'' (this special issue contains many interesting articles for those who wish to integrate chirality into the general problem of symmetry and the breaking of symmetry in biology, chemistry, physics, and cosmology.)

    Google Scholar 

  • Cline B.C. (editor) (1996). Physical Origin of Homochirality on Earth, American Institute of Physics, Woodbury, New York (USA).

    Google Scholar 

  • Feringa B.L., van Velden A. (1999). Absolute asymmetry synthesis: the origin, control and amplification of chirality. Angew. Chem. Int. Ed., 38, 3418–3438.

    Google Scholar 

  • Jacques J. (1992). La Molécule et son Double. Hachette, Paris.

    Google Scholar 

  • Mason S.F. (1982). Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge (UK).

    Google Scholar 

  • Mislow, K. (199). Molecular Chirality. Chapter 1 in ``Topics in stereochemistry,'' vol 22, S.E. Denmark, ed. J. Wiley and Sons, New York (USA).

    Google Scholar 

  • Nordén B. (1978). The Asymmetry of Life. J. Mol. Evol., 11, 313–332.

    Google Scholar 

  • W.J. Lough and I. Wainer (Eds.) (2002). Chirality in Natural and Applied Science. Blackwell Science Ltd-CRC Press, USA and Canada.

    Google Scholar 

References

  • Aikawa Y., Herbst, E. (2001). Two-dimensional distribution and column densities of gaseous molecules in protoplanetary disks. II. Deuterated species and UV-shielding by ambient clouds. Astron. Astrophys., 372, 1107–1117.

    Google Scholar 

  • Altman E., Altman K.H., Nebel K., Mutter M. (1988). Conformational studies on host-guest peptides containing chiral alpha-methyl-alpha-amino acids. Int. J. Pept. Protein Res., 32, 344–351.

    Google Scholar 

  • Asakura S., Soga T., Uchida T., Osanai S., Kondepudi D.K. (2002). Probability distribution of enantiomeric excess in unstirred and stirred crystallization of binaphthyl melt. Chirality, 14, 85–89.

    Google Scholar 

  • Auf Der Heyde T.P.E., Buda A.B., Mislow K. (1991). Desymmetrization and degree of chirality. J. of Mathematical Chemistry, 6, 255–265.

    Google Scholar 

  • Avalos M., Babiano R., Cintas P., Jimenez J.L., Palacios J.C. (2000). From parity to chirality: Chemical implications revisited. Tetrahedron: Asymmetry, 11, 2854–2874.

    Google Scholar 

  • Bada J.L., McDonald G.D. (1995). Amino acid racemization on Mars: Implications for the preservation of biomolecules from an extinct Martian biota. Icarus, 114, 139–143.

    Google Scholar 

  • Bada J.L., Miller S.L. (1987). Racemization and the origin of optimalised active organic compounds in living organisms. Biosystems, 20, 21–26.

    Google Scholar 

  • Bailey J., Chrysostomou A., Hough J.H., Gledhill T.M., McCall A., Clark S., Ménard F., Tamura M. (1998). Circular polarization in star formation regions: Implications for biomolecular homochirality. Science, 281, 672–674.

    Google Scholar 

  • Bailey J. (2001). Circularly polarized light and the origin of homochirality. Origins Life Evol. Biosphere, 31, 167–183.

    Google Scholar 

  • Balavoine G., Moradapour A., Kagan H.B. (1974). Preparation of chiral compounds with high optical purity with circularly polarized light, a model for the prebiotic generation of optical activity. J. Am. Chem. Soc., 96, 5152–5158.

    Google Scholar 

  • Barron L.D. (1982). Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge.

    Google Scholar 

  • Barron L.D. (2000). Chirality, Magnetism and Light. Nature, 405, 895–896.

    Google Scholar 

  • Barron L.D. (2002). Chirality at the sub-molecular level: true and false chirality, p. 53–84 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada.

    Google Scholar 

  • Bartik K., El Haouaj M., Luhmer M., Collet A., Reisse J. (2000). Can mo­no­atomic xenon become chiral? Chem. Phys.Chem., 4, 221–324.

    Google Scholar 

  • Bartik K., Luhmer M., Collet A., Reisse J. (2001). Molecular polarization and molecular chiralization: The first example of a chiralized xenon atom. Chirality, 13, 2–6.

    Google Scholar 

  • Blair N.E., Bonner W.A. (1980). Experiments on the amplification of optical activity. Origins of Life, 10, 255–263.

    Google Scholar 

  • Blair N.E., Dirbas F.M., Bonner W.A. (1981). Stereoselective hydrolysis of leucine oligomers. Tetrahedron, 37, 27–29.

    Google Scholar 

  • Blout E.R, Idelson M. (1956). Polypeptides VI. Poly-alpha-L-glutamic acid. Preparation and helix-coil conversions. J. Am. Chem. Soc., 78, 497–498.

    Google Scholar 

  • Bolli M, Micura R., Eschenmoser A. (1997). Pyranosyl-RNA/ Chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2, 3-cyclophosphates (with a commentary concerning the origin of biomolecular homo­chirality), Chemistry and Biology, 4, 309–320.

    Google Scholar 

  • Bonner W.A., Flores J.J. (1975). Experiments on the origin of optical activity. Origins of Life, 6, 187–194.

    Google Scholar 

  • Bonner W.A., Rubenstein E. (1987). Supernovae, neutron stars and biomolecular chirality. Biosystems 20, 99–111.

    Google Scholar 

  • Bonner W.A (1991). The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosphere, 21, 59–11.

    Google Scholar 

  • Bonner W.A. (1994). Enantioselective autocatalysis - spontaneous resolution and the prebiotic generation of chirality. Orig. Life Evol. Biosphere, 24, 63–78.

    Google Scholar 

  • Bonner W.A. (1996). The quest for chiralitry in Physical Origin of Homochirality on Earth, ed. D.B. Cline, p. 17–49, American Institute of Physics, Proc. 379, Woodbury, New York.

    Google Scholar 

  • Bonner W.A., Rubenstein E., Brown G.S. (1999). Extraterrestrial handedness: A reply. Orig. Life Evol. Biosphere, 30, 329–332.

    Google Scholar 

  • Bonner W.A. (1999). Chirality amplification – the accumulation principle revisited. Orig. Life Evol. Biosphere, 29, 615–623.

    Google Scholar 

  • Bonner W.A., Bean B.D. (2000). Asymmetric photolysis with elliptically polarized light. Orig. Life Evol. Biosphere, 30, 513–517.

    Google Scholar 

  • Bonner W.A. (2000). Parity violation and the evolution of biomolecular homochirality. Chirality, 12, 114–126.

    Google Scholar 

  • Brack A., Spach G. (1981). Enantiomer enrichment in early peptides. Origins of Life, 11, 135–142.

    Google Scholar 

  • Buda A.B., Mislow K. (1991). On geometric measure of chirality. J. of Molecular Structure (Theochem), 232, 1–12.

    Google Scholar 

  • Buda A.B, Auf der Heyde T., Mislow K. (1992). On quantifying chirality. Angew. Chem. Int. Ed. Engl., 31, 989–1007.

    Google Scholar 

  • Buchardt O. (1974). Photochemistry with circularly polarized light. Angew. Chem. Int. Ed. Engl., 13, 179–185.

    Google Scholar 

  • Buschmann H., Thede R., Heller D. (2000). New developments in the origins of the homochirality of biologically relevant molecules. Angew. Chem. Int. Ed., 39, 4033–4036.

    Google Scholar 

  • Cerf C., Jorissen A. (2000). Is amino-acid homochirality due to asymmetric photolysis in space? Space Science Reviews, 92, 603–612.

    Google Scholar 

  • Chyba C.F., Sagan, C. (1992). Endogeneous production, exogeneous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature, 355, 125–132.

    Google Scholar 

  • Collet A., Brienne M-J., Jacques J. (1980). Optical Resolution by Direct Crystallization of Enantiomer Mixtures. Chem. Rev., 80, 215–230.

    Google Scholar 

  • Collet A. (1990). The Homochiral versus heterochiral packing dilemma in Problems and Wonders of Chiral Molecules, ed. M. Simonyi, Akademia Kiado, Budapest.

    Google Scholar 

  • Cronin J.R., Chang S. (1993). Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite in The Chemistry of Life's Origins, eds. J.M. Greenberg, et al., p 209–258, Kluwer Acad. Pub., Netherlands.

    Google Scholar 

  • Cronin J.R., Pizzarello S. (1997). Enantiomeric exesses in meteoritic amino acids. Science, 275, 951–955.

    Google Scholar 

  • Cronin J.R., Pizzarello S. (2000). Chirality of meteoritic organic matter: A brief review. in Perspectives in Amino Acid and Protein Geochemistry, eds. Goodfriend G. et al., p 15–22, Oxford University Press, Oxford, New York.

    Google Scholar 

  • Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et magnétique. J. Chim. Phys., 3éme série, t.III, 393–402.

    Google Scholar 

  • Decker P. (1974). The origin of stochastic information (noise) in bioids: Open systems which can exist in several steady states. J. Mol. Evol., 4, 49–65.

    Google Scholar 

  • Droesbeke J.J. (2001). in Eléments de Statistique, 4ème édition, p 206–207, Editions de l'Université de Bruxelles).

    Google Scholar 

  • Dunitz J.D. (1996). Symmetry arguments in chemistry. Proc. Natl. Acad. Sci. USA, 93, 14260–14266.

    Google Scholar 

  • Engel M.H., Macko S.A., Silfer J.A. (1990). Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature, 348, 47–49.

    Google Scholar 

  • Engel M.H., Macko S.A. (1997). Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature, 389, 265–268.

    Google Scholar 

  • Eliel E.M., Wilen S.H.(1994). Stereochemistry of Organic Compounds. J. Wiley and Sons, New York (USA).

    Google Scholar 

  • Epstein S., Krishnamurthy R.V., Cronin J.R., Pizzarello S., Yuen G.U. (1987). Unusual stable isotope ratios in amino acids and carboxylic extracts from the Murchison meteorite. Nature, 326, 477–479.

    Google Scholar 

  • Feringa B.L., Huck N.P., van Doren H.K. (1995). Chiroptical switching between liquid crystalline phases. J. Am. Chem. Soc., 117, 9929–9930.

    Google Scholar 

  • Figereau A., Duval E., Boukenter A. (1995). Can biological homochirality result from a phase transition? Orig. Life Evol. Biosphere, 25, 211–217.

    Google Scholar 

  • Flores J.J., Bonner W.A., Massey G.A. (1977). Asymmetric photolysis of (R,S)-leucine with circularly polarized light. J. Am. Chem. Soc., 99, 3622–3625.

    Google Scholar 

  • Formaggio F., Crisma M., Bonora G.M., Pantano M., Valle G., Toniolo C., Aubry A., Bayeul D., Kamphuis J. (1995). (R)-Isovaline homopeptides adopt the left-handed helical structure. Peptide Research, 8, 6–14.

    Google Scholar 

  • Fox S.W., Krampitz G. (1964). Catalytic decomposition of glucose in aqueous solution by thermal proteoids. Nature, 203, 1362–1364.

    Google Scholar 

  • Franck F.C. (1953). On spontaneous asymmetric synthesis. Biochim. Biophys. Acta, 11, 459–463.

    Google Scholar 

  • Frondel C. (1978). Characters of quartz fibers. Am. Mineral., 63, 17–27.

    Google Scholar 

  • Gargaud M, Despois D, Parisot J-P. (Eds.), (2001). L'environnement de la Terre Primitive, Presses Universitaires de Bordeaux, France.

    Google Scholar 

  • Girard C., Kagan H.B. (1998). Nonlinear effects in asymmetric synthesis and stereoselective reactions: Ten years of investigations. Angew. Chem. Int. Ed., 37, 2922–2959.

    Google Scholar 

  • Gol'danski V.I., Kuz'min V.V. (1988). Spontaneous mirror symmetry breaking in nature and origin of life. Z. Phys. Chem., 269, 216–274.

    Google Scholar 

  • Greenberg J.M. (1996). Chirality in interstellar dust and in comets: Life from dead stars, in Physical Origin of Homochirality on Earth, Ed.D.B. Cline, p. 185–186, American Institute of Physics; Proc. 379, Woodbury, New York.

    Google Scholar 

  • Havinga E. (1954). Spontaneous formation of optically active substances. Biochem. Biophys. Acta, 38, 171–174.

    Google Scholar 

  • Hazen R.M., Filley R.F, Goodfriend G.A. (2001). Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Nat. Acad. Sci. USA, 98, 5487–5490.

    Google Scholar 

  • Inoue Y. (1992). Asymmetric photochemical reactions in solution. Chem. Rev., 92, 741–770.

    Google Scholar 

  • Jackson T.A. (1971). Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates. Chem. Geol. 7, 295–306.

    Google Scholar 

  • Jacques J., Collet A., Wilen S.H. (1981). Enantiomers, Racemates and Resolution, J. Wiley and Sons, New York.

    Google Scholar 

  • Jorissen A., Cerf C. (2002). Photoreactions as the Origin of Biomolecular Homochirality: A critical review. Origins Life Evol. Biosphere, 32, 129–142.

    Google Scholar 

  • Julg A., Favier A., Ozias, Y. (1989). A theoretical study of the difference in the behavior of L- and D-alanine toward the two inverse forms of kaolinite. Struc. Chem., 1, 137–141.

    Google Scholar 

  • Julg A. (1989). Origin of the L-homochirality of amino-acids in the proteins of living organisms in Molecules in Physics, Chemistry and Biology, vol. IV, Ed. J. Maruani, p. 33–52, Kluwer Academic Pub., Netherlands.

    Google Scholar 

  • Kagan H., Moradpour A., Nicoud J.F., Balavoine G., Martin R.H., Cosyn J.P. (1971). Photochemistry with circularly polarised light. Asymmetric synthesis of octa- and nonahelicene. Tetrahedron Lett., 22, 2479–2482.

    Google Scholar 

  • Kagan H.P., Fiaud J.C. (1988). Kinetic Resolution in Topics in Stereochemistry, vol 18. eds. Eliel, E.L. and Willen, S.H., p. 249–330, John Wiley, New York.

    Google Scholar 

  • Kelvin W.T. (1904). Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, p. 602–642, C.J. Clay, London.

    Google Scholar 

  • Kondepudi D.K., Nelson G.W. (1984). Chiral symmetry-breaking and its sensitivity in non-equilibrium chemical systems. Physica, 125A, 465–496.

    Google Scholar 

  • Kondepudi D.K., Nelson G.W. (1985). Weak neutral currents and the origin of biomolecular chirality. Nature, 314, 438–441.

    Google Scholar 

  • Kondepudi D.K. (1996). Selection of handedness in prebiotic chemical processes, in Physical Origin of Homochirality in Life, Ed. Cline D.B., p. 65–72, American Institute of Physics, AIP Conference 379, Woodbury, New York.

    Google Scholar 

  • Kondepudi D.K., Laudadio J., Asakura K. (1999). Chiral symmetry breaking in stirred crystallization of 1,1-binaphthyl melt. J. Am. Chem. Soc., 121, 1448–1451.

    Google Scholar 

  • Kuhn W., Braun E. (1929). Photochemische erzeugung optisch aktiver stoffe. Naturwiss., 17, 227–228.

    Google Scholar 

  • Kvenvolden K., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I.R., Moore C. (1970). Evidence for extraterrestrial aminoacids and hydrocarbons in the Murchison meteorite. Nature, 228, 923–926.

    Google Scholar 

  • Larder D.F. (1967). Historical aspects of the tetrahedron chemistry. J. Chem. Ed., 44, 661–666.

    Google Scholar 

  • Lee T.D., Yang C.N. (1956). Question of parity conservation in weak interactions. Phys. Rev., 104, 254–258.

    Google Scholar 

  • Mc Bride J.M., Carter R.L. (1991) Spontaneous resolution by stirred crystallization. Angew. Chem. Int. Ed., Engl. 30, 293–295.

    Google Scholar 

  • Mac Dermott A.J. (1996). The weak force and SETH: The search for extra-terrestrial homochirality, in Physical Origin of Homochirality on Earth, Ed.D.B. Cline, p. 241–254, American Institute of Physics, Proc. 379, Woodbury, New York.

    Google Scholar 

  • Mac Dermott A.J. (2002). The origin of biomolecular chirality, p. 23–52 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada.

    Google Scholar 

  • Mason S.F. (1982). Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mason S.F. (1997). Extraterrestrial handedness. Nature, 389, 804.

    Google Scholar 

  • Mason S.F. (2002). Pasteur on molecular handedness – and the sequel, p. 1–19 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada.

    Google Scholar 

  • Matsuura K., Inoue S., Tsuruta T. (1965) Asymmetric selection in the copolymerization of N-carboxy-L- and D-alanine. Makromol. Chem., 85, 284–290.

    Google Scholar 

  • Meierhenrich U., Thiemann W.H-P., Rosenbauer, H. (1999). Molecular parity violation via comets. Chirality, 11, 575–582.

    Google Scholar 

  • Meinschein W.G., Frondel C., Laur P., Mislow K. (1966). Meteorites: Optical activity in organic matter. Science, 154, 377–380.

    Google Scholar 

  • Mileikovwsky C., Cucinotta F., Wilson F., Gladman B., Hornek G., Lindegren, L., Melosh J., Rickman H., Valtonen M., Zheng, J.Q. (2000). Natural transfer of viable microbes in space, Part 1: From Mars to Earth and from Earth to Mars. Icarus, 145, 391–427.

    Google Scholar 

  • Miller S.L. (1997). Peptide nucleic acids and prebiotic chemistry. Nature Struct. Biol., 4, 167–169.

    Google Scholar 

  • Mills W.H. (1932). Some aspects of stereochemistry. Chem. and Ind., 750–759.

    Google Scholar 

  • Milton R.C. deL, Milton S.F.C., Kent, S.B.H. (1992). Total chemical synthesis of a D-enzyme. The enantiomers of HIV-1 protease show demonstration of remplaçable chiral-substrate-specificity. Science, 256, 1445–1448.

    Google Scholar 

  • Mislow K. (1965). Introduction to Stereochemistry, W.A. Benjamin, New York.

    Google Scholar 

  • Mislow K. (1996). A commentary on the topological chirality and achirality of molecules. Croat. Chim. Acta, 69, 485–511.

    Google Scholar 

  • Mislow K. (1997). Fuzzy restrictions and inherent uncertainties in chirality studies, in Fuzzy Logic in Chemistry, ed. D.H. Rouvray, p. 65–88, Academic Press, San Diego (USA).

    Google Scholar 

  • Monod J. (1970) Le Hasard et la Nécessité; Essai sur la Philosophie Naturelle de la Biologie Moderne, Editions du Seuil, Paris.

    Google Scholar 

  • Mullie F., Reisse J. (1987). Organic matter in carbonaceous chondrites. Topics in Current Chemistry (Spinger Verlag), 139, 83–117.

    Google Scholar 

  • Nielsen P.E. (1993). Peptide-Nucleic Acid (PNA)–A model structure for the primordial genetic code. Origins Life Evol. Biosphere, 23, 323–327.

    Google Scholar 

  • Nielsen P.E. (1996). Peptide Nucleic Acid (PNA). Implications for the origin of the genetic material and the homochirality of life, pages in Physical Origin of Homochirality in Life, AIP Conference Proceedings 379. Ed. D.B. Cline, p. 55–61,Woodbury, New York.

    Google Scholar 

  • Nishino H., Kosaka A, Hembury G.A., Shitomi H., Onuki H., Inoue I. (2001). Mechanism of pH-dependent photolysis of aliphatic aminoacids and enantiomeric enrichment of racemic leucine by circularly polarized light. Org. Letters, 3, 921–924.

    Google Scholar 

  • Nordén B. (1977). Was photoresolution of amino acids the origin of optical activity in life. Nature, 266, 567–568.

    Google Scholar 

  • Nordén B. (1978). The Asymmetry of Life. J. Mol. Evol 11, 313–332.

    Google Scholar 

  • Penzias A.A. (1980). Nuclear processing and isotopes in the Galaxy. Science, 208, 663–669.

    Google Scholar 

  • Pizzarello S., Krishnamurty R.V., Epstein S., Cronin J.R. (1991). Isotopic analyses of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta, 55, 905–910.

    Google Scholar 

  • Pizzarello S., Cronin J.R. (1998). Alanine enantiomers in the Murchison meteorite. Nature, 394, 236.

    Google Scholar 

  • Pizzarello S., Cronin J.R. (2000). Non-racemic amino acids in the Murchison and Murray meteorites. Geochim. Cosmochim. Acta, 64, 329–338.

    Google Scholar 

  • Pizzarello S., Zolensky M., Turk K.A. (2003). Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochim. Cosmochim. Acta, 67, 1589–1595.

    Google Scholar 

  • Quack M. (2002). How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed., 41, 4618–4630.

    Google Scholar 

  • Prigogine I., Kondepudi D.K. (1999). Thermodynamique. Des Moteurs Thermiques aux Structures Dissipatives, ed. Odile Jacob, Paris.

    Google Scholar 

  • Rassat A, Fowler P.V. (2003). Any scalene triangle is the most chiral triangle. Helvetic Chimica Acta, 86, 1728–1740.

    Google Scholar 

  • Rau H. (1983). Asymmetric Photochemistry in Solution. Chem. Rev., 83, 355–547.

    Google Scholar 

  • Rawn J.D. (1989). Biochemistry, Neil Patterson Pub. Carolina Biological Supply Company, Burlington, North Carolina.

    Google Scholar 

  • Rikken G.L., Raupach E. (2000). Enantioselective Magnetochiral Photochemistry. Nature, 405, 932–935.

    Google Scholar 

  • Reisse J., Mullie F. (1993). On the origins of organic matter in carbonaceous chondrites. Pure and Applied Chemistry, 65, 1281–1292.

    Google Scholar 

  • Reisse J. (2001). in L'environnement de la Terre Primitive, eds. Gargaud M., Despois D., Parisot J.P., p. 323–342, Presses Universitaires de Bordeaux, Bordeaux, France.

    Google Scholar 

  • Roberts J.A. (1984). Supernovae and life. Nature, 308, 318.

    Google Scholar 

  • Robinson R. (1974). Preface of the Van't Hoff-Le Bel Centenary Volume. Tetrahedron, 30, 1477–1486.

    Google Scholar 

  • Rubenstein E., Bonner W.A., Noyes H.P., Brown G.S. (1983). Supernovae and life. Nature, 306, 118–120.

    Google Scholar 

  • Salam A. (1993). The Origin of Chirality, the Role of Phase Transition and their Induction in Amino acids in Chem. Evol. and Origin of Life, eds. Ponnamperuma C, Chela-Flores J., Deepak Pub., Hampton, Virginia, USA.

    Google Scholar 

  • Shibata T., Yamamoto J., Matsumoto N., Yonekubo S., Osanai S., Soai K. (1998). Amplification of a Slight Enantiomeric Imbalance in Molecules Based on Asymmetric Autocatalysis: The First Correlation between High Enantiomeric Enrichment in a Chiral Molecule and Circularly Polarized Light. J. Am. Chem. Soc., 120, 12157–12158.

    Google Scholar 

  • Siegel J.S. (1998). Homochiral imperative of molecular evolution. Chirality, 10, 24–27.

    Google Scholar 

  • Siegel J.S. (2002). Shattered Mirrors. Nature, 419, 346–347.

    Google Scholar 

  • Singleton D.A., Vo L.K. (2002). Enantioselective synthesis without discrete optically active additives. J. Am. Chem. Soc., 124, 10010–10011.

    Google Scholar 

  • Soai K., Shibata T., Morioka H., Choji K. (1995). Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature, 378, 767–768.

    Google Scholar 

  • Soai K., Osanai S., Kadowaki K., Yonebuko S., Shibata T., Sato I. (1999). d- and l-Quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc., 121, 1235–1236.

    Google Scholar 

  • Soai K., Shibata T., Sato I. (2000). Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc. Chem. Res., 33, 382–390.

    Google Scholar 

  • Spach P.G. (1974). Polymérizsation des énantiomères d'un acide α-aminé. Stéréo­sélection and amplification de l'asymétrie. Chimia, 28, 500–503.

    Google Scholar 

  • Szabo-Nagy A., Keszthelyi L. (1999). Demonstration of the Parity-Violating Energy Difference between Enantiomers. Proc. Natl. Acad. Sci. USA, 96, 4225–4255.

    Google Scholar 

  • Takats Z, Nanita S.C., Cooks R.G. (2003). Serine octamer reactions: indicators of prebiotic relevance. Angew. Chem. Int. Ed., 42, 3521–3523.

    Google Scholar 

  • Tranter G.E. (1985). Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality. Nature, 318, 172–173.

    Google Scholar 

  • Triggle D.J. (1997). Stereoselectivity of drug action. Drug Discovery Today, 2, 138–147.

    Google Scholar 

  • Valéry-Radot P. (1968). Pages Illustres de Pasteur. Hachette (Paris).

    Google Scholar 

  • Vester F. (1974). The (hi)story of the induction of molecular asymmetry by the intrinsic asymmetry in β-decay. J. Mol. Evol., 4, 1–13.

    Google Scholar 

  • Wagnière G., Meier A. (1983). Difference in the absorption coefficient of arbitrarily polarized light in a magnetic field. Experientia, 39, 1090–1091.

    Google Scholar 

  • Wald G. (1957). The origin of optical activity. Ann. N.Y. Acad. Sci., 69, 353–358.

    Google Scholar 

  • Wang W., Yi F., Ni Y., Jin Z., Tang Y. (2000). Parity violation of electroweak force in phase transition of single crystals of D- and L- alanine and valine. J. of Biological Physics, 26, 51–65.

    Google Scholar 

  • Wannier P.G.A. (1980). Nuclear abundances and evolution of the interstellar medium. Ann. Rev. Astron. Astrophys., 18, 399–437.

    Google Scholar 

  • Weissbuch I., Addadi L., Berkovitch-Yellin Z., Gatti E., Lahav M., Leiserowitz L. (1984). Spontaneous generation and amplification of optical activity in alpha amino­acids by enantioselective occlusion in centrosymmetric crystals of glycine. Nature, 310, 161–164.

    Google Scholar 

  • Wolstencroft R.D. (1985). Astronomical sources of circularly polarized light and their role in determining chirality on Earth. in IAU Symp. 112. The Search for Extraterrestrial Life, p. 171–175, D. Reidel, Dordrecht.

    Google Scholar 

  • Wu C.S., Ambler E., Hayward R.W., Hoppes D.D., Hudson R.P. (1957). Experimental test of parity conservation in beta-decay. Phys. Rev., 105, 1413–1415

    Google Scholar 

  • Yamagata Y. (1966). A hypothesis for the asymmetric appearance of biomolecules on Earth. J. Theor. Biol., 11, 495–498.

    Google Scholar 

  • Zanasi R., Lazeretti P., Ligabue A. and Soncini A. (1999) in Advances in BioChirality eds. Palyi, G. et al., ch. 29, pp 377–385, Elsevier, Amsterdam.

    Google Scholar 

  • Zee A. (1999). Fearful Symmetry: The Search for Beauty in Modern Physics, p 224, Princeton Science Library.

    Google Scholar 

  • Zepik H., Shavit E., Tang M., Jensen T.R., Kjaer K., Bolbach G., Leiserowitz L., Weissbuch I., Lahav M. (2002). Amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science, 295, 1266–1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cronin, J., Reisse, J. (2005). Chirality and the Origin of Homochirality. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_14

Download citation

Publish with us

Policies and ethics